Abstract

Mueller matrix polarimetric imaging has shown potential in tissue diagnosis but is challenging to implement endoscopically. In this work, a narrow band 3 × 3 Mueller matrix polarimetric endoscope was designed by rotating the endoscope to generate 0°, 45° and 90° linearly polarized illumination and positioning a rotating filter wheel in front of the camera containing three polarisers to permit polarization state analysis for backscattered light. The system was validated with a rotating linear polarizer and a diffuse reflection target. Initial measurements of 3 × 3 Mueller matrices on a rat are demonstrated, followed by matrix decomposition into the depolarization and retardance matrices for further analysis. Our work shows the feasibility of implementing polarimetric imaging in a rigid endoscope conveniently and economically in order to reveal diagnostic information.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. L. Jacques, J. C. Ramella-Roman, K. Lee, “Imaging skin pathology with polarized light,” J. Biomed. Opt. 7(3), 329–340 (2002).
    [CrossRef] [PubMed]
  2. V. Backman, R. Gurjar, K. Badizadegan, I. Itzkan, R. R. Dasari, L. T. Perelman, M. S. Feld, “Polarized light scattering spectroscopy for quantitative measurement of epithelial cellular structures in situ,” IEEE J. Sel. Top. Quantum Electron. 5(4), 1019–1026 (1999).
    [CrossRef]
  3. J. Qi, C. Barrière, T. C. Wood, D. S. Elson, “Polarized multispectral imaging in a rigid endoscope based on elastic light scattering spectroscopy,” Biomed. Opt. Express 3(9), 2087–2099 (2012).
    [CrossRef] [PubMed]
  4. S. P. Morgan, I. M. Stockford, “Surface-reflection elimination in polarization imaging of superficial tissue,” Opt. Lett. 28(2), 114–116 (2003).
    [CrossRef] [PubMed]
  5. A. Da Silva, C. Deumié, I. Vanzetta, “Elliptically polarized light for depth resolved optical imaging,” Biomed. Opt. Express 3(11), 2907–2915 (2012).
    [CrossRef] [PubMed]
  6. S. Demos, H. Radousky, R. Alfano, “Deep subsurface imaging in tissues using spectral and polarization filtering,” Opt. Express 7(1), 23–28 (2000).
    [CrossRef] [PubMed]
  7. S. Alali, M. Ahmad, A. Kim, N. Vurgun, M. F. G. Wood, I. A. Vitkin, “Quantitative correlation between light depolarization and transport albedo of various porcine tissues,” J. Biomed. Opt. 17(4), 045004(2012).
    [CrossRef] [PubMed]
  8. A. Pierangelo, A. Benali, M.-R. Antonelli, T. Novikova, P. Validire, B. Gayet, A. De Martino, “Ex-vivo characterization of human colon cancer by Mueller polarimetric imaging,” Opt. Express 19(2), 1582–1593 (2011).
    [CrossRef] [PubMed]
  9. M.-R. Antonelli, A. Pierangelo, T. Novikova, P. Validire, A. Benali, B. Gayet, A. De Martino, “Mueller matrix imaging of human colon tissue for cancer diagnostics: how Monte Carlo modeling can help in the interpretation of experimental data,” Opt. Express 18(10), 10200–10208 (2010).
    [CrossRef] [PubMed]
  10. M. Anastasiadou, A. D. Martino, D. Clement, F. Liège, B. Laude-Boulesteix, N. Quang, J. Dreyfuss, B. Huynh, A. Nazac, L. Schwartz, H. Cohen, “Polarimetric imaging for the diagnosis of cervical cancer,” Phys. Status Solidi 5(5c), 1423–1426 (2008).
    [CrossRef]
  11. N. Ghosh, I. A. Vitkin, “Tissue polarimetry: concepts, challenges, applications, and outlook,” J. Biomed. Opt. 16(11), 110801 (2011).
    [CrossRef] [PubMed]
  12. D. J. Maitland, J. T. Walsh., “Quantitative measurements of linear birefringence during heating of native collagen,” Lasers Surg. Med. 20(3), 310–318 (1997).
    [CrossRef] [PubMed]
  13. B. H. Park, C. Saxer, S. M. Srinivas, J. S. Nelson, J. F. de Boer, “In vivo burn depth determination by high-speed fiber-based polarization sensitive optical coherence tomography,” J. Biomed. Opt. 6(4), 474–479 (2001).
    [CrossRef] [PubMed]
  14. S. Manhas, M. K. Swami, H. S. Patel, A. Uppal, N. Ghosh, P. K. Gupta, “Polarized diffuse reflectance measurements on cancerous and noncancerous tissues,” J Biophotonics 2(10), 581–587 (2009).
    [CrossRef] [PubMed]
  15. M. F. G. Wood, N. Ghosh, M. A. Wallenburg, S.-H. Li, R. D. Weisel, B. C. Wilson, R.-K. Li, I. A. Vitkin, “Polarization birefringence measurements for characterizing the myocardium, including healthy, infarcted, and stem-cell-regenerated tissues,” J. Biomed. Opt. 15(4), 047009 (2010).
    [CrossRef] [PubMed]
  16. S.-Y. Lu, R. A. Chipman, “Interpretation of Mueller matrices based on polar decomposition,” J. Opt. Soc. Am. A 13(5), 1106–1113 (1996).
    [CrossRef]
  17. M. K. Swami, S. Manhas, P. Buddhiwant, N. Ghosh, A. Uppal, P. K. Gupta, “Polar decomposition of 3 x 3 Mueller matrix: a tool for quantitative tissue polarimetry,” Opt. Express 14(20), 9324–9337 (2006).
    [CrossRef] [PubMed]
  18. P. Shukla, A. Pradhan, “Mueller decomposition images for cervical tissue: Potential for discriminating normal and dysplastic states,” Opt. Express 17(3), 1600–1609 (2009).
    [CrossRef] [PubMed]
  19. C. Macdonald, I. Meglinski, “Backscattering of circular polarized light from a disperse random medium influenced by optical clearing,” Laser Phys. Lett. 8(4), 324–328 (2011).
    [CrossRef]
  20. S. Jiao, L. V. Wang, “Jones-matrix imaging of biological tissues with quadruple-channel optical coherence tomography,” J. Biomed. Opt. 7(3), 350–358 (2002).
    [CrossRef] [PubMed]
  21. T. C. Wood, D. S. Elson, “Polarization response measurement and simulation of rigid endoscopes,” Biomed. Opt. Express 1(2), 463–470 (2010).
    [CrossRef] [PubMed]
  22. N. T. Clancy and D. S. Elson, “Narrowband polarisation endoscopy with LED illumination,” presented at OSA/SPIE European Conferences on Biomedical Optics, Munich, Germany, 12–16 May 2013.
  23. N. Thekkek, M. C. Pierce, M. H. Lee, A. D. Polydorides, R. M. Flores, S. Anandasabapathy, R. R. Richards-Kortum, “Modular video endoscopy for in vivo cross-polarized and vital-dye fluorescence imaging of Barrett’s-associated neoplasia,” J. Biomed. Opt. 18(2), 026007 (2013).
    [CrossRef] [PubMed]
  24. J. Qi, D. S. Elson, and C. Barriere, “Polarized Multispectral Imaging in a Rigid Endoscope Based on Polarized Light Scattering Spectroscopy,” (Optical Society of America, 2012), p. BW4B.7.
  25. W. S. Bickel, W. M. Bailey, “Stokes vectors, Mueller matrices, and polarized scattered light,” Am. J. Phys. 53(5), 468–478 (1985).
    [CrossRef]
  26. E. W. Cheney and D. R. Kincaid, Numerical mathematics and computing (Brooks/Cole, 2012).
  27. A. Pierangelo, S. Manhas, A. Benali, C. Fallet, J.-L. Totobenazara, M.-R. Antonelli, T. Novikova, B. Gayet, A. De Martino, P. Validire, “Multispectral Mueller polarimetric imaging detecting residual cancer and cancer regression after neoadjuvant treatment for colorectal carcinomas,” J. Biomed. Opt. 18(4), 046014 (2013).
    [CrossRef] [PubMed]
  28. V. V. Tuchin, L. V. Wang, and D. A. Zimnyakov, Optical polarization in biomedical applications (Springer, 2006).
  29. N. Ghosh, M. F. Wood, I. A. Vitkin, “Mueller matrix decomposition for extraction of individual polarization parameters from complex turbid media exhibiting multiple scattering, optical activity, and linear birefringence,” J. Biomed. Opt. 13(4), 044036 (2008).
    [CrossRef] [PubMed]
  30. N. Ghosh, M. F. G. Wood, S. H. Li, R. D. Weisel, B. C. Wilson, R.-K. Li, I. A. Vitkin, “Mueller matrix decomposition for polarized light assessment of biological tissues,” J Biophotonics 2(3), 145–156 (2009).
    [CrossRef] [PubMed]
  31. N. T. Clancy, V. Sauvage, S. Saso, D. Stoyanov, D. J. Corless, M. Boyd, D. Noakes, G.-Z. Yang, S. Ghaem-Maghami, and J. R. Smith, “Registration and analysis of multispectral images acquired during uterine transplantation surgery,” in Biomedical Optics(Optical Society of America, 2012).
  32. D. Stoyanov, A. Rayshubskiy, and E. Hillman, “Robust registration of multispectral images of the cortical surface in neurosurgery,” in Biomedical Imaging (ISBI), 2012 9th IEEE International Symposium on(IEEE, 2012), pp. 1643–1646.
    [CrossRef]
  33. A. Pierangelo, S. Manhas, A. Benali, C. Fallet, M.-R. Antonelli, T. Novikova, B. Gayet, P. Validire, A. De Martino, “Ex vivo photometric and polarimetric multilayer characterization of human healthy colon by multispectral Mueller imaging,” J. Biomed. Opt. 17(6), 066009 (2012).
    [CrossRef] [PubMed]
  34. B. T. Phong, “Illumination for computer generated pictures,” Commun. ACM 18(6), 311–317 (1975).
    [CrossRef]
  35. A. Telea, “An image inpainting technique based on the fast marching method,” Journal of Graphics Tools 9(1), 23–34 (2004).
    [CrossRef]
  36. M. Bass, Handbook of optics. Vol. 2, Devices, measurements, and properties (McGraw-Hill, 1995).
  37. B. Walter, S. R. Marschner, H. Li, and K. E. Torrance, “Microfacet models for refraction through rough surfaces,” in Proceedings of the 18th Eurographics conference on Rendering Techniques(Eurographics Association, 2007), pp. 195–206.
  38. J. F. Blinn, “Models of light reflection for computer synthesized pictures,” in ACM SIGGRAPH Computer Graphics(ACM, 1977), pp. 192–198.
  39. http://www.siggraph.org/education/materials/HyperGraph/illumin/specular_highlights/phong_model_specular_reflection.htm .

2013

N. Thekkek, M. C. Pierce, M. H. Lee, A. D. Polydorides, R. M. Flores, S. Anandasabapathy, R. R. Richards-Kortum, “Modular video endoscopy for in vivo cross-polarized and vital-dye fluorescence imaging of Barrett’s-associated neoplasia,” J. Biomed. Opt. 18(2), 026007 (2013).
[CrossRef] [PubMed]

A. Pierangelo, S. Manhas, A. Benali, C. Fallet, J.-L. Totobenazara, M.-R. Antonelli, T. Novikova, B. Gayet, A. De Martino, P. Validire, “Multispectral Mueller polarimetric imaging detecting residual cancer and cancer regression after neoadjuvant treatment for colorectal carcinomas,” J. Biomed. Opt. 18(4), 046014 (2013).
[CrossRef] [PubMed]

2012

A. Pierangelo, S. Manhas, A. Benali, C. Fallet, M.-R. Antonelli, T. Novikova, B. Gayet, P. Validire, A. De Martino, “Ex vivo photometric and polarimetric multilayer characterization of human healthy colon by multispectral Mueller imaging,” J. Biomed. Opt. 17(6), 066009 (2012).
[CrossRef] [PubMed]

S. Alali, M. Ahmad, A. Kim, N. Vurgun, M. F. G. Wood, I. A. Vitkin, “Quantitative correlation between light depolarization and transport albedo of various porcine tissues,” J. Biomed. Opt. 17(4), 045004(2012).
[CrossRef] [PubMed]

J. Qi, C. Barrière, T. C. Wood, D. S. Elson, “Polarized multispectral imaging in a rigid endoscope based on elastic light scattering spectroscopy,” Biomed. Opt. Express 3(9), 2087–2099 (2012).
[CrossRef] [PubMed]

A. Da Silva, C. Deumié, I. Vanzetta, “Elliptically polarized light for depth resolved optical imaging,” Biomed. Opt. Express 3(11), 2907–2915 (2012).
[CrossRef] [PubMed]

2011

A. Pierangelo, A. Benali, M.-R. Antonelli, T. Novikova, P. Validire, B. Gayet, A. De Martino, “Ex-vivo characterization of human colon cancer by Mueller polarimetric imaging,” Opt. Express 19(2), 1582–1593 (2011).
[CrossRef] [PubMed]

C. Macdonald, I. Meglinski, “Backscattering of circular polarized light from a disperse random medium influenced by optical clearing,” Laser Phys. Lett. 8(4), 324–328 (2011).
[CrossRef]

N. Ghosh, I. A. Vitkin, “Tissue polarimetry: concepts, challenges, applications, and outlook,” J. Biomed. Opt. 16(11), 110801 (2011).
[CrossRef] [PubMed]

2010

2009

P. Shukla, A. Pradhan, “Mueller decomposition images for cervical tissue: Potential for discriminating normal and dysplastic states,” Opt. Express 17(3), 1600–1609 (2009).
[CrossRef] [PubMed]

N. Ghosh, M. F. G. Wood, S. H. Li, R. D. Weisel, B. C. Wilson, R.-K. Li, I. A. Vitkin, “Mueller matrix decomposition for polarized light assessment of biological tissues,” J Biophotonics 2(3), 145–156 (2009).
[CrossRef] [PubMed]

S. Manhas, M. K. Swami, H. S. Patel, A. Uppal, N. Ghosh, P. K. Gupta, “Polarized diffuse reflectance measurements on cancerous and noncancerous tissues,” J Biophotonics 2(10), 581–587 (2009).
[CrossRef] [PubMed]

2008

M. Anastasiadou, A. D. Martino, D. Clement, F. Liège, B. Laude-Boulesteix, N. Quang, J. Dreyfuss, B. Huynh, A. Nazac, L. Schwartz, H. Cohen, “Polarimetric imaging for the diagnosis of cervical cancer,” Phys. Status Solidi 5(5c), 1423–1426 (2008).
[CrossRef]

N. Ghosh, M. F. Wood, I. A. Vitkin, “Mueller matrix decomposition for extraction of individual polarization parameters from complex turbid media exhibiting multiple scattering, optical activity, and linear birefringence,” J. Biomed. Opt. 13(4), 044036 (2008).
[CrossRef] [PubMed]

2006

2004

A. Telea, “An image inpainting technique based on the fast marching method,” Journal of Graphics Tools 9(1), 23–34 (2004).
[CrossRef]

2003

2002

S. Jiao, L. V. Wang, “Jones-matrix imaging of biological tissues with quadruple-channel optical coherence tomography,” J. Biomed. Opt. 7(3), 350–358 (2002).
[CrossRef] [PubMed]

S. L. Jacques, J. C. Ramella-Roman, K. Lee, “Imaging skin pathology with polarized light,” J. Biomed. Opt. 7(3), 329–340 (2002).
[CrossRef] [PubMed]

2001

B. H. Park, C. Saxer, S. M. Srinivas, J. S. Nelson, J. F. de Boer, “In vivo burn depth determination by high-speed fiber-based polarization sensitive optical coherence tomography,” J. Biomed. Opt. 6(4), 474–479 (2001).
[CrossRef] [PubMed]

2000

1999

V. Backman, R. Gurjar, K. Badizadegan, I. Itzkan, R. R. Dasari, L. T. Perelman, M. S. Feld, “Polarized light scattering spectroscopy for quantitative measurement of epithelial cellular structures in situ,” IEEE J. Sel. Top. Quantum Electron. 5(4), 1019–1026 (1999).
[CrossRef]

1997

D. J. Maitland, J. T. Walsh., “Quantitative measurements of linear birefringence during heating of native collagen,” Lasers Surg. Med. 20(3), 310–318 (1997).
[CrossRef] [PubMed]

1996

1985

W. S. Bickel, W. M. Bailey, “Stokes vectors, Mueller matrices, and polarized scattered light,” Am. J. Phys. 53(5), 468–478 (1985).
[CrossRef]

1975

B. T. Phong, “Illumination for computer generated pictures,” Commun. ACM 18(6), 311–317 (1975).
[CrossRef]

Ahmad, M.

S. Alali, M. Ahmad, A. Kim, N. Vurgun, M. F. G. Wood, I. A. Vitkin, “Quantitative correlation between light depolarization and transport albedo of various porcine tissues,” J. Biomed. Opt. 17(4), 045004(2012).
[CrossRef] [PubMed]

Alali, S.

S. Alali, M. Ahmad, A. Kim, N. Vurgun, M. F. G. Wood, I. A. Vitkin, “Quantitative correlation between light depolarization and transport albedo of various porcine tissues,” J. Biomed. Opt. 17(4), 045004(2012).
[CrossRef] [PubMed]

Alfano, R.

Anandasabapathy, S.

N. Thekkek, M. C. Pierce, M. H. Lee, A. D. Polydorides, R. M. Flores, S. Anandasabapathy, R. R. Richards-Kortum, “Modular video endoscopy for in vivo cross-polarized and vital-dye fluorescence imaging of Barrett’s-associated neoplasia,” J. Biomed. Opt. 18(2), 026007 (2013).
[CrossRef] [PubMed]

Anastasiadou, M.

M. Anastasiadou, A. D. Martino, D. Clement, F. Liège, B. Laude-Boulesteix, N. Quang, J. Dreyfuss, B. Huynh, A. Nazac, L. Schwartz, H. Cohen, “Polarimetric imaging for the diagnosis of cervical cancer,” Phys. Status Solidi 5(5c), 1423–1426 (2008).
[CrossRef]

Antonelli, M.-R.

A. Pierangelo, S. Manhas, A. Benali, C. Fallet, J.-L. Totobenazara, M.-R. Antonelli, T. Novikova, B. Gayet, A. De Martino, P. Validire, “Multispectral Mueller polarimetric imaging detecting residual cancer and cancer regression after neoadjuvant treatment for colorectal carcinomas,” J. Biomed. Opt. 18(4), 046014 (2013).
[CrossRef] [PubMed]

A. Pierangelo, S. Manhas, A. Benali, C. Fallet, M.-R. Antonelli, T. Novikova, B. Gayet, P. Validire, A. De Martino, “Ex vivo photometric and polarimetric multilayer characterization of human healthy colon by multispectral Mueller imaging,” J. Biomed. Opt. 17(6), 066009 (2012).
[CrossRef] [PubMed]

A. Pierangelo, A. Benali, M.-R. Antonelli, T. Novikova, P. Validire, B. Gayet, A. De Martino, “Ex-vivo characterization of human colon cancer by Mueller polarimetric imaging,” Opt. Express 19(2), 1582–1593 (2011).
[CrossRef] [PubMed]

M.-R. Antonelli, A. Pierangelo, T. Novikova, P. Validire, A. Benali, B. Gayet, A. De Martino, “Mueller matrix imaging of human colon tissue for cancer diagnostics: how Monte Carlo modeling can help in the interpretation of experimental data,” Opt. Express 18(10), 10200–10208 (2010).
[CrossRef] [PubMed]

Backman, V.

V. Backman, R. Gurjar, K. Badizadegan, I. Itzkan, R. R. Dasari, L. T. Perelman, M. S. Feld, “Polarized light scattering spectroscopy for quantitative measurement of epithelial cellular structures in situ,” IEEE J. Sel. Top. Quantum Electron. 5(4), 1019–1026 (1999).
[CrossRef]

Badizadegan, K.

V. Backman, R. Gurjar, K. Badizadegan, I. Itzkan, R. R. Dasari, L. T. Perelman, M. S. Feld, “Polarized light scattering spectroscopy for quantitative measurement of epithelial cellular structures in situ,” IEEE J. Sel. Top. Quantum Electron. 5(4), 1019–1026 (1999).
[CrossRef]

Bailey, W. M.

W. S. Bickel, W. M. Bailey, “Stokes vectors, Mueller matrices, and polarized scattered light,” Am. J. Phys. 53(5), 468–478 (1985).
[CrossRef]

Barrière, C.

Benali, A.

A. Pierangelo, S. Manhas, A. Benali, C. Fallet, J.-L. Totobenazara, M.-R. Antonelli, T. Novikova, B. Gayet, A. De Martino, P. Validire, “Multispectral Mueller polarimetric imaging detecting residual cancer and cancer regression after neoadjuvant treatment for colorectal carcinomas,” J. Biomed. Opt. 18(4), 046014 (2013).
[CrossRef] [PubMed]

A. Pierangelo, S. Manhas, A. Benali, C. Fallet, M.-R. Antonelli, T. Novikova, B. Gayet, P. Validire, A. De Martino, “Ex vivo photometric and polarimetric multilayer characterization of human healthy colon by multispectral Mueller imaging,” J. Biomed. Opt. 17(6), 066009 (2012).
[CrossRef] [PubMed]

A. Pierangelo, A. Benali, M.-R. Antonelli, T. Novikova, P. Validire, B. Gayet, A. De Martino, “Ex-vivo characterization of human colon cancer by Mueller polarimetric imaging,” Opt. Express 19(2), 1582–1593 (2011).
[CrossRef] [PubMed]

M.-R. Antonelli, A. Pierangelo, T. Novikova, P. Validire, A. Benali, B. Gayet, A. De Martino, “Mueller matrix imaging of human colon tissue for cancer diagnostics: how Monte Carlo modeling can help in the interpretation of experimental data,” Opt. Express 18(10), 10200–10208 (2010).
[CrossRef] [PubMed]

Bickel, W. S.

W. S. Bickel, W. M. Bailey, “Stokes vectors, Mueller matrices, and polarized scattered light,” Am. J. Phys. 53(5), 468–478 (1985).
[CrossRef]

Buddhiwant, P.

Chipman, R. A.

Clement, D.

M. Anastasiadou, A. D. Martino, D. Clement, F. Liège, B. Laude-Boulesteix, N. Quang, J. Dreyfuss, B. Huynh, A. Nazac, L. Schwartz, H. Cohen, “Polarimetric imaging for the diagnosis of cervical cancer,” Phys. Status Solidi 5(5c), 1423–1426 (2008).
[CrossRef]

Cohen, H.

M. Anastasiadou, A. D. Martino, D. Clement, F. Liège, B. Laude-Boulesteix, N. Quang, J. Dreyfuss, B. Huynh, A. Nazac, L. Schwartz, H. Cohen, “Polarimetric imaging for the diagnosis of cervical cancer,” Phys. Status Solidi 5(5c), 1423–1426 (2008).
[CrossRef]

Da Silva, A.

Dasari, R. R.

V. Backman, R. Gurjar, K. Badizadegan, I. Itzkan, R. R. Dasari, L. T. Perelman, M. S. Feld, “Polarized light scattering spectroscopy for quantitative measurement of epithelial cellular structures in situ,” IEEE J. Sel. Top. Quantum Electron. 5(4), 1019–1026 (1999).
[CrossRef]

de Boer, J. F.

B. H. Park, C. Saxer, S. M. Srinivas, J. S. Nelson, J. F. de Boer, “In vivo burn depth determination by high-speed fiber-based polarization sensitive optical coherence tomography,” J. Biomed. Opt. 6(4), 474–479 (2001).
[CrossRef] [PubMed]

De Martino, A.

A. Pierangelo, S. Manhas, A. Benali, C. Fallet, J.-L. Totobenazara, M.-R. Antonelli, T. Novikova, B. Gayet, A. De Martino, P. Validire, “Multispectral Mueller polarimetric imaging detecting residual cancer and cancer regression after neoadjuvant treatment for colorectal carcinomas,” J. Biomed. Opt. 18(4), 046014 (2013).
[CrossRef] [PubMed]

A. Pierangelo, S. Manhas, A. Benali, C. Fallet, M.-R. Antonelli, T. Novikova, B. Gayet, P. Validire, A. De Martino, “Ex vivo photometric and polarimetric multilayer characterization of human healthy colon by multispectral Mueller imaging,” J. Biomed. Opt. 17(6), 066009 (2012).
[CrossRef] [PubMed]

A. Pierangelo, A. Benali, M.-R. Antonelli, T. Novikova, P. Validire, B. Gayet, A. De Martino, “Ex-vivo characterization of human colon cancer by Mueller polarimetric imaging,” Opt. Express 19(2), 1582–1593 (2011).
[CrossRef] [PubMed]

M.-R. Antonelli, A. Pierangelo, T. Novikova, P. Validire, A. Benali, B. Gayet, A. De Martino, “Mueller matrix imaging of human colon tissue for cancer diagnostics: how Monte Carlo modeling can help in the interpretation of experimental data,” Opt. Express 18(10), 10200–10208 (2010).
[CrossRef] [PubMed]

Demos, S.

Deumié, C.

Dreyfuss, J.

M. Anastasiadou, A. D. Martino, D. Clement, F. Liège, B. Laude-Boulesteix, N. Quang, J. Dreyfuss, B. Huynh, A. Nazac, L. Schwartz, H. Cohen, “Polarimetric imaging for the diagnosis of cervical cancer,” Phys. Status Solidi 5(5c), 1423–1426 (2008).
[CrossRef]

Elson, D. S.

Fallet, C.

A. Pierangelo, S. Manhas, A. Benali, C. Fallet, J.-L. Totobenazara, M.-R. Antonelli, T. Novikova, B. Gayet, A. De Martino, P. Validire, “Multispectral Mueller polarimetric imaging detecting residual cancer and cancer regression after neoadjuvant treatment for colorectal carcinomas,” J. Biomed. Opt. 18(4), 046014 (2013).
[CrossRef] [PubMed]

A. Pierangelo, S. Manhas, A. Benali, C. Fallet, M.-R. Antonelli, T. Novikova, B. Gayet, P. Validire, A. De Martino, “Ex vivo photometric and polarimetric multilayer characterization of human healthy colon by multispectral Mueller imaging,” J. Biomed. Opt. 17(6), 066009 (2012).
[CrossRef] [PubMed]

Feld, M. S.

V. Backman, R. Gurjar, K. Badizadegan, I. Itzkan, R. R. Dasari, L. T. Perelman, M. S. Feld, “Polarized light scattering spectroscopy for quantitative measurement of epithelial cellular structures in situ,” IEEE J. Sel. Top. Quantum Electron. 5(4), 1019–1026 (1999).
[CrossRef]

Flores, R. M.

N. Thekkek, M. C. Pierce, M. H. Lee, A. D. Polydorides, R. M. Flores, S. Anandasabapathy, R. R. Richards-Kortum, “Modular video endoscopy for in vivo cross-polarized and vital-dye fluorescence imaging of Barrett’s-associated neoplasia,” J. Biomed. Opt. 18(2), 026007 (2013).
[CrossRef] [PubMed]

Gayet, B.

A. Pierangelo, S. Manhas, A. Benali, C. Fallet, J.-L. Totobenazara, M.-R. Antonelli, T. Novikova, B. Gayet, A. De Martino, P. Validire, “Multispectral Mueller polarimetric imaging detecting residual cancer and cancer regression after neoadjuvant treatment for colorectal carcinomas,” J. Biomed. Opt. 18(4), 046014 (2013).
[CrossRef] [PubMed]

A. Pierangelo, S. Manhas, A. Benali, C. Fallet, M.-R. Antonelli, T. Novikova, B. Gayet, P. Validire, A. De Martino, “Ex vivo photometric and polarimetric multilayer characterization of human healthy colon by multispectral Mueller imaging,” J. Biomed. Opt. 17(6), 066009 (2012).
[CrossRef] [PubMed]

A. Pierangelo, A. Benali, M.-R. Antonelli, T. Novikova, P. Validire, B. Gayet, A. De Martino, “Ex-vivo characterization of human colon cancer by Mueller polarimetric imaging,” Opt. Express 19(2), 1582–1593 (2011).
[CrossRef] [PubMed]

M.-R. Antonelli, A. Pierangelo, T. Novikova, P. Validire, A. Benali, B. Gayet, A. De Martino, “Mueller matrix imaging of human colon tissue for cancer diagnostics: how Monte Carlo modeling can help in the interpretation of experimental data,” Opt. Express 18(10), 10200–10208 (2010).
[CrossRef] [PubMed]

Ghosh, N.

N. Ghosh, I. A. Vitkin, “Tissue polarimetry: concepts, challenges, applications, and outlook,” J. Biomed. Opt. 16(11), 110801 (2011).
[CrossRef] [PubMed]

M. F. G. Wood, N. Ghosh, M. A. Wallenburg, S.-H. Li, R. D. Weisel, B. C. Wilson, R.-K. Li, I. A. Vitkin, “Polarization birefringence measurements for characterizing the myocardium, including healthy, infarcted, and stem-cell-regenerated tissues,” J. Biomed. Opt. 15(4), 047009 (2010).
[CrossRef] [PubMed]

N. Ghosh, M. F. G. Wood, S. H. Li, R. D. Weisel, B. C. Wilson, R.-K. Li, I. A. Vitkin, “Mueller matrix decomposition for polarized light assessment of biological tissues,” J Biophotonics 2(3), 145–156 (2009).
[CrossRef] [PubMed]

S. Manhas, M. K. Swami, H. S. Patel, A. Uppal, N. Ghosh, P. K. Gupta, “Polarized diffuse reflectance measurements on cancerous and noncancerous tissues,” J Biophotonics 2(10), 581–587 (2009).
[CrossRef] [PubMed]

N. Ghosh, M. F. Wood, I. A. Vitkin, “Mueller matrix decomposition for extraction of individual polarization parameters from complex turbid media exhibiting multiple scattering, optical activity, and linear birefringence,” J. Biomed. Opt. 13(4), 044036 (2008).
[CrossRef] [PubMed]

M. K. Swami, S. Manhas, P. Buddhiwant, N. Ghosh, A. Uppal, P. K. Gupta, “Polar decomposition of 3 x 3 Mueller matrix: a tool for quantitative tissue polarimetry,” Opt. Express 14(20), 9324–9337 (2006).
[CrossRef] [PubMed]

Gupta, P. K.

S. Manhas, M. K. Swami, H. S. Patel, A. Uppal, N. Ghosh, P. K. Gupta, “Polarized diffuse reflectance measurements on cancerous and noncancerous tissues,” J Biophotonics 2(10), 581–587 (2009).
[CrossRef] [PubMed]

M. K. Swami, S. Manhas, P. Buddhiwant, N. Ghosh, A. Uppal, P. K. Gupta, “Polar decomposition of 3 x 3 Mueller matrix: a tool for quantitative tissue polarimetry,” Opt. Express 14(20), 9324–9337 (2006).
[CrossRef] [PubMed]

Gurjar, R.

V. Backman, R. Gurjar, K. Badizadegan, I. Itzkan, R. R. Dasari, L. T. Perelman, M. S. Feld, “Polarized light scattering spectroscopy for quantitative measurement of epithelial cellular structures in situ,” IEEE J. Sel. Top. Quantum Electron. 5(4), 1019–1026 (1999).
[CrossRef]

Huynh, B.

M. Anastasiadou, A. D. Martino, D. Clement, F. Liège, B. Laude-Boulesteix, N. Quang, J. Dreyfuss, B. Huynh, A. Nazac, L. Schwartz, H. Cohen, “Polarimetric imaging for the diagnosis of cervical cancer,” Phys. Status Solidi 5(5c), 1423–1426 (2008).
[CrossRef]

Itzkan, I.

V. Backman, R. Gurjar, K. Badizadegan, I. Itzkan, R. R. Dasari, L. T. Perelman, M. S. Feld, “Polarized light scattering spectroscopy for quantitative measurement of epithelial cellular structures in situ,” IEEE J. Sel. Top. Quantum Electron. 5(4), 1019–1026 (1999).
[CrossRef]

Jacques, S. L.

S. L. Jacques, J. C. Ramella-Roman, K. Lee, “Imaging skin pathology with polarized light,” J. Biomed. Opt. 7(3), 329–340 (2002).
[CrossRef] [PubMed]

Jiao, S.

S. Jiao, L. V. Wang, “Jones-matrix imaging of biological tissues with quadruple-channel optical coherence tomography,” J. Biomed. Opt. 7(3), 350–358 (2002).
[CrossRef] [PubMed]

Kim, A.

S. Alali, M. Ahmad, A. Kim, N. Vurgun, M. F. G. Wood, I. A. Vitkin, “Quantitative correlation between light depolarization and transport albedo of various porcine tissues,” J. Biomed. Opt. 17(4), 045004(2012).
[CrossRef] [PubMed]

Laude-Boulesteix, B.

M. Anastasiadou, A. D. Martino, D. Clement, F. Liège, B. Laude-Boulesteix, N. Quang, J. Dreyfuss, B. Huynh, A. Nazac, L. Schwartz, H. Cohen, “Polarimetric imaging for the diagnosis of cervical cancer,” Phys. Status Solidi 5(5c), 1423–1426 (2008).
[CrossRef]

Lee, K.

S. L. Jacques, J. C. Ramella-Roman, K. Lee, “Imaging skin pathology with polarized light,” J. Biomed. Opt. 7(3), 329–340 (2002).
[CrossRef] [PubMed]

Lee, M. H.

N. Thekkek, M. C. Pierce, M. H. Lee, A. D. Polydorides, R. M. Flores, S. Anandasabapathy, R. R. Richards-Kortum, “Modular video endoscopy for in vivo cross-polarized and vital-dye fluorescence imaging of Barrett’s-associated neoplasia,” J. Biomed. Opt. 18(2), 026007 (2013).
[CrossRef] [PubMed]

Li, R.-K.

M. F. G. Wood, N. Ghosh, M. A. Wallenburg, S.-H. Li, R. D. Weisel, B. C. Wilson, R.-K. Li, I. A. Vitkin, “Polarization birefringence measurements for characterizing the myocardium, including healthy, infarcted, and stem-cell-regenerated tissues,” J. Biomed. Opt. 15(4), 047009 (2010).
[CrossRef] [PubMed]

N. Ghosh, M. F. G. Wood, S. H. Li, R. D. Weisel, B. C. Wilson, R.-K. Li, I. A. Vitkin, “Mueller matrix decomposition for polarized light assessment of biological tissues,” J Biophotonics 2(3), 145–156 (2009).
[CrossRef] [PubMed]

Li, S. H.

N. Ghosh, M. F. G. Wood, S. H. Li, R. D. Weisel, B. C. Wilson, R.-K. Li, I. A. Vitkin, “Mueller matrix decomposition for polarized light assessment of biological tissues,” J Biophotonics 2(3), 145–156 (2009).
[CrossRef] [PubMed]

Li, S.-H.

M. F. G. Wood, N. Ghosh, M. A. Wallenburg, S.-H. Li, R. D. Weisel, B. C. Wilson, R.-K. Li, I. A. Vitkin, “Polarization birefringence measurements for characterizing the myocardium, including healthy, infarcted, and stem-cell-regenerated tissues,” J. Biomed. Opt. 15(4), 047009 (2010).
[CrossRef] [PubMed]

Liège, F.

M. Anastasiadou, A. D. Martino, D. Clement, F. Liège, B. Laude-Boulesteix, N. Quang, J. Dreyfuss, B. Huynh, A. Nazac, L. Schwartz, H. Cohen, “Polarimetric imaging for the diagnosis of cervical cancer,” Phys. Status Solidi 5(5c), 1423–1426 (2008).
[CrossRef]

Lu, S.-Y.

Macdonald, C.

C. Macdonald, I. Meglinski, “Backscattering of circular polarized light from a disperse random medium influenced by optical clearing,” Laser Phys. Lett. 8(4), 324–328 (2011).
[CrossRef]

Maitland, D. J.

D. J. Maitland, J. T. Walsh., “Quantitative measurements of linear birefringence during heating of native collagen,” Lasers Surg. Med. 20(3), 310–318 (1997).
[CrossRef] [PubMed]

Manhas, S.

A. Pierangelo, S. Manhas, A. Benali, C. Fallet, J.-L. Totobenazara, M.-R. Antonelli, T. Novikova, B. Gayet, A. De Martino, P. Validire, “Multispectral Mueller polarimetric imaging detecting residual cancer and cancer regression after neoadjuvant treatment for colorectal carcinomas,” J. Biomed. Opt. 18(4), 046014 (2013).
[CrossRef] [PubMed]

A. Pierangelo, S. Manhas, A. Benali, C. Fallet, M.-R. Antonelli, T. Novikova, B. Gayet, P. Validire, A. De Martino, “Ex vivo photometric and polarimetric multilayer characterization of human healthy colon by multispectral Mueller imaging,” J. Biomed. Opt. 17(6), 066009 (2012).
[CrossRef] [PubMed]

S. Manhas, M. K. Swami, H. S. Patel, A. Uppal, N. Ghosh, P. K. Gupta, “Polarized diffuse reflectance measurements on cancerous and noncancerous tissues,” J Biophotonics 2(10), 581–587 (2009).
[CrossRef] [PubMed]

M. K. Swami, S. Manhas, P. Buddhiwant, N. Ghosh, A. Uppal, P. K. Gupta, “Polar decomposition of 3 x 3 Mueller matrix: a tool for quantitative tissue polarimetry,” Opt. Express 14(20), 9324–9337 (2006).
[CrossRef] [PubMed]

Martino, A. D.

M. Anastasiadou, A. D. Martino, D. Clement, F. Liège, B. Laude-Boulesteix, N. Quang, J. Dreyfuss, B. Huynh, A. Nazac, L. Schwartz, H. Cohen, “Polarimetric imaging for the diagnosis of cervical cancer,” Phys. Status Solidi 5(5c), 1423–1426 (2008).
[CrossRef]

Meglinski, I.

C. Macdonald, I. Meglinski, “Backscattering of circular polarized light from a disperse random medium influenced by optical clearing,” Laser Phys. Lett. 8(4), 324–328 (2011).
[CrossRef]

Morgan, S. P.

Nazac, A.

M. Anastasiadou, A. D. Martino, D. Clement, F. Liège, B. Laude-Boulesteix, N. Quang, J. Dreyfuss, B. Huynh, A. Nazac, L. Schwartz, H. Cohen, “Polarimetric imaging for the diagnosis of cervical cancer,” Phys. Status Solidi 5(5c), 1423–1426 (2008).
[CrossRef]

Nelson, J. S.

B. H. Park, C. Saxer, S. M. Srinivas, J. S. Nelson, J. F. de Boer, “In vivo burn depth determination by high-speed fiber-based polarization sensitive optical coherence tomography,” J. Biomed. Opt. 6(4), 474–479 (2001).
[CrossRef] [PubMed]

Novikova, T.

A. Pierangelo, S. Manhas, A. Benali, C. Fallet, J.-L. Totobenazara, M.-R. Antonelli, T. Novikova, B. Gayet, A. De Martino, P. Validire, “Multispectral Mueller polarimetric imaging detecting residual cancer and cancer regression after neoadjuvant treatment for colorectal carcinomas,” J. Biomed. Opt. 18(4), 046014 (2013).
[CrossRef] [PubMed]

A. Pierangelo, S. Manhas, A. Benali, C. Fallet, M.-R. Antonelli, T. Novikova, B. Gayet, P. Validire, A. De Martino, “Ex vivo photometric and polarimetric multilayer characterization of human healthy colon by multispectral Mueller imaging,” J. Biomed. Opt. 17(6), 066009 (2012).
[CrossRef] [PubMed]

A. Pierangelo, A. Benali, M.-R. Antonelli, T. Novikova, P. Validire, B. Gayet, A. De Martino, “Ex-vivo characterization of human colon cancer by Mueller polarimetric imaging,” Opt. Express 19(2), 1582–1593 (2011).
[CrossRef] [PubMed]

M.-R. Antonelli, A. Pierangelo, T. Novikova, P. Validire, A. Benali, B. Gayet, A. De Martino, “Mueller matrix imaging of human colon tissue for cancer diagnostics: how Monte Carlo modeling can help in the interpretation of experimental data,” Opt. Express 18(10), 10200–10208 (2010).
[CrossRef] [PubMed]

Park, B. H.

B. H. Park, C. Saxer, S. M. Srinivas, J. S. Nelson, J. F. de Boer, “In vivo burn depth determination by high-speed fiber-based polarization sensitive optical coherence tomography,” J. Biomed. Opt. 6(4), 474–479 (2001).
[CrossRef] [PubMed]

Patel, H. S.

S. Manhas, M. K. Swami, H. S. Patel, A. Uppal, N. Ghosh, P. K. Gupta, “Polarized diffuse reflectance measurements on cancerous and noncancerous tissues,” J Biophotonics 2(10), 581–587 (2009).
[CrossRef] [PubMed]

Perelman, L. T.

V. Backman, R. Gurjar, K. Badizadegan, I. Itzkan, R. R. Dasari, L. T. Perelman, M. S. Feld, “Polarized light scattering spectroscopy for quantitative measurement of epithelial cellular structures in situ,” IEEE J. Sel. Top. Quantum Electron. 5(4), 1019–1026 (1999).
[CrossRef]

Phong, B. T.

B. T. Phong, “Illumination for computer generated pictures,” Commun. ACM 18(6), 311–317 (1975).
[CrossRef]

Pierangelo, A.

A. Pierangelo, S. Manhas, A. Benali, C. Fallet, J.-L. Totobenazara, M.-R. Antonelli, T. Novikova, B. Gayet, A. De Martino, P. Validire, “Multispectral Mueller polarimetric imaging detecting residual cancer and cancer regression after neoadjuvant treatment for colorectal carcinomas,” J. Biomed. Opt. 18(4), 046014 (2013).
[CrossRef] [PubMed]

A. Pierangelo, S. Manhas, A. Benali, C. Fallet, M.-R. Antonelli, T. Novikova, B. Gayet, P. Validire, A. De Martino, “Ex vivo photometric and polarimetric multilayer characterization of human healthy colon by multispectral Mueller imaging,” J. Biomed. Opt. 17(6), 066009 (2012).
[CrossRef] [PubMed]

A. Pierangelo, A. Benali, M.-R. Antonelli, T. Novikova, P. Validire, B. Gayet, A. De Martino, “Ex-vivo characterization of human colon cancer by Mueller polarimetric imaging,” Opt. Express 19(2), 1582–1593 (2011).
[CrossRef] [PubMed]

M.-R. Antonelli, A. Pierangelo, T. Novikova, P. Validire, A. Benali, B. Gayet, A. De Martino, “Mueller matrix imaging of human colon tissue for cancer diagnostics: how Monte Carlo modeling can help in the interpretation of experimental data,” Opt. Express 18(10), 10200–10208 (2010).
[CrossRef] [PubMed]

Pierce, M. C.

N. Thekkek, M. C. Pierce, M. H. Lee, A. D. Polydorides, R. M. Flores, S. Anandasabapathy, R. R. Richards-Kortum, “Modular video endoscopy for in vivo cross-polarized and vital-dye fluorescence imaging of Barrett’s-associated neoplasia,” J. Biomed. Opt. 18(2), 026007 (2013).
[CrossRef] [PubMed]

Polydorides, A. D.

N. Thekkek, M. C. Pierce, M. H. Lee, A. D. Polydorides, R. M. Flores, S. Anandasabapathy, R. R. Richards-Kortum, “Modular video endoscopy for in vivo cross-polarized and vital-dye fluorescence imaging of Barrett’s-associated neoplasia,” J. Biomed. Opt. 18(2), 026007 (2013).
[CrossRef] [PubMed]

Pradhan, A.

Qi, J.

Quang, N.

M. Anastasiadou, A. D. Martino, D. Clement, F. Liège, B. Laude-Boulesteix, N. Quang, J. Dreyfuss, B. Huynh, A. Nazac, L. Schwartz, H. Cohen, “Polarimetric imaging for the diagnosis of cervical cancer,” Phys. Status Solidi 5(5c), 1423–1426 (2008).
[CrossRef]

Radousky, H.

Ramella-Roman, J. C.

S. L. Jacques, J. C. Ramella-Roman, K. Lee, “Imaging skin pathology with polarized light,” J. Biomed. Opt. 7(3), 329–340 (2002).
[CrossRef] [PubMed]

Richards-Kortum, R. R.

N. Thekkek, M. C. Pierce, M. H. Lee, A. D. Polydorides, R. M. Flores, S. Anandasabapathy, R. R. Richards-Kortum, “Modular video endoscopy for in vivo cross-polarized and vital-dye fluorescence imaging of Barrett’s-associated neoplasia,” J. Biomed. Opt. 18(2), 026007 (2013).
[CrossRef] [PubMed]

Saxer, C.

B. H. Park, C. Saxer, S. M. Srinivas, J. S. Nelson, J. F. de Boer, “In vivo burn depth determination by high-speed fiber-based polarization sensitive optical coherence tomography,” J. Biomed. Opt. 6(4), 474–479 (2001).
[CrossRef] [PubMed]

Schwartz, L.

M. Anastasiadou, A. D. Martino, D. Clement, F. Liège, B. Laude-Boulesteix, N. Quang, J. Dreyfuss, B. Huynh, A. Nazac, L. Schwartz, H. Cohen, “Polarimetric imaging for the diagnosis of cervical cancer,” Phys. Status Solidi 5(5c), 1423–1426 (2008).
[CrossRef]

Shukla, P.

Srinivas, S. M.

B. H. Park, C. Saxer, S. M. Srinivas, J. S. Nelson, J. F. de Boer, “In vivo burn depth determination by high-speed fiber-based polarization sensitive optical coherence tomography,” J. Biomed. Opt. 6(4), 474–479 (2001).
[CrossRef] [PubMed]

Stockford, I. M.

Swami, M. K.

S. Manhas, M. K. Swami, H. S. Patel, A. Uppal, N. Ghosh, P. K. Gupta, “Polarized diffuse reflectance measurements on cancerous and noncancerous tissues,” J Biophotonics 2(10), 581–587 (2009).
[CrossRef] [PubMed]

M. K. Swami, S. Manhas, P. Buddhiwant, N. Ghosh, A. Uppal, P. K. Gupta, “Polar decomposition of 3 x 3 Mueller matrix: a tool for quantitative tissue polarimetry,” Opt. Express 14(20), 9324–9337 (2006).
[CrossRef] [PubMed]

Telea, A.

A. Telea, “An image inpainting technique based on the fast marching method,” Journal of Graphics Tools 9(1), 23–34 (2004).
[CrossRef]

Thekkek, N.

N. Thekkek, M. C. Pierce, M. H. Lee, A. D. Polydorides, R. M. Flores, S. Anandasabapathy, R. R. Richards-Kortum, “Modular video endoscopy for in vivo cross-polarized and vital-dye fluorescence imaging of Barrett’s-associated neoplasia,” J. Biomed. Opt. 18(2), 026007 (2013).
[CrossRef] [PubMed]

Totobenazara, J.-L.

A. Pierangelo, S. Manhas, A. Benali, C. Fallet, J.-L. Totobenazara, M.-R. Antonelli, T. Novikova, B. Gayet, A. De Martino, P. Validire, “Multispectral Mueller polarimetric imaging detecting residual cancer and cancer regression after neoadjuvant treatment for colorectal carcinomas,” J. Biomed. Opt. 18(4), 046014 (2013).
[CrossRef] [PubMed]

Uppal, A.

S. Manhas, M. K. Swami, H. S. Patel, A. Uppal, N. Ghosh, P. K. Gupta, “Polarized diffuse reflectance measurements on cancerous and noncancerous tissues,” J Biophotonics 2(10), 581–587 (2009).
[CrossRef] [PubMed]

M. K. Swami, S. Manhas, P. Buddhiwant, N. Ghosh, A. Uppal, P. K. Gupta, “Polar decomposition of 3 x 3 Mueller matrix: a tool for quantitative tissue polarimetry,” Opt. Express 14(20), 9324–9337 (2006).
[CrossRef] [PubMed]

Validire, P.

A. Pierangelo, S. Manhas, A. Benali, C. Fallet, J.-L. Totobenazara, M.-R. Antonelli, T. Novikova, B. Gayet, A. De Martino, P. Validire, “Multispectral Mueller polarimetric imaging detecting residual cancer and cancer regression after neoadjuvant treatment for colorectal carcinomas,” J. Biomed. Opt. 18(4), 046014 (2013).
[CrossRef] [PubMed]

A. Pierangelo, S. Manhas, A. Benali, C. Fallet, M.-R. Antonelli, T. Novikova, B. Gayet, P. Validire, A. De Martino, “Ex vivo photometric and polarimetric multilayer characterization of human healthy colon by multispectral Mueller imaging,” J. Biomed. Opt. 17(6), 066009 (2012).
[CrossRef] [PubMed]

A. Pierangelo, A. Benali, M.-R. Antonelli, T. Novikova, P. Validire, B. Gayet, A. De Martino, “Ex-vivo characterization of human colon cancer by Mueller polarimetric imaging,” Opt. Express 19(2), 1582–1593 (2011).
[CrossRef] [PubMed]

M.-R. Antonelli, A. Pierangelo, T. Novikova, P. Validire, A. Benali, B. Gayet, A. De Martino, “Mueller matrix imaging of human colon tissue for cancer diagnostics: how Monte Carlo modeling can help in the interpretation of experimental data,” Opt. Express 18(10), 10200–10208 (2010).
[CrossRef] [PubMed]

Vanzetta, I.

Vitkin, I. A.

S. Alali, M. Ahmad, A. Kim, N. Vurgun, M. F. G. Wood, I. A. Vitkin, “Quantitative correlation between light depolarization and transport albedo of various porcine tissues,” J. Biomed. Opt. 17(4), 045004(2012).
[CrossRef] [PubMed]

N. Ghosh, I. A. Vitkin, “Tissue polarimetry: concepts, challenges, applications, and outlook,” J. Biomed. Opt. 16(11), 110801 (2011).
[CrossRef] [PubMed]

M. F. G. Wood, N. Ghosh, M. A. Wallenburg, S.-H. Li, R. D. Weisel, B. C. Wilson, R.-K. Li, I. A. Vitkin, “Polarization birefringence measurements for characterizing the myocardium, including healthy, infarcted, and stem-cell-regenerated tissues,” J. Biomed. Opt. 15(4), 047009 (2010).
[CrossRef] [PubMed]

N. Ghosh, M. F. G. Wood, S. H. Li, R. D. Weisel, B. C. Wilson, R.-K. Li, I. A. Vitkin, “Mueller matrix decomposition for polarized light assessment of biological tissues,” J Biophotonics 2(3), 145–156 (2009).
[CrossRef] [PubMed]

N. Ghosh, M. F. Wood, I. A. Vitkin, “Mueller matrix decomposition for extraction of individual polarization parameters from complex turbid media exhibiting multiple scattering, optical activity, and linear birefringence,” J. Biomed. Opt. 13(4), 044036 (2008).
[CrossRef] [PubMed]

Vurgun, N.

S. Alali, M. Ahmad, A. Kim, N. Vurgun, M. F. G. Wood, I. A. Vitkin, “Quantitative correlation between light depolarization and transport albedo of various porcine tissues,” J. Biomed. Opt. 17(4), 045004(2012).
[CrossRef] [PubMed]

Wallenburg, M. A.

M. F. G. Wood, N. Ghosh, M. A. Wallenburg, S.-H. Li, R. D. Weisel, B. C. Wilson, R.-K. Li, I. A. Vitkin, “Polarization birefringence measurements for characterizing the myocardium, including healthy, infarcted, and stem-cell-regenerated tissues,” J. Biomed. Opt. 15(4), 047009 (2010).
[CrossRef] [PubMed]

Walsh, J. T.

D. J. Maitland, J. T. Walsh., “Quantitative measurements of linear birefringence during heating of native collagen,” Lasers Surg. Med. 20(3), 310–318 (1997).
[CrossRef] [PubMed]

Wang, L. V.

S. Jiao, L. V. Wang, “Jones-matrix imaging of biological tissues with quadruple-channel optical coherence tomography,” J. Biomed. Opt. 7(3), 350–358 (2002).
[CrossRef] [PubMed]

Weisel, R. D.

M. F. G. Wood, N. Ghosh, M. A. Wallenburg, S.-H. Li, R. D. Weisel, B. C. Wilson, R.-K. Li, I. A. Vitkin, “Polarization birefringence measurements for characterizing the myocardium, including healthy, infarcted, and stem-cell-regenerated tissues,” J. Biomed. Opt. 15(4), 047009 (2010).
[CrossRef] [PubMed]

N. Ghosh, M. F. G. Wood, S. H. Li, R. D. Weisel, B. C. Wilson, R.-K. Li, I. A. Vitkin, “Mueller matrix decomposition for polarized light assessment of biological tissues,” J Biophotonics 2(3), 145–156 (2009).
[CrossRef] [PubMed]

Wilson, B. C.

M. F. G. Wood, N. Ghosh, M. A. Wallenburg, S.-H. Li, R. D. Weisel, B. C. Wilson, R.-K. Li, I. A. Vitkin, “Polarization birefringence measurements for characterizing the myocardium, including healthy, infarcted, and stem-cell-regenerated tissues,” J. Biomed. Opt. 15(4), 047009 (2010).
[CrossRef] [PubMed]

N. Ghosh, M. F. G. Wood, S. H. Li, R. D. Weisel, B. C. Wilson, R.-K. Li, I. A. Vitkin, “Mueller matrix decomposition for polarized light assessment of biological tissues,” J Biophotonics 2(3), 145–156 (2009).
[CrossRef] [PubMed]

Wood, M. F.

N. Ghosh, M. F. Wood, I. A. Vitkin, “Mueller matrix decomposition for extraction of individual polarization parameters from complex turbid media exhibiting multiple scattering, optical activity, and linear birefringence,” J. Biomed. Opt. 13(4), 044036 (2008).
[CrossRef] [PubMed]

Wood, M. F. G.

S. Alali, M. Ahmad, A. Kim, N. Vurgun, M. F. G. Wood, I. A. Vitkin, “Quantitative correlation between light depolarization and transport albedo of various porcine tissues,” J. Biomed. Opt. 17(4), 045004(2012).
[CrossRef] [PubMed]

M. F. G. Wood, N. Ghosh, M. A. Wallenburg, S.-H. Li, R. D. Weisel, B. C. Wilson, R.-K. Li, I. A. Vitkin, “Polarization birefringence measurements for characterizing the myocardium, including healthy, infarcted, and stem-cell-regenerated tissues,” J. Biomed. Opt. 15(4), 047009 (2010).
[CrossRef] [PubMed]

N. Ghosh, M. F. G. Wood, S. H. Li, R. D. Weisel, B. C. Wilson, R.-K. Li, I. A. Vitkin, “Mueller matrix decomposition for polarized light assessment of biological tissues,” J Biophotonics 2(3), 145–156 (2009).
[CrossRef] [PubMed]

Wood, T. C.

Am. J. Phys.

W. S. Bickel, W. M. Bailey, “Stokes vectors, Mueller matrices, and polarized scattered light,” Am. J. Phys. 53(5), 468–478 (1985).
[CrossRef]

Biomed. Opt. Express

Commun. ACM

B. T. Phong, “Illumination for computer generated pictures,” Commun. ACM 18(6), 311–317 (1975).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

V. Backman, R. Gurjar, K. Badizadegan, I. Itzkan, R. R. Dasari, L. T. Perelman, M. S. Feld, “Polarized light scattering spectroscopy for quantitative measurement of epithelial cellular structures in situ,” IEEE J. Sel. Top. Quantum Electron. 5(4), 1019–1026 (1999).
[CrossRef]

J Biophotonics

S. Manhas, M. K. Swami, H. S. Patel, A. Uppal, N. Ghosh, P. K. Gupta, “Polarized diffuse reflectance measurements on cancerous and noncancerous tissues,” J Biophotonics 2(10), 581–587 (2009).
[CrossRef] [PubMed]

N. Ghosh, M. F. G. Wood, S. H. Li, R. D. Weisel, B. C. Wilson, R.-K. Li, I. A. Vitkin, “Mueller matrix decomposition for polarized light assessment of biological tissues,” J Biophotonics 2(3), 145–156 (2009).
[CrossRef] [PubMed]

J. Biomed. Opt.

A. Pierangelo, S. Manhas, A. Benali, C. Fallet, J.-L. Totobenazara, M.-R. Antonelli, T. Novikova, B. Gayet, A. De Martino, P. Validire, “Multispectral Mueller polarimetric imaging detecting residual cancer and cancer regression after neoadjuvant treatment for colorectal carcinomas,” J. Biomed. Opt. 18(4), 046014 (2013).
[CrossRef] [PubMed]

N. Thekkek, M. C. Pierce, M. H. Lee, A. D. Polydorides, R. M. Flores, S. Anandasabapathy, R. R. Richards-Kortum, “Modular video endoscopy for in vivo cross-polarized and vital-dye fluorescence imaging of Barrett’s-associated neoplasia,” J. Biomed. Opt. 18(2), 026007 (2013).
[CrossRef] [PubMed]

M. F. G. Wood, N. Ghosh, M. A. Wallenburg, S.-H. Li, R. D. Weisel, B. C. Wilson, R.-K. Li, I. A. Vitkin, “Polarization birefringence measurements for characterizing the myocardium, including healthy, infarcted, and stem-cell-regenerated tissues,” J. Biomed. Opt. 15(4), 047009 (2010).
[CrossRef] [PubMed]

S. L. Jacques, J. C. Ramella-Roman, K. Lee, “Imaging skin pathology with polarized light,” J. Biomed. Opt. 7(3), 329–340 (2002).
[CrossRef] [PubMed]

B. H. Park, C. Saxer, S. M. Srinivas, J. S. Nelson, J. F. de Boer, “In vivo burn depth determination by high-speed fiber-based polarization sensitive optical coherence tomography,” J. Biomed. Opt. 6(4), 474–479 (2001).
[CrossRef] [PubMed]

S. Alali, M. Ahmad, A. Kim, N. Vurgun, M. F. G. Wood, I. A. Vitkin, “Quantitative correlation between light depolarization and transport albedo of various porcine tissues,” J. Biomed. Opt. 17(4), 045004(2012).
[CrossRef] [PubMed]

N. Ghosh, I. A. Vitkin, “Tissue polarimetry: concepts, challenges, applications, and outlook,” J. Biomed. Opt. 16(11), 110801 (2011).
[CrossRef] [PubMed]

S. Jiao, L. V. Wang, “Jones-matrix imaging of biological tissues with quadruple-channel optical coherence tomography,” J. Biomed. Opt. 7(3), 350–358 (2002).
[CrossRef] [PubMed]

N. Ghosh, M. F. Wood, I. A. Vitkin, “Mueller matrix decomposition for extraction of individual polarization parameters from complex turbid media exhibiting multiple scattering, optical activity, and linear birefringence,” J. Biomed. Opt. 13(4), 044036 (2008).
[CrossRef] [PubMed]

A. Pierangelo, S. Manhas, A. Benali, C. Fallet, M.-R. Antonelli, T. Novikova, B. Gayet, P. Validire, A. De Martino, “Ex vivo photometric and polarimetric multilayer characterization of human healthy colon by multispectral Mueller imaging,” J. Biomed. Opt. 17(6), 066009 (2012).
[CrossRef] [PubMed]

J. Opt. Soc. Am. A

Journal of Graphics Tools

A. Telea, “An image inpainting technique based on the fast marching method,” Journal of Graphics Tools 9(1), 23–34 (2004).
[CrossRef]

Laser Phys. Lett.

C. Macdonald, I. Meglinski, “Backscattering of circular polarized light from a disperse random medium influenced by optical clearing,” Laser Phys. Lett. 8(4), 324–328 (2011).
[CrossRef]

Lasers Surg. Med.

D. J. Maitland, J. T. Walsh., “Quantitative measurements of linear birefringence during heating of native collagen,” Lasers Surg. Med. 20(3), 310–318 (1997).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

Phys. Status Solidi

M. Anastasiadou, A. D. Martino, D. Clement, F. Liège, B. Laude-Boulesteix, N. Quang, J. Dreyfuss, B. Huynh, A. Nazac, L. Schwartz, H. Cohen, “Polarimetric imaging for the diagnosis of cervical cancer,” Phys. Status Solidi 5(5c), 1423–1426 (2008).
[CrossRef]

Other

N. T. Clancy and D. S. Elson, “Narrowband polarisation endoscopy with LED illumination,” presented at OSA/SPIE European Conferences on Biomedical Optics, Munich, Germany, 12–16 May 2013.

J. Qi, D. S. Elson, and C. Barriere, “Polarized Multispectral Imaging in a Rigid Endoscope Based on Polarized Light Scattering Spectroscopy,” (Optical Society of America, 2012), p. BW4B.7.

E. W. Cheney and D. R. Kincaid, Numerical mathematics and computing (Brooks/Cole, 2012).

V. V. Tuchin, L. V. Wang, and D. A. Zimnyakov, Optical polarization in biomedical applications (Springer, 2006).

N. T. Clancy, V. Sauvage, S. Saso, D. Stoyanov, D. J. Corless, M. Boyd, D. Noakes, G.-Z. Yang, S. Ghaem-Maghami, and J. R. Smith, “Registration and analysis of multispectral images acquired during uterine transplantation surgery,” in Biomedical Optics(Optical Society of America, 2012).

D. Stoyanov, A. Rayshubskiy, and E. Hillman, “Robust registration of multispectral images of the cortical surface in neurosurgery,” in Biomedical Imaging (ISBI), 2012 9th IEEE International Symposium on(IEEE, 2012), pp. 1643–1646.
[CrossRef]

M. Bass, Handbook of optics. Vol. 2, Devices, measurements, and properties (McGraw-Hill, 1995).

B. Walter, S. R. Marschner, H. Li, and K. E. Torrance, “Microfacet models for refraction through rough surfaces,” in Proceedings of the 18th Eurographics conference on Rendering Techniques(Eurographics Association, 2007), pp. 195–206.

J. F. Blinn, “Models of light reflection for computer synthesized pictures,” in ACM SIGGRAPH Computer Graphics(ACM, 1977), pp. 192–198.

http://www.siggraph.org/education/materials/HyperGraph/illumin/specular_highlights/phong_model_specular_reflection.htm .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

How different polarimetry effects in tissues contribute to the decomposed basis matrices (depolarization, retardance, diattenuation).

Fig. 2
Fig. 2

Experimental set-up schematic. (a) View of the distal end of endoscope. (b) Ring shaped linear polarizing film covering illumination channel. (c) Side-view of the endoscope showing the PSA, CCD and multispectral light source.

Fig. 3
Fig. 3

The schematic of off rotation axis effect

Fig. 4
Fig. 4

(a) Reflected intensity from a reflectance standard through a linear polarizer test object rotated from 0° to 360°. Horizontal and vertical axes denote the orientations of the linear polarizer target and Mueller matrix element values respectively. (b) The Mueller matrix polarimetric images with the polarizer transmission axis approximately parallel and (c) perpendicular to the system H axis.

Fig. 5
Fig. 5

(a) The 3 × 3 Mueller polarimetric image with the paper normal at 0° to the optical axis; M11 is obtained by (HH + HV)/2 instead of the equation in Table 2. (b) A horizontal line profile of the matrix elements. The horizontal axis in the graph represents the horizontal positions of pixels.

Fig. 6
Fig. 6

(a) Experimental M22 profiles with the paper normal at 0°, 30°, 45, 60° to the optical axis. (b) Simulated M22 profiles likewise. The horizontal axes represent the pixel number. In (a), the values on vertical axis denote M22 (and M33). In (b), the values displayed on vertical axis are arbitrary because the equations in Appendix were derived based on direct proportionality.

Fig. 7
Fig. 7

The photographs (represented by HV images at 546 nm) of the three regions in the rat abdomen including small bowel (red arrows), large bowel (green arrows), stomach (purple arrows), liver (white arrows) and fat (blue arrows) imaged with the system. (a) Region 1; (b) Region 2; (c) Region 3.

Fig. 8
Fig. 8

An example is presented to show how specular highlights were removed. (a) a raw image of Region 2suffering from specular highlights; (b) The specular highlight regions are detected and dilated, and are indicated by the region enclosed by blue line, but the areas enclosed by green lines are exempted; (c) The inpainted images after local median filtering.

Fig. 9
Fig. 9

Mueller polarimetric images of Region 1 at (a) 546 nm and (b) 628 nm respectively; Region 2 at (c) 546nm and (d) 628nm respectively; Region 3 at (e) 546 nm and (f) 628nm respectively;

Fig. 10
Fig. 10

Depolarization images. The images in the first column are raw images with small bowel (red arrows), large bowel (green arrows), stomach (purple arrows), liver (white arrows) and fat (blue arrows) indicated. The second, third and fourth columns are depolarization images with 546 nm illumination, depolarization images with 628 nm illumination and depolarization ratiometric images (628 nm/546 nm) respectively. (a-d) are the images for Region 1. A region of interest is indicated by a red box in (a), magnified and presented in (e-h), the left and right part of which is small bowel and fat respectively. (i-l) are the images for Region 2. (m-q) are the images for Region 3.

Fig. 11
Fig. 11

Retardance images. The images in the first column are raw images with small bowel (red arrows), large bowel (green arrows), stomach (purple arrows), liver (white arrows) and fat (blue arrows) indicated. The second, third and fourth column are retardance images with 546 nm illumination, retardance images with 628 nm illumination and retardance ratiometric images (628 nm/546 nm) respectively. (a-d) are the images for Region 1. (e-h) are zoomed images of a region of interest in (a) indicated by a red box, the left and right part of which is small bowel and fat respectively. (i-l) are the images for Region 2. (m-q) are the images for Region 3.

Fig. 12
Fig. 12

Specular reflection induced by a spot light source on a rough surface.

Fig. 13
Fig. 13

Specular reflection analysis. Two green spots denotes the end of illumination fibers symmetrical to the centre of entrance pupil of the laparoscope. The separation between the centre of entrance pupil is measured as 3.5 mm. The working distance of the endoscope is set as 40 mm.

Tables (2)

Tables Icon

Table 1 Solution of Eq. (4). The first and the second letters of the double-letter terms stand for the state of the PSG and PSA respectively. F+ and F are both replaced by F for convenience. F always refers to F+ in the first letter position and F in the second letter position.

Tables Icon

Table 2 Mueller Matrix reconstruction for non-diattenuated samples.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

S = [ I Q U ] = [ H + V H V F + F ] = [ H + V H V ( H + V F ) F ]
M S i n = S o u t , M = [ M 11 M 12 M 13 M 21 M 22 M 23 M 31 M 32 M 33 ]
M [ S i n 1 , S i n 2 , S i n 3 ] = [ S o u t 1 , S o u t 2 , S o u t 3 ]
M = [ S o u t 1 , S o u t 2 , S o u t 3 ] [ S i n 1 , S i n 2 , S i n 3 ] 1 = [ I o u t 1 I o u t 2 I o u t 3 Q o u t 1 Q o u t 2 Q o u t 3 U o u t 1 U o u t 2 U o u t 3 ] [ 1 1 1 1 0 1 0 1 0 ] 1 = [ H H + H V F + H + F + V V H + V V H H H V F + H F + V V H V V H H + H V 2 H F F + H + F + V 2 F + F V H + V V 2 V F ] [ 1 / 2 1 / 2 1 / 2 0 0 1 1 / 2 1 / 2 1 / 2 ]
M ' = M M D 1 = M Δ M R
M Δ R = M ' ( M ' ) T
δ = cos 1 ( ( M R 22 + M R 33 ) 2 + ( M R 23 M R 32 ) 2 1 )
I S = E n t r a n c e P u p i l I 0 cos n β cos θ ( | L | + | V | ) 2 d S
L ^ = ( x l x | L | , y l y | L | , z 0 | L | , ) ; | L | = ( x l x ) 2 + ( y l y ) 2 + z 0 2 V ^ = ( x v x | V | , y v y | V | , z 0 | V | , ) ; | V | = ( x v x ) 2 + ( y v y ) 2 + z 0 2 H ^ ( x H , y H , z H ) = 2 2 ( L ^ + V ^ ) ; cos β = z H 2 x H 2 + y H 2 + z H 2 cos θ = z 0 2 ( x v x ) 2 + ( y v y ) 2 + z 0 2
I ( x , y ) x v 2 + y v 2 r 2 I 0 ( x , y ) cos n β cos θ ( | L | + | V | ) 2 d x v d y v
I ( x , y ) I 0 ( x , y ) cos β cos θ ( | L | + | V | ) 2

Metrics