Abstract

We present an aberration cancelling optical design for a reflective adaptive optics - optical coherence tomography (AO-OCT) retinal imaging system. The optical performance of this instrument is compared to our previous multimodal AO-OCT/AO-SLO retinal imaging system. The feasibility of new instrumentation for improved visualization of microscopic retinal structures is discussed. Examples of images acquired with this new AO-OCT instrument are presented.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Liang, D. R. Williams, D. T. Miller, “Supernormal vision and high-resolution retinal imaging through adaptive optics,” J. Opt. Soc. Am. A 14(11), 2884–2892 (1997).
    [CrossRef] [PubMed]
  2. A. Roorda, F. Romero-Borja, W. Donnelly III, H. Queener, T. J. Hebert, M. C. W. Campbell, “Adaptive optics scanning laser ophthalmoscopy,” Opt. Express 10(9), 405–412 (2002).
    [CrossRef] [PubMed]
  3. R. J. Zawadzki, S. M. Jones, S. S. Olivier, M. Zhao, B. A. Bower, J. A. Izatt, S. Choi, S. Laut, J. S. Werner, “Adaptive-optics optical coherence tomography for high-resolution and high-speed 3D retinal in vivo imaging,” Opt. Express 13(21), 8532–8546 (2005).
    [CrossRef] [PubMed]
  4. P. Godara, A. M. Dubis, A. Roorda, J. L. Duncan, J. Carroll, “Adaptive optics retinal imaging: emerging clinical applications,” Optom. Vis. Sci. 87(12), 930–941 (2010).
    [CrossRef] [PubMed]
  5. D. R. Williams, “Imaging single cells in the living retina,” Vision Res. 51(13), 1379–1396 (2011).
    [CrossRef] [PubMed]
  6. N. Doble, S. S. Choi, J. L. Codona, J. Christou, J. M. Enoch, D. R. Williams, “In vivo imaging of the human rod photoreceptor mosaic,” Opt. Lett. 36(1), 31–33 (2011).
    [CrossRef] [PubMed]
  7. A. Dubra, Y. Sulai, J. L. Norris, R. F. Cooper, A. M. Dubis, D. R. Williams, J. Carroll, “Noninvasive imaging of the human rod photoreceptor mosaic using a confocal adaptive optics scanning ophthalmoscope,” Biomed. Opt. Express 2(7), 1864–1876 (2011).
    [CrossRef] [PubMed]
  8. D. Merino, J. L. Duncan, P. Tiruveedhula, A. Roorda, “Observation of cone and rod photoreceptors in normal subjects and patients using a new generation adaptive optics scanning laser ophthalmoscope,” Biomed. Opt. Express 2(8), 2189–2201 (2011).
    [CrossRef] [PubMed]
  9. D. C. Chen, S. M. Jones, D. A. Silva, S. S. Olivier, “High-resolution adaptive optics scanning laser ophthalmoscope with dual deformable mirrors,” J. Opt. Soc. Am. A 24(5), 1305–1312 (2007).
    [CrossRef] [PubMed]
  10. S. A. Burns, R. Tumbar, A. E. Elsner, D. Ferguson, D. X. Hammer, “Large-field-of-view, modular, stabilized, adaptive-optics-based scanning laser ophthalmoscope,” J. Opt. Soc. Am. A 24(5), 1313–1326 (2007).
    [CrossRef] [PubMed]
  11. A. Gómez-Vieyra, A. Dubra, D. Malacara-Hernández, D. R. Williams, “First-order design of off-axis reflective ophthalmic adaptive optics systems using afocal telescopes,” Opt. Express 17(21), 18906–18919 (2009).
    [CrossRef] [PubMed]
  12. R. J. Zawadzki, B. Cense, Y. Zhang, S. S. Choi, D. T. Miller, J. S. Werner, “Ultrahigh-resolution optical coherence tomography with monochromatic and chromatic aberration correction,” Opt. Express 16(11), 8126–8143 (2008).
    [CrossRef] [PubMed]
  13. R. J. Zawadzki, S. M. Jones, S. Pilli, S. Balderas-Mata, D. Y. Kim, S. S. Olivier, J. S. Werner, “Integrated adaptive optics optical coherence tomography and adaptive optics scanning laser ophthalmoscope system for simultaneous cellular resolution in vivo retinal imaging,” Biomed. Opt. Express 2(6), 1674–1686 (2011).
    [CrossRef] [PubMed]
  14. J. L. Gardner, “Astigmatism cancellation in spectroradiometry,” Metrologia 28(3), 251–254 (1991).
    [CrossRef]
  15. A. Dubra, A. Gómez-Vieyra, D. Malacara-Hernández, and D. R. Williams, “First-order design of off-axis reflective ophthalmic adaptive optics systems using afocal telescopes,” in Frontiers in Optics, OSA Technical Digest (CD) (Optical Society of America, 2009), paper JWF4.
    [CrossRef]
  16. A. Dubra, Y. Sulai, “Reflective afocal broadband adaptive optics scanning ophthalmoscope,” Biomed. Opt. Express 2(6), 1757–1768 (2011).
    [CrossRef] [PubMed]
  17. D. X. Hammer, R. D. Ferguson, M. Mujat, A. Patel, E. Plumb, N. Iftimia, T. Y. P. Chui, J. D. Akula, A. B. Fulton, “Multimodal adaptive optics retinal imager: design and performance,” J. Opt. Soc. Am. A 29(12), 2598–2607 (2012).
    [CrossRef] [PubMed]
  18. L. Zhuolin, O. P. Kocaoglu, R. S. Jonnal, Q. Wang, and D. T. Miller, “Performance of an off-axis ophthalmic adaptive optics system with toroidal mirrors.” In Adaptive Optics: Methods, Analysis and Applications. Optical Society of America, (2011).
  19. Z. Liu, O. Kocaoglu, Q. Wang, and D. T. Miller, “Design and validation of a toroidal-based ophthalmic adaptive optics system,” in Imaging and Applied Optics, J. Christou and D. Miller, eds., OSA Technical Digest (online) (Optical Society of America, 2013), paper OM4A.2.
  20. D. Y. Kim, J. Fingler, J. S. Werner, D. M. Schwartz, S. E. Fraser, R. J. Zawadzki, “In vivo volumetric imaging of human retinal circulation with phase-variance optical coherence tomography,” Biomed. Opt. Express 2(6), 1504–1513 (2011).
    [CrossRef] [PubMed]
  21. Y. Jian, K. Wong, M. V. Sarunic, “Graphics processing unit accelerated optical coherence tomography processing at megahertz axial scan rate and high resolution video rate volumetric rendering,” J. Biomed. Opt. 18(2), 026002 (2013).
    [CrossRef] [PubMed]
  22. N. M. Putnam, D. X. Hammer, Y. Zhang, D. Merino, A. Roorda, “Modeling the foveal cone mosaic imaged with adaptive optics scanning laser ophthalmoscopy,” Opt. Express 18(24), 24902–24916 (2010).
    [CrossRef] [PubMed]

2013 (1)

Y. Jian, K. Wong, M. V. Sarunic, “Graphics processing unit accelerated optical coherence tomography processing at megahertz axial scan rate and high resolution video rate volumetric rendering,” J. Biomed. Opt. 18(2), 026002 (2013).
[CrossRef] [PubMed]

2012 (1)

2011 (7)

D. Y. Kim, J. Fingler, J. S. Werner, D. M. Schwartz, S. E. Fraser, R. J. Zawadzki, “In vivo volumetric imaging of human retinal circulation with phase-variance optical coherence tomography,” Biomed. Opt. Express 2(6), 1504–1513 (2011).
[CrossRef] [PubMed]

R. J. Zawadzki, S. M. Jones, S. Pilli, S. Balderas-Mata, D. Y. Kim, S. S. Olivier, J. S. Werner, “Integrated adaptive optics optical coherence tomography and adaptive optics scanning laser ophthalmoscope system for simultaneous cellular resolution in vivo retinal imaging,” Biomed. Opt. Express 2(6), 1674–1686 (2011).
[CrossRef] [PubMed]

D. R. Williams, “Imaging single cells in the living retina,” Vision Res. 51(13), 1379–1396 (2011).
[CrossRef] [PubMed]

N. Doble, S. S. Choi, J. L. Codona, J. Christou, J. M. Enoch, D. R. Williams, “In vivo imaging of the human rod photoreceptor mosaic,” Opt. Lett. 36(1), 31–33 (2011).
[CrossRef] [PubMed]

A. Dubra, Y. Sulai, J. L. Norris, R. F. Cooper, A. M. Dubis, D. R. Williams, J. Carroll, “Noninvasive imaging of the human rod photoreceptor mosaic using a confocal adaptive optics scanning ophthalmoscope,” Biomed. Opt. Express 2(7), 1864–1876 (2011).
[CrossRef] [PubMed]

D. Merino, J. L. Duncan, P. Tiruveedhula, A. Roorda, “Observation of cone and rod photoreceptors in normal subjects and patients using a new generation adaptive optics scanning laser ophthalmoscope,” Biomed. Opt. Express 2(8), 2189–2201 (2011).
[CrossRef] [PubMed]

A. Dubra, Y. Sulai, “Reflective afocal broadband adaptive optics scanning ophthalmoscope,” Biomed. Opt. Express 2(6), 1757–1768 (2011).
[CrossRef] [PubMed]

2010 (2)

P. Godara, A. M. Dubis, A. Roorda, J. L. Duncan, J. Carroll, “Adaptive optics retinal imaging: emerging clinical applications,” Optom. Vis. Sci. 87(12), 930–941 (2010).
[CrossRef] [PubMed]

N. M. Putnam, D. X. Hammer, Y. Zhang, D. Merino, A. Roorda, “Modeling the foveal cone mosaic imaged with adaptive optics scanning laser ophthalmoscopy,” Opt. Express 18(24), 24902–24916 (2010).
[CrossRef] [PubMed]

2009 (1)

2008 (1)

2007 (2)

2005 (1)

2002 (1)

1997 (1)

1991 (1)

J. L. Gardner, “Astigmatism cancellation in spectroradiometry,” Metrologia 28(3), 251–254 (1991).
[CrossRef]

Akula, J. D.

Balderas-Mata, S.

Bower, B. A.

Burns, S. A.

Campbell, M. C. W.

Carroll, J.

Cense, B.

Chen, D. C.

Choi, S.

Choi, S. S.

Christou, J.

Chui, T. Y. P.

Codona, J. L.

Cooper, R. F.

Doble, N.

Donnelly III, W.

Dubis, A. M.

Dubra, A.

Duncan, J. L.

Elsner, A. E.

Enoch, J. M.

Ferguson, D.

Ferguson, R. D.

Fingler, J.

Fraser, S. E.

Fulton, A. B.

Gardner, J. L.

J. L. Gardner, “Astigmatism cancellation in spectroradiometry,” Metrologia 28(3), 251–254 (1991).
[CrossRef]

Godara, P.

P. Godara, A. M. Dubis, A. Roorda, J. L. Duncan, J. Carroll, “Adaptive optics retinal imaging: emerging clinical applications,” Optom. Vis. Sci. 87(12), 930–941 (2010).
[CrossRef] [PubMed]

Gómez-Vieyra, A.

Hammer, D. X.

Hebert, T. J.

Iftimia, N.

Izatt, J. A.

Jian, Y.

Y. Jian, K. Wong, M. V. Sarunic, “Graphics processing unit accelerated optical coherence tomography processing at megahertz axial scan rate and high resolution video rate volumetric rendering,” J. Biomed. Opt. 18(2), 026002 (2013).
[CrossRef] [PubMed]

Jones, S. M.

Kim, D. Y.

Laut, S.

Liang, J.

Malacara-Hernández, D.

Merino, D.

Miller, D. T.

Mujat, M.

Norris, J. L.

Olivier, S. S.

Patel, A.

Pilli, S.

Plumb, E.

Putnam, N. M.

Queener, H.

Romero-Borja, F.

Roorda, A.

Sarunic, M. V.

Y. Jian, K. Wong, M. V. Sarunic, “Graphics processing unit accelerated optical coherence tomography processing at megahertz axial scan rate and high resolution video rate volumetric rendering,” J. Biomed. Opt. 18(2), 026002 (2013).
[CrossRef] [PubMed]

Schwartz, D. M.

Silva, D. A.

Sulai, Y.

Tiruveedhula, P.

Tumbar, R.

Werner, J. S.

Williams, D. R.

Wong, K.

Y. Jian, K. Wong, M. V. Sarunic, “Graphics processing unit accelerated optical coherence tomography processing at megahertz axial scan rate and high resolution video rate volumetric rendering,” J. Biomed. Opt. 18(2), 026002 (2013).
[CrossRef] [PubMed]

Zawadzki, R. J.

Zhang, Y.

Zhao, M.

Biomed. Opt. Express (5)

J. Biomed. Opt. (1)

Y. Jian, K. Wong, M. V. Sarunic, “Graphics processing unit accelerated optical coherence tomography processing at megahertz axial scan rate and high resolution video rate volumetric rendering,” J. Biomed. Opt. 18(2), 026002 (2013).
[CrossRef] [PubMed]

J. Opt. Soc. Am. A (4)

Metrologia (1)

J. L. Gardner, “Astigmatism cancellation in spectroradiometry,” Metrologia 28(3), 251–254 (1991).
[CrossRef]

Opt. Express (5)

Opt. Lett. (1)

Optom. Vis. Sci. (1)

P. Godara, A. M. Dubis, A. Roorda, J. L. Duncan, J. Carroll, “Adaptive optics retinal imaging: emerging clinical applications,” Optom. Vis. Sci. 87(12), 930–941 (2010).
[CrossRef] [PubMed]

Vision Res. (1)

D. R. Williams, “Imaging single cells in the living retina,” Vision Res. 51(13), 1379–1396 (2011).
[CrossRef] [PubMed]

Other (3)

A. Dubra, A. Gómez-Vieyra, D. Malacara-Hernández, and D. R. Williams, “First-order design of off-axis reflective ophthalmic adaptive optics systems using afocal telescopes,” in Frontiers in Optics, OSA Technical Digest (CD) (Optical Society of America, 2009), paper JWF4.
[CrossRef]

L. Zhuolin, O. P. Kocaoglu, R. S. Jonnal, Q. Wang, and D. T. Miller, “Performance of an off-axis ophthalmic adaptive optics system with toroidal mirrors.” In Adaptive Optics: Methods, Analysis and Applications. Optical Society of America, (2011).

Z. Liu, O. Kocaoglu, Q. Wang, and D. T. Miller, “Design and validation of a toroidal-based ophthalmic adaptive optics system,” in Imaging and Applied Optics, J. Christou and D. Miller, eds., OSA Technical Digest (online) (Optical Society of America, 2013), paper OM4A.2.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

3D visualization of old “in-plane” (left) and new “off-plane” (right) afocal AO-OCT sample arm designs. Angle view of old (a) and new (b) AO-OCT sample arms. Side view of old (c) and new (d) AO-OCT sample arms.

Fig. 2
Fig. 2

Top view of old “in-plane” (a) and new “off-plane” (b) AO-OCT sample arms. DM – Deformable mirror; SLD – Superluminescent Diode; S1-S10: Spherical mirrors.

Fig. 3
Fig. 3

Comparison of spot diagram with Airy Disk (black circle) as a function of scanner position over 3° x 3° field for old (left) and new (right) designs. (Spot diagrams are magnified by 20 times.)

Fig. 4
Fig. 4

Comparisons of pupil wander as a function of imaging beam position in x and y axis (scanning angle over 3° x 3°) for old (left) and new (right) AO-OCT designs. The pupil shapes represent the instrument’s pupil as observed at the eye’s pupil for several scanning angles.

Fig. 5
Fig. 5

RMS wavefront error of our “off-plane” OCT system for ± 4 Dpt defocus and corresponding DM correction (log scale) for 3° x 3° FOV. Deformable mirror was fixed for all retinal positions.

Fig. 6
Fig. 6

Through focus spot diagram of the old “in-plane” (left) and new “off-plane” (right) AO-OCT design

Fig. 7
Fig. 7

Pupil wander and shape at the eye plane when the AO is off and on is shown for old “in-plane” (left) and new “off-plane” (right) AO-OCT designs (3° x 3° FOV).

Fig. 8
Fig. 8

Spot diagram at the retinal plane with Airy Disk (black circle) when the AO is on for new AO-OCT design (3° x 3° FOV) for different values of subject refractive error ( ± 4 Dpt). The deformable mirror was fixed for all the retinal positions with the correction of defocus, astigmatism and coma. Spot diagrams are magnified by 20 times.

Fig. 9
Fig. 9

Experimental setup of new afocal AO-OCT sample

Fig. 10
Fig. 10

En-face OCT projection image of resolution chart without AO.

Fig. 11
Fig. 11

Intensity projections of different retinal layers from a single AO-OCT volume focused on outer retina. ELM – external limiting membrane; IS/OS – photoreceptors inner/outer segment junction, COST – cone outer segments tips; ROST rod outer segments tips, RPE – retinal pigment epithelium, BM – Bruch's membrane

Tables (1)

Tables Icon

Table 1 Design parameters (Focal length, tilt angle of mirror and height)

Metrics