Abstract

Scanning laser ophthalmoscopy (SLO) and optical coherence tomography (OCT) are widely used retinal imaging modalities that can assist in the diagnosis of retinal pathologies. The combination of SLO and OCT provides a more comprehensive imaging system and a method to register OCT images to produce motion corrected retinal volumes. While high quality, bench-top SLO-OCT systems have been discussed in the literature and are available commercially, there are currently no handheld designs. We describe the first design and fabrication of a handheld SLO/spectral domain OCT probe. SLO and OCT images were acquired simultaneously with a combined power under the ANSI limit. High signal-to-noise ratio SLO and OCT images were acquired simultaneously from a normal subject with visible motion artifacts. Fully automated motion estimation methods were performed in post-processing to correct for the inter- and intra-frame motion in SLO images and their concurrently acquired OCT volumes. The resulting set of reconstructed SLO images and the OCT volume were without visible motion artifacts. At a reduced field of view, the SLO resolved parafoveal cones without adaptive optics at a retinal eccentricity of 11° in subjects with good ocular optics. This system may be especially useful for imaging young children and subjects with less stable fixation.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. H. Webb, G. W. Hughes, F. C. Delori, “Confocal scanning laser ophthalmoscope,” Appl. Opt. 26(8), 1492–1499 (1987).
    [CrossRef] [PubMed]
  2. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
    [CrossRef] [PubMed]
  3. S. Ricco, M. Chen, H. Ishikawa, G. Wollstein, and J. Schuman, “Correcting motion artifacts in retinal spectral domain optical coherence tomography via image registration,” in Medical Image Computing and Computer-Assisted Intervention – MICCAI 2009, G.-Z. Yang, D. Hawkes, D. Rueckert, A. Noble, and C. Taylor, eds. (Springer Berlin / Heidelberg, 2009), pp. 100–107.
  4. M. D. Robinson, S. J. Chiu, C. A. Toth, J. Izatt, J. Y. Lo, and S. Farsiu, “Novel applications of super-resolution in medical imaging,” in “Super-resolution imaging”, P. Milanfar, ed. (CRC Press 2010), pp. 383–412.
  5. A. G. Podoleanu, D. A. Jackson, “Combined optical coherence tomograph and scanning laser ophthalmoscope,” Electron. Lett. 34(11), 1088–1090 (1998).
    [CrossRef]
  6. D. X. Hammer, N. V. Iftimia, T. E. Ustun, J. C. Magill, R. D. Ferguson, “Dual OCT/SLO imager with three-dimensional tracker,” Proc. SPIE 5688, 33–44 (2005).
    [CrossRef]
  7. M. Pircher, E. Götzinger, H. Sattmann, R. A. Leitgeb, C. K. Hitzenberger, “In vivo investigation of human cone photoreceptors with SLO/OCT in combination with 3D motion correction on a cellular level,” Opt. Express 18(13), 13935–13944 (2010).
    [CrossRef] [PubMed]
  8. Y. K. Tao, S. Farsiu, J. A. Izatt, “Interlaced spectrally encoded confocal scanning laser ophthalmoscopy and spectral domain optical coherence tomography,” Biomed. Opt. Express 1(2), 431–440 (2010).
    [CrossRef] [PubMed]
  9. R. J. Zawadzki, S. M. Jones, S. Pilli, S. Balderas-Mata, D. Y. Kim, S. S. Olivier, J. S. Werner, “Integrated adaptive optics optical coherence tomography and adaptive optics scanning laser ophthalmoscope system for simultaneous cellular resolution in vivo retinal imaging,” Biomed. Opt. Express 2(6), 1674–1686 (2011).
    [CrossRef] [PubMed]
  10. K. V. Vienola, B. Braaf, C. K. Sheehy, Q. Yang, P. Tiruveedhula, D. W. Arathorn, J. F. de Boer, A. Roorda, “Real-time eye motion compensation for OCT imaging with tracking SLO,” Biomed. Opt. Express 3(11), 2950–2963 (2012).
    [CrossRef] [PubMed]
  11. B. Braaf, K. V. Vienola, C. K. Sheehy, Q. Yang, K. A. Vermeer, P. Tiruveedhula, D. W. Arathorn, A. Roorda, J. F. de Boer, “Real-time eye motion correction in phase-resolved OCT angiography with tracking SLO,” Biomed. Opt. Express 4(1), 51–65 (2013).
    [CrossRef] [PubMed]
  12. R. S. Maldonado, R. V. O’Connell, N. Sarin, S. F. Freedman, D. K. Wallace, C. M. Cotten, K. P. Winter, S. Stinnett, S. J. Chiu, J. A. Izatt, S. Farsiu, C. A. Toth, “Dynamics of human foveal development after premature birth,” Ophthalmology 118(12), 2315–2325 (2011).
    [CrossRef] [PubMed]
  13. F. LaRocca, A.-H. Dhalla, M. P. Kelly, S. Farsiu, J. A. Izatt, “Optimization of confocal scanning laser ophthalmoscope design,” J. Biomed. Opt. 18(7), 076015 (2013).
    [CrossRef] [PubMed]
  14. J. P. Kelly, A. H. Weiss, Q. Zhou, S. Schmode, A. W. Dreher, “Imaging a child’s fundus without dilation using a handheld confocal scanning laser ophthalmoscope,” Arch. Ophthalmol. 121(3), 391–396 (2003).
    [CrossRef] [PubMed]
  15. S. Radhakrishnan, A. M. Rollins, J. E. Roth, S. Yazdanfar, V. Westphal, D. S. Bardenstein, J. A. Izatt, “Real-time optical coherence tomography of the anterior segment at 1310 nm,” Arch. Ophthalmol. 119(8), 1179–1185 (2001).
    [CrossRef] [PubMed]
  16. A. W. Scott, S. Farsiu, L. B. Enyedi, D. K. Wallace, C. A. Toth, “Imaging the infant retina with a hand-held spectral-domain optical coherence tomography device,” Am. J. Ophthalmol. 147(2), 364–373, e2 (2009).
    [CrossRef] [PubMed]
  17. W. Jung, J. Kim, M. Jeon, E. J. Chaney, C. N. Stewart, S. A. Boppart, “Handheld optical coherence tomography scanner for primary care diagnostics,” IEEE Trans. Biomed. Eng. 58(3), 741–744 (2011).
    [CrossRef] [PubMed]
  18. Laser Institute of America, American National Standard for Safe Use of Lasers ANSI Z136.1–2007 (American National Standards Institute, Inc., 2007).
  19. S. B. Stevenson, A. Roorda, “Correcting for miniature eye movements in high resolution scanning laser ophthalmoscopy,” Proc. SPIE 5688, 145–151 (2005).
    [CrossRef]
  20. C. R. Vogel, D. W. Arathorn, A. Roorda, A. Parker, “Retinal motion estimation in adaptive optics scanning laser ophthalmoscopy,” Opt. Express 14(2), 487–497 (2006).
    [CrossRef] [PubMed]
  21. D. W. Arathorn, Q. Yang, C. R. Vogel, Y. Zhang, P. Tiruveedhula, A. Roorda, “Retinally stabilized cone-targeted stimulus delivery,” Opt. Express 15(21), 13731–13744 (2007).
    [CrossRef] [PubMed]
  22. Q. Yang, D. W. Arathorn, P. Tiruveedhula, C. R. Vogel, A. Roorda, “Design of an integrated hardware interface for AOSLO image capture and cone-targeted stimulus delivery,” Opt. Express 18(17), 17841–17858 (2010).
    [CrossRef] [PubMed]
  23. C. K. Sheehy, Q. Yang, D. W. Arathorn, P. Tiruveedhula, J. F. de Boer, A. Roorda, “High-speed, image-based eye tracking with a scanning laser ophthalmoscope,” Biomed. Opt. Express 3(10), 2611–2622 (2012).
    [CrossRef] [PubMed]
  24. A. Dubra and Z. Harvey, “Registration of 2D Images from Fast Scanning Ophthalmic Instruments,” in Biomedical Image Registration, Vol. 6204 of Lecture Notes in Computer Science (Springer, Berlin), pp. 60–71 (2010).
  25. S. Faisan, D. Lara, C. Paterson, “Scanning ophthalmoscope retinal image registration using one-dimensional deformation fields,” Opt. Express 19(5), 4157–4169 (2011).
    [CrossRef] [PubMed]
  26. O. P. Kocaoglu, S. Lee, R. S. Jonnal, Q. Wang, A. E. Herde, J. C. Derby, W. Gao, D. T. Miller, “Imaging cone photoreceptors in three dimensions and in time using ultrahigh resolution optical coherence tomography with adaptive optics,” Biomed. Opt. Express 2(4), 748–763 (2011).
    [CrossRef] [PubMed]
  27. X. Song, R. Estrada, S. J. Chiu, A.-H. Dhalla, C. A. Toth, J. A. Izatt, S. Farsiu, “Segmentation-based registration of retinal optical coherence tomography images with pathology,” Invest. Ophthalmol. Vis. Sci. 52, 1309 (2011).
  28. Y. Zhang, S. Poonja, A. Roorda, “MEMS-based adaptive optics scanning laser ophthalmoscopy,” Opt. Lett. 31(9), 1268–1270 (2006).
    [CrossRef] [PubMed]
  29. A. V. Goncharov, C. Dainty, “Wide-field schematic eye models with gradient-index lens,” J. Opt. Soc. Am. A 24(8), 2157–2174 (2007).
    [CrossRef] [PubMed]
  30. R. Estrada, C. Tomasi, M. T. Cabrera, D. K. Wallace, S. F. Freedman, S. Farsiu, “Enhanced video indirect ophthalmoscopy (VIO) via robust mosaicing,” Biomed. Opt. Express 2(10), 2871–2887 (2011).
    [CrossRef] [PubMed]
  31. H. C. Hendargo, R. Estrada, S. J. Chiu, C. Tomasi, S. Farsiu, J. A. Izatt, “Automated non-rigid registration and mosaicing for robust imaging of distinct retinal capillary beds using speckle variance optical coherence tomography,” Biomed. Opt. Express 4(6), 803–821 (2013).
    [CrossRef] [PubMed]
  32. R. J. Zawadzki, A. R. Fuller, S. S. Choi, D. F. Wiley, B. Hamann, and J. S. Werner, “Correction of motion artifacts and scanning beam distortions in 3D ophthalmic optical coherence tomography imaging,” Proc. SPIE 642607–642607 (2007).
  33. M. F. Kraus, B. Potsaid, M. A. Mayer, R. Bock, B. Baumann, J. J. Liu, J. Hornegger, J. G. Fujimoto, “Motion correction in optical coherence tomography volumes on a per A-scan basis using orthogonal scan patterns,” Biomed. Opt. Express 3(6), 1182–1199 (2012).
    [CrossRef] [PubMed]
  34. D. Merino, J. L. Duncan, P. Tiruveedhula, A. Roorda, “Observation of cone and rod photoreceptors in normal subjects and patients using a new generation adaptive optics scanning laser ophthalmoscope,” Biomed. Opt. Express 2(8), 2189–2201 (2011).
    [CrossRef] [PubMed]
  35. S. H. Chavala, S. Farsiu, R. Maldonado, D. K. Wallace, S. F. Freedman, C. A. Toth, “Insights into advanced retinopathy of prematurity using hand-held spectral domain optical coherence tomography imaging,” Ophthalmology 116(12), 2448–2456 (2009).
    [CrossRef] [PubMed]
  36. T. A. Moreno, R. V. O’Connell, S. J. Chiu, S. Farsiu, M. T. Cabrera, R. S. Maldonado, D. Tran-Viet, S. F. Freedman, D. K. Wallace, C. A. Toth, “Choroid development and feasibility of choroidal imaging in the preterm and term infants utilizing SD-OCT,” Invest. Ophthalmol. Vis. Sci. 54(6), 4140–4147 (2013).
    [CrossRef] [PubMed]
  37. G. T. Chong, S. Farsiu, S. F. Freedman, N. Sarin, A. F. Koreishi, J. A. Izatt, C. A. Toth, “Abnormal foveal morphology in ocular albinism imaged with spectral-domain optical coherence tomography,” Arch. Ophthalmol. 127(1), 37–44 (2009).
    [CrossRef] [PubMed]
  38. T. H. Cronin, R. W. Hertle, H. Ishikawa, J. S. Schuman, “Spectral domain optical coherence tomography for detection of foveal morphology in patients with nystagmus,” J. AAPOS 13(6), 563–566 (2009).
    [CrossRef] [PubMed]

2013 (4)

F. LaRocca, A.-H. Dhalla, M. P. Kelly, S. Farsiu, J. A. Izatt, “Optimization of confocal scanning laser ophthalmoscope design,” J. Biomed. Opt. 18(7), 076015 (2013).
[CrossRef] [PubMed]

T. A. Moreno, R. V. O’Connell, S. J. Chiu, S. Farsiu, M. T. Cabrera, R. S. Maldonado, D. Tran-Viet, S. F. Freedman, D. K. Wallace, C. A. Toth, “Choroid development and feasibility of choroidal imaging in the preterm and term infants utilizing SD-OCT,” Invest. Ophthalmol. Vis. Sci. 54(6), 4140–4147 (2013).
[CrossRef] [PubMed]

B. Braaf, K. V. Vienola, C. K. Sheehy, Q. Yang, K. A. Vermeer, P. Tiruveedhula, D. W. Arathorn, A. Roorda, J. F. de Boer, “Real-time eye motion correction in phase-resolved OCT angiography with tracking SLO,” Biomed. Opt. Express 4(1), 51–65 (2013).
[CrossRef] [PubMed]

H. C. Hendargo, R. Estrada, S. J. Chiu, C. Tomasi, S. Farsiu, J. A. Izatt, “Automated non-rigid registration and mosaicing for robust imaging of distinct retinal capillary beds using speckle variance optical coherence tomography,” Biomed. Opt. Express 4(6), 803–821 (2013).
[CrossRef] [PubMed]

2012 (3)

2011 (8)

S. Faisan, D. Lara, C. Paterson, “Scanning ophthalmoscope retinal image registration using one-dimensional deformation fields,” Opt. Express 19(5), 4157–4169 (2011).
[CrossRef] [PubMed]

O. P. Kocaoglu, S. Lee, R. S. Jonnal, Q. Wang, A. E. Herde, J. C. Derby, W. Gao, D. T. Miller, “Imaging cone photoreceptors in three dimensions and in time using ultrahigh resolution optical coherence tomography with adaptive optics,” Biomed. Opt. Express 2(4), 748–763 (2011).
[CrossRef] [PubMed]

R. J. Zawadzki, S. M. Jones, S. Pilli, S. Balderas-Mata, D. Y. Kim, S. S. Olivier, J. S. Werner, “Integrated adaptive optics optical coherence tomography and adaptive optics scanning laser ophthalmoscope system for simultaneous cellular resolution in vivo retinal imaging,” Biomed. Opt. Express 2(6), 1674–1686 (2011).
[CrossRef] [PubMed]

D. Merino, J. L. Duncan, P. Tiruveedhula, A. Roorda, “Observation of cone and rod photoreceptors in normal subjects and patients using a new generation adaptive optics scanning laser ophthalmoscope,” Biomed. Opt. Express 2(8), 2189–2201 (2011).
[CrossRef] [PubMed]

R. Estrada, C. Tomasi, M. T. Cabrera, D. K. Wallace, S. F. Freedman, S. Farsiu, “Enhanced video indirect ophthalmoscopy (VIO) via robust mosaicing,” Biomed. Opt. Express 2(10), 2871–2887 (2011).
[CrossRef] [PubMed]

X. Song, R. Estrada, S. J. Chiu, A.-H. Dhalla, C. A. Toth, J. A. Izatt, S. Farsiu, “Segmentation-based registration of retinal optical coherence tomography images with pathology,” Invest. Ophthalmol. Vis. Sci. 52, 1309 (2011).

W. Jung, J. Kim, M. Jeon, E. J. Chaney, C. N. Stewart, S. A. Boppart, “Handheld optical coherence tomography scanner for primary care diagnostics,” IEEE Trans. Biomed. Eng. 58(3), 741–744 (2011).
[CrossRef] [PubMed]

R. S. Maldonado, R. V. O’Connell, N. Sarin, S. F. Freedman, D. K. Wallace, C. M. Cotten, K. P. Winter, S. Stinnett, S. J. Chiu, J. A. Izatt, S. Farsiu, C. A. Toth, “Dynamics of human foveal development after premature birth,” Ophthalmology 118(12), 2315–2325 (2011).
[CrossRef] [PubMed]

2010 (3)

2009 (4)

A. W. Scott, S. Farsiu, L. B. Enyedi, D. K. Wallace, C. A. Toth, “Imaging the infant retina with a hand-held spectral-domain optical coherence tomography device,” Am. J. Ophthalmol. 147(2), 364–373, e2 (2009).
[CrossRef] [PubMed]

S. H. Chavala, S. Farsiu, R. Maldonado, D. K. Wallace, S. F. Freedman, C. A. Toth, “Insights into advanced retinopathy of prematurity using hand-held spectral domain optical coherence tomography imaging,” Ophthalmology 116(12), 2448–2456 (2009).
[CrossRef] [PubMed]

G. T. Chong, S. Farsiu, S. F. Freedman, N. Sarin, A. F. Koreishi, J. A. Izatt, C. A. Toth, “Abnormal foveal morphology in ocular albinism imaged with spectral-domain optical coherence tomography,” Arch. Ophthalmol. 127(1), 37–44 (2009).
[CrossRef] [PubMed]

T. H. Cronin, R. W. Hertle, H. Ishikawa, J. S. Schuman, “Spectral domain optical coherence tomography for detection of foveal morphology in patients with nystagmus,” J. AAPOS 13(6), 563–566 (2009).
[CrossRef] [PubMed]

2007 (2)

2006 (2)

2005 (2)

D. X. Hammer, N. V. Iftimia, T. E. Ustun, J. C. Magill, R. D. Ferguson, “Dual OCT/SLO imager with three-dimensional tracker,” Proc. SPIE 5688, 33–44 (2005).
[CrossRef]

S. B. Stevenson, A. Roorda, “Correcting for miniature eye movements in high resolution scanning laser ophthalmoscopy,” Proc. SPIE 5688, 145–151 (2005).
[CrossRef]

2003 (1)

J. P. Kelly, A. H. Weiss, Q. Zhou, S. Schmode, A. W. Dreher, “Imaging a child’s fundus without dilation using a handheld confocal scanning laser ophthalmoscope,” Arch. Ophthalmol. 121(3), 391–396 (2003).
[CrossRef] [PubMed]

2001 (1)

S. Radhakrishnan, A. M. Rollins, J. E. Roth, S. Yazdanfar, V. Westphal, D. S. Bardenstein, J. A. Izatt, “Real-time optical coherence tomography of the anterior segment at 1310 nm,” Arch. Ophthalmol. 119(8), 1179–1185 (2001).
[CrossRef] [PubMed]

1998 (1)

A. G. Podoleanu, D. A. Jackson, “Combined optical coherence tomograph and scanning laser ophthalmoscope,” Electron. Lett. 34(11), 1088–1090 (1998).
[CrossRef]

1991 (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

1987 (1)

Arathorn, D. W.

Balderas-Mata, S.

Bardenstein, D. S.

S. Radhakrishnan, A. M. Rollins, J. E. Roth, S. Yazdanfar, V. Westphal, D. S. Bardenstein, J. A. Izatt, “Real-time optical coherence tomography of the anterior segment at 1310 nm,” Arch. Ophthalmol. 119(8), 1179–1185 (2001).
[CrossRef] [PubMed]

Baumann, B.

Bock, R.

Boppart, S. A.

W. Jung, J. Kim, M. Jeon, E. J. Chaney, C. N. Stewart, S. A. Boppart, “Handheld optical coherence tomography scanner for primary care diagnostics,” IEEE Trans. Biomed. Eng. 58(3), 741–744 (2011).
[CrossRef] [PubMed]

Braaf, B.

Cabrera, M. T.

T. A. Moreno, R. V. O’Connell, S. J. Chiu, S. Farsiu, M. T. Cabrera, R. S. Maldonado, D. Tran-Viet, S. F. Freedman, D. K. Wallace, C. A. Toth, “Choroid development and feasibility of choroidal imaging in the preterm and term infants utilizing SD-OCT,” Invest. Ophthalmol. Vis. Sci. 54(6), 4140–4147 (2013).
[CrossRef] [PubMed]

R. Estrada, C. Tomasi, M. T. Cabrera, D. K. Wallace, S. F. Freedman, S. Farsiu, “Enhanced video indirect ophthalmoscopy (VIO) via robust mosaicing,” Biomed. Opt. Express 2(10), 2871–2887 (2011).
[CrossRef] [PubMed]

Chaney, E. J.

W. Jung, J. Kim, M. Jeon, E. J. Chaney, C. N. Stewart, S. A. Boppart, “Handheld optical coherence tomography scanner for primary care diagnostics,” IEEE Trans. Biomed. Eng. 58(3), 741–744 (2011).
[CrossRef] [PubMed]

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Chavala, S. H.

S. H. Chavala, S. Farsiu, R. Maldonado, D. K. Wallace, S. F. Freedman, C. A. Toth, “Insights into advanced retinopathy of prematurity using hand-held spectral domain optical coherence tomography imaging,” Ophthalmology 116(12), 2448–2456 (2009).
[CrossRef] [PubMed]

Chiu, S. J.

H. C. Hendargo, R. Estrada, S. J. Chiu, C. Tomasi, S. Farsiu, J. A. Izatt, “Automated non-rigid registration and mosaicing for robust imaging of distinct retinal capillary beds using speckle variance optical coherence tomography,” Biomed. Opt. Express 4(6), 803–821 (2013).
[CrossRef] [PubMed]

T. A. Moreno, R. V. O’Connell, S. J. Chiu, S. Farsiu, M. T. Cabrera, R. S. Maldonado, D. Tran-Viet, S. F. Freedman, D. K. Wallace, C. A. Toth, “Choroid development and feasibility of choroidal imaging in the preterm and term infants utilizing SD-OCT,” Invest. Ophthalmol. Vis. Sci. 54(6), 4140–4147 (2013).
[CrossRef] [PubMed]

R. S. Maldonado, R. V. O’Connell, N. Sarin, S. F. Freedman, D. K. Wallace, C. M. Cotten, K. P. Winter, S. Stinnett, S. J. Chiu, J. A. Izatt, S. Farsiu, C. A. Toth, “Dynamics of human foveal development after premature birth,” Ophthalmology 118(12), 2315–2325 (2011).
[CrossRef] [PubMed]

X. Song, R. Estrada, S. J. Chiu, A.-H. Dhalla, C. A. Toth, J. A. Izatt, S. Farsiu, “Segmentation-based registration of retinal optical coherence tomography images with pathology,” Invest. Ophthalmol. Vis. Sci. 52, 1309 (2011).

Chong, G. T.

G. T. Chong, S. Farsiu, S. F. Freedman, N. Sarin, A. F. Koreishi, J. A. Izatt, C. A. Toth, “Abnormal foveal morphology in ocular albinism imaged with spectral-domain optical coherence tomography,” Arch. Ophthalmol. 127(1), 37–44 (2009).
[CrossRef] [PubMed]

Cotten, C. M.

R. S. Maldonado, R. V. O’Connell, N. Sarin, S. F. Freedman, D. K. Wallace, C. M. Cotten, K. P. Winter, S. Stinnett, S. J. Chiu, J. A. Izatt, S. Farsiu, C. A. Toth, “Dynamics of human foveal development after premature birth,” Ophthalmology 118(12), 2315–2325 (2011).
[CrossRef] [PubMed]

Cronin, T. H.

T. H. Cronin, R. W. Hertle, H. Ishikawa, J. S. Schuman, “Spectral domain optical coherence tomography for detection of foveal morphology in patients with nystagmus,” J. AAPOS 13(6), 563–566 (2009).
[CrossRef] [PubMed]

Dainty, C.

de Boer, J. F.

Delori, F. C.

Derby, J. C.

Dhalla, A.-H.

F. LaRocca, A.-H. Dhalla, M. P. Kelly, S. Farsiu, J. A. Izatt, “Optimization of confocal scanning laser ophthalmoscope design,” J. Biomed. Opt. 18(7), 076015 (2013).
[CrossRef] [PubMed]

X. Song, R. Estrada, S. J. Chiu, A.-H. Dhalla, C. A. Toth, J. A. Izatt, S. Farsiu, “Segmentation-based registration of retinal optical coherence tomography images with pathology,” Invest. Ophthalmol. Vis. Sci. 52, 1309 (2011).

Dreher, A. W.

J. P. Kelly, A. H. Weiss, Q. Zhou, S. Schmode, A. W. Dreher, “Imaging a child’s fundus without dilation using a handheld confocal scanning laser ophthalmoscope,” Arch. Ophthalmol. 121(3), 391–396 (2003).
[CrossRef] [PubMed]

Duncan, J. L.

Enyedi, L. B.

A. W. Scott, S. Farsiu, L. B. Enyedi, D. K. Wallace, C. A. Toth, “Imaging the infant retina with a hand-held spectral-domain optical coherence tomography device,” Am. J. Ophthalmol. 147(2), 364–373, e2 (2009).
[CrossRef] [PubMed]

Estrada, R.

et,

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Faisan, S.

Farsiu, S.

T. A. Moreno, R. V. O’Connell, S. J. Chiu, S. Farsiu, M. T. Cabrera, R. S. Maldonado, D. Tran-Viet, S. F. Freedman, D. K. Wallace, C. A. Toth, “Choroid development and feasibility of choroidal imaging in the preterm and term infants utilizing SD-OCT,” Invest. Ophthalmol. Vis. Sci. 54(6), 4140–4147 (2013).
[CrossRef] [PubMed]

H. C. Hendargo, R. Estrada, S. J. Chiu, C. Tomasi, S. Farsiu, J. A. Izatt, “Automated non-rigid registration and mosaicing for robust imaging of distinct retinal capillary beds using speckle variance optical coherence tomography,” Biomed. Opt. Express 4(6), 803–821 (2013).
[CrossRef] [PubMed]

F. LaRocca, A.-H. Dhalla, M. P. Kelly, S. Farsiu, J. A. Izatt, “Optimization of confocal scanning laser ophthalmoscope design,” J. Biomed. Opt. 18(7), 076015 (2013).
[CrossRef] [PubMed]

R. Estrada, C. Tomasi, M. T. Cabrera, D. K. Wallace, S. F. Freedman, S. Farsiu, “Enhanced video indirect ophthalmoscopy (VIO) via robust mosaicing,” Biomed. Opt. Express 2(10), 2871–2887 (2011).
[CrossRef] [PubMed]

X. Song, R. Estrada, S. J. Chiu, A.-H. Dhalla, C. A. Toth, J. A. Izatt, S. Farsiu, “Segmentation-based registration of retinal optical coherence tomography images with pathology,” Invest. Ophthalmol. Vis. Sci. 52, 1309 (2011).

R. S. Maldonado, R. V. O’Connell, N. Sarin, S. F. Freedman, D. K. Wallace, C. M. Cotten, K. P. Winter, S. Stinnett, S. J. Chiu, J. A. Izatt, S. Farsiu, C. A. Toth, “Dynamics of human foveal development after premature birth,” Ophthalmology 118(12), 2315–2325 (2011).
[CrossRef] [PubMed]

Y. K. Tao, S. Farsiu, J. A. Izatt, “Interlaced spectrally encoded confocal scanning laser ophthalmoscopy and spectral domain optical coherence tomography,” Biomed. Opt. Express 1(2), 431–440 (2010).
[CrossRef] [PubMed]

S. H. Chavala, S. Farsiu, R. Maldonado, D. K. Wallace, S. F. Freedman, C. A. Toth, “Insights into advanced retinopathy of prematurity using hand-held spectral domain optical coherence tomography imaging,” Ophthalmology 116(12), 2448–2456 (2009).
[CrossRef] [PubMed]

G. T. Chong, S. Farsiu, S. F. Freedman, N. Sarin, A. F. Koreishi, J. A. Izatt, C. A. Toth, “Abnormal foveal morphology in ocular albinism imaged with spectral-domain optical coherence tomography,” Arch. Ophthalmol. 127(1), 37–44 (2009).
[CrossRef] [PubMed]

A. W. Scott, S. Farsiu, L. B. Enyedi, D. K. Wallace, C. A. Toth, “Imaging the infant retina with a hand-held spectral-domain optical coherence tomography device,” Am. J. Ophthalmol. 147(2), 364–373, e2 (2009).
[CrossRef] [PubMed]

Ferguson, R. D.

D. X. Hammer, N. V. Iftimia, T. E. Ustun, J. C. Magill, R. D. Ferguson, “Dual OCT/SLO imager with three-dimensional tracker,” Proc. SPIE 5688, 33–44 (2005).
[CrossRef]

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Freedman, S. F.

T. A. Moreno, R. V. O’Connell, S. J. Chiu, S. Farsiu, M. T. Cabrera, R. S. Maldonado, D. Tran-Viet, S. F. Freedman, D. K. Wallace, C. A. Toth, “Choroid development and feasibility of choroidal imaging in the preterm and term infants utilizing SD-OCT,” Invest. Ophthalmol. Vis. Sci. 54(6), 4140–4147 (2013).
[CrossRef] [PubMed]

R. S. Maldonado, R. V. O’Connell, N. Sarin, S. F. Freedman, D. K. Wallace, C. M. Cotten, K. P. Winter, S. Stinnett, S. J. Chiu, J. A. Izatt, S. Farsiu, C. A. Toth, “Dynamics of human foveal development after premature birth,” Ophthalmology 118(12), 2315–2325 (2011).
[CrossRef] [PubMed]

R. Estrada, C. Tomasi, M. T. Cabrera, D. K. Wallace, S. F. Freedman, S. Farsiu, “Enhanced video indirect ophthalmoscopy (VIO) via robust mosaicing,” Biomed. Opt. Express 2(10), 2871–2887 (2011).
[CrossRef] [PubMed]

G. T. Chong, S. Farsiu, S. F. Freedman, N. Sarin, A. F. Koreishi, J. A. Izatt, C. A. Toth, “Abnormal foveal morphology in ocular albinism imaged with spectral-domain optical coherence tomography,” Arch. Ophthalmol. 127(1), 37–44 (2009).
[CrossRef] [PubMed]

S. H. Chavala, S. Farsiu, R. Maldonado, D. K. Wallace, S. F. Freedman, C. A. Toth, “Insights into advanced retinopathy of prematurity using hand-held spectral domain optical coherence tomography imaging,” Ophthalmology 116(12), 2448–2456 (2009).
[CrossRef] [PubMed]

Fujimoto, J. G.

Gao, W.

Goncharov, A. V.

Götzinger, E.

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Hammer, D. X.

D. X. Hammer, N. V. Iftimia, T. E. Ustun, J. C. Magill, R. D. Ferguson, “Dual OCT/SLO imager with three-dimensional tracker,” Proc. SPIE 5688, 33–44 (2005).
[CrossRef]

Hee, M. R.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Hendargo, H. C.

Herde, A. E.

Hertle, R. W.

T. H. Cronin, R. W. Hertle, H. Ishikawa, J. S. Schuman, “Spectral domain optical coherence tomography for detection of foveal morphology in patients with nystagmus,” J. AAPOS 13(6), 563–566 (2009).
[CrossRef] [PubMed]

Hitzenberger, C. K.

Hornegger, J.

Huang, D.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Hughes, G. W.

Iftimia, N. V.

D. X. Hammer, N. V. Iftimia, T. E. Ustun, J. C. Magill, R. D. Ferguson, “Dual OCT/SLO imager with three-dimensional tracker,” Proc. SPIE 5688, 33–44 (2005).
[CrossRef]

Ishikawa, H.

T. H. Cronin, R. W. Hertle, H. Ishikawa, J. S. Schuman, “Spectral domain optical coherence tomography for detection of foveal morphology in patients with nystagmus,” J. AAPOS 13(6), 563–566 (2009).
[CrossRef] [PubMed]

Izatt, J. A.

F. LaRocca, A.-H. Dhalla, M. P. Kelly, S. Farsiu, J. A. Izatt, “Optimization of confocal scanning laser ophthalmoscope design,” J. Biomed. Opt. 18(7), 076015 (2013).
[CrossRef] [PubMed]

H. C. Hendargo, R. Estrada, S. J. Chiu, C. Tomasi, S. Farsiu, J. A. Izatt, “Automated non-rigid registration and mosaicing for robust imaging of distinct retinal capillary beds using speckle variance optical coherence tomography,” Biomed. Opt. Express 4(6), 803–821 (2013).
[CrossRef] [PubMed]

R. S. Maldonado, R. V. O’Connell, N. Sarin, S. F. Freedman, D. K. Wallace, C. M. Cotten, K. P. Winter, S. Stinnett, S. J. Chiu, J. A. Izatt, S. Farsiu, C. A. Toth, “Dynamics of human foveal development after premature birth,” Ophthalmology 118(12), 2315–2325 (2011).
[CrossRef] [PubMed]

X. Song, R. Estrada, S. J. Chiu, A.-H. Dhalla, C. A. Toth, J. A. Izatt, S. Farsiu, “Segmentation-based registration of retinal optical coherence tomography images with pathology,” Invest. Ophthalmol. Vis. Sci. 52, 1309 (2011).

Y. K. Tao, S. Farsiu, J. A. Izatt, “Interlaced spectrally encoded confocal scanning laser ophthalmoscopy and spectral domain optical coherence tomography,” Biomed. Opt. Express 1(2), 431–440 (2010).
[CrossRef] [PubMed]

G. T. Chong, S. Farsiu, S. F. Freedman, N. Sarin, A. F. Koreishi, J. A. Izatt, C. A. Toth, “Abnormal foveal morphology in ocular albinism imaged with spectral-domain optical coherence tomography,” Arch. Ophthalmol. 127(1), 37–44 (2009).
[CrossRef] [PubMed]

S. Radhakrishnan, A. M. Rollins, J. E. Roth, S. Yazdanfar, V. Westphal, D. S. Bardenstein, J. A. Izatt, “Real-time optical coherence tomography of the anterior segment at 1310 nm,” Arch. Ophthalmol. 119(8), 1179–1185 (2001).
[CrossRef] [PubMed]

Jackson, D. A.

A. G. Podoleanu, D. A. Jackson, “Combined optical coherence tomograph and scanning laser ophthalmoscope,” Electron. Lett. 34(11), 1088–1090 (1998).
[CrossRef]

Jeon, M.

W. Jung, J. Kim, M. Jeon, E. J. Chaney, C. N. Stewart, S. A. Boppart, “Handheld optical coherence tomography scanner for primary care diagnostics,” IEEE Trans. Biomed. Eng. 58(3), 741–744 (2011).
[CrossRef] [PubMed]

Jones, S. M.

Jonnal, R. S.

Jung, W.

W. Jung, J. Kim, M. Jeon, E. J. Chaney, C. N. Stewart, S. A. Boppart, “Handheld optical coherence tomography scanner for primary care diagnostics,” IEEE Trans. Biomed. Eng. 58(3), 741–744 (2011).
[CrossRef] [PubMed]

Kelly, J. P.

J. P. Kelly, A. H. Weiss, Q. Zhou, S. Schmode, A. W. Dreher, “Imaging a child’s fundus without dilation using a handheld confocal scanning laser ophthalmoscope,” Arch. Ophthalmol. 121(3), 391–396 (2003).
[CrossRef] [PubMed]

Kelly, M. P.

F. LaRocca, A.-H. Dhalla, M. P. Kelly, S. Farsiu, J. A. Izatt, “Optimization of confocal scanning laser ophthalmoscope design,” J. Biomed. Opt. 18(7), 076015 (2013).
[CrossRef] [PubMed]

Kim, D. Y.

Kim, J.

W. Jung, J. Kim, M. Jeon, E. J. Chaney, C. N. Stewart, S. A. Boppart, “Handheld optical coherence tomography scanner for primary care diagnostics,” IEEE Trans. Biomed. Eng. 58(3), 741–744 (2011).
[CrossRef] [PubMed]

Kocaoglu, O. P.

Koreishi, A. F.

G. T. Chong, S. Farsiu, S. F. Freedman, N. Sarin, A. F. Koreishi, J. A. Izatt, C. A. Toth, “Abnormal foveal morphology in ocular albinism imaged with spectral-domain optical coherence tomography,” Arch. Ophthalmol. 127(1), 37–44 (2009).
[CrossRef] [PubMed]

Kraus, M. F.

Lara, D.

LaRocca, F.

F. LaRocca, A.-H. Dhalla, M. P. Kelly, S. Farsiu, J. A. Izatt, “Optimization of confocal scanning laser ophthalmoscope design,” J. Biomed. Opt. 18(7), 076015 (2013).
[CrossRef] [PubMed]

Lee, S.

Leitgeb, R. A.

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Liu, J. J.

Magill, J. C.

D. X. Hammer, N. V. Iftimia, T. E. Ustun, J. C. Magill, R. D. Ferguson, “Dual OCT/SLO imager with three-dimensional tracker,” Proc. SPIE 5688, 33–44 (2005).
[CrossRef]

Maldonado, R.

S. H. Chavala, S. Farsiu, R. Maldonado, D. K. Wallace, S. F. Freedman, C. A. Toth, “Insights into advanced retinopathy of prematurity using hand-held spectral domain optical coherence tomography imaging,” Ophthalmology 116(12), 2448–2456 (2009).
[CrossRef] [PubMed]

Maldonado, R. S.

T. A. Moreno, R. V. O’Connell, S. J. Chiu, S. Farsiu, M. T. Cabrera, R. S. Maldonado, D. Tran-Viet, S. F. Freedman, D. K. Wallace, C. A. Toth, “Choroid development and feasibility of choroidal imaging in the preterm and term infants utilizing SD-OCT,” Invest. Ophthalmol. Vis. Sci. 54(6), 4140–4147 (2013).
[CrossRef] [PubMed]

R. S. Maldonado, R. V. O’Connell, N. Sarin, S. F. Freedman, D. K. Wallace, C. M. Cotten, K. P. Winter, S. Stinnett, S. J. Chiu, J. A. Izatt, S. Farsiu, C. A. Toth, “Dynamics of human foveal development after premature birth,” Ophthalmology 118(12), 2315–2325 (2011).
[CrossRef] [PubMed]

Mayer, M. A.

Merino, D.

Miller, D. T.

Moreno, T. A.

T. A. Moreno, R. V. O’Connell, S. J. Chiu, S. Farsiu, M. T. Cabrera, R. S. Maldonado, D. Tran-Viet, S. F. Freedman, D. K. Wallace, C. A. Toth, “Choroid development and feasibility of choroidal imaging in the preterm and term infants utilizing SD-OCT,” Invest. Ophthalmol. Vis. Sci. 54(6), 4140–4147 (2013).
[CrossRef] [PubMed]

O’Connell, R. V.

T. A. Moreno, R. V. O’Connell, S. J. Chiu, S. Farsiu, M. T. Cabrera, R. S. Maldonado, D. Tran-Viet, S. F. Freedman, D. K. Wallace, C. A. Toth, “Choroid development and feasibility of choroidal imaging in the preterm and term infants utilizing SD-OCT,” Invest. Ophthalmol. Vis. Sci. 54(6), 4140–4147 (2013).
[CrossRef] [PubMed]

R. S. Maldonado, R. V. O’Connell, N. Sarin, S. F. Freedman, D. K. Wallace, C. M. Cotten, K. P. Winter, S. Stinnett, S. J. Chiu, J. A. Izatt, S. Farsiu, C. A. Toth, “Dynamics of human foveal development after premature birth,” Ophthalmology 118(12), 2315–2325 (2011).
[CrossRef] [PubMed]

Olivier, S. S.

Parker, A.

Paterson, C.

Pilli, S.

Pircher, M.

Podoleanu, A. G.

A. G. Podoleanu, D. A. Jackson, “Combined optical coherence tomograph and scanning laser ophthalmoscope,” Electron. Lett. 34(11), 1088–1090 (1998).
[CrossRef]

Poonja, S.

Potsaid, B.

Puliafito, C. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Radhakrishnan, S.

S. Radhakrishnan, A. M. Rollins, J. E. Roth, S. Yazdanfar, V. Westphal, D. S. Bardenstein, J. A. Izatt, “Real-time optical coherence tomography of the anterior segment at 1310 nm,” Arch. Ophthalmol. 119(8), 1179–1185 (2001).
[CrossRef] [PubMed]

Rollins, A. M.

S. Radhakrishnan, A. M. Rollins, J. E. Roth, S. Yazdanfar, V. Westphal, D. S. Bardenstein, J. A. Izatt, “Real-time optical coherence tomography of the anterior segment at 1310 nm,” Arch. Ophthalmol. 119(8), 1179–1185 (2001).
[CrossRef] [PubMed]

Roorda, A.

B. Braaf, K. V. Vienola, C. K. Sheehy, Q. Yang, K. A. Vermeer, P. Tiruveedhula, D. W. Arathorn, A. Roorda, J. F. de Boer, “Real-time eye motion correction in phase-resolved OCT angiography with tracking SLO,” Biomed. Opt. Express 4(1), 51–65 (2013).
[CrossRef] [PubMed]

K. V. Vienola, B. Braaf, C. K. Sheehy, Q. Yang, P. Tiruveedhula, D. W. Arathorn, J. F. de Boer, A. Roorda, “Real-time eye motion compensation for OCT imaging with tracking SLO,” Biomed. Opt. Express 3(11), 2950–2963 (2012).
[CrossRef] [PubMed]

C. K. Sheehy, Q. Yang, D. W. Arathorn, P. Tiruveedhula, J. F. de Boer, A. Roorda, “High-speed, image-based eye tracking with a scanning laser ophthalmoscope,” Biomed. Opt. Express 3(10), 2611–2622 (2012).
[CrossRef] [PubMed]

D. Merino, J. L. Duncan, P. Tiruveedhula, A. Roorda, “Observation of cone and rod photoreceptors in normal subjects and patients using a new generation adaptive optics scanning laser ophthalmoscope,” Biomed. Opt. Express 2(8), 2189–2201 (2011).
[CrossRef] [PubMed]

Q. Yang, D. W. Arathorn, P. Tiruveedhula, C. R. Vogel, A. Roorda, “Design of an integrated hardware interface for AOSLO image capture and cone-targeted stimulus delivery,” Opt. Express 18(17), 17841–17858 (2010).
[CrossRef] [PubMed]

D. W. Arathorn, Q. Yang, C. R. Vogel, Y. Zhang, P. Tiruveedhula, A. Roorda, “Retinally stabilized cone-targeted stimulus delivery,” Opt. Express 15(21), 13731–13744 (2007).
[CrossRef] [PubMed]

C. R. Vogel, D. W. Arathorn, A. Roorda, A. Parker, “Retinal motion estimation in adaptive optics scanning laser ophthalmoscopy,” Opt. Express 14(2), 487–497 (2006).
[CrossRef] [PubMed]

Y. Zhang, S. Poonja, A. Roorda, “MEMS-based adaptive optics scanning laser ophthalmoscopy,” Opt. Lett. 31(9), 1268–1270 (2006).
[CrossRef] [PubMed]

S. B. Stevenson, A. Roorda, “Correcting for miniature eye movements in high resolution scanning laser ophthalmoscopy,” Proc. SPIE 5688, 145–151 (2005).
[CrossRef]

Roth, J. E.

S. Radhakrishnan, A. M. Rollins, J. E. Roth, S. Yazdanfar, V. Westphal, D. S. Bardenstein, J. A. Izatt, “Real-time optical coherence tomography of the anterior segment at 1310 nm,” Arch. Ophthalmol. 119(8), 1179–1185 (2001).
[CrossRef] [PubMed]

Sarin, N.

R. S. Maldonado, R. V. O’Connell, N. Sarin, S. F. Freedman, D. K. Wallace, C. M. Cotten, K. P. Winter, S. Stinnett, S. J. Chiu, J. A. Izatt, S. Farsiu, C. A. Toth, “Dynamics of human foveal development after premature birth,” Ophthalmology 118(12), 2315–2325 (2011).
[CrossRef] [PubMed]

G. T. Chong, S. Farsiu, S. F. Freedman, N. Sarin, A. F. Koreishi, J. A. Izatt, C. A. Toth, “Abnormal foveal morphology in ocular albinism imaged with spectral-domain optical coherence tomography,” Arch. Ophthalmol. 127(1), 37–44 (2009).
[CrossRef] [PubMed]

Sattmann, H.

Schmode, S.

J. P. Kelly, A. H. Weiss, Q. Zhou, S. Schmode, A. W. Dreher, “Imaging a child’s fundus without dilation using a handheld confocal scanning laser ophthalmoscope,” Arch. Ophthalmol. 121(3), 391–396 (2003).
[CrossRef] [PubMed]

Schuman, J. S.

T. H. Cronin, R. W. Hertle, H. Ishikawa, J. S. Schuman, “Spectral domain optical coherence tomography for detection of foveal morphology in patients with nystagmus,” J. AAPOS 13(6), 563–566 (2009).
[CrossRef] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Scott, A. W.

A. W. Scott, S. Farsiu, L. B. Enyedi, D. K. Wallace, C. A. Toth, “Imaging the infant retina with a hand-held spectral-domain optical coherence tomography device,” Am. J. Ophthalmol. 147(2), 364–373, e2 (2009).
[CrossRef] [PubMed]

Sheehy, C. K.

Song, X.

X. Song, R. Estrada, S. J. Chiu, A.-H. Dhalla, C. A. Toth, J. A. Izatt, S. Farsiu, “Segmentation-based registration of retinal optical coherence tomography images with pathology,” Invest. Ophthalmol. Vis. Sci. 52, 1309 (2011).

Stevenson, S. B.

S. B. Stevenson, A. Roorda, “Correcting for miniature eye movements in high resolution scanning laser ophthalmoscopy,” Proc. SPIE 5688, 145–151 (2005).
[CrossRef]

Stewart, C. N.

W. Jung, J. Kim, M. Jeon, E. J. Chaney, C. N. Stewart, S. A. Boppart, “Handheld optical coherence tomography scanner for primary care diagnostics,” IEEE Trans. Biomed. Eng. 58(3), 741–744 (2011).
[CrossRef] [PubMed]

Stinnett, S.

R. S. Maldonado, R. V. O’Connell, N. Sarin, S. F. Freedman, D. K. Wallace, C. M. Cotten, K. P. Winter, S. Stinnett, S. J. Chiu, J. A. Izatt, S. Farsiu, C. A. Toth, “Dynamics of human foveal development after premature birth,” Ophthalmology 118(12), 2315–2325 (2011).
[CrossRef] [PubMed]

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Swanson, E. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Tao, Y. K.

Tiruveedhula, P.

Tomasi, C.

Toth, C. A.

T. A. Moreno, R. V. O’Connell, S. J. Chiu, S. Farsiu, M. T. Cabrera, R. S. Maldonado, D. Tran-Viet, S. F. Freedman, D. K. Wallace, C. A. Toth, “Choroid development and feasibility of choroidal imaging in the preterm and term infants utilizing SD-OCT,” Invest. Ophthalmol. Vis. Sci. 54(6), 4140–4147 (2013).
[CrossRef] [PubMed]

R. S. Maldonado, R. V. O’Connell, N. Sarin, S. F. Freedman, D. K. Wallace, C. M. Cotten, K. P. Winter, S. Stinnett, S. J. Chiu, J. A. Izatt, S. Farsiu, C. A. Toth, “Dynamics of human foveal development after premature birth,” Ophthalmology 118(12), 2315–2325 (2011).
[CrossRef] [PubMed]

X. Song, R. Estrada, S. J. Chiu, A.-H. Dhalla, C. A. Toth, J. A. Izatt, S. Farsiu, “Segmentation-based registration of retinal optical coherence tomography images with pathology,” Invest. Ophthalmol. Vis. Sci. 52, 1309 (2011).

G. T. Chong, S. Farsiu, S. F. Freedman, N. Sarin, A. F. Koreishi, J. A. Izatt, C. A. Toth, “Abnormal foveal morphology in ocular albinism imaged with spectral-domain optical coherence tomography,” Arch. Ophthalmol. 127(1), 37–44 (2009).
[CrossRef] [PubMed]

S. H. Chavala, S. Farsiu, R. Maldonado, D. K. Wallace, S. F. Freedman, C. A. Toth, “Insights into advanced retinopathy of prematurity using hand-held spectral domain optical coherence tomography imaging,” Ophthalmology 116(12), 2448–2456 (2009).
[CrossRef] [PubMed]

A. W. Scott, S. Farsiu, L. B. Enyedi, D. K. Wallace, C. A. Toth, “Imaging the infant retina with a hand-held spectral-domain optical coherence tomography device,” Am. J. Ophthalmol. 147(2), 364–373, e2 (2009).
[CrossRef] [PubMed]

Tran-Viet, D.

T. A. Moreno, R. V. O’Connell, S. J. Chiu, S. Farsiu, M. T. Cabrera, R. S. Maldonado, D. Tran-Viet, S. F. Freedman, D. K. Wallace, C. A. Toth, “Choroid development and feasibility of choroidal imaging in the preterm and term infants utilizing SD-OCT,” Invest. Ophthalmol. Vis. Sci. 54(6), 4140–4147 (2013).
[CrossRef] [PubMed]

Ustun, T. E.

D. X. Hammer, N. V. Iftimia, T. E. Ustun, J. C. Magill, R. D. Ferguson, “Dual OCT/SLO imager with three-dimensional tracker,” Proc. SPIE 5688, 33–44 (2005).
[CrossRef]

Vermeer, K. A.

Vienola, K. V.

Vogel, C. R.

Wallace, D. K.

T. A. Moreno, R. V. O’Connell, S. J. Chiu, S. Farsiu, M. T. Cabrera, R. S. Maldonado, D. Tran-Viet, S. F. Freedman, D. K. Wallace, C. A. Toth, “Choroid development and feasibility of choroidal imaging in the preterm and term infants utilizing SD-OCT,” Invest. Ophthalmol. Vis. Sci. 54(6), 4140–4147 (2013).
[CrossRef] [PubMed]

R. S. Maldonado, R. V. O’Connell, N. Sarin, S. F. Freedman, D. K. Wallace, C. M. Cotten, K. P. Winter, S. Stinnett, S. J. Chiu, J. A. Izatt, S. Farsiu, C. A. Toth, “Dynamics of human foveal development after premature birth,” Ophthalmology 118(12), 2315–2325 (2011).
[CrossRef] [PubMed]

R. Estrada, C. Tomasi, M. T. Cabrera, D. K. Wallace, S. F. Freedman, S. Farsiu, “Enhanced video indirect ophthalmoscopy (VIO) via robust mosaicing,” Biomed. Opt. Express 2(10), 2871–2887 (2011).
[CrossRef] [PubMed]

S. H. Chavala, S. Farsiu, R. Maldonado, D. K. Wallace, S. F. Freedman, C. A. Toth, “Insights into advanced retinopathy of prematurity using hand-held spectral domain optical coherence tomography imaging,” Ophthalmology 116(12), 2448–2456 (2009).
[CrossRef] [PubMed]

A. W. Scott, S. Farsiu, L. B. Enyedi, D. K. Wallace, C. A. Toth, “Imaging the infant retina with a hand-held spectral-domain optical coherence tomography device,” Am. J. Ophthalmol. 147(2), 364–373, e2 (2009).
[CrossRef] [PubMed]

Wang, Q.

Webb, R. H.

Weiss, A. H.

J. P. Kelly, A. H. Weiss, Q. Zhou, S. Schmode, A. W. Dreher, “Imaging a child’s fundus without dilation using a handheld confocal scanning laser ophthalmoscope,” Arch. Ophthalmol. 121(3), 391–396 (2003).
[CrossRef] [PubMed]

Werner, J. S.

Westphal, V.

S. Radhakrishnan, A. M. Rollins, J. E. Roth, S. Yazdanfar, V. Westphal, D. S. Bardenstein, J. A. Izatt, “Real-time optical coherence tomography of the anterior segment at 1310 nm,” Arch. Ophthalmol. 119(8), 1179–1185 (2001).
[CrossRef] [PubMed]

Winter, K. P.

R. S. Maldonado, R. V. O’Connell, N. Sarin, S. F. Freedman, D. K. Wallace, C. M. Cotten, K. P. Winter, S. Stinnett, S. J. Chiu, J. A. Izatt, S. Farsiu, C. A. Toth, “Dynamics of human foveal development after premature birth,” Ophthalmology 118(12), 2315–2325 (2011).
[CrossRef] [PubMed]

Yang, Q.

Yazdanfar, S.

S. Radhakrishnan, A. M. Rollins, J. E. Roth, S. Yazdanfar, V. Westphal, D. S. Bardenstein, J. A. Izatt, “Real-time optical coherence tomography of the anterior segment at 1310 nm,” Arch. Ophthalmol. 119(8), 1179–1185 (2001).
[CrossRef] [PubMed]

Zawadzki, R. J.

Zhang, Y.

Zhou, Q.

J. P. Kelly, A. H. Weiss, Q. Zhou, S. Schmode, A. W. Dreher, “Imaging a child’s fundus without dilation using a handheld confocal scanning laser ophthalmoscope,” Arch. Ophthalmol. 121(3), 391–396 (2003).
[CrossRef] [PubMed]

Am. J. Ophthalmol. (1)

A. W. Scott, S. Farsiu, L. B. Enyedi, D. K. Wallace, C. A. Toth, “Imaging the infant retina with a hand-held spectral-domain optical coherence tomography device,” Am. J. Ophthalmol. 147(2), 364–373, e2 (2009).
[CrossRef] [PubMed]

Appl. Opt. (1)

Arch. Ophthalmol. (3)

J. P. Kelly, A. H. Weiss, Q. Zhou, S. Schmode, A. W. Dreher, “Imaging a child’s fundus without dilation using a handheld confocal scanning laser ophthalmoscope,” Arch. Ophthalmol. 121(3), 391–396 (2003).
[CrossRef] [PubMed]

S. Radhakrishnan, A. M. Rollins, J. E. Roth, S. Yazdanfar, V. Westphal, D. S. Bardenstein, J. A. Izatt, “Real-time optical coherence tomography of the anterior segment at 1310 nm,” Arch. Ophthalmol. 119(8), 1179–1185 (2001).
[CrossRef] [PubMed]

G. T. Chong, S. Farsiu, S. F. Freedman, N. Sarin, A. F. Koreishi, J. A. Izatt, C. A. Toth, “Abnormal foveal morphology in ocular albinism imaged with spectral-domain optical coherence tomography,” Arch. Ophthalmol. 127(1), 37–44 (2009).
[CrossRef] [PubMed]

Biomed. Opt. Express (10)

R. Estrada, C. Tomasi, M. T. Cabrera, D. K. Wallace, S. F. Freedman, S. Farsiu, “Enhanced video indirect ophthalmoscopy (VIO) via robust mosaicing,” Biomed. Opt. Express 2(10), 2871–2887 (2011).
[CrossRef] [PubMed]

H. C. Hendargo, R. Estrada, S. J. Chiu, C. Tomasi, S. Farsiu, J. A. Izatt, “Automated non-rigid registration and mosaicing for robust imaging of distinct retinal capillary beds using speckle variance optical coherence tomography,” Biomed. Opt. Express 4(6), 803–821 (2013).
[CrossRef] [PubMed]

M. F. Kraus, B. Potsaid, M. A. Mayer, R. Bock, B. Baumann, J. J. Liu, J. Hornegger, J. G. Fujimoto, “Motion correction in optical coherence tomography volumes on a per A-scan basis using orthogonal scan patterns,” Biomed. Opt. Express 3(6), 1182–1199 (2012).
[CrossRef] [PubMed]

D. Merino, J. L. Duncan, P. Tiruveedhula, A. Roorda, “Observation of cone and rod photoreceptors in normal subjects and patients using a new generation adaptive optics scanning laser ophthalmoscope,” Biomed. Opt. Express 2(8), 2189–2201 (2011).
[CrossRef] [PubMed]

C. K. Sheehy, Q. Yang, D. W. Arathorn, P. Tiruveedhula, J. F. de Boer, A. Roorda, “High-speed, image-based eye tracking with a scanning laser ophthalmoscope,” Biomed. Opt. Express 3(10), 2611–2622 (2012).
[CrossRef] [PubMed]

O. P. Kocaoglu, S. Lee, R. S. Jonnal, Q. Wang, A. E. Herde, J. C. Derby, W. Gao, D. T. Miller, “Imaging cone photoreceptors in three dimensions and in time using ultrahigh resolution optical coherence tomography with adaptive optics,” Biomed. Opt. Express 2(4), 748–763 (2011).
[CrossRef] [PubMed]

Y. K. Tao, S. Farsiu, J. A. Izatt, “Interlaced spectrally encoded confocal scanning laser ophthalmoscopy and spectral domain optical coherence tomography,” Biomed. Opt. Express 1(2), 431–440 (2010).
[CrossRef] [PubMed]

R. J. Zawadzki, S. M. Jones, S. Pilli, S. Balderas-Mata, D. Y. Kim, S. S. Olivier, J. S. Werner, “Integrated adaptive optics optical coherence tomography and adaptive optics scanning laser ophthalmoscope system for simultaneous cellular resolution in vivo retinal imaging,” Biomed. Opt. Express 2(6), 1674–1686 (2011).
[CrossRef] [PubMed]

K. V. Vienola, B. Braaf, C. K. Sheehy, Q. Yang, P. Tiruveedhula, D. W. Arathorn, J. F. de Boer, A. Roorda, “Real-time eye motion compensation for OCT imaging with tracking SLO,” Biomed. Opt. Express 3(11), 2950–2963 (2012).
[CrossRef] [PubMed]

B. Braaf, K. V. Vienola, C. K. Sheehy, Q. Yang, K. A. Vermeer, P. Tiruveedhula, D. W. Arathorn, A. Roorda, J. F. de Boer, “Real-time eye motion correction in phase-resolved OCT angiography with tracking SLO,” Biomed. Opt. Express 4(1), 51–65 (2013).
[CrossRef] [PubMed]

Electron. Lett. (1)

A. G. Podoleanu, D. A. Jackson, “Combined optical coherence tomograph and scanning laser ophthalmoscope,” Electron. Lett. 34(11), 1088–1090 (1998).
[CrossRef]

IEEE Trans. Biomed. Eng. (1)

W. Jung, J. Kim, M. Jeon, E. J. Chaney, C. N. Stewart, S. A. Boppart, “Handheld optical coherence tomography scanner for primary care diagnostics,” IEEE Trans. Biomed. Eng. 58(3), 741–744 (2011).
[CrossRef] [PubMed]

Invest. Ophthalmol. Vis. Sci. (2)

X. Song, R. Estrada, S. J. Chiu, A.-H. Dhalla, C. A. Toth, J. A. Izatt, S. Farsiu, “Segmentation-based registration of retinal optical coherence tomography images with pathology,” Invest. Ophthalmol. Vis. Sci. 52, 1309 (2011).

T. A. Moreno, R. V. O’Connell, S. J. Chiu, S. Farsiu, M. T. Cabrera, R. S. Maldonado, D. Tran-Viet, S. F. Freedman, D. K. Wallace, C. A. Toth, “Choroid development and feasibility of choroidal imaging in the preterm and term infants utilizing SD-OCT,” Invest. Ophthalmol. Vis. Sci. 54(6), 4140–4147 (2013).
[CrossRef] [PubMed]

J. AAPOS (1)

T. H. Cronin, R. W. Hertle, H. Ishikawa, J. S. Schuman, “Spectral domain optical coherence tomography for detection of foveal morphology in patients with nystagmus,” J. AAPOS 13(6), 563–566 (2009).
[CrossRef] [PubMed]

J. Biomed. Opt. (1)

F. LaRocca, A.-H. Dhalla, M. P. Kelly, S. Farsiu, J. A. Izatt, “Optimization of confocal scanning laser ophthalmoscope design,” J. Biomed. Opt. 18(7), 076015 (2013).
[CrossRef] [PubMed]

J. Opt. Soc. Am. A (1)

Ophthalmology (2)

S. H. Chavala, S. Farsiu, R. Maldonado, D. K. Wallace, S. F. Freedman, C. A. Toth, “Insights into advanced retinopathy of prematurity using hand-held spectral domain optical coherence tomography imaging,” Ophthalmology 116(12), 2448–2456 (2009).
[CrossRef] [PubMed]

R. S. Maldonado, R. V. O’Connell, N. Sarin, S. F. Freedman, D. K. Wallace, C. M. Cotten, K. P. Winter, S. Stinnett, S. J. Chiu, J. A. Izatt, S. Farsiu, C. A. Toth, “Dynamics of human foveal development after premature birth,” Ophthalmology 118(12), 2315–2325 (2011).
[CrossRef] [PubMed]

Opt. Express (5)

Opt. Lett. (1)

Proc. SPIE (2)

S. B. Stevenson, A. Roorda, “Correcting for miniature eye movements in high resolution scanning laser ophthalmoscopy,” Proc. SPIE 5688, 145–151 (2005).
[CrossRef]

D. X. Hammer, N. V. Iftimia, T. E. Ustun, J. C. Magill, R. D. Ferguson, “Dual OCT/SLO imager with three-dimensional tracker,” Proc. SPIE 5688, 33–44 (2005).
[CrossRef]

Science (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Other (5)

S. Ricco, M. Chen, H. Ishikawa, G. Wollstein, and J. Schuman, “Correcting motion artifacts in retinal spectral domain optical coherence tomography via image registration,” in Medical Image Computing and Computer-Assisted Intervention – MICCAI 2009, G.-Z. Yang, D. Hawkes, D. Rueckert, A. Noble, and C. Taylor, eds. (Springer Berlin / Heidelberg, 2009), pp. 100–107.

M. D. Robinson, S. J. Chiu, C. A. Toth, J. Izatt, J. Y. Lo, and S. Farsiu, “Novel applications of super-resolution in medical imaging,” in “Super-resolution imaging”, P. Milanfar, ed. (CRC Press 2010), pp. 383–412.

Laser Institute of America, American National Standard for Safe Use of Lasers ANSI Z136.1–2007 (American National Standards Institute, Inc., 2007).

A. Dubra and Z. Harvey, “Registration of 2D Images from Fast Scanning Ophthalmic Instruments,” in Biomedical Image Registration, Vol. 6204 of Lecture Notes in Computer Science (Springer, Berlin), pp. 60–71 (2010).

R. J. Zawadzki, A. R. Fuller, S. S. Choi, D. F. Wiley, B. Hamann, and J. S. Werner, “Correction of motion artifacts and scanning beam distortions in 3D ophthalmic optical coherence tomography imaging,” Proc. SPIE 642607–642607 (2007).

Supplementary Material (5)

» Media 1: PDF (12371 KB)     
» Media 2: PDF (12976 KB)     
» Media 3: U3D (19658 KB)     
» Media 4: U3D (20510 KB)     
» Media 5: MPG (23202 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

A side view schematic of the handheld SLO-OCT design. All optical components are labeled and described in the legend. The SLO source is a 770 nm SLD with 15 nm bandwidth. The OCT source is an 840 nm SLD with 70 nm bandwidth. The optical paths shown are the superposition of both the illumination and collection paths. The illumination beam diameters for both SLO and OCT were ~2.5 mm. The collection beam diameter for the SLO was larger due to the larger NA and size of the collection fiber, and because backscattered light from the retina fills the pupil in the return path.

Fig. 2
Fig. 2

Spot diagrams for the SLO (A) and the OCT (B) illumination on the retina spanning a 20° FOV. SLO and OCT are nearly diffraction limited at 7 and 7.5 µm (the Airy disk radii), respectively (Airy disk is shown by black circle on spot diagrams). Spot diagrams are color coded for 3 wavelengths spanning the bandwidth of the respective sources. SLO spot diagrams have increased astigmatism compared to OCT spot diagrams due to the transmission through the tilted dichroic mirror.

Fig. 3
Fig. 3

Solidworks design of the handheld SLO-OCT probe. A) Side view showing the internal components of the probe. B) Isometric view of probe with case. Rotatable three-dimensional versions of these figures are included as Media 1 (3D PDF) and Media 2 (3D PDF) [alternate version available in U3D format as Media 3 and Media 4].

Fig. 4
Fig. 4

The handheld SLO-OCT probe. A) Tabletop mountable configuration on a patient positioning system from a Carl Zeiss slit-lamp. B) Handheld use of probe.

Fig. 5
Fig. 5

A) SLO image (single frame) with red line representing location of B-scan. B) Single B-scan taken simultaneously with the SLO at 40 fps. C) Foveal SLO image (single frame) indicating the position where the SLO was optically zoomed to visualize parafoveal cones. D) Optically zoomed retinal image (5 frame average) via reduction of scan range to a 2.5° FOV at location shown by red box in C) at an 11° eccentricity. E) Digitally zoomed image at location shown by blue box in D) with a 1.5° FOV showing the cone photoreceptor mosaic.

Fig. 6
Fig. 6

Single frame SLO image (A) and the corresponding LoG/Gabor filtered and thresholded SLO image (B).

Fig. 7
Fig. 7

SLO patch-based registration. A) SLO reference frame to which all images are registered. B) Another SLO image from the same subject. C) Patch-based registration of SLO image in B) to the reference frame in A). The voids have been colored in green to better visualize the regions where no information was obtained. D) Spline interpolated motion determined from the patch-based registration in C) is applied to each line in the SLO image from B) and empty voids within the frame are linearly interpolated.

Fig. 8
Fig. 8

SLO motion estimation with X-fast (A-C) and Y-fast (D-F) OCT. A slow horizontal drift is visualized in the X-fast motion estimation with a large saccade captured at around the 13 second point. Both vertical and horizontal drifts are apparent in the Y-fast motion estimation with two microsaccades captured at around the 0.5 and 11 second points.

Fig. 9
Fig. 9

Raw and registered SVPs with and without interpolation based on motion estimation through SLO frame registration. A) Raw X-fast SVP. B) Registered X-fast SVP. C) Registered X-fast SVP after interpolation. D) Raw Y-fast SVP. E) Registered Y-fast SVP. F) Registered Y-fast SVP after interpolation. G) Combined X- and Y-fast SVPs after registration. H) Combined X- and Y-fast SVPs after registration and interpolation.

Fig. 10
Fig. 10

Steps for axial registration with an X- and Y-fast OCT volume. A) The initial four B-scans taken near the corners of the composite volume. Red dots indicate points of lateral overlap on the surface of each initial B-scan. B) The initial four B-scans after axial translation and rotation. Note that the red dots at points of lateral overlap now overlap axially as well. C) The registration of an additional two X- and Y-fast B-scans. D) Final registered volume rendering of all X- and Y-fast B-scans. Orthogonal fly-throughs of this data are included as supplementary material (Media 5).

Fig. 11
Fig. 11

Comparison between registration with and without LoG/Gabor preprocessing. A) The reference frame. B) The target frame (to be registered with respect to reference frame). C) LoG/Gabor preprocessed reference frame. D) LoG/Gabor preprocessed target frame. E) Registration of A) and B) without LoG/Gabor preprocessing. F) Registration of A) and B) with the LoG/Gabor preprocessing shown in C) and D).

Metrics