Abstract

Abstract: To interpret fiber-based and camera-based measurements of remitted light from biological tissues, researchers typically use analytical models, such as the diffusion approximation to light transport theory, or stochastic models, such as Monte Carlo modeling. To achieve rapid (ideally real-time) measurement of tissue optical properties, especially in clinical situations, there is a critical need to accelerate Monte Carlo simulation runs. In this manuscript, we report on our approach using the Graphics Processing Unit (GPU) to accelerate rescaling of single Monte Carlo runs to calculate rapidly diffuse reflectance values for different sets of tissue optical properties. We selected MATLAB to enable non-specialists in C and CUDA-based programming to use the generated open-source code. We developed a software package with four abstraction layers. To calculate a set of diffuse reflectance values from a simulated tissue with homogeneous optical properties, our rescaling GPU-based approach achieves a reduction in computation time of several orders of magnitude as compared to other GPU-based approaches. Specifically, our GPU-based approach generated a diffuse reflectance value in 0.08ms. The transfer time from CPU to GPU memory currently is a limiting factor with GPU-based calculations. However, for calculation of multiple diffuse reflectance values, our GPU-based approach still can lead to processing that is ~3400 times faster than other GPU-based approaches.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Hennessy, S. L. Lim, M. K. Markey, J. W. Tunnell, “Monte Carlo lookup table-based inverse model for extracting optical properties from tissue-simulating phantoms using diffuse reflectance spectroscopy,” J. Biomed. Opt. 18(3), 037003 (2013).
    [CrossRef] [PubMed]
  2. A. M. Laughney, V. Krishnaswamy, T. B. Rice, D. J. Cuccia, R. J. Barth, B. J. Tromberg, K. D. Paulsen, B. W. Pogue, W. A. Wells, “System analysis of spatial frequency domain imaging for quantitative mapping of surgically resected breast tissues,” J. Biomed. Opt. 18(3), 036012 (2013).
    [CrossRef] [PubMed]
  3. A. Kim, M. Khurana, Y. Moriyama, B. C. Wilson, “Quantification of in vivo fluorescence decoupled from the effects of tissue optical properties using fiber-optic spectroscopy measurements,” J. Biomed. Opt. 15(6), 067006 (2010).
    [CrossRef] [PubMed]
  4. R. B. Saager, D. J. Cuccia, S. Saggese, K. M. Kelly, A. J. Durkin, “Quantitative fluorescence imaging of protoporphyrin IX through determination of tissue optical properties in the spatial frequency domain,” J. Biomed. Opt. 16(12), 126013 (2011).
    [CrossRef] [PubMed]
  5. A. K. Glaser, S. C. Kanick, R. Zhang, P. Arce, B. W. Pogue, “A GAMOS plug-in for GEANT4 based Monte Carlo simulation of radiation-induced light transport in biological media,” Biomed. Opt. Express 4(5), 741–759 (2013).
    [CrossRef] [PubMed]
  6. M. D. Keller, E. Vargis, N. de Matos Granja, R. H. Wilson, M. A. Mycek, M. C. Kelley, A. Mahadevan-Jansen, “Development of a spatially offset Raman spectroscopy probe for breast tumor surgical margin evaluation,” J. Biomed. Opt. 16(7), 077006 (2011).
    [CrossRef] [PubMed]
  7. C. K. Hayakawa, E. O. Potma, V. Venugopalan, “Electric field Monte Carlo simulations of focal field distributions produced by tightly focused laser beams in tissues,” Biomed. Opt. Express 2(2), 278–290 (2011).
    [CrossRef] [PubMed]
  8. M. S. Patterson, B. Chance, B. C. Wilson, “Time resolved reflectance and transmittance for the non-invasive measurement of tissue optical properties,” Appl. Opt. 28(12), 2331–2336 (1989).
    [CrossRef] [PubMed]
  9. L. Wang, S. L. Jacques, L. Zheng, “MCML--Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47(2), 131–146 (1995).
    [CrossRef] [PubMed]
  10. S. T. Flock, B. C. Wilson, M. S. Patterson, “Monte Carlo modeling of light propagation in highly scattering tissues--II: Comparison with measurements in phantoms,” IEEE Trans. Biomed. Eng. 36(12), 1169–1173 (1989).
    [CrossRef] [PubMed]
  11. A. H. Hielscher, S. L. Jacques, L. Wang, F. K. Tittel, “The influence of boundary conditions on the accuracy of diffusion theory in time-resolved reflectance spectroscopy of biological tissues,” Phys. Med. Biol. 40(11), 1957–1975 (1995).
    [CrossRef] [PubMed]
  12. C. K. Hayakawa, J. Spanier, F. Bevilacqua, A. K. Dunn, J. S. You, B. J. Tromberg, V. Venugopalan, “Perturbation Monte Carlo methods to solve inverse photon migration problems in heterogeneous tissues,” Opt. Lett. 26(17), 1335–1337 (2001).
    [CrossRef] [PubMed]
  13. D. J. Cuccia, F. Bevilacqua, A. J. Durkin, B. J. Tromberg, “Modulated imaging: quantitative analysis and tomography of turbid media in the spatial-frequency domain,” Opt. Lett. 30(11), 1354–1356 (2005).
    [CrossRef] [PubMed]
  14. D. J. Cuccia, F. Bevilacqua, A. J. Durkin, F. R. Ayers, B. J. Tromberg, “Quantitation and mapping of tissue optical properties using modulated imaging,” J. Biomed. Opt. 14(2), 024012 (2009).
    [CrossRef] [PubMed]
  15. E. Alerstam, S. Andersson-Engels, T. Svensson, “White Monte Carlo for time-resolved photon migration,” J. Biomed. Opt. 13(4), 041304 (2008).
    [CrossRef] [PubMed]
  16. E. Alerstam, W. C. Lo, T. D. Han, J. Rose, S. Andersson-Engels, L. Lilge, “Next-generation acceleration and code optimization for light transport in turbid media using GPUs,” Biomed. Opt. Express 1(2), 658–675 (2010).
    [CrossRef] [PubMed]
  17. A. Badal, A. Badano, “Accelerating Monte Carlo simulations of photon transport in a voxelized geometry using a massively parallel graphics processing unit,” Med. Phys. 36(11), 4878–4880 (2009).
    [CrossRef] [PubMed]
  18. T. S. Leung, S. Powell, “Fast Monte Carlo simulations of ultrasound-modulated light using a graphics processing unit,” J. Biomed. Opt. 15(5), 055007 (2010).
    [CrossRef] [PubMed]
  19. T. M. Baran, T. H. Foster, “New Monte Carlo model of cylindrical diffusing fibers illustrates axially heterogeneous fluorescence detection: simulation and experimental validation,” J. Biomed. Opt. 16(8), 085003 (2011).
    [CrossRef] [PubMed]
  20. A. Doronin, I. Meglinski, “Online object oriented Monte Carlo computational tool for the needs of biomedical optics,” Biomed. Opt. Express 2(9), 2461–2469 (2011).
    [CrossRef] [PubMed]
  21. S. Liu, P. Li, Q. Luo, “Fast blood flow visualization of high-resolution laser speckle imaging data using graphics processing unit,” Opt. Express 16(19), 14321–14329 (2008).
    [CrossRef] [PubMed]
  22. O. Yang, D. Cuccia, B. Choi, “Real-time blood flow visualization using the graphics processing unit,” J. Biomed. Opt. 16(1), 016009 (2011).
    [CrossRef] [PubMed]
  23. J. Swartling, A. Pifferi, A. M. K. Enejder, S. Andersson-Engels, “Accelerated Monte Carlo models to simulate fluorescence spectra from layered tissues,” J. Opt. Soc. Am. A 20(4), 714–727 (2003).
    [CrossRef] [PubMed]
  24. A. Kienle, M. S. Patterson, “Determination of the optical properties of turbid media from a single Monte Carlo simulation,” Phys. Med. Biol. 41(10), 2221–2227 (1996).
    [CrossRef] [PubMed]
  25. M. Martinelli, A. Gardner, D. Cuccia, C. Hayakawa, J. Spanier, V. Venugopalan, “Analysis of single Monte Carlo methods for prediction of reflectance from turbid media,” Opt. Express 19(20), 19627–19642 (2011).
    [CrossRef] [PubMed]
  26. O. Yang, “Real-Time Laser Speckle Imaging Software using the GPU,” (2011), http://choi.bli.uci.edu/software/realtime_lsi.html .
  27. S. Bélanger, M. Abran, X. Intes, C. Casanova, F. Lesage, “Real-time diffuse optical tomography based on structured illumination,” J. Biomed. Opt. 15(1), 016006 (2010).
    [CrossRef] [PubMed]

2013

A. K. Glaser, S. C. Kanick, R. Zhang, P. Arce, B. W. Pogue, “A GAMOS plug-in for GEANT4 based Monte Carlo simulation of radiation-induced light transport in biological media,” Biomed. Opt. Express 4(5), 741–759 (2013).
[CrossRef] [PubMed]

R. Hennessy, S. L. Lim, M. K. Markey, J. W. Tunnell, “Monte Carlo lookup table-based inverse model for extracting optical properties from tissue-simulating phantoms using diffuse reflectance spectroscopy,” J. Biomed. Opt. 18(3), 037003 (2013).
[CrossRef] [PubMed]

A. M. Laughney, V. Krishnaswamy, T. B. Rice, D. J. Cuccia, R. J. Barth, B. J. Tromberg, K. D. Paulsen, B. W. Pogue, W. A. Wells, “System analysis of spatial frequency domain imaging for quantitative mapping of surgically resected breast tissues,” J. Biomed. Opt. 18(3), 036012 (2013).
[CrossRef] [PubMed]

2011

M. D. Keller, E. Vargis, N. de Matos Granja, R. H. Wilson, M. A. Mycek, M. C. Kelley, A. Mahadevan-Jansen, “Development of a spatially offset Raman spectroscopy probe for breast tumor surgical margin evaluation,” J. Biomed. Opt. 16(7), 077006 (2011).
[CrossRef] [PubMed]

C. K. Hayakawa, E. O. Potma, V. Venugopalan, “Electric field Monte Carlo simulations of focal field distributions produced by tightly focused laser beams in tissues,” Biomed. Opt. Express 2(2), 278–290 (2011).
[CrossRef] [PubMed]

R. B. Saager, D. J. Cuccia, S. Saggese, K. M. Kelly, A. J. Durkin, “Quantitative fluorescence imaging of protoporphyrin IX through determination of tissue optical properties in the spatial frequency domain,” J. Biomed. Opt. 16(12), 126013 (2011).
[CrossRef] [PubMed]

T. M. Baran, T. H. Foster, “New Monte Carlo model of cylindrical diffusing fibers illustrates axially heterogeneous fluorescence detection: simulation and experimental validation,” J. Biomed. Opt. 16(8), 085003 (2011).
[CrossRef] [PubMed]

A. Doronin, I. Meglinski, “Online object oriented Monte Carlo computational tool for the needs of biomedical optics,” Biomed. Opt. Express 2(9), 2461–2469 (2011).
[CrossRef] [PubMed]

O. Yang, D. Cuccia, B. Choi, “Real-time blood flow visualization using the graphics processing unit,” J. Biomed. Opt. 16(1), 016009 (2011).
[CrossRef] [PubMed]

M. Martinelli, A. Gardner, D. Cuccia, C. Hayakawa, J. Spanier, V. Venugopalan, “Analysis of single Monte Carlo methods for prediction of reflectance from turbid media,” Opt. Express 19(20), 19627–19642 (2011).
[CrossRef] [PubMed]

2010

S. Bélanger, M. Abran, X. Intes, C. Casanova, F. Lesage, “Real-time diffuse optical tomography based on structured illumination,” J. Biomed. Opt. 15(1), 016006 (2010).
[CrossRef] [PubMed]

T. S. Leung, S. Powell, “Fast Monte Carlo simulations of ultrasound-modulated light using a graphics processing unit,” J. Biomed. Opt. 15(5), 055007 (2010).
[CrossRef] [PubMed]

E. Alerstam, W. C. Lo, T. D. Han, J. Rose, S. Andersson-Engels, L. Lilge, “Next-generation acceleration and code optimization for light transport in turbid media using GPUs,” Biomed. Opt. Express 1(2), 658–675 (2010).
[CrossRef] [PubMed]

A. Kim, M. Khurana, Y. Moriyama, B. C. Wilson, “Quantification of in vivo fluorescence decoupled from the effects of tissue optical properties using fiber-optic spectroscopy measurements,” J. Biomed. Opt. 15(6), 067006 (2010).
[CrossRef] [PubMed]

2009

A. Badal, A. Badano, “Accelerating Monte Carlo simulations of photon transport in a voxelized geometry using a massively parallel graphics processing unit,” Med. Phys. 36(11), 4878–4880 (2009).
[CrossRef] [PubMed]

D. J. Cuccia, F. Bevilacqua, A. J. Durkin, F. R. Ayers, B. J. Tromberg, “Quantitation and mapping of tissue optical properties using modulated imaging,” J. Biomed. Opt. 14(2), 024012 (2009).
[CrossRef] [PubMed]

2008

E. Alerstam, S. Andersson-Engels, T. Svensson, “White Monte Carlo for time-resolved photon migration,” J. Biomed. Opt. 13(4), 041304 (2008).
[CrossRef] [PubMed]

S. Liu, P. Li, Q. Luo, “Fast blood flow visualization of high-resolution laser speckle imaging data using graphics processing unit,” Opt. Express 16(19), 14321–14329 (2008).
[CrossRef] [PubMed]

2005

2003

2001

1996

A. Kienle, M. S. Patterson, “Determination of the optical properties of turbid media from a single Monte Carlo simulation,” Phys. Med. Biol. 41(10), 2221–2227 (1996).
[CrossRef] [PubMed]

1995

A. H. Hielscher, S. L. Jacques, L. Wang, F. K. Tittel, “The influence of boundary conditions on the accuracy of diffusion theory in time-resolved reflectance spectroscopy of biological tissues,” Phys. Med. Biol. 40(11), 1957–1975 (1995).
[CrossRef] [PubMed]

L. Wang, S. L. Jacques, L. Zheng, “MCML--Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47(2), 131–146 (1995).
[CrossRef] [PubMed]

1989

S. T. Flock, B. C. Wilson, M. S. Patterson, “Monte Carlo modeling of light propagation in highly scattering tissues--II: Comparison with measurements in phantoms,” IEEE Trans. Biomed. Eng. 36(12), 1169–1173 (1989).
[CrossRef] [PubMed]

M. S. Patterson, B. Chance, B. C. Wilson, “Time resolved reflectance and transmittance for the non-invasive measurement of tissue optical properties,” Appl. Opt. 28(12), 2331–2336 (1989).
[CrossRef] [PubMed]

Abran, M.

S. Bélanger, M. Abran, X. Intes, C. Casanova, F. Lesage, “Real-time diffuse optical tomography based on structured illumination,” J. Biomed. Opt. 15(1), 016006 (2010).
[CrossRef] [PubMed]

Alerstam, E.

Andersson-Engels, S.

Arce, P.

Ayers, F. R.

D. J. Cuccia, F. Bevilacqua, A. J. Durkin, F. R. Ayers, B. J. Tromberg, “Quantitation and mapping of tissue optical properties using modulated imaging,” J. Biomed. Opt. 14(2), 024012 (2009).
[CrossRef] [PubMed]

Badal, A.

A. Badal, A. Badano, “Accelerating Monte Carlo simulations of photon transport in a voxelized geometry using a massively parallel graphics processing unit,” Med. Phys. 36(11), 4878–4880 (2009).
[CrossRef] [PubMed]

Badano, A.

A. Badal, A. Badano, “Accelerating Monte Carlo simulations of photon transport in a voxelized geometry using a massively parallel graphics processing unit,” Med. Phys. 36(11), 4878–4880 (2009).
[CrossRef] [PubMed]

Baran, T. M.

T. M. Baran, T. H. Foster, “New Monte Carlo model of cylindrical diffusing fibers illustrates axially heterogeneous fluorescence detection: simulation and experimental validation,” J. Biomed. Opt. 16(8), 085003 (2011).
[CrossRef] [PubMed]

Barth, R. J.

A. M. Laughney, V. Krishnaswamy, T. B. Rice, D. J. Cuccia, R. J. Barth, B. J. Tromberg, K. D. Paulsen, B. W. Pogue, W. A. Wells, “System analysis of spatial frequency domain imaging for quantitative mapping of surgically resected breast tissues,” J. Biomed. Opt. 18(3), 036012 (2013).
[CrossRef] [PubMed]

Bélanger, S.

S. Bélanger, M. Abran, X. Intes, C. Casanova, F. Lesage, “Real-time diffuse optical tomography based on structured illumination,” J. Biomed. Opt. 15(1), 016006 (2010).
[CrossRef] [PubMed]

Bevilacqua, F.

Casanova, C.

S. Bélanger, M. Abran, X. Intes, C. Casanova, F. Lesage, “Real-time diffuse optical tomography based on structured illumination,” J. Biomed. Opt. 15(1), 016006 (2010).
[CrossRef] [PubMed]

Chance, B.

Choi, B.

O. Yang, D. Cuccia, B. Choi, “Real-time blood flow visualization using the graphics processing unit,” J. Biomed. Opt. 16(1), 016009 (2011).
[CrossRef] [PubMed]

Cuccia, D.

Cuccia, D. J.

A. M. Laughney, V. Krishnaswamy, T. B. Rice, D. J. Cuccia, R. J. Barth, B. J. Tromberg, K. D. Paulsen, B. W. Pogue, W. A. Wells, “System analysis of spatial frequency domain imaging for quantitative mapping of surgically resected breast tissues,” J. Biomed. Opt. 18(3), 036012 (2013).
[CrossRef] [PubMed]

R. B. Saager, D. J. Cuccia, S. Saggese, K. M. Kelly, A. J. Durkin, “Quantitative fluorescence imaging of protoporphyrin IX through determination of tissue optical properties in the spatial frequency domain,” J. Biomed. Opt. 16(12), 126013 (2011).
[CrossRef] [PubMed]

D. J. Cuccia, F. Bevilacqua, A. J. Durkin, F. R. Ayers, B. J. Tromberg, “Quantitation and mapping of tissue optical properties using modulated imaging,” J. Biomed. Opt. 14(2), 024012 (2009).
[CrossRef] [PubMed]

D. J. Cuccia, F. Bevilacqua, A. J. Durkin, B. J. Tromberg, “Modulated imaging: quantitative analysis and tomography of turbid media in the spatial-frequency domain,” Opt. Lett. 30(11), 1354–1356 (2005).
[CrossRef] [PubMed]

de Matos Granja, N.

M. D. Keller, E. Vargis, N. de Matos Granja, R. H. Wilson, M. A. Mycek, M. C. Kelley, A. Mahadevan-Jansen, “Development of a spatially offset Raman spectroscopy probe for breast tumor surgical margin evaluation,” J. Biomed. Opt. 16(7), 077006 (2011).
[CrossRef] [PubMed]

Doronin, A.

Dunn, A. K.

Durkin, A. J.

R. B. Saager, D. J. Cuccia, S. Saggese, K. M. Kelly, A. J. Durkin, “Quantitative fluorescence imaging of protoporphyrin IX through determination of tissue optical properties in the spatial frequency domain,” J. Biomed. Opt. 16(12), 126013 (2011).
[CrossRef] [PubMed]

D. J. Cuccia, F. Bevilacqua, A. J. Durkin, F. R. Ayers, B. J. Tromberg, “Quantitation and mapping of tissue optical properties using modulated imaging,” J. Biomed. Opt. 14(2), 024012 (2009).
[CrossRef] [PubMed]

D. J. Cuccia, F. Bevilacqua, A. J. Durkin, B. J. Tromberg, “Modulated imaging: quantitative analysis and tomography of turbid media in the spatial-frequency domain,” Opt. Lett. 30(11), 1354–1356 (2005).
[CrossRef] [PubMed]

Enejder, A. M. K.

Flock, S. T.

S. T. Flock, B. C. Wilson, M. S. Patterson, “Monte Carlo modeling of light propagation in highly scattering tissues--II: Comparison with measurements in phantoms,” IEEE Trans. Biomed. Eng. 36(12), 1169–1173 (1989).
[CrossRef] [PubMed]

Foster, T. H.

T. M. Baran, T. H. Foster, “New Monte Carlo model of cylindrical diffusing fibers illustrates axially heterogeneous fluorescence detection: simulation and experimental validation,” J. Biomed. Opt. 16(8), 085003 (2011).
[CrossRef] [PubMed]

Gardner, A.

Glaser, A. K.

Han, T. D.

Hayakawa, C.

Hayakawa, C. K.

Hennessy, R.

R. Hennessy, S. L. Lim, M. K. Markey, J. W. Tunnell, “Monte Carlo lookup table-based inverse model for extracting optical properties from tissue-simulating phantoms using diffuse reflectance spectroscopy,” J. Biomed. Opt. 18(3), 037003 (2013).
[CrossRef] [PubMed]

Hielscher, A. H.

A. H. Hielscher, S. L. Jacques, L. Wang, F. K. Tittel, “The influence of boundary conditions on the accuracy of diffusion theory in time-resolved reflectance spectroscopy of biological tissues,” Phys. Med. Biol. 40(11), 1957–1975 (1995).
[CrossRef] [PubMed]

Intes, X.

S. Bélanger, M. Abran, X. Intes, C. Casanova, F. Lesage, “Real-time diffuse optical tomography based on structured illumination,” J. Biomed. Opt. 15(1), 016006 (2010).
[CrossRef] [PubMed]

Jacques, S. L.

A. H. Hielscher, S. L. Jacques, L. Wang, F. K. Tittel, “The influence of boundary conditions on the accuracy of diffusion theory in time-resolved reflectance spectroscopy of biological tissues,” Phys. Med. Biol. 40(11), 1957–1975 (1995).
[CrossRef] [PubMed]

L. Wang, S. L. Jacques, L. Zheng, “MCML--Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47(2), 131–146 (1995).
[CrossRef] [PubMed]

Kanick, S. C.

Keller, M. D.

M. D. Keller, E. Vargis, N. de Matos Granja, R. H. Wilson, M. A. Mycek, M. C. Kelley, A. Mahadevan-Jansen, “Development of a spatially offset Raman spectroscopy probe for breast tumor surgical margin evaluation,” J. Biomed. Opt. 16(7), 077006 (2011).
[CrossRef] [PubMed]

Kelley, M. C.

M. D. Keller, E. Vargis, N. de Matos Granja, R. H. Wilson, M. A. Mycek, M. C. Kelley, A. Mahadevan-Jansen, “Development of a spatially offset Raman spectroscopy probe for breast tumor surgical margin evaluation,” J. Biomed. Opt. 16(7), 077006 (2011).
[CrossRef] [PubMed]

Kelly, K. M.

R. B. Saager, D. J. Cuccia, S. Saggese, K. M. Kelly, A. J. Durkin, “Quantitative fluorescence imaging of protoporphyrin IX through determination of tissue optical properties in the spatial frequency domain,” J. Biomed. Opt. 16(12), 126013 (2011).
[CrossRef] [PubMed]

Khurana, M.

A. Kim, M. Khurana, Y. Moriyama, B. C. Wilson, “Quantification of in vivo fluorescence decoupled from the effects of tissue optical properties using fiber-optic spectroscopy measurements,” J. Biomed. Opt. 15(6), 067006 (2010).
[CrossRef] [PubMed]

Kienle, A.

A. Kienle, M. S. Patterson, “Determination of the optical properties of turbid media from a single Monte Carlo simulation,” Phys. Med. Biol. 41(10), 2221–2227 (1996).
[CrossRef] [PubMed]

Kim, A.

A. Kim, M. Khurana, Y. Moriyama, B. C. Wilson, “Quantification of in vivo fluorescence decoupled from the effects of tissue optical properties using fiber-optic spectroscopy measurements,” J. Biomed. Opt. 15(6), 067006 (2010).
[CrossRef] [PubMed]

Krishnaswamy, V.

A. M. Laughney, V. Krishnaswamy, T. B. Rice, D. J. Cuccia, R. J. Barth, B. J. Tromberg, K. D. Paulsen, B. W. Pogue, W. A. Wells, “System analysis of spatial frequency domain imaging for quantitative mapping of surgically resected breast tissues,” J. Biomed. Opt. 18(3), 036012 (2013).
[CrossRef] [PubMed]

Laughney, A. M.

A. M. Laughney, V. Krishnaswamy, T. B. Rice, D. J. Cuccia, R. J. Barth, B. J. Tromberg, K. D. Paulsen, B. W. Pogue, W. A. Wells, “System analysis of spatial frequency domain imaging for quantitative mapping of surgically resected breast tissues,” J. Biomed. Opt. 18(3), 036012 (2013).
[CrossRef] [PubMed]

Lesage, F.

S. Bélanger, M. Abran, X. Intes, C. Casanova, F. Lesage, “Real-time diffuse optical tomography based on structured illumination,” J. Biomed. Opt. 15(1), 016006 (2010).
[CrossRef] [PubMed]

Leung, T. S.

T. S. Leung, S. Powell, “Fast Monte Carlo simulations of ultrasound-modulated light using a graphics processing unit,” J. Biomed. Opt. 15(5), 055007 (2010).
[CrossRef] [PubMed]

Li, P.

Lilge, L.

Lim, S. L.

R. Hennessy, S. L. Lim, M. K. Markey, J. W. Tunnell, “Monte Carlo lookup table-based inverse model for extracting optical properties from tissue-simulating phantoms using diffuse reflectance spectroscopy,” J. Biomed. Opt. 18(3), 037003 (2013).
[CrossRef] [PubMed]

Liu, S.

Lo, W. C.

Luo, Q.

Mahadevan-Jansen, A.

M. D. Keller, E. Vargis, N. de Matos Granja, R. H. Wilson, M. A. Mycek, M. C. Kelley, A. Mahadevan-Jansen, “Development of a spatially offset Raman spectroscopy probe for breast tumor surgical margin evaluation,” J. Biomed. Opt. 16(7), 077006 (2011).
[CrossRef] [PubMed]

Markey, M. K.

R. Hennessy, S. L. Lim, M. K. Markey, J. W. Tunnell, “Monte Carlo lookup table-based inverse model for extracting optical properties from tissue-simulating phantoms using diffuse reflectance spectroscopy,” J. Biomed. Opt. 18(3), 037003 (2013).
[CrossRef] [PubMed]

Martinelli, M.

Meglinski, I.

Moriyama, Y.

A. Kim, M. Khurana, Y. Moriyama, B. C. Wilson, “Quantification of in vivo fluorescence decoupled from the effects of tissue optical properties using fiber-optic spectroscopy measurements,” J. Biomed. Opt. 15(6), 067006 (2010).
[CrossRef] [PubMed]

Mycek, M. A.

M. D. Keller, E. Vargis, N. de Matos Granja, R. H. Wilson, M. A. Mycek, M. C. Kelley, A. Mahadevan-Jansen, “Development of a spatially offset Raman spectroscopy probe for breast tumor surgical margin evaluation,” J. Biomed. Opt. 16(7), 077006 (2011).
[CrossRef] [PubMed]

Patterson, M. S.

A. Kienle, M. S. Patterson, “Determination of the optical properties of turbid media from a single Monte Carlo simulation,” Phys. Med. Biol. 41(10), 2221–2227 (1996).
[CrossRef] [PubMed]

M. S. Patterson, B. Chance, B. C. Wilson, “Time resolved reflectance and transmittance for the non-invasive measurement of tissue optical properties,” Appl. Opt. 28(12), 2331–2336 (1989).
[CrossRef] [PubMed]

S. T. Flock, B. C. Wilson, M. S. Patterson, “Monte Carlo modeling of light propagation in highly scattering tissues--II: Comparison with measurements in phantoms,” IEEE Trans. Biomed. Eng. 36(12), 1169–1173 (1989).
[CrossRef] [PubMed]

Paulsen, K. D.

A. M. Laughney, V. Krishnaswamy, T. B. Rice, D. J. Cuccia, R. J. Barth, B. J. Tromberg, K. D. Paulsen, B. W. Pogue, W. A. Wells, “System analysis of spatial frequency domain imaging for quantitative mapping of surgically resected breast tissues,” J. Biomed. Opt. 18(3), 036012 (2013).
[CrossRef] [PubMed]

Pifferi, A.

Pogue, B. W.

A. M. Laughney, V. Krishnaswamy, T. B. Rice, D. J. Cuccia, R. J. Barth, B. J. Tromberg, K. D. Paulsen, B. W. Pogue, W. A. Wells, “System analysis of spatial frequency domain imaging for quantitative mapping of surgically resected breast tissues,” J. Biomed. Opt. 18(3), 036012 (2013).
[CrossRef] [PubMed]

A. K. Glaser, S. C. Kanick, R. Zhang, P. Arce, B. W. Pogue, “A GAMOS plug-in for GEANT4 based Monte Carlo simulation of radiation-induced light transport in biological media,” Biomed. Opt. Express 4(5), 741–759 (2013).
[CrossRef] [PubMed]

Potma, E. O.

Powell, S.

T. S. Leung, S. Powell, “Fast Monte Carlo simulations of ultrasound-modulated light using a graphics processing unit,” J. Biomed. Opt. 15(5), 055007 (2010).
[CrossRef] [PubMed]

Rice, T. B.

A. M. Laughney, V. Krishnaswamy, T. B. Rice, D. J. Cuccia, R. J. Barth, B. J. Tromberg, K. D. Paulsen, B. W. Pogue, W. A. Wells, “System analysis of spatial frequency domain imaging for quantitative mapping of surgically resected breast tissues,” J. Biomed. Opt. 18(3), 036012 (2013).
[CrossRef] [PubMed]

Rose, J.

Saager, R. B.

R. B. Saager, D. J. Cuccia, S. Saggese, K. M. Kelly, A. J. Durkin, “Quantitative fluorescence imaging of protoporphyrin IX through determination of tissue optical properties in the spatial frequency domain,” J. Biomed. Opt. 16(12), 126013 (2011).
[CrossRef] [PubMed]

Saggese, S.

R. B. Saager, D. J. Cuccia, S. Saggese, K. M. Kelly, A. J. Durkin, “Quantitative fluorescence imaging of protoporphyrin IX through determination of tissue optical properties in the spatial frequency domain,” J. Biomed. Opt. 16(12), 126013 (2011).
[CrossRef] [PubMed]

Spanier, J.

Svensson, T.

E. Alerstam, S. Andersson-Engels, T. Svensson, “White Monte Carlo for time-resolved photon migration,” J. Biomed. Opt. 13(4), 041304 (2008).
[CrossRef] [PubMed]

Swartling, J.

Tittel, F. K.

A. H. Hielscher, S. L. Jacques, L. Wang, F. K. Tittel, “The influence of boundary conditions on the accuracy of diffusion theory in time-resolved reflectance spectroscopy of biological tissues,” Phys. Med. Biol. 40(11), 1957–1975 (1995).
[CrossRef] [PubMed]

Tromberg, B. J.

A. M. Laughney, V. Krishnaswamy, T. B. Rice, D. J. Cuccia, R. J. Barth, B. J. Tromberg, K. D. Paulsen, B. W. Pogue, W. A. Wells, “System analysis of spatial frequency domain imaging for quantitative mapping of surgically resected breast tissues,” J. Biomed. Opt. 18(3), 036012 (2013).
[CrossRef] [PubMed]

D. J. Cuccia, F. Bevilacqua, A. J. Durkin, F. R. Ayers, B. J. Tromberg, “Quantitation and mapping of tissue optical properties using modulated imaging,” J. Biomed. Opt. 14(2), 024012 (2009).
[CrossRef] [PubMed]

D. J. Cuccia, F. Bevilacqua, A. J. Durkin, B. J. Tromberg, “Modulated imaging: quantitative analysis and tomography of turbid media in the spatial-frequency domain,” Opt. Lett. 30(11), 1354–1356 (2005).
[CrossRef] [PubMed]

C. K. Hayakawa, J. Spanier, F. Bevilacqua, A. K. Dunn, J. S. You, B. J. Tromberg, V. Venugopalan, “Perturbation Monte Carlo methods to solve inverse photon migration problems in heterogeneous tissues,” Opt. Lett. 26(17), 1335–1337 (2001).
[CrossRef] [PubMed]

Tunnell, J. W.

R. Hennessy, S. L. Lim, M. K. Markey, J. W. Tunnell, “Monte Carlo lookup table-based inverse model for extracting optical properties from tissue-simulating phantoms using diffuse reflectance spectroscopy,” J. Biomed. Opt. 18(3), 037003 (2013).
[CrossRef] [PubMed]

Vargis, E.

M. D. Keller, E. Vargis, N. de Matos Granja, R. H. Wilson, M. A. Mycek, M. C. Kelley, A. Mahadevan-Jansen, “Development of a spatially offset Raman spectroscopy probe for breast tumor surgical margin evaluation,” J. Biomed. Opt. 16(7), 077006 (2011).
[CrossRef] [PubMed]

Venugopalan, V.

Wang, L.

L. Wang, S. L. Jacques, L. Zheng, “MCML--Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47(2), 131–146 (1995).
[CrossRef] [PubMed]

A. H. Hielscher, S. L. Jacques, L. Wang, F. K. Tittel, “The influence of boundary conditions on the accuracy of diffusion theory in time-resolved reflectance spectroscopy of biological tissues,” Phys. Med. Biol. 40(11), 1957–1975 (1995).
[CrossRef] [PubMed]

Wells, W. A.

A. M. Laughney, V. Krishnaswamy, T. B. Rice, D. J. Cuccia, R. J. Barth, B. J. Tromberg, K. D. Paulsen, B. W. Pogue, W. A. Wells, “System analysis of spatial frequency domain imaging for quantitative mapping of surgically resected breast tissues,” J. Biomed. Opt. 18(3), 036012 (2013).
[CrossRef] [PubMed]

Wilson, B. C.

A. Kim, M. Khurana, Y. Moriyama, B. C. Wilson, “Quantification of in vivo fluorescence decoupled from the effects of tissue optical properties using fiber-optic spectroscopy measurements,” J. Biomed. Opt. 15(6), 067006 (2010).
[CrossRef] [PubMed]

S. T. Flock, B. C. Wilson, M. S. Patterson, “Monte Carlo modeling of light propagation in highly scattering tissues--II: Comparison with measurements in phantoms,” IEEE Trans. Biomed. Eng. 36(12), 1169–1173 (1989).
[CrossRef] [PubMed]

M. S. Patterson, B. Chance, B. C. Wilson, “Time resolved reflectance and transmittance for the non-invasive measurement of tissue optical properties,” Appl. Opt. 28(12), 2331–2336 (1989).
[CrossRef] [PubMed]

Wilson, R. H.

M. D. Keller, E. Vargis, N. de Matos Granja, R. H. Wilson, M. A. Mycek, M. C. Kelley, A. Mahadevan-Jansen, “Development of a spatially offset Raman spectroscopy probe for breast tumor surgical margin evaluation,” J. Biomed. Opt. 16(7), 077006 (2011).
[CrossRef] [PubMed]

Yang, O.

O. Yang, D. Cuccia, B. Choi, “Real-time blood flow visualization using the graphics processing unit,” J. Biomed. Opt. 16(1), 016009 (2011).
[CrossRef] [PubMed]

You, J. S.

Zhang, R.

Zheng, L.

L. Wang, S. L. Jacques, L. Zheng, “MCML--Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47(2), 131–146 (1995).
[CrossRef] [PubMed]

Appl. Opt.

Biomed. Opt. Express

Comput. Methods Programs Biomed.

L. Wang, S. L. Jacques, L. Zheng, “MCML--Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47(2), 131–146 (1995).
[CrossRef] [PubMed]

IEEE Trans. Biomed. Eng.

S. T. Flock, B. C. Wilson, M. S. Patterson, “Monte Carlo modeling of light propagation in highly scattering tissues--II: Comparison with measurements in phantoms,” IEEE Trans. Biomed. Eng. 36(12), 1169–1173 (1989).
[CrossRef] [PubMed]

J. Biomed. Opt.

R. Hennessy, S. L. Lim, M. K. Markey, J. W. Tunnell, “Monte Carlo lookup table-based inverse model for extracting optical properties from tissue-simulating phantoms using diffuse reflectance spectroscopy,” J. Biomed. Opt. 18(3), 037003 (2013).
[CrossRef] [PubMed]

A. M. Laughney, V. Krishnaswamy, T. B. Rice, D. J. Cuccia, R. J. Barth, B. J. Tromberg, K. D. Paulsen, B. W. Pogue, W. A. Wells, “System analysis of spatial frequency domain imaging for quantitative mapping of surgically resected breast tissues,” J. Biomed. Opt. 18(3), 036012 (2013).
[CrossRef] [PubMed]

A. Kim, M. Khurana, Y. Moriyama, B. C. Wilson, “Quantification of in vivo fluorescence decoupled from the effects of tissue optical properties using fiber-optic spectroscopy measurements,” J. Biomed. Opt. 15(6), 067006 (2010).
[CrossRef] [PubMed]

R. B. Saager, D. J. Cuccia, S. Saggese, K. M. Kelly, A. J. Durkin, “Quantitative fluorescence imaging of protoporphyrin IX through determination of tissue optical properties in the spatial frequency domain,” J. Biomed. Opt. 16(12), 126013 (2011).
[CrossRef] [PubMed]

D. J. Cuccia, F. Bevilacqua, A. J. Durkin, F. R. Ayers, B. J. Tromberg, “Quantitation and mapping of tissue optical properties using modulated imaging,” J. Biomed. Opt. 14(2), 024012 (2009).
[CrossRef] [PubMed]

E. Alerstam, S. Andersson-Engels, T. Svensson, “White Monte Carlo for time-resolved photon migration,” J. Biomed. Opt. 13(4), 041304 (2008).
[CrossRef] [PubMed]

M. D. Keller, E. Vargis, N. de Matos Granja, R. H. Wilson, M. A. Mycek, M. C. Kelley, A. Mahadevan-Jansen, “Development of a spatially offset Raman spectroscopy probe for breast tumor surgical margin evaluation,” J. Biomed. Opt. 16(7), 077006 (2011).
[CrossRef] [PubMed]

S. Bélanger, M. Abran, X. Intes, C. Casanova, F. Lesage, “Real-time diffuse optical tomography based on structured illumination,” J. Biomed. Opt. 15(1), 016006 (2010).
[CrossRef] [PubMed]

T. S. Leung, S. Powell, “Fast Monte Carlo simulations of ultrasound-modulated light using a graphics processing unit,” J. Biomed. Opt. 15(5), 055007 (2010).
[CrossRef] [PubMed]

T. M. Baran, T. H. Foster, “New Monte Carlo model of cylindrical diffusing fibers illustrates axially heterogeneous fluorescence detection: simulation and experimental validation,” J. Biomed. Opt. 16(8), 085003 (2011).
[CrossRef] [PubMed]

O. Yang, D. Cuccia, B. Choi, “Real-time blood flow visualization using the graphics processing unit,” J. Biomed. Opt. 16(1), 016009 (2011).
[CrossRef] [PubMed]

J. Opt. Soc. Am. A

Med. Phys.

A. Badal, A. Badano, “Accelerating Monte Carlo simulations of photon transport in a voxelized geometry using a massively parallel graphics processing unit,” Med. Phys. 36(11), 4878–4880 (2009).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

Phys. Med. Biol.

A. H. Hielscher, S. L. Jacques, L. Wang, F. K. Tittel, “The influence of boundary conditions on the accuracy of diffusion theory in time-resolved reflectance spectroscopy of biological tissues,” Phys. Med. Biol. 40(11), 1957–1975 (1995).
[CrossRef] [PubMed]

A. Kienle, M. S. Patterson, “Determination of the optical properties of turbid media from a single Monte Carlo simulation,” Phys. Med. Biol. 41(10), 2221–2227 (1996).
[CrossRef] [PubMed]

Other

O. Yang, “Real-Time Laser Speckle Imaging Software using the GPU,” (2011), http://choi.bli.uci.edu/software/realtime_lsi.html .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (1)

Fig. 1
Fig. 1

Diagram illustrating the method employed to interface MATLAB with the CUDA Monte Carlo forward model kernels. CUDA host code containing the CUDA kernels and calls to the CUBLAS library were compiled using NVIDIA CUDA Compiler (nvcc). The MATLAB MEX C/C++ code, wherein the CUDA binaries are called, were compiled subsequently with the MATLAB MEX compiler and utilized by the main MATLAB script.

Tables (1)

Tables Icon

Table 1 Total times required to calculate diffuse reflectance values at two spatial frequencies of illumination: 0 mm−1 (e.g., planar illumination) and 0.667 mm−1. We performed both CPU- and GPU-based rescaling approaches of a single sMC output. Each computation time value represents the average of 5000 repetitions of the rescaling approach.

Metrics