Abstract

Photoacoustic imaging can visualize vascularization-driven optical absorption contrast with great potential for breast cancer detection and diagnosis. State-of-the-art photoacoustic breast imaging systems are promising but are limited either by only a 2D imaging capability or by an insufficient imaging field-of-view (FOV). We present a laboratory prototype system designed for 3D photoacoustic full breast tomography, and comprehensively characterize it and evaluate its performance in imaging phantoms. The heart of the system is an ultrasound detector array specifically developed for breast imaging and optimized for high sensitivity. Each detector element has an acoustic lens to enlarge the acceptance angle of the large surface area detector elements to ensure a wide system FOV. We characterized the ultrasound detector array performance in terms of frequency response, directional sensitivity, minimum detectable pressure and inter-element electrical and mechanical cross-talk. Further we evaluated the system performance of the laboratory prototype imager using well-defined breast mimicking phantoms. The system possesses a 2 mm XY plane resolution and a 6 mm vertical resolution. A vasculature mimicking object was successfully visualized down to a depth of 40 mm in the breast phantom. Further, tumor mimicking spherical objects with 5 and 10 mm diameter at 20 mm and 40 mm depths are recovered, indicating high system sensitivity. The system has a 170 × 170 × 170 mm3 FOV, which is well suited for full breast imaging. Various recommendations are provided for performance improvement and to guide this laboratory prototype to a clinical version in future.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Jemal, F. Bray, M. M. Center, J. Ferlay, E. Ward, D. Forman, “Global cancer statistics,” CA Cancer J. Clin. 61(2), 69–90 (2011).
    [CrossRef] [PubMed]
  2. D. R. Youlden, S. M. Cramb, N. A. M. Dunn, J. M. Muller, C. M. Pyke, P. D. Baade, “The descriptive epidemiology of female breast cancer: An international comparison of screening, incidence, survival and mortality,” Cancer Epidemiology 36, 237–248 (2012).
    [CrossRef] [PubMed]
  3. D. B. Kopans, Breast Imaging (Wolters Kluwer Health, 2007)
  4. B. Tromberg, B. W. Pogue, K. D. Paulsen, A. G. Yodh, D. A. Boas, A. E. Cerussi, “Assessing the future of diffuse optical imaging technologies for breast cancer management,” Med. Phys. 35, 2443–2451, (2008)
    [CrossRef] [PubMed]
  5. C. Lutzweiler, D. Razansky, “Optoacoustic Imaging and Tomography: Reconstruction Approaches and Outstanding Challenges in Image Performance and Quantification,” Sensors 13(6), 7345–7384, (2013)
    [CrossRef] [PubMed]
  6. L. V. Wang, S. Hu, “Photoacoustic tomography: in vivo imaging from organelles to organs”, Science 335, (2012). (doi:)
    [CrossRef]
  7. P. Beard, “Biomedical photoacoustic imaging,” Interface Focus 1, 602–631, (2011)
    [CrossRef]
  8. D. Piras, W. Xia, W. Steenbergen, T. G. van Leeuwen, S. Manohar, “Photoacoustic imaging of the breast using the Twente Photoacoustic Mammoscope: Present status and future perspectives,” IEEE J. Sel. Topic Quantum. Electron. 16, 730–739, (2010)
    [CrossRef]
  9. R. A. Kruger, R. B. Lam, D. R. Reinecke, S. P. D. Rio, R. P. Doyle, “Photoacoustic angiography of the breast,” Med. Phys. 37, 6096–6100, (2010)
    [CrossRef] [PubMed]
  10. S. A. Ermilov, T. Khamapirad, A. Conjusteau, M. H. Leonard, R. Lacewell, K. Mehta, T. Miller, A. A. Oraevsky, “Laser optoacoustic imaging system for detection of breast cancer,” J. Biomed. Opt. 14(2), 024007 (2009)
    [CrossRef] [PubMed]
  11. Y. Wang, T. N. Erpelding, L. Jankovic, Z. Guo, J. Robert, G. David, L. V. Wang, “In vivo three-dimensional photoacoustic imaging based on a clinical matrix array ultrasound probe,” J. Biomed. Opt. 17(6), 061208 (2012)
    [CrossRef] [PubMed]
  12. F. Ye, S. Yang, D. Xing, “Three-dimensional photoacoustic imaging system in line confocal mode for breast cancer detection,” Appl. Phys. Lett. 97, 213702 (2010) doi:
    [CrossRef]
  13. M. Pramanik, G. Ku, C. Li, L. V. Wang, “Design and evaluation of a novel breast cancer detection system combining both thermoacoustic (TA) and photoacoustic (PA) tomography,” Med. Phys. 35, 2218–2223 (2008)
    [CrossRef] [PubMed]
  14. M. Heijblom, D. Piras, W. Xia, J.C.G. van Hespen, J.M. Klaase, F.M. van den Engh, T.G. van Leeuwen, W. Steenbergen, S. Manohar, “Visualizing breast cancer using the Twente photoacoustic mammoscope: What do we learn from twelve new patient measurements?,” Opt. Express 20, 11582–11597 (2012) ( doi:http://dx.doi.org/10.1364/OE.20.011582).
    [PubMed]
  15. L. Xi, X. Li, L. Yao, S. Grobmyer, H. Jiang, “Design and evaluation of a hybrid photoacoustic tomography and diffuse optical tomography system for breast cancer detection,” Med. Phys. 39, 2584–2594, (2012)
    [CrossRef] [PubMed]
  16. V. G. Andreev, A. A. Karabutov, A. A. Oraevsky, “Detection of ultrawide-band ultrasound pulses in optoacoustic tomography,” IEEE Trans. Ultrason. Ferr. Freq. Contr. 50, 1383–1390 (2003).
    [CrossRef]
  17. A. Oraevsky, V. G. Andreev, A. A. Karabutov, S. V. Solomatin, E. V. Savateeva, R. D. Fleming, Z. Gatalica, H. Singh, “Laser optoacoustic imaging of breast cancer in vivo,” Proc. SPIE 4256, 6–15 (2001).
    [CrossRef]
  18. R. A. Kruger, K. D. Miller, H. E. Reynolds, W. L. Kiser, D. R. Reinecke, G. A. Kruger, “Breast cancer in vivo: Contrast enhancement with thermoacoustic CT at 434 MHz-feasibility study,” Radiology 216, 279–283 (2000).
    [PubMed]
  19. S. Manohar, A. Kharine, J. C. G. van Hespen, W. Steenbergen, T. G. van Leeuwen, “Photoacoustic mammography laboratory prototype: Imaging of breast tissue phantoms,” J. Biomed. Opt. 9, 1172–1181 (2004).
    [CrossRef] [PubMed]
  20. S. Manohar, S. E. Vaartjes, J. C. G. van Hespen, J. M. Klaase, F. M. van den Engh, W. Steenbergen, T. G. van Leeuwen, “Initial results of in vivo non-invasive cancer imaging in the human breast using near-infrared photoacoustics,” Opt. Express 15, 12277–12285 (2007).
    [CrossRef] [PubMed]
  21. W. Xia, D. Piras, J. C. G. van Hespen, S. van Veldhoven, C. Prins, T. G. van Leeuwen, W. Steenbergen, S. Manohar, “An optimized ultrasound detector for photoacoustic breast tomography,” Med. Phys. 40(3), 032901 (2013).
    [CrossRef] [PubMed]
  22. B. J. Tromberg, N. Shah, R. Lanning, A. Cerrusi, J. Espinoza, T. Pham, L. Svaasand, J. Butler, “Non invasive in vivo characterization of breast tumors using photon migration spectroscopy,” Neoplasia 2, 26–40 (2000).
    [CrossRef] [PubMed]
  23. P. Taroni, A. Bassi, D. Comelli, A. Farina, R. Cubeddu, A. Pifferi, “Diffuse optical spectroscopy of breast tissue extended to 1100 nm,” J. Biomed. Opt. 14, 054030 (1999).
    [CrossRef]
  24. W. Xia, D. Piras, J. C. G. van Hespen, W. Steenbergen, S. Manohar, “A new acoustic lens material for large area detectors in photoacoustic breast tomography,” Photoacoustics 1(2), 9–18 (2013). ( doi:http://dx.doi.org/10.1016/j.pacs.2013.05.001)
  25. J. Callerama, R. H. Tancrell, D. T. Wilson, “Transmitters and receivers for medical ultrasonics” Ultrasonic Symposium Proceedings, IEEE CH1482-9/79/0000-0407, 407–411, (1979)
  26. H. J. Van Staveren, C. J. M. Moes, J. van Marie, S. A. Prahl, M. J. C. van Gemert, “Light scattering in Intralipid–10% in the wavelength range of 400–1100 nm,” Appl. Opt. 30, 4507–4514, (1991).
    [CrossRef] [PubMed]
  27. W. Xia, D. Piras, M. Heijblom, W. Steenbergen, T. G. van Leeuwen, S. Manohar, “Poly(vinyl alcohol) gels as photoacoustic breast phantoms revisited,” J. Biomed. Opt. 16(7), 075002, (2011).
    [CrossRef] [PubMed]
  28. J. A. Curcio, C. C. Petty, “The near infrared absorption spectrum of liquid water”, J. Acoust. Soc. Am. 41(5), (1951), 302–304
  29. F. Martelli, G. Zaccanti, “Calibration of scattering and absorption properties of a liquid diffusive medium at NIR wavelengths. CW method,” Opt. Express 15(2), 486–500, (2007).
    [CrossRef] [PubMed]
  30. L. Spinelli, A. Torricelli, A. Pifferi, P. Taroni, G. M. Danesini, R. Cubeddu, “Bulk optical properties and tissue components in the famale breast from multiwavelength time-resolved optical mammography” J. Biomed. Opt. 9(6), 1137–1142, (2004).
    [CrossRef] [PubMed]
  31. A. Roggan, M. Friebel, K. Dorschel, A. Hahn, G. Muller, “Optical properties of circulating human blood in the wavelength range 400–2500 nm,” J. Biomed. Opt. 4(1), 36–46, (1999).
    [CrossRef] [PubMed]
  32. B.T. Cox, P.C. Beard, “Fast calculation of pulsed photoacoustic field in fluids using k-space metholds,” J. Acoust. Soc. Am. 117(6), 3616–3627, (2005)
    [CrossRef] [PubMed]
  33. B. E. Treeby, B. Cox, “k-Wave: MATLAB toolbox for the simulation and reconstruction of photoacoustic wave fields,” J. Biomed. Opt. 51(2), 021314, (2010)
    [CrossRef]
  34. B. E. Treeby, E. Z. Zhang, B. Cox, “Photoacoustic tomography in absorbing acoustic media using time reversal,” Inverse Problems 26, 115003, (2010)
    [CrossRef]
  35. J. Folkman, “Tumor angiogenesis,” in Cancer Medicine, J. F. Holland, Ed., 5th ed. (Hamilton, ON: B. C. Decker, 2000), ch. 9, pp. 132152.
  36. G. Bergers, L. E. Benjamin, “Tumorigenesis and the angiogenic switch,” Nat. Rev. Cancer. 3, 401–410 (2003). (doi:)
    [CrossRef] [PubMed]
  37. S. Huang, J. M. Boone, K. Yang, N. J. Packard, S. E. McKenney, N. D. Prionas, K. K. Lindfors, M. J. Yaffe, “The characterization of breast anatomical metrics using dedicated breast CT,” Med. Phys. 38(4), 2180–2190 (2011).
    [CrossRef] [PubMed]
  38. ANSI, Z136.1-2007.
  39. S. A. Ermilov, A. Conjusteau, T. Hernandez, R. Su, V. Nadvoretsky, D. Tsyboulski, F. Anis, M. A. Anastasio, A. A. Oraevsky, “3D laser optoacoustic ultrasonic imaging system for preclinical research,” Proc. SPIE 8581, 85810N, (2013).
    [CrossRef]
  40. J. Jose, R. G. H. Willemink, S. Resink, D. Piras, J. C. G. van Hespen, C. H. Slump, W. Steenbergen, T. G. van Leeuwen, S. Manohar, “Passive element enriched photoacoustic computed tomography (PER PACT) for simultaneous imaging of acoustic propagation properties and light absorption,” Opt. Express 19(3) 2093–2104 (2011).
    [CrossRef] [PubMed]
  41. C. Li, N. Duric, P. Littrup, L. Huang, “In vivo breast sound-speed imaging with ultrasound tomography,” Ultrasound Med. Biol. 351615–1628 (2009).
    [CrossRef] [PubMed]

2013 (4)

C. Lutzweiler, D. Razansky, “Optoacoustic Imaging and Tomography: Reconstruction Approaches and Outstanding Challenges in Image Performance and Quantification,” Sensors 13(6), 7345–7384, (2013)
[CrossRef] [PubMed]

W. Xia, D. Piras, J. C. G. van Hespen, S. van Veldhoven, C. Prins, T. G. van Leeuwen, W. Steenbergen, S. Manohar, “An optimized ultrasound detector for photoacoustic breast tomography,” Med. Phys. 40(3), 032901 (2013).
[CrossRef] [PubMed]

W. Xia, D. Piras, J. C. G. van Hespen, W. Steenbergen, S. Manohar, “A new acoustic lens material for large area detectors in photoacoustic breast tomography,” Photoacoustics 1(2), 9–18 (2013). ( doi:http://dx.doi.org/10.1016/j.pacs.2013.05.001)

S. A. Ermilov, A. Conjusteau, T. Hernandez, R. Su, V. Nadvoretsky, D. Tsyboulski, F. Anis, M. A. Anastasio, A. A. Oraevsky, “3D laser optoacoustic ultrasonic imaging system for preclinical research,” Proc. SPIE 8581, 85810N, (2013).
[CrossRef]

2012 (5)

M. Heijblom, D. Piras, W. Xia, J.C.G. van Hespen, J.M. Klaase, F.M. van den Engh, T.G. van Leeuwen, W. Steenbergen, S. Manohar, “Visualizing breast cancer using the Twente photoacoustic mammoscope: What do we learn from twelve new patient measurements?,” Opt. Express 20, 11582–11597 (2012) ( doi:http://dx.doi.org/10.1364/OE.20.011582).
[PubMed]

L. Xi, X. Li, L. Yao, S. Grobmyer, H. Jiang, “Design and evaluation of a hybrid photoacoustic tomography and diffuse optical tomography system for breast cancer detection,” Med. Phys. 39, 2584–2594, (2012)
[CrossRef] [PubMed]

L. V. Wang, S. Hu, “Photoacoustic tomography: in vivo imaging from organelles to organs”, Science 335, (2012). (doi:)
[CrossRef]

D. R. Youlden, S. M. Cramb, N. A. M. Dunn, J. M. Muller, C. M. Pyke, P. D. Baade, “The descriptive epidemiology of female breast cancer: An international comparison of screening, incidence, survival and mortality,” Cancer Epidemiology 36, 237–248 (2012).
[CrossRef] [PubMed]

Y. Wang, T. N. Erpelding, L. Jankovic, Z. Guo, J. Robert, G. David, L. V. Wang, “In vivo three-dimensional photoacoustic imaging based on a clinical matrix array ultrasound probe,” J. Biomed. Opt. 17(6), 061208 (2012)
[CrossRef] [PubMed]

2011 (5)

P. Beard, “Biomedical photoacoustic imaging,” Interface Focus 1, 602–631, (2011)
[CrossRef]

A. Jemal, F. Bray, M. M. Center, J. Ferlay, E. Ward, D. Forman, “Global cancer statistics,” CA Cancer J. Clin. 61(2), 69–90 (2011).
[CrossRef] [PubMed]

J. Jose, R. G. H. Willemink, S. Resink, D. Piras, J. C. G. van Hespen, C. H. Slump, W. Steenbergen, T. G. van Leeuwen, S. Manohar, “Passive element enriched photoacoustic computed tomography (PER PACT) for simultaneous imaging of acoustic propagation properties and light absorption,” Opt. Express 19(3) 2093–2104 (2011).
[CrossRef] [PubMed]

S. Huang, J. M. Boone, K. Yang, N. J. Packard, S. E. McKenney, N. D. Prionas, K. K. Lindfors, M. J. Yaffe, “The characterization of breast anatomical metrics using dedicated breast CT,” Med. Phys. 38(4), 2180–2190 (2011).
[CrossRef] [PubMed]

W. Xia, D. Piras, M. Heijblom, W. Steenbergen, T. G. van Leeuwen, S. Manohar, “Poly(vinyl alcohol) gels as photoacoustic breast phantoms revisited,” J. Biomed. Opt. 16(7), 075002, (2011).
[CrossRef] [PubMed]

2010 (5)

B. E. Treeby, B. Cox, “k-Wave: MATLAB toolbox for the simulation and reconstruction of photoacoustic wave fields,” J. Biomed. Opt. 51(2), 021314, (2010)
[CrossRef]

B. E. Treeby, E. Z. Zhang, B. Cox, “Photoacoustic tomography in absorbing acoustic media using time reversal,” Inverse Problems 26, 115003, (2010)
[CrossRef]

D. Piras, W. Xia, W. Steenbergen, T. G. van Leeuwen, S. Manohar, “Photoacoustic imaging of the breast using the Twente Photoacoustic Mammoscope: Present status and future perspectives,” IEEE J. Sel. Topic Quantum. Electron. 16, 730–739, (2010)
[CrossRef]

R. A. Kruger, R. B. Lam, D. R. Reinecke, S. P. D. Rio, R. P. Doyle, “Photoacoustic angiography of the breast,” Med. Phys. 37, 6096–6100, (2010)
[CrossRef] [PubMed]

F. Ye, S. Yang, D. Xing, “Three-dimensional photoacoustic imaging system in line confocal mode for breast cancer detection,” Appl. Phys. Lett. 97, 213702 (2010) doi:
[CrossRef]

2009 (2)

S. A. Ermilov, T. Khamapirad, A. Conjusteau, M. H. Leonard, R. Lacewell, K. Mehta, T. Miller, A. A. Oraevsky, “Laser optoacoustic imaging system for detection of breast cancer,” J. Biomed. Opt. 14(2), 024007 (2009)
[CrossRef] [PubMed]

C. Li, N. Duric, P. Littrup, L. Huang, “In vivo breast sound-speed imaging with ultrasound tomography,” Ultrasound Med. Biol. 351615–1628 (2009).
[CrossRef] [PubMed]

2008 (2)

M. Pramanik, G. Ku, C. Li, L. V. Wang, “Design and evaluation of a novel breast cancer detection system combining both thermoacoustic (TA) and photoacoustic (PA) tomography,” Med. Phys. 35, 2218–2223 (2008)
[CrossRef] [PubMed]

B. Tromberg, B. W. Pogue, K. D. Paulsen, A. G. Yodh, D. A. Boas, A. E. Cerussi, “Assessing the future of diffuse optical imaging technologies for breast cancer management,” Med. Phys. 35, 2443–2451, (2008)
[CrossRef] [PubMed]

2007 (2)

2005 (1)

B.T. Cox, P.C. Beard, “Fast calculation of pulsed photoacoustic field in fluids using k-space metholds,” J. Acoust. Soc. Am. 117(6), 3616–3627, (2005)
[CrossRef] [PubMed]

2004 (2)

L. Spinelli, A. Torricelli, A. Pifferi, P. Taroni, G. M. Danesini, R. Cubeddu, “Bulk optical properties and tissue components in the famale breast from multiwavelength time-resolved optical mammography” J. Biomed. Opt. 9(6), 1137–1142, (2004).
[CrossRef] [PubMed]

S. Manohar, A. Kharine, J. C. G. van Hespen, W. Steenbergen, T. G. van Leeuwen, “Photoacoustic mammography laboratory prototype: Imaging of breast tissue phantoms,” J. Biomed. Opt. 9, 1172–1181 (2004).
[CrossRef] [PubMed]

2003 (2)

V. G. Andreev, A. A. Karabutov, A. A. Oraevsky, “Detection of ultrawide-band ultrasound pulses in optoacoustic tomography,” IEEE Trans. Ultrason. Ferr. Freq. Contr. 50, 1383–1390 (2003).
[CrossRef]

G. Bergers, L. E. Benjamin, “Tumorigenesis and the angiogenic switch,” Nat. Rev. Cancer. 3, 401–410 (2003). (doi:)
[CrossRef] [PubMed]

2001 (1)

A. Oraevsky, V. G. Andreev, A. A. Karabutov, S. V. Solomatin, E. V. Savateeva, R. D. Fleming, Z. Gatalica, H. Singh, “Laser optoacoustic imaging of breast cancer in vivo,” Proc. SPIE 4256, 6–15 (2001).
[CrossRef]

2000 (2)

R. A. Kruger, K. D. Miller, H. E. Reynolds, W. L. Kiser, D. R. Reinecke, G. A. Kruger, “Breast cancer in vivo: Contrast enhancement with thermoacoustic CT at 434 MHz-feasibility study,” Radiology 216, 279–283 (2000).
[PubMed]

B. J. Tromberg, N. Shah, R. Lanning, A. Cerrusi, J. Espinoza, T. Pham, L. Svaasand, J. Butler, “Non invasive in vivo characterization of breast tumors using photon migration spectroscopy,” Neoplasia 2, 26–40 (2000).
[CrossRef] [PubMed]

1999 (2)

P. Taroni, A. Bassi, D. Comelli, A. Farina, R. Cubeddu, A. Pifferi, “Diffuse optical spectroscopy of breast tissue extended to 1100 nm,” J. Biomed. Opt. 14, 054030 (1999).
[CrossRef]

A. Roggan, M. Friebel, K. Dorschel, A. Hahn, G. Muller, “Optical properties of circulating human blood in the wavelength range 400–2500 nm,” J. Biomed. Opt. 4(1), 36–46, (1999).
[CrossRef] [PubMed]

1991 (1)

1951 (1)

J. A. Curcio, C. C. Petty, “The near infrared absorption spectrum of liquid water”, J. Acoust. Soc. Am. 41(5), (1951), 302–304

Anastasio, M. A.

S. A. Ermilov, A. Conjusteau, T. Hernandez, R. Su, V. Nadvoretsky, D. Tsyboulski, F. Anis, M. A. Anastasio, A. A. Oraevsky, “3D laser optoacoustic ultrasonic imaging system for preclinical research,” Proc. SPIE 8581, 85810N, (2013).
[CrossRef]

Andreev, V. G.

V. G. Andreev, A. A. Karabutov, A. A. Oraevsky, “Detection of ultrawide-band ultrasound pulses in optoacoustic tomography,” IEEE Trans. Ultrason. Ferr. Freq. Contr. 50, 1383–1390 (2003).
[CrossRef]

A. Oraevsky, V. G. Andreev, A. A. Karabutov, S. V. Solomatin, E. V. Savateeva, R. D. Fleming, Z. Gatalica, H. Singh, “Laser optoacoustic imaging of breast cancer in vivo,” Proc. SPIE 4256, 6–15 (2001).
[CrossRef]

Anis, F.

S. A. Ermilov, A. Conjusteau, T. Hernandez, R. Su, V. Nadvoretsky, D. Tsyboulski, F. Anis, M. A. Anastasio, A. A. Oraevsky, “3D laser optoacoustic ultrasonic imaging system for preclinical research,” Proc. SPIE 8581, 85810N, (2013).
[CrossRef]

Baade, P. D.

D. R. Youlden, S. M. Cramb, N. A. M. Dunn, J. M. Muller, C. M. Pyke, P. D. Baade, “The descriptive epidemiology of female breast cancer: An international comparison of screening, incidence, survival and mortality,” Cancer Epidemiology 36, 237–248 (2012).
[CrossRef] [PubMed]

Bassi, A.

P. Taroni, A. Bassi, D. Comelli, A. Farina, R. Cubeddu, A. Pifferi, “Diffuse optical spectroscopy of breast tissue extended to 1100 nm,” J. Biomed. Opt. 14, 054030 (1999).
[CrossRef]

Beard, P.

P. Beard, “Biomedical photoacoustic imaging,” Interface Focus 1, 602–631, (2011)
[CrossRef]

Beard, P.C.

B.T. Cox, P.C. Beard, “Fast calculation of pulsed photoacoustic field in fluids using k-space metholds,” J. Acoust. Soc. Am. 117(6), 3616–3627, (2005)
[CrossRef] [PubMed]

Benjamin, L. E.

G. Bergers, L. E. Benjamin, “Tumorigenesis and the angiogenic switch,” Nat. Rev. Cancer. 3, 401–410 (2003). (doi:)
[CrossRef] [PubMed]

Bergers, G.

G. Bergers, L. E. Benjamin, “Tumorigenesis and the angiogenic switch,” Nat. Rev. Cancer. 3, 401–410 (2003). (doi:)
[CrossRef] [PubMed]

Boas, D. A.

B. Tromberg, B. W. Pogue, K. D. Paulsen, A. G. Yodh, D. A. Boas, A. E. Cerussi, “Assessing the future of diffuse optical imaging technologies for breast cancer management,” Med. Phys. 35, 2443–2451, (2008)
[CrossRef] [PubMed]

Boone, J. M.

S. Huang, J. M. Boone, K. Yang, N. J. Packard, S. E. McKenney, N. D. Prionas, K. K. Lindfors, M. J. Yaffe, “The characterization of breast anatomical metrics using dedicated breast CT,” Med. Phys. 38(4), 2180–2190 (2011).
[CrossRef] [PubMed]

Bray, F.

A. Jemal, F. Bray, M. M. Center, J. Ferlay, E. Ward, D. Forman, “Global cancer statistics,” CA Cancer J. Clin. 61(2), 69–90 (2011).
[CrossRef] [PubMed]

Butler, J.

B. J. Tromberg, N. Shah, R. Lanning, A. Cerrusi, J. Espinoza, T. Pham, L. Svaasand, J. Butler, “Non invasive in vivo characterization of breast tumors using photon migration spectroscopy,” Neoplasia 2, 26–40 (2000).
[CrossRef] [PubMed]

Callerama, J.

J. Callerama, R. H. Tancrell, D. T. Wilson, “Transmitters and receivers for medical ultrasonics” Ultrasonic Symposium Proceedings, IEEE CH1482-9/79/0000-0407, 407–411, (1979)

Center, M. M.

A. Jemal, F. Bray, M. M. Center, J. Ferlay, E. Ward, D. Forman, “Global cancer statistics,” CA Cancer J. Clin. 61(2), 69–90 (2011).
[CrossRef] [PubMed]

Cerrusi, A.

B. J. Tromberg, N. Shah, R. Lanning, A. Cerrusi, J. Espinoza, T. Pham, L. Svaasand, J. Butler, “Non invasive in vivo characterization of breast tumors using photon migration spectroscopy,” Neoplasia 2, 26–40 (2000).
[CrossRef] [PubMed]

Cerussi, A. E.

B. Tromberg, B. W. Pogue, K. D. Paulsen, A. G. Yodh, D. A. Boas, A. E. Cerussi, “Assessing the future of diffuse optical imaging technologies for breast cancer management,” Med. Phys. 35, 2443–2451, (2008)
[CrossRef] [PubMed]

Comelli, D.

P. Taroni, A. Bassi, D. Comelli, A. Farina, R. Cubeddu, A. Pifferi, “Diffuse optical spectroscopy of breast tissue extended to 1100 nm,” J. Biomed. Opt. 14, 054030 (1999).
[CrossRef]

Conjusteau, A.

S. A. Ermilov, A. Conjusteau, T. Hernandez, R. Su, V. Nadvoretsky, D. Tsyboulski, F. Anis, M. A. Anastasio, A. A. Oraevsky, “3D laser optoacoustic ultrasonic imaging system for preclinical research,” Proc. SPIE 8581, 85810N, (2013).
[CrossRef]

S. A. Ermilov, T. Khamapirad, A. Conjusteau, M. H. Leonard, R. Lacewell, K. Mehta, T. Miller, A. A. Oraevsky, “Laser optoacoustic imaging system for detection of breast cancer,” J. Biomed. Opt. 14(2), 024007 (2009)
[CrossRef] [PubMed]

Cox, B.

B. E. Treeby, B. Cox, “k-Wave: MATLAB toolbox for the simulation and reconstruction of photoacoustic wave fields,” J. Biomed. Opt. 51(2), 021314, (2010)
[CrossRef]

B. E. Treeby, E. Z. Zhang, B. Cox, “Photoacoustic tomography in absorbing acoustic media using time reversal,” Inverse Problems 26, 115003, (2010)
[CrossRef]

Cox, B.T.

B.T. Cox, P.C. Beard, “Fast calculation of pulsed photoacoustic field in fluids using k-space metholds,” J. Acoust. Soc. Am. 117(6), 3616–3627, (2005)
[CrossRef] [PubMed]

Cramb, S. M.

D. R. Youlden, S. M. Cramb, N. A. M. Dunn, J. M. Muller, C. M. Pyke, P. D. Baade, “The descriptive epidemiology of female breast cancer: An international comparison of screening, incidence, survival and mortality,” Cancer Epidemiology 36, 237–248 (2012).
[CrossRef] [PubMed]

Cubeddu, R.

L. Spinelli, A. Torricelli, A. Pifferi, P. Taroni, G. M. Danesini, R. Cubeddu, “Bulk optical properties and tissue components in the famale breast from multiwavelength time-resolved optical mammography” J. Biomed. Opt. 9(6), 1137–1142, (2004).
[CrossRef] [PubMed]

P. Taroni, A. Bassi, D. Comelli, A. Farina, R. Cubeddu, A. Pifferi, “Diffuse optical spectroscopy of breast tissue extended to 1100 nm,” J. Biomed. Opt. 14, 054030 (1999).
[CrossRef]

Curcio, J. A.

J. A. Curcio, C. C. Petty, “The near infrared absorption spectrum of liquid water”, J. Acoust. Soc. Am. 41(5), (1951), 302–304

Danesini, G. M.

L. Spinelli, A. Torricelli, A. Pifferi, P. Taroni, G. M. Danesini, R. Cubeddu, “Bulk optical properties and tissue components in the famale breast from multiwavelength time-resolved optical mammography” J. Biomed. Opt. 9(6), 1137–1142, (2004).
[CrossRef] [PubMed]

David, G.

Y. Wang, T. N. Erpelding, L. Jankovic, Z. Guo, J. Robert, G. David, L. V. Wang, “In vivo three-dimensional photoacoustic imaging based on a clinical matrix array ultrasound probe,” J. Biomed. Opt. 17(6), 061208 (2012)
[CrossRef] [PubMed]

Dorschel, K.

A. Roggan, M. Friebel, K. Dorschel, A. Hahn, G. Muller, “Optical properties of circulating human blood in the wavelength range 400–2500 nm,” J. Biomed. Opt. 4(1), 36–46, (1999).
[CrossRef] [PubMed]

Doyle, R. P.

R. A. Kruger, R. B. Lam, D. R. Reinecke, S. P. D. Rio, R. P. Doyle, “Photoacoustic angiography of the breast,” Med. Phys. 37, 6096–6100, (2010)
[CrossRef] [PubMed]

Dunn, N. A. M.

D. R. Youlden, S. M. Cramb, N. A. M. Dunn, J. M. Muller, C. M. Pyke, P. D. Baade, “The descriptive epidemiology of female breast cancer: An international comparison of screening, incidence, survival and mortality,” Cancer Epidemiology 36, 237–248 (2012).
[CrossRef] [PubMed]

Duric, N.

C. Li, N. Duric, P. Littrup, L. Huang, “In vivo breast sound-speed imaging with ultrasound tomography,” Ultrasound Med. Biol. 351615–1628 (2009).
[CrossRef] [PubMed]

Ermilov, S. A.

S. A. Ermilov, A. Conjusteau, T. Hernandez, R. Su, V. Nadvoretsky, D. Tsyboulski, F. Anis, M. A. Anastasio, A. A. Oraevsky, “3D laser optoacoustic ultrasonic imaging system for preclinical research,” Proc. SPIE 8581, 85810N, (2013).
[CrossRef]

S. A. Ermilov, T. Khamapirad, A. Conjusteau, M. H. Leonard, R. Lacewell, K. Mehta, T. Miller, A. A. Oraevsky, “Laser optoacoustic imaging system for detection of breast cancer,” J. Biomed. Opt. 14(2), 024007 (2009)
[CrossRef] [PubMed]

Erpelding, T. N.

Y. Wang, T. N. Erpelding, L. Jankovic, Z. Guo, J. Robert, G. David, L. V. Wang, “In vivo three-dimensional photoacoustic imaging based on a clinical matrix array ultrasound probe,” J. Biomed. Opt. 17(6), 061208 (2012)
[CrossRef] [PubMed]

Espinoza, J.

B. J. Tromberg, N. Shah, R. Lanning, A. Cerrusi, J. Espinoza, T. Pham, L. Svaasand, J. Butler, “Non invasive in vivo characterization of breast tumors using photon migration spectroscopy,” Neoplasia 2, 26–40 (2000).
[CrossRef] [PubMed]

Farina, A.

P. Taroni, A. Bassi, D. Comelli, A. Farina, R. Cubeddu, A. Pifferi, “Diffuse optical spectroscopy of breast tissue extended to 1100 nm,” J. Biomed. Opt. 14, 054030 (1999).
[CrossRef]

Ferlay, J.

A. Jemal, F. Bray, M. M. Center, J. Ferlay, E. Ward, D. Forman, “Global cancer statistics,” CA Cancer J. Clin. 61(2), 69–90 (2011).
[CrossRef] [PubMed]

Fleming, R. D.

A. Oraevsky, V. G. Andreev, A. A. Karabutov, S. V. Solomatin, E. V. Savateeva, R. D. Fleming, Z. Gatalica, H. Singh, “Laser optoacoustic imaging of breast cancer in vivo,” Proc. SPIE 4256, 6–15 (2001).
[CrossRef]

Folkman, J.

J. Folkman, “Tumor angiogenesis,” in Cancer Medicine, J. F. Holland, Ed., 5th ed. (Hamilton, ON: B. C. Decker, 2000), ch. 9, pp. 132152.

Forman, D.

A. Jemal, F. Bray, M. M. Center, J. Ferlay, E. Ward, D. Forman, “Global cancer statistics,” CA Cancer J. Clin. 61(2), 69–90 (2011).
[CrossRef] [PubMed]

Friebel, M.

A. Roggan, M. Friebel, K. Dorschel, A. Hahn, G. Muller, “Optical properties of circulating human blood in the wavelength range 400–2500 nm,” J. Biomed. Opt. 4(1), 36–46, (1999).
[CrossRef] [PubMed]

Gatalica, Z.

A. Oraevsky, V. G. Andreev, A. A. Karabutov, S. V. Solomatin, E. V. Savateeva, R. D. Fleming, Z. Gatalica, H. Singh, “Laser optoacoustic imaging of breast cancer in vivo,” Proc. SPIE 4256, 6–15 (2001).
[CrossRef]

Grobmyer, S.

L. Xi, X. Li, L. Yao, S. Grobmyer, H. Jiang, “Design and evaluation of a hybrid photoacoustic tomography and diffuse optical tomography system for breast cancer detection,” Med. Phys. 39, 2584–2594, (2012)
[CrossRef] [PubMed]

Guo, Z.

Y. Wang, T. N. Erpelding, L. Jankovic, Z. Guo, J. Robert, G. David, L. V. Wang, “In vivo three-dimensional photoacoustic imaging based on a clinical matrix array ultrasound probe,” J. Biomed. Opt. 17(6), 061208 (2012)
[CrossRef] [PubMed]

Hahn, A.

A. Roggan, M. Friebel, K. Dorschel, A. Hahn, G. Muller, “Optical properties of circulating human blood in the wavelength range 400–2500 nm,” J. Biomed. Opt. 4(1), 36–46, (1999).
[CrossRef] [PubMed]

Heijblom, M.

Hernandez, T.

S. A. Ermilov, A. Conjusteau, T. Hernandez, R. Su, V. Nadvoretsky, D. Tsyboulski, F. Anis, M. A. Anastasio, A. A. Oraevsky, “3D laser optoacoustic ultrasonic imaging system for preclinical research,” Proc. SPIE 8581, 85810N, (2013).
[CrossRef]

Hu, S.

L. V. Wang, S. Hu, “Photoacoustic tomography: in vivo imaging from organelles to organs”, Science 335, (2012). (doi:)
[CrossRef]

Huang, L.

C. Li, N. Duric, P. Littrup, L. Huang, “In vivo breast sound-speed imaging with ultrasound tomography,” Ultrasound Med. Biol. 351615–1628 (2009).
[CrossRef] [PubMed]

Huang, S.

S. Huang, J. M. Boone, K. Yang, N. J. Packard, S. E. McKenney, N. D. Prionas, K. K. Lindfors, M. J. Yaffe, “The characterization of breast anatomical metrics using dedicated breast CT,” Med. Phys. 38(4), 2180–2190 (2011).
[CrossRef] [PubMed]

Jankovic, L.

Y. Wang, T. N. Erpelding, L. Jankovic, Z. Guo, J. Robert, G. David, L. V. Wang, “In vivo three-dimensional photoacoustic imaging based on a clinical matrix array ultrasound probe,” J. Biomed. Opt. 17(6), 061208 (2012)
[CrossRef] [PubMed]

Jemal, A.

A. Jemal, F. Bray, M. M. Center, J. Ferlay, E. Ward, D. Forman, “Global cancer statistics,” CA Cancer J. Clin. 61(2), 69–90 (2011).
[CrossRef] [PubMed]

Jiang, H.

L. Xi, X. Li, L. Yao, S. Grobmyer, H. Jiang, “Design and evaluation of a hybrid photoacoustic tomography and diffuse optical tomography system for breast cancer detection,” Med. Phys. 39, 2584–2594, (2012)
[CrossRef] [PubMed]

Jose, J.

Karabutov, A. A.

V. G. Andreev, A. A. Karabutov, A. A. Oraevsky, “Detection of ultrawide-band ultrasound pulses in optoacoustic tomography,” IEEE Trans. Ultrason. Ferr. Freq. Contr. 50, 1383–1390 (2003).
[CrossRef]

A. Oraevsky, V. G. Andreev, A. A. Karabutov, S. V. Solomatin, E. V. Savateeva, R. D. Fleming, Z. Gatalica, H. Singh, “Laser optoacoustic imaging of breast cancer in vivo,” Proc. SPIE 4256, 6–15 (2001).
[CrossRef]

Khamapirad, T.

S. A. Ermilov, T. Khamapirad, A. Conjusteau, M. H. Leonard, R. Lacewell, K. Mehta, T. Miller, A. A. Oraevsky, “Laser optoacoustic imaging system for detection of breast cancer,” J. Biomed. Opt. 14(2), 024007 (2009)
[CrossRef] [PubMed]

Kharine, A.

S. Manohar, A. Kharine, J. C. G. van Hespen, W. Steenbergen, T. G. van Leeuwen, “Photoacoustic mammography laboratory prototype: Imaging of breast tissue phantoms,” J. Biomed. Opt. 9, 1172–1181 (2004).
[CrossRef] [PubMed]

Kiser, W. L.

R. A. Kruger, K. D. Miller, H. E. Reynolds, W. L. Kiser, D. R. Reinecke, G. A. Kruger, “Breast cancer in vivo: Contrast enhancement with thermoacoustic CT at 434 MHz-feasibility study,” Radiology 216, 279–283 (2000).
[PubMed]

Klaase, J. M.

Klaase, J.M.

Kopans, D. B.

D. B. Kopans, Breast Imaging (Wolters Kluwer Health, 2007)

Kruger, G. A.

R. A. Kruger, K. D. Miller, H. E. Reynolds, W. L. Kiser, D. R. Reinecke, G. A. Kruger, “Breast cancer in vivo: Contrast enhancement with thermoacoustic CT at 434 MHz-feasibility study,” Radiology 216, 279–283 (2000).
[PubMed]

Kruger, R. A.

R. A. Kruger, R. B. Lam, D. R. Reinecke, S. P. D. Rio, R. P. Doyle, “Photoacoustic angiography of the breast,” Med. Phys. 37, 6096–6100, (2010)
[CrossRef] [PubMed]

R. A. Kruger, K. D. Miller, H. E. Reynolds, W. L. Kiser, D. R. Reinecke, G. A. Kruger, “Breast cancer in vivo: Contrast enhancement with thermoacoustic CT at 434 MHz-feasibility study,” Radiology 216, 279–283 (2000).
[PubMed]

Ku, G.

M. Pramanik, G. Ku, C. Li, L. V. Wang, “Design and evaluation of a novel breast cancer detection system combining both thermoacoustic (TA) and photoacoustic (PA) tomography,” Med. Phys. 35, 2218–2223 (2008)
[CrossRef] [PubMed]

Lacewell, R.

S. A. Ermilov, T. Khamapirad, A. Conjusteau, M. H. Leonard, R. Lacewell, K. Mehta, T. Miller, A. A. Oraevsky, “Laser optoacoustic imaging system for detection of breast cancer,” J. Biomed. Opt. 14(2), 024007 (2009)
[CrossRef] [PubMed]

Lam, R. B.

R. A. Kruger, R. B. Lam, D. R. Reinecke, S. P. D. Rio, R. P. Doyle, “Photoacoustic angiography of the breast,” Med. Phys. 37, 6096–6100, (2010)
[CrossRef] [PubMed]

Lanning, R.

B. J. Tromberg, N. Shah, R. Lanning, A. Cerrusi, J. Espinoza, T. Pham, L. Svaasand, J. Butler, “Non invasive in vivo characterization of breast tumors using photon migration spectroscopy,” Neoplasia 2, 26–40 (2000).
[CrossRef] [PubMed]

Leonard, M. H.

S. A. Ermilov, T. Khamapirad, A. Conjusteau, M. H. Leonard, R. Lacewell, K. Mehta, T. Miller, A. A. Oraevsky, “Laser optoacoustic imaging system for detection of breast cancer,” J. Biomed. Opt. 14(2), 024007 (2009)
[CrossRef] [PubMed]

Li, C.

C. Li, N. Duric, P. Littrup, L. Huang, “In vivo breast sound-speed imaging with ultrasound tomography,” Ultrasound Med. Biol. 351615–1628 (2009).
[CrossRef] [PubMed]

M. Pramanik, G. Ku, C. Li, L. V. Wang, “Design and evaluation of a novel breast cancer detection system combining both thermoacoustic (TA) and photoacoustic (PA) tomography,” Med. Phys. 35, 2218–2223 (2008)
[CrossRef] [PubMed]

Li, X.

L. Xi, X. Li, L. Yao, S. Grobmyer, H. Jiang, “Design and evaluation of a hybrid photoacoustic tomography and diffuse optical tomography system for breast cancer detection,” Med. Phys. 39, 2584–2594, (2012)
[CrossRef] [PubMed]

Lindfors, K. K.

S. Huang, J. M. Boone, K. Yang, N. J. Packard, S. E. McKenney, N. D. Prionas, K. K. Lindfors, M. J. Yaffe, “The characterization of breast anatomical metrics using dedicated breast CT,” Med. Phys. 38(4), 2180–2190 (2011).
[CrossRef] [PubMed]

Littrup, P.

C. Li, N. Duric, P. Littrup, L. Huang, “In vivo breast sound-speed imaging with ultrasound tomography,” Ultrasound Med. Biol. 351615–1628 (2009).
[CrossRef] [PubMed]

Lutzweiler, C.

C. Lutzweiler, D. Razansky, “Optoacoustic Imaging and Tomography: Reconstruction Approaches and Outstanding Challenges in Image Performance and Quantification,” Sensors 13(6), 7345–7384, (2013)
[CrossRef] [PubMed]

Manohar, S.

W. Xia, D. Piras, J. C. G. van Hespen, W. Steenbergen, S. Manohar, “A new acoustic lens material for large area detectors in photoacoustic breast tomography,” Photoacoustics 1(2), 9–18 (2013). ( doi:http://dx.doi.org/10.1016/j.pacs.2013.05.001)

W. Xia, D. Piras, J. C. G. van Hespen, S. van Veldhoven, C. Prins, T. G. van Leeuwen, W. Steenbergen, S. Manohar, “An optimized ultrasound detector for photoacoustic breast tomography,” Med. Phys. 40(3), 032901 (2013).
[CrossRef] [PubMed]

M. Heijblom, D. Piras, W. Xia, J.C.G. van Hespen, J.M. Klaase, F.M. van den Engh, T.G. van Leeuwen, W. Steenbergen, S. Manohar, “Visualizing breast cancer using the Twente photoacoustic mammoscope: What do we learn from twelve new patient measurements?,” Opt. Express 20, 11582–11597 (2012) ( doi:http://dx.doi.org/10.1364/OE.20.011582).
[PubMed]

W. Xia, D. Piras, M. Heijblom, W. Steenbergen, T. G. van Leeuwen, S. Manohar, “Poly(vinyl alcohol) gels as photoacoustic breast phantoms revisited,” J. Biomed. Opt. 16(7), 075002, (2011).
[CrossRef] [PubMed]

J. Jose, R. G. H. Willemink, S. Resink, D. Piras, J. C. G. van Hespen, C. H. Slump, W. Steenbergen, T. G. van Leeuwen, S. Manohar, “Passive element enriched photoacoustic computed tomography (PER PACT) for simultaneous imaging of acoustic propagation properties and light absorption,” Opt. Express 19(3) 2093–2104 (2011).
[CrossRef] [PubMed]

D. Piras, W. Xia, W. Steenbergen, T. G. van Leeuwen, S. Manohar, “Photoacoustic imaging of the breast using the Twente Photoacoustic Mammoscope: Present status and future perspectives,” IEEE J. Sel. Topic Quantum. Electron. 16, 730–739, (2010)
[CrossRef]

S. Manohar, S. E. Vaartjes, J. C. G. van Hespen, J. M. Klaase, F. M. van den Engh, W. Steenbergen, T. G. van Leeuwen, “Initial results of in vivo non-invasive cancer imaging in the human breast using near-infrared photoacoustics,” Opt. Express 15, 12277–12285 (2007).
[CrossRef] [PubMed]

S. Manohar, A. Kharine, J. C. G. van Hespen, W. Steenbergen, T. G. van Leeuwen, “Photoacoustic mammography laboratory prototype: Imaging of breast tissue phantoms,” J. Biomed. Opt. 9, 1172–1181 (2004).
[CrossRef] [PubMed]

Martelli, F.

McKenney, S. E.

S. Huang, J. M. Boone, K. Yang, N. J. Packard, S. E. McKenney, N. D. Prionas, K. K. Lindfors, M. J. Yaffe, “The characterization of breast anatomical metrics using dedicated breast CT,” Med. Phys. 38(4), 2180–2190 (2011).
[CrossRef] [PubMed]

Mehta, K.

S. A. Ermilov, T. Khamapirad, A. Conjusteau, M. H. Leonard, R. Lacewell, K. Mehta, T. Miller, A. A. Oraevsky, “Laser optoacoustic imaging system for detection of breast cancer,” J. Biomed. Opt. 14(2), 024007 (2009)
[CrossRef] [PubMed]

Miller, K. D.

R. A. Kruger, K. D. Miller, H. E. Reynolds, W. L. Kiser, D. R. Reinecke, G. A. Kruger, “Breast cancer in vivo: Contrast enhancement with thermoacoustic CT at 434 MHz-feasibility study,” Radiology 216, 279–283 (2000).
[PubMed]

Miller, T.

S. A. Ermilov, T. Khamapirad, A. Conjusteau, M. H. Leonard, R. Lacewell, K. Mehta, T. Miller, A. A. Oraevsky, “Laser optoacoustic imaging system for detection of breast cancer,” J. Biomed. Opt. 14(2), 024007 (2009)
[CrossRef] [PubMed]

Moes, C. J. M.

Muller, G.

A. Roggan, M. Friebel, K. Dorschel, A. Hahn, G. Muller, “Optical properties of circulating human blood in the wavelength range 400–2500 nm,” J. Biomed. Opt. 4(1), 36–46, (1999).
[CrossRef] [PubMed]

Muller, J. M.

D. R. Youlden, S. M. Cramb, N. A. M. Dunn, J. M. Muller, C. M. Pyke, P. D. Baade, “The descriptive epidemiology of female breast cancer: An international comparison of screening, incidence, survival and mortality,” Cancer Epidemiology 36, 237–248 (2012).
[CrossRef] [PubMed]

Nadvoretsky, V.

S. A. Ermilov, A. Conjusteau, T. Hernandez, R. Su, V. Nadvoretsky, D. Tsyboulski, F. Anis, M. A. Anastasio, A. A. Oraevsky, “3D laser optoacoustic ultrasonic imaging system for preclinical research,” Proc. SPIE 8581, 85810N, (2013).
[CrossRef]

Oraevsky, A.

A. Oraevsky, V. G. Andreev, A. A. Karabutov, S. V. Solomatin, E. V. Savateeva, R. D. Fleming, Z. Gatalica, H. Singh, “Laser optoacoustic imaging of breast cancer in vivo,” Proc. SPIE 4256, 6–15 (2001).
[CrossRef]

Oraevsky, A. A.

S. A. Ermilov, A. Conjusteau, T. Hernandez, R. Su, V. Nadvoretsky, D. Tsyboulski, F. Anis, M. A. Anastasio, A. A. Oraevsky, “3D laser optoacoustic ultrasonic imaging system for preclinical research,” Proc. SPIE 8581, 85810N, (2013).
[CrossRef]

S. A. Ermilov, T. Khamapirad, A. Conjusteau, M. H. Leonard, R. Lacewell, K. Mehta, T. Miller, A. A. Oraevsky, “Laser optoacoustic imaging system for detection of breast cancer,” J. Biomed. Opt. 14(2), 024007 (2009)
[CrossRef] [PubMed]

V. G. Andreev, A. A. Karabutov, A. A. Oraevsky, “Detection of ultrawide-band ultrasound pulses in optoacoustic tomography,” IEEE Trans. Ultrason. Ferr. Freq. Contr. 50, 1383–1390 (2003).
[CrossRef]

Packard, N. J.

S. Huang, J. M. Boone, K. Yang, N. J. Packard, S. E. McKenney, N. D. Prionas, K. K. Lindfors, M. J. Yaffe, “The characterization of breast anatomical metrics using dedicated breast CT,” Med. Phys. 38(4), 2180–2190 (2011).
[CrossRef] [PubMed]

Paulsen, K. D.

B. Tromberg, B. W. Pogue, K. D. Paulsen, A. G. Yodh, D. A. Boas, A. E. Cerussi, “Assessing the future of diffuse optical imaging technologies for breast cancer management,” Med. Phys. 35, 2443–2451, (2008)
[CrossRef] [PubMed]

Petty, C. C.

J. A. Curcio, C. C. Petty, “The near infrared absorption spectrum of liquid water”, J. Acoust. Soc. Am. 41(5), (1951), 302–304

Pham, T.

B. J. Tromberg, N. Shah, R. Lanning, A. Cerrusi, J. Espinoza, T. Pham, L. Svaasand, J. Butler, “Non invasive in vivo characterization of breast tumors using photon migration spectroscopy,” Neoplasia 2, 26–40 (2000).
[CrossRef] [PubMed]

Pifferi, A.

L. Spinelli, A. Torricelli, A. Pifferi, P. Taroni, G. M. Danesini, R. Cubeddu, “Bulk optical properties and tissue components in the famale breast from multiwavelength time-resolved optical mammography” J. Biomed. Opt. 9(6), 1137–1142, (2004).
[CrossRef] [PubMed]

P. Taroni, A. Bassi, D. Comelli, A. Farina, R. Cubeddu, A. Pifferi, “Diffuse optical spectroscopy of breast tissue extended to 1100 nm,” J. Biomed. Opt. 14, 054030 (1999).
[CrossRef]

Piras, D.

W. Xia, D. Piras, J. C. G. van Hespen, W. Steenbergen, S. Manohar, “A new acoustic lens material for large area detectors in photoacoustic breast tomography,” Photoacoustics 1(2), 9–18 (2013). ( doi:http://dx.doi.org/10.1016/j.pacs.2013.05.001)

W. Xia, D. Piras, J. C. G. van Hespen, S. van Veldhoven, C. Prins, T. G. van Leeuwen, W. Steenbergen, S. Manohar, “An optimized ultrasound detector for photoacoustic breast tomography,” Med. Phys. 40(3), 032901 (2013).
[CrossRef] [PubMed]

M. Heijblom, D. Piras, W. Xia, J.C.G. van Hespen, J.M. Klaase, F.M. van den Engh, T.G. van Leeuwen, W. Steenbergen, S. Manohar, “Visualizing breast cancer using the Twente photoacoustic mammoscope: What do we learn from twelve new patient measurements?,” Opt. Express 20, 11582–11597 (2012) ( doi:http://dx.doi.org/10.1364/OE.20.011582).
[PubMed]

W. Xia, D. Piras, M. Heijblom, W. Steenbergen, T. G. van Leeuwen, S. Manohar, “Poly(vinyl alcohol) gels as photoacoustic breast phantoms revisited,” J. Biomed. Opt. 16(7), 075002, (2011).
[CrossRef] [PubMed]

J. Jose, R. G. H. Willemink, S. Resink, D. Piras, J. C. G. van Hespen, C. H. Slump, W. Steenbergen, T. G. van Leeuwen, S. Manohar, “Passive element enriched photoacoustic computed tomography (PER PACT) for simultaneous imaging of acoustic propagation properties and light absorption,” Opt. Express 19(3) 2093–2104 (2011).
[CrossRef] [PubMed]

D. Piras, W. Xia, W. Steenbergen, T. G. van Leeuwen, S. Manohar, “Photoacoustic imaging of the breast using the Twente Photoacoustic Mammoscope: Present status and future perspectives,” IEEE J. Sel. Topic Quantum. Electron. 16, 730–739, (2010)
[CrossRef]

Pogue, B. W.

B. Tromberg, B. W. Pogue, K. D. Paulsen, A. G. Yodh, D. A. Boas, A. E. Cerussi, “Assessing the future of diffuse optical imaging technologies for breast cancer management,” Med. Phys. 35, 2443–2451, (2008)
[CrossRef] [PubMed]

Prahl, S. A.

Pramanik, M.

M. Pramanik, G. Ku, C. Li, L. V. Wang, “Design and evaluation of a novel breast cancer detection system combining both thermoacoustic (TA) and photoacoustic (PA) tomography,” Med. Phys. 35, 2218–2223 (2008)
[CrossRef] [PubMed]

Prins, C.

W. Xia, D. Piras, J. C. G. van Hespen, S. van Veldhoven, C. Prins, T. G. van Leeuwen, W. Steenbergen, S. Manohar, “An optimized ultrasound detector for photoacoustic breast tomography,” Med. Phys. 40(3), 032901 (2013).
[CrossRef] [PubMed]

Prionas, N. D.

S. Huang, J. M. Boone, K. Yang, N. J. Packard, S. E. McKenney, N. D. Prionas, K. K. Lindfors, M. J. Yaffe, “The characterization of breast anatomical metrics using dedicated breast CT,” Med. Phys. 38(4), 2180–2190 (2011).
[CrossRef] [PubMed]

Pyke, C. M.

D. R. Youlden, S. M. Cramb, N. A. M. Dunn, J. M. Muller, C. M. Pyke, P. D. Baade, “The descriptive epidemiology of female breast cancer: An international comparison of screening, incidence, survival and mortality,” Cancer Epidemiology 36, 237–248 (2012).
[CrossRef] [PubMed]

Razansky, D.

C. Lutzweiler, D. Razansky, “Optoacoustic Imaging and Tomography: Reconstruction Approaches and Outstanding Challenges in Image Performance and Quantification,” Sensors 13(6), 7345–7384, (2013)
[CrossRef] [PubMed]

Reinecke, D. R.

R. A. Kruger, R. B. Lam, D. R. Reinecke, S. P. D. Rio, R. P. Doyle, “Photoacoustic angiography of the breast,” Med. Phys. 37, 6096–6100, (2010)
[CrossRef] [PubMed]

R. A. Kruger, K. D. Miller, H. E. Reynolds, W. L. Kiser, D. R. Reinecke, G. A. Kruger, “Breast cancer in vivo: Contrast enhancement with thermoacoustic CT at 434 MHz-feasibility study,” Radiology 216, 279–283 (2000).
[PubMed]

Resink, S.

Reynolds, H. E.

R. A. Kruger, K. D. Miller, H. E. Reynolds, W. L. Kiser, D. R. Reinecke, G. A. Kruger, “Breast cancer in vivo: Contrast enhancement with thermoacoustic CT at 434 MHz-feasibility study,” Radiology 216, 279–283 (2000).
[PubMed]

Rio, S. P. D.

R. A. Kruger, R. B. Lam, D. R. Reinecke, S. P. D. Rio, R. P. Doyle, “Photoacoustic angiography of the breast,” Med. Phys. 37, 6096–6100, (2010)
[CrossRef] [PubMed]

Robert, J.

Y. Wang, T. N. Erpelding, L. Jankovic, Z. Guo, J. Robert, G. David, L. V. Wang, “In vivo three-dimensional photoacoustic imaging based on a clinical matrix array ultrasound probe,” J. Biomed. Opt. 17(6), 061208 (2012)
[CrossRef] [PubMed]

Roggan, A.

A. Roggan, M. Friebel, K. Dorschel, A. Hahn, G. Muller, “Optical properties of circulating human blood in the wavelength range 400–2500 nm,” J. Biomed. Opt. 4(1), 36–46, (1999).
[CrossRef] [PubMed]

Savateeva, E. V.

A. Oraevsky, V. G. Andreev, A. A. Karabutov, S. V. Solomatin, E. V. Savateeva, R. D. Fleming, Z. Gatalica, H. Singh, “Laser optoacoustic imaging of breast cancer in vivo,” Proc. SPIE 4256, 6–15 (2001).
[CrossRef]

Shah, N.

B. J. Tromberg, N. Shah, R. Lanning, A. Cerrusi, J. Espinoza, T. Pham, L. Svaasand, J. Butler, “Non invasive in vivo characterization of breast tumors using photon migration spectroscopy,” Neoplasia 2, 26–40 (2000).
[CrossRef] [PubMed]

Singh, H.

A. Oraevsky, V. G. Andreev, A. A. Karabutov, S. V. Solomatin, E. V. Savateeva, R. D. Fleming, Z. Gatalica, H. Singh, “Laser optoacoustic imaging of breast cancer in vivo,” Proc. SPIE 4256, 6–15 (2001).
[CrossRef]

Slump, C. H.

Solomatin, S. V.

A. Oraevsky, V. G. Andreev, A. A. Karabutov, S. V. Solomatin, E. V. Savateeva, R. D. Fleming, Z. Gatalica, H. Singh, “Laser optoacoustic imaging of breast cancer in vivo,” Proc. SPIE 4256, 6–15 (2001).
[CrossRef]

Spinelli, L.

L. Spinelli, A. Torricelli, A. Pifferi, P. Taroni, G. M. Danesini, R. Cubeddu, “Bulk optical properties and tissue components in the famale breast from multiwavelength time-resolved optical mammography” J. Biomed. Opt. 9(6), 1137–1142, (2004).
[CrossRef] [PubMed]

Steenbergen, W.

W. Xia, D. Piras, J. C. G. van Hespen, W. Steenbergen, S. Manohar, “A new acoustic lens material for large area detectors in photoacoustic breast tomography,” Photoacoustics 1(2), 9–18 (2013). ( doi:http://dx.doi.org/10.1016/j.pacs.2013.05.001)

W. Xia, D. Piras, J. C. G. van Hespen, S. van Veldhoven, C. Prins, T. G. van Leeuwen, W. Steenbergen, S. Manohar, “An optimized ultrasound detector for photoacoustic breast tomography,” Med. Phys. 40(3), 032901 (2013).
[CrossRef] [PubMed]

M. Heijblom, D. Piras, W. Xia, J.C.G. van Hespen, J.M. Klaase, F.M. van den Engh, T.G. van Leeuwen, W. Steenbergen, S. Manohar, “Visualizing breast cancer using the Twente photoacoustic mammoscope: What do we learn from twelve new patient measurements?,” Opt. Express 20, 11582–11597 (2012) ( doi:http://dx.doi.org/10.1364/OE.20.011582).
[PubMed]

W. Xia, D. Piras, M. Heijblom, W. Steenbergen, T. G. van Leeuwen, S. Manohar, “Poly(vinyl alcohol) gels as photoacoustic breast phantoms revisited,” J. Biomed. Opt. 16(7), 075002, (2011).
[CrossRef] [PubMed]

J. Jose, R. G. H. Willemink, S. Resink, D. Piras, J. C. G. van Hespen, C. H. Slump, W. Steenbergen, T. G. van Leeuwen, S. Manohar, “Passive element enriched photoacoustic computed tomography (PER PACT) for simultaneous imaging of acoustic propagation properties and light absorption,” Opt. Express 19(3) 2093–2104 (2011).
[CrossRef] [PubMed]

D. Piras, W. Xia, W. Steenbergen, T. G. van Leeuwen, S. Manohar, “Photoacoustic imaging of the breast using the Twente Photoacoustic Mammoscope: Present status and future perspectives,” IEEE J. Sel. Topic Quantum. Electron. 16, 730–739, (2010)
[CrossRef]

S. Manohar, S. E. Vaartjes, J. C. G. van Hespen, J. M. Klaase, F. M. van den Engh, W. Steenbergen, T. G. van Leeuwen, “Initial results of in vivo non-invasive cancer imaging in the human breast using near-infrared photoacoustics,” Opt. Express 15, 12277–12285 (2007).
[CrossRef] [PubMed]

S. Manohar, A. Kharine, J. C. G. van Hespen, W. Steenbergen, T. G. van Leeuwen, “Photoacoustic mammography laboratory prototype: Imaging of breast tissue phantoms,” J. Biomed. Opt. 9, 1172–1181 (2004).
[CrossRef] [PubMed]

Su, R.

S. A. Ermilov, A. Conjusteau, T. Hernandez, R. Su, V. Nadvoretsky, D. Tsyboulski, F. Anis, M. A. Anastasio, A. A. Oraevsky, “3D laser optoacoustic ultrasonic imaging system for preclinical research,” Proc. SPIE 8581, 85810N, (2013).
[CrossRef]

Svaasand, L.

B. J. Tromberg, N. Shah, R. Lanning, A. Cerrusi, J. Espinoza, T. Pham, L. Svaasand, J. Butler, “Non invasive in vivo characterization of breast tumors using photon migration spectroscopy,” Neoplasia 2, 26–40 (2000).
[CrossRef] [PubMed]

Tancrell, R. H.

J. Callerama, R. H. Tancrell, D. T. Wilson, “Transmitters and receivers for medical ultrasonics” Ultrasonic Symposium Proceedings, IEEE CH1482-9/79/0000-0407, 407–411, (1979)

Taroni, P.

L. Spinelli, A. Torricelli, A. Pifferi, P. Taroni, G. M. Danesini, R. Cubeddu, “Bulk optical properties and tissue components in the famale breast from multiwavelength time-resolved optical mammography” J. Biomed. Opt. 9(6), 1137–1142, (2004).
[CrossRef] [PubMed]

P. Taroni, A. Bassi, D. Comelli, A. Farina, R. Cubeddu, A. Pifferi, “Diffuse optical spectroscopy of breast tissue extended to 1100 nm,” J. Biomed. Opt. 14, 054030 (1999).
[CrossRef]

Torricelli, A.

L. Spinelli, A. Torricelli, A. Pifferi, P. Taroni, G. M. Danesini, R. Cubeddu, “Bulk optical properties and tissue components in the famale breast from multiwavelength time-resolved optical mammography” J. Biomed. Opt. 9(6), 1137–1142, (2004).
[CrossRef] [PubMed]

Treeby, B. E.

B. E. Treeby, B. Cox, “k-Wave: MATLAB toolbox for the simulation and reconstruction of photoacoustic wave fields,” J. Biomed. Opt. 51(2), 021314, (2010)
[CrossRef]

B. E. Treeby, E. Z. Zhang, B. Cox, “Photoacoustic tomography in absorbing acoustic media using time reversal,” Inverse Problems 26, 115003, (2010)
[CrossRef]

Tromberg, B.

B. Tromberg, B. W. Pogue, K. D. Paulsen, A. G. Yodh, D. A. Boas, A. E. Cerussi, “Assessing the future of diffuse optical imaging technologies for breast cancer management,” Med. Phys. 35, 2443–2451, (2008)
[CrossRef] [PubMed]

Tromberg, B. J.

B. J. Tromberg, N. Shah, R. Lanning, A. Cerrusi, J. Espinoza, T. Pham, L. Svaasand, J. Butler, “Non invasive in vivo characterization of breast tumors using photon migration spectroscopy,” Neoplasia 2, 26–40 (2000).
[CrossRef] [PubMed]

Tsyboulski, D.

S. A. Ermilov, A. Conjusteau, T. Hernandez, R. Su, V. Nadvoretsky, D. Tsyboulski, F. Anis, M. A. Anastasio, A. A. Oraevsky, “3D laser optoacoustic ultrasonic imaging system for preclinical research,” Proc. SPIE 8581, 85810N, (2013).
[CrossRef]

Vaartjes, S. E.

van den Engh, F. M.

van den Engh, F.M.

van Gemert, M. J. C.

van Hespen, J. C. G.

W. Xia, D. Piras, J. C. G. van Hespen, W. Steenbergen, S. Manohar, “A new acoustic lens material for large area detectors in photoacoustic breast tomography,” Photoacoustics 1(2), 9–18 (2013). ( doi:http://dx.doi.org/10.1016/j.pacs.2013.05.001)

W. Xia, D. Piras, J. C. G. van Hespen, S. van Veldhoven, C. Prins, T. G. van Leeuwen, W. Steenbergen, S. Manohar, “An optimized ultrasound detector for photoacoustic breast tomography,” Med. Phys. 40(3), 032901 (2013).
[CrossRef] [PubMed]

J. Jose, R. G. H. Willemink, S. Resink, D. Piras, J. C. G. van Hespen, C. H. Slump, W. Steenbergen, T. G. van Leeuwen, S. Manohar, “Passive element enriched photoacoustic computed tomography (PER PACT) for simultaneous imaging of acoustic propagation properties and light absorption,” Opt. Express 19(3) 2093–2104 (2011).
[CrossRef] [PubMed]

S. Manohar, S. E. Vaartjes, J. C. G. van Hespen, J. M. Klaase, F. M. van den Engh, W. Steenbergen, T. G. van Leeuwen, “Initial results of in vivo non-invasive cancer imaging in the human breast using near-infrared photoacoustics,” Opt. Express 15, 12277–12285 (2007).
[CrossRef] [PubMed]

S. Manohar, A. Kharine, J. C. G. van Hespen, W. Steenbergen, T. G. van Leeuwen, “Photoacoustic mammography laboratory prototype: Imaging of breast tissue phantoms,” J. Biomed. Opt. 9, 1172–1181 (2004).
[CrossRef] [PubMed]

van Hespen, J.C.G.

van Leeuwen, T. G.

W. Xia, D. Piras, J. C. G. van Hespen, S. van Veldhoven, C. Prins, T. G. van Leeuwen, W. Steenbergen, S. Manohar, “An optimized ultrasound detector for photoacoustic breast tomography,” Med. Phys. 40(3), 032901 (2013).
[CrossRef] [PubMed]

W. Xia, D. Piras, M. Heijblom, W. Steenbergen, T. G. van Leeuwen, S. Manohar, “Poly(vinyl alcohol) gels as photoacoustic breast phantoms revisited,” J. Biomed. Opt. 16(7), 075002, (2011).
[CrossRef] [PubMed]

J. Jose, R. G. H. Willemink, S. Resink, D. Piras, J. C. G. van Hespen, C. H. Slump, W. Steenbergen, T. G. van Leeuwen, S. Manohar, “Passive element enriched photoacoustic computed tomography (PER PACT) for simultaneous imaging of acoustic propagation properties and light absorption,” Opt. Express 19(3) 2093–2104 (2011).
[CrossRef] [PubMed]

D. Piras, W. Xia, W. Steenbergen, T. G. van Leeuwen, S. Manohar, “Photoacoustic imaging of the breast using the Twente Photoacoustic Mammoscope: Present status and future perspectives,” IEEE J. Sel. Topic Quantum. Electron. 16, 730–739, (2010)
[CrossRef]

S. Manohar, S. E. Vaartjes, J. C. G. van Hespen, J. M. Klaase, F. M. van den Engh, W. Steenbergen, T. G. van Leeuwen, “Initial results of in vivo non-invasive cancer imaging in the human breast using near-infrared photoacoustics,” Opt. Express 15, 12277–12285 (2007).
[CrossRef] [PubMed]

S. Manohar, A. Kharine, J. C. G. van Hespen, W. Steenbergen, T. G. van Leeuwen, “Photoacoustic mammography laboratory prototype: Imaging of breast tissue phantoms,” J. Biomed. Opt. 9, 1172–1181 (2004).
[CrossRef] [PubMed]

van Leeuwen, T.G.

van Marie, J.

Van Staveren, H. J.

van Veldhoven, S.

W. Xia, D. Piras, J. C. G. van Hespen, S. van Veldhoven, C. Prins, T. G. van Leeuwen, W. Steenbergen, S. Manohar, “An optimized ultrasound detector for photoacoustic breast tomography,” Med. Phys. 40(3), 032901 (2013).
[CrossRef] [PubMed]

Wang, L. V.

Y. Wang, T. N. Erpelding, L. Jankovic, Z. Guo, J. Robert, G. David, L. V. Wang, “In vivo three-dimensional photoacoustic imaging based on a clinical matrix array ultrasound probe,” J. Biomed. Opt. 17(6), 061208 (2012)
[CrossRef] [PubMed]

L. V. Wang, S. Hu, “Photoacoustic tomography: in vivo imaging from organelles to organs”, Science 335, (2012). (doi:)
[CrossRef]

M. Pramanik, G. Ku, C. Li, L. V. Wang, “Design and evaluation of a novel breast cancer detection system combining both thermoacoustic (TA) and photoacoustic (PA) tomography,” Med. Phys. 35, 2218–2223 (2008)
[CrossRef] [PubMed]

Wang, Y.

Y. Wang, T. N. Erpelding, L. Jankovic, Z. Guo, J. Robert, G. David, L. V. Wang, “In vivo three-dimensional photoacoustic imaging based on a clinical matrix array ultrasound probe,” J. Biomed. Opt. 17(6), 061208 (2012)
[CrossRef] [PubMed]

Ward, E.

A. Jemal, F. Bray, M. M. Center, J. Ferlay, E. Ward, D. Forman, “Global cancer statistics,” CA Cancer J. Clin. 61(2), 69–90 (2011).
[CrossRef] [PubMed]

Willemink, R. G. H.

Wilson, D. T.

J. Callerama, R. H. Tancrell, D. T. Wilson, “Transmitters and receivers for medical ultrasonics” Ultrasonic Symposium Proceedings, IEEE CH1482-9/79/0000-0407, 407–411, (1979)

Xi, L.

L. Xi, X. Li, L. Yao, S. Grobmyer, H. Jiang, “Design and evaluation of a hybrid photoacoustic tomography and diffuse optical tomography system for breast cancer detection,” Med. Phys. 39, 2584–2594, (2012)
[CrossRef] [PubMed]

Xia, W.

W. Xia, D. Piras, J. C. G. van Hespen, W. Steenbergen, S. Manohar, “A new acoustic lens material for large area detectors in photoacoustic breast tomography,” Photoacoustics 1(2), 9–18 (2013). ( doi:http://dx.doi.org/10.1016/j.pacs.2013.05.001)

W. Xia, D. Piras, J. C. G. van Hespen, S. van Veldhoven, C. Prins, T. G. van Leeuwen, W. Steenbergen, S. Manohar, “An optimized ultrasound detector for photoacoustic breast tomography,” Med. Phys. 40(3), 032901 (2013).
[CrossRef] [PubMed]

M. Heijblom, D. Piras, W. Xia, J.C.G. van Hespen, J.M. Klaase, F.M. van den Engh, T.G. van Leeuwen, W. Steenbergen, S. Manohar, “Visualizing breast cancer using the Twente photoacoustic mammoscope: What do we learn from twelve new patient measurements?,” Opt. Express 20, 11582–11597 (2012) ( doi:http://dx.doi.org/10.1364/OE.20.011582).
[PubMed]

W. Xia, D. Piras, M. Heijblom, W. Steenbergen, T. G. van Leeuwen, S. Manohar, “Poly(vinyl alcohol) gels as photoacoustic breast phantoms revisited,” J. Biomed. Opt. 16(7), 075002, (2011).
[CrossRef] [PubMed]

D. Piras, W. Xia, W. Steenbergen, T. G. van Leeuwen, S. Manohar, “Photoacoustic imaging of the breast using the Twente Photoacoustic Mammoscope: Present status and future perspectives,” IEEE J. Sel. Topic Quantum. Electron. 16, 730–739, (2010)
[CrossRef]

Xing, D.

F. Ye, S. Yang, D. Xing, “Three-dimensional photoacoustic imaging system in line confocal mode for breast cancer detection,” Appl. Phys. Lett. 97, 213702 (2010) doi:
[CrossRef]

Yaffe, M. J.

S. Huang, J. M. Boone, K. Yang, N. J. Packard, S. E. McKenney, N. D. Prionas, K. K. Lindfors, M. J. Yaffe, “The characterization of breast anatomical metrics using dedicated breast CT,” Med. Phys. 38(4), 2180–2190 (2011).
[CrossRef] [PubMed]

Yang, K.

S. Huang, J. M. Boone, K. Yang, N. J. Packard, S. E. McKenney, N. D. Prionas, K. K. Lindfors, M. J. Yaffe, “The characterization of breast anatomical metrics using dedicated breast CT,” Med. Phys. 38(4), 2180–2190 (2011).
[CrossRef] [PubMed]

Yang, S.

F. Ye, S. Yang, D. Xing, “Three-dimensional photoacoustic imaging system in line confocal mode for breast cancer detection,” Appl. Phys. Lett. 97, 213702 (2010) doi:
[CrossRef]

Yao, L.

L. Xi, X. Li, L. Yao, S. Grobmyer, H. Jiang, “Design and evaluation of a hybrid photoacoustic tomography and diffuse optical tomography system for breast cancer detection,” Med. Phys. 39, 2584–2594, (2012)
[CrossRef] [PubMed]

Ye, F.

F. Ye, S. Yang, D. Xing, “Three-dimensional photoacoustic imaging system in line confocal mode for breast cancer detection,” Appl. Phys. Lett. 97, 213702 (2010) doi:
[CrossRef]

Yodh, A. G.

B. Tromberg, B. W. Pogue, K. D. Paulsen, A. G. Yodh, D. A. Boas, A. E. Cerussi, “Assessing the future of diffuse optical imaging technologies for breast cancer management,” Med. Phys. 35, 2443–2451, (2008)
[CrossRef] [PubMed]

Youlden, D. R.

D. R. Youlden, S. M. Cramb, N. A. M. Dunn, J. M. Muller, C. M. Pyke, P. D. Baade, “The descriptive epidemiology of female breast cancer: An international comparison of screening, incidence, survival and mortality,” Cancer Epidemiology 36, 237–248 (2012).
[CrossRef] [PubMed]

Zaccanti, G.

Zhang, E. Z.

B. E. Treeby, E. Z. Zhang, B. Cox, “Photoacoustic tomography in absorbing acoustic media using time reversal,” Inverse Problems 26, 115003, (2010)
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

F. Ye, S. Yang, D. Xing, “Three-dimensional photoacoustic imaging system in line confocal mode for breast cancer detection,” Appl. Phys. Lett. 97, 213702 (2010) doi:
[CrossRef]

CA Cancer J. Clin. (1)

A. Jemal, F. Bray, M. M. Center, J. Ferlay, E. Ward, D. Forman, “Global cancer statistics,” CA Cancer J. Clin. 61(2), 69–90 (2011).
[CrossRef] [PubMed]

Cancer Epidemiology (1)

D. R. Youlden, S. M. Cramb, N. A. M. Dunn, J. M. Muller, C. M. Pyke, P. D. Baade, “The descriptive epidemiology of female breast cancer: An international comparison of screening, incidence, survival and mortality,” Cancer Epidemiology 36, 237–248 (2012).
[CrossRef] [PubMed]

IEEE J. Sel. Topic Quantum. Electron. (1)

D. Piras, W. Xia, W. Steenbergen, T. G. van Leeuwen, S. Manohar, “Photoacoustic imaging of the breast using the Twente Photoacoustic Mammoscope: Present status and future perspectives,” IEEE J. Sel. Topic Quantum. Electron. 16, 730–739, (2010)
[CrossRef]

IEEE Trans. Ultrason. Ferr. Freq. Contr. (1)

V. G. Andreev, A. A. Karabutov, A. A. Oraevsky, “Detection of ultrawide-band ultrasound pulses in optoacoustic tomography,” IEEE Trans. Ultrason. Ferr. Freq. Contr. 50, 1383–1390 (2003).
[CrossRef]

Interface Focus (1)

P. Beard, “Biomedical photoacoustic imaging,” Interface Focus 1, 602–631, (2011)
[CrossRef]

Inverse Problems (1)

B. E. Treeby, E. Z. Zhang, B. Cox, “Photoacoustic tomography in absorbing acoustic media using time reversal,” Inverse Problems 26, 115003, (2010)
[CrossRef]

J. Acoust. Soc. Am. (2)

B.T. Cox, P.C. Beard, “Fast calculation of pulsed photoacoustic field in fluids using k-space metholds,” J. Acoust. Soc. Am. 117(6), 3616–3627, (2005)
[CrossRef] [PubMed]

J. A. Curcio, C. C. Petty, “The near infrared absorption spectrum of liquid water”, J. Acoust. Soc. Am. 41(5), (1951), 302–304

J. Biomed. Opt. (8)

W. Xia, D. Piras, M. Heijblom, W. Steenbergen, T. G. van Leeuwen, S. Manohar, “Poly(vinyl alcohol) gels as photoacoustic breast phantoms revisited,” J. Biomed. Opt. 16(7), 075002, (2011).
[CrossRef] [PubMed]

P. Taroni, A. Bassi, D. Comelli, A. Farina, R. Cubeddu, A. Pifferi, “Diffuse optical spectroscopy of breast tissue extended to 1100 nm,” J. Biomed. Opt. 14, 054030 (1999).
[CrossRef]

B. E. Treeby, B. Cox, “k-Wave: MATLAB toolbox for the simulation and reconstruction of photoacoustic wave fields,” J. Biomed. Opt. 51(2), 021314, (2010)
[CrossRef]

L. Spinelli, A. Torricelli, A. Pifferi, P. Taroni, G. M. Danesini, R. Cubeddu, “Bulk optical properties and tissue components in the famale breast from multiwavelength time-resolved optical mammography” J. Biomed. Opt. 9(6), 1137–1142, (2004).
[CrossRef] [PubMed]

A. Roggan, M. Friebel, K. Dorschel, A. Hahn, G. Muller, “Optical properties of circulating human blood in the wavelength range 400–2500 nm,” J. Biomed. Opt. 4(1), 36–46, (1999).
[CrossRef] [PubMed]

S. Manohar, A. Kharine, J. C. G. van Hespen, W. Steenbergen, T. G. van Leeuwen, “Photoacoustic mammography laboratory prototype: Imaging of breast tissue phantoms,” J. Biomed. Opt. 9, 1172–1181 (2004).
[CrossRef] [PubMed]

S. A. Ermilov, T. Khamapirad, A. Conjusteau, M. H. Leonard, R. Lacewell, K. Mehta, T. Miller, A. A. Oraevsky, “Laser optoacoustic imaging system for detection of breast cancer,” J. Biomed. Opt. 14(2), 024007 (2009)
[CrossRef] [PubMed]

Y. Wang, T. N. Erpelding, L. Jankovic, Z. Guo, J. Robert, G. David, L. V. Wang, “In vivo three-dimensional photoacoustic imaging based on a clinical matrix array ultrasound probe,” J. Biomed. Opt. 17(6), 061208 (2012)
[CrossRef] [PubMed]

Med. Phys. (6)

M. Pramanik, G. Ku, C. Li, L. V. Wang, “Design and evaluation of a novel breast cancer detection system combining both thermoacoustic (TA) and photoacoustic (PA) tomography,” Med. Phys. 35, 2218–2223 (2008)
[CrossRef] [PubMed]

R. A. Kruger, R. B. Lam, D. R. Reinecke, S. P. D. Rio, R. P. Doyle, “Photoacoustic angiography of the breast,” Med. Phys. 37, 6096–6100, (2010)
[CrossRef] [PubMed]

B. Tromberg, B. W. Pogue, K. D. Paulsen, A. G. Yodh, D. A. Boas, A. E. Cerussi, “Assessing the future of diffuse optical imaging technologies for breast cancer management,” Med. Phys. 35, 2443–2451, (2008)
[CrossRef] [PubMed]

L. Xi, X. Li, L. Yao, S. Grobmyer, H. Jiang, “Design and evaluation of a hybrid photoacoustic tomography and diffuse optical tomography system for breast cancer detection,” Med. Phys. 39, 2584–2594, (2012)
[CrossRef] [PubMed]

W. Xia, D. Piras, J. C. G. van Hespen, S. van Veldhoven, C. Prins, T. G. van Leeuwen, W. Steenbergen, S. Manohar, “An optimized ultrasound detector for photoacoustic breast tomography,” Med. Phys. 40(3), 032901 (2013).
[CrossRef] [PubMed]

S. Huang, J. M. Boone, K. Yang, N. J. Packard, S. E. McKenney, N. D. Prionas, K. K. Lindfors, M. J. Yaffe, “The characterization of breast anatomical metrics using dedicated breast CT,” Med. Phys. 38(4), 2180–2190 (2011).
[CrossRef] [PubMed]

Nat. Rev. Cancer. (1)

G. Bergers, L. E. Benjamin, “Tumorigenesis and the angiogenic switch,” Nat. Rev. Cancer. 3, 401–410 (2003). (doi:)
[CrossRef] [PubMed]

Neoplasia (1)

B. J. Tromberg, N. Shah, R. Lanning, A. Cerrusi, J. Espinoza, T. Pham, L. Svaasand, J. Butler, “Non invasive in vivo characterization of breast tumors using photon migration spectroscopy,” Neoplasia 2, 26–40 (2000).
[CrossRef] [PubMed]

Opt. Express (4)

Photoacoustics (1)

W. Xia, D. Piras, J. C. G. van Hespen, W. Steenbergen, S. Manohar, “A new acoustic lens material for large area detectors in photoacoustic breast tomography,” Photoacoustics 1(2), 9–18 (2013). ( doi:http://dx.doi.org/10.1016/j.pacs.2013.05.001)

Proc. SPIE (2)

A. Oraevsky, V. G. Andreev, A. A. Karabutov, S. V. Solomatin, E. V. Savateeva, R. D. Fleming, Z. Gatalica, H. Singh, “Laser optoacoustic imaging of breast cancer in vivo,” Proc. SPIE 4256, 6–15 (2001).
[CrossRef]

S. A. Ermilov, A. Conjusteau, T. Hernandez, R. Su, V. Nadvoretsky, D. Tsyboulski, F. Anis, M. A. Anastasio, A. A. Oraevsky, “3D laser optoacoustic ultrasonic imaging system for preclinical research,” Proc. SPIE 8581, 85810N, (2013).
[CrossRef]

Radiology (1)

R. A. Kruger, K. D. Miller, H. E. Reynolds, W. L. Kiser, D. R. Reinecke, G. A. Kruger, “Breast cancer in vivo: Contrast enhancement with thermoacoustic CT at 434 MHz-feasibility study,” Radiology 216, 279–283 (2000).
[PubMed]

Science (1)

L. V. Wang, S. Hu, “Photoacoustic tomography: in vivo imaging from organelles to organs”, Science 335, (2012). (doi:)
[CrossRef]

Sensors (1)

C. Lutzweiler, D. Razansky, “Optoacoustic Imaging and Tomography: Reconstruction Approaches and Outstanding Challenges in Image Performance and Quantification,” Sensors 13(6), 7345–7384, (2013)
[CrossRef] [PubMed]

Ultrasound Med. Biol. (1)

C. Li, N. Duric, P. Littrup, L. Huang, “In vivo breast sound-speed imaging with ultrasound tomography,” Ultrasound Med. Biol. 351615–1628 (2009).
[CrossRef] [PubMed]

Other (4)

ANSI, Z136.1-2007.

D. B. Kopans, Breast Imaging (Wolters Kluwer Health, 2007)

J. Callerama, R. H. Tancrell, D. T. Wilson, “Transmitters and receivers for medical ultrasonics” Ultrasonic Symposium Proceedings, IEEE CH1482-9/79/0000-0407, 407–411, (1979)

J. Folkman, “Tumor angiogenesis,” in Cancer Medicine, J. F. Holland, Ed., 5th ed. (Hamilton, ON: B. C. Decker, 2000), ch. 9, pp. 132152.

Supplementary Material (4)

» Media 1: MOV (461 KB)     
» Media 2: MOV (481 KB)     
» Media 3: MOV (463 KB)     
» Media 4: MOV (420 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematics of (a) the PAM-II laboratory prototype system and (b) the linear array detector.

Fig. 2
Fig. 2

Schematics of measurement setups used for studying (a) pulse-echo and frequency responses and (b) directional sensitivity.

Fig. 3
Fig. 3

(a) Schematic of the tomographic system showing the relative positions between the scanning detector element and the phantom. (b) Schematic of phantom 1: a crossed-threads object embedded in Agar/Intralipid gel cylinder. (c) Schematic of phantom 2: five objects embedded in Agar/Intralipid gel cylinder. Detailed descriptions of the phantom and object properties are listed in Table 1. The lower part of the phantom is not shown in all three schematics.

Fig. 4
Fig. 4

(a) Pulse-echo and frequency response, and (b) directional sensitivity of the detector element 5.

Fig. 5
Fig. 5

(a) Sensitivity and minimum detectable pressure of the detector element 5. (b) Minimum detectable pressure for each element in the detector array.

Fig. 6
Fig. 6

(a) Responses of all elements in the array displayed in different vertical scales for visualization. Electrical and mechanical crosstalk are well separated in time. (b) Peak-peak inter-element electrical and mechanical crosstalk of the linear array detector relative to the driven element.

Fig. 7
Fig. 7

Reconstruction of phantom 1. (a) A top view maximum intensity projection (MIP) along the vertical axis (Z direction) with 100 × 100 mm2 field of view. (b) A side view MIP along the Y direction with 60 × 100 mm2 field of view. Two MIP movies showing the rotation of the 3D phantom around two orthogonal axes can be viewed in Media 1 and Media 2 respectively. (c) An image slice at position indicated by dashed line in (a) showing cross-sections of the two threads (marked with “1”, and “2”) at around 4 cm from the phantom surface. (d) A 3D rendering of the phantom showing a 110 × 110 × 70 mm3 field of view. (e) An axial profile crossing a sub-resolution object (“1”) from (c) indicated by a dashed white line, and (f) A vertical profile crossing a sub-resolution object (“1”) from (c) indicated by a dashed gray line. (g) An axial profile crossing a sub-resolution object (“2”) from (c) indicated by a dashed white line, and (h) A vertical profile crossing a sub-resolution object (“2”) from (c) indicated by a dashed gray line.

Fig. 8
Fig. 8

Reconstruction of phantom 2. (a) A top view maximum intensity projection (MIP) along the vertical axis (Z direction) with 70 × 70 mm2 field of view. (b) A side view MIP along the X direction with 60 × 70 mm2 field of view. Two MIP movies showing the rotation of the 3D phantom around two orthogonal axes can be viewed in Media 3 and Media 4 respectively. (c) A XY plane image slice at 20 mm depth from the phantom surface showing the reconstructed objects on this plane. (d) A XY plane image slice at 40 mm depth from the phantom surface showing the reconstructed objects on this plane.

Tables (1)

Tables Icon

Table 1 Background and object properties of phantom 2. Their dimensions, distances from phantom surface (depths), optical reduced scattering coefficient μ′s, and optical absorption coefficient μa are listed. The optical properties of normal and cancerous breast tissue are derived from Ref. [30] at 755 nm and human blood is derived from Ref. [31] at 800 nm, where blood absorption is independent of the oxygen saturation level.

Metrics