Abstract

Abstract: We developed a method based on polarization-sensitive optical coherence tomography (PS-OCT) to quantify the double pass phase retardation (DPPR) induced by Henle fiber layer in three subjects. Measurements of the retina were performed at a mean wavelength of 840 nm using two polarization states that were perpendicular in a Poincaré sphere representation and phase retardation contributions from tissue layers above and below the Henle fiber layer were excluded using appropriately placed reference and measurement points. These points were semi-automatically segmented from intensity data. Using a new algorithm to determine DPPR, the Henle fiber layer in three healthy subjects aged 50-60 years showed elevated DPPR in a concentric ring about the fovea, with an average maximum DPPR for the three subjects of 22.0° (range: 20.4° to 23.0°) occurring at an average retinal eccentricity of 1.8° (range: 1.5° to 2.25°). Outside the ring, a floor of approximately 6.8° was measured, which we show can mainly be attributed to phase noise that is induced in the polarization states. We also demonstrate the method can determine fast axis orientation of the retardation, which is found consistent with the known radial pattern of Henle fibers.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. B. K. Brink, G. J. van Blokland, “Birefringence of the human foveal area assessed in vivo with Mueller-matrix ellipsometry,” J. Opt. Soc. Am. A 5(1), 49–57 (1988).
    [CrossRef] [PubMed]
  2. A. Weber, A. E. Elsner, M. Miura, S. Kompa, M. C. Cheney, “Relationship between foveal birefringence and visual acuity in neovascular age-related macular degeneration,” Eye (Lond.) 21(3), 353–361 (2007).
    [CrossRef] [PubMed]
  3. D. A. VanNasdale, A. E. Elsner, T. Hobbs, S. A. Burns, “Foveal phase retardation changes associated with normal aging,” Vision Res. 51(21-22), 2263–2272 (2011).
    [CrossRef] [PubMed]
  4. M. Pircher, E. Götzinger, R. Leitgeb, H. Sattmann, O. Findl, C. K. Hitzenberger, “Imaging of polarization properties of human retina in vivo with phase resolved transversal PS-OCT,” Opt. Express 12(24), 5940–5951 (2004).
    [CrossRef] [PubMed]
  5. S. Zotter, M. Pircher, T. Torzicky, B. Baumann, H. Yoshida, F. Hirose, P. Roberts, M. Ritter, C. Schütze, E. Götzinger, W. Trasischker, C. Vass, U. Schmidt-Erfurth, C. K. Hitzenberger, “Large-field high-speed polarization sensitive spectral domain OCT and its applications in ophthalmology,” Biomed. Opt. Express 3(11), 2720–2732 (2012).
    [CrossRef] [PubMed]
  6. B. Cense, T. C. Chen, B. H. Park, M. C. Pierce, J. F. de Boer, “In vivo depth-resolved birefringence measurements of the human retinal nerve fiber layer by polarization-sensitive optical coherence tomography,” Opt. Lett. 27(18), 1610–1612 (2002).
    [CrossRef] [PubMed]
  7. B. Cense, T. C. Chen, B. H. Park, M. C. Pierce, J. F. de Boer, “In vivo birefringence and thickness measurements of the human retinal nerve fiber layer using polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 9(1), 121–125 (2004).
    [CrossRef] [PubMed]
  8. B. Cense, T. C. Chen, B. H. Park, M. C. Pierce, J. F. de Boer, “Thickness and birefringence of healthy retinal nerve fiber layer tissue measured with polarization-sensitive optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 45(8), 2606–2612 (2004).
    [CrossRef] [PubMed]
  9. B. Cense, M. Mujat, T. C. Chen, B. H. Park, J. F. de Boer, “Polarization-sensitive spectral-domain optical coherence tomography using a single line scan camera,” Opt. Express 15(5), 2421–2431 (2007).
    [CrossRef] [PubMed]
  10. M. Yamanari, M. Miura, S. Makita, T. Yatagai, Y. Yasuno, “Phase retardation measurement of retinal nerve fiber layer by polarization-sensitive spectral-domain optical coherence tomography and scanning laser polarimetry,” J. Biomed. Opt. 13(1), 014013 (2008).
    [CrossRef] [PubMed]
  11. J. Dwelle, S. Liu, B. Q. Wang, A. McElroy, D. Ho, M. K. Markey, T. Milner, H. G. Rylander, “Thickness, phase retardation, birefringence, and reflectance of the retinal nerve fiber layer in normal and glaucomatous non-human primates,” Invest. Ophthalmol. Vis. Sci. 53(8), 4380–4395 (2012).
    [CrossRef] [PubMed]
  12. N. J. Kemp, H. N. Zaatari, J. Park, H. G. Rylander III, T. E. Milner, “Depth-resolved optic axis orientation in multiple layered anisotropic tissues measured with enhanced polarization-sensitive optical coherence tomography (EPS-OCT),” Opt. Express 13(12), 4507–4518 (2005).
    [CrossRef] [PubMed]
  13. E. Götzinger, M. Pircher, B. Baumann, C. Hirn, C. Vass, C. K. Hitzenberger, “Retinal nerve fiber layer birefringence evaluated with polarization sensitive spectral domain OCT and scanning laser polarimetry: A comparison,” J Biophotonics 1(2), 129–139 (2008).
    [CrossRef] [PubMed]
  14. S. Zotter, M. Pircher, E. Götzinger, T. Torzicky, H. Yoshida, F. Hirose, S. Holzer, J. Kroisamer, C. Vass, U. Schmidt-Erfurth, C. K. Hitzenberger, “Measuring retinal nerve fiber layer birefringence, retardation, and thickness using wide-field, high-speed polarization sensitive spectral domain OCT,” Invest. Ophthalmol. Vis. Sci. 54(1), 72–84 (2013).
    [CrossRef] [PubMed]
  15. B. Cense, W. Gao, J. M. Brown, S. M. Jones, R. S. Jonnal, M. Mujat, B. H. Park, J. F. de Boer, D. T. Miller, “Retinal imaging with polarization-sensitive optical coherence tomography and adaptive optics,” Opt. Express 17(24), 21634–21651 (2009).
    [CrossRef] [PubMed]
  16. C. E. Saxer, J. F. de Boer, B. H. Park, Y. H. Zhao, Z. P. Chen, J. S. Nelson, “High-speed fiber based polarization-sensitive optical coherence tomography of in vivo human skin,” Opt. Lett. 25(18), 1355–1357 (2000).
    [CrossRef] [PubMed]
  17. B. H. Park, M. C. Pierce, B. Cense, J. F. de Boer, “Real-time multi-functional optical coherence tomography,” Opt. Express 11(7), 782–793 (2003).
    [CrossRef] [PubMed]
  18. E. Götzinger, M. Pircher, W. Geitzenauer, C. Ahlers, B. Baumann, S. Michels, U. Schmidt-Erfurth, C. K. Hitzenberger, “Retinal pigment epithelium segmentation by polarization sensitive optical coherence tomography,” Opt. Express 16(21), 16410–16422 (2008).
    [CrossRef] [PubMed]
  19. B. J. Lujan, A. Roorda, R. W. Knighton, J. Carroll, “Revealing Henle’s fiber layer using spectral domain optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 52(3), 1486–1492 (2011).
    [CrossRef] [PubMed]
  20. A.N.S.I., “Z136.1 Safe use of lasers,” standard ANSI z136.1 (Laser Institute of America, New York, 2007).
  21. B. H. Park, M. C. Pierce, B. Cense, J. F. de Boer, “Optic axis determination accuracy for fiber-based polarization-sensitive optical coherence tomography,” Opt. Lett. 30(19), 2587–2589 (2005).
    [CrossRef] [PubMed]
  22. K. M. Twietmeyer, R. A. Chipman, A. E. Elsner, Y. Zhao, D. VanNasdale, “Mueller matrix retinal imager with optimized polarization conditions,” Opt. Express 16(26), 21339–21354 (2008).
    [CrossRef] [PubMed]
  23. C. A. Curcio, J. D. Messinger, K. R. Sloan, A. Mitra, G. McGwin, R. F. Spaide, “Human chorioretinal layer thicknesses measured in macula-wide, high-resolution histologic sections,” Invest. Ophthalmol. Vis. Sci. 52(7), 3943–3954 (2011).
    [CrossRef] [PubMed]
  24. H. H. Ku, “Notes on use of propagation of error formulas,” J. Res. Nbs. C Eng. Inst. C 70, 263–273 (1966).
  25. E. Götzinger, M. Pircher, B. Baumann, T. Schmoll, H. Sattmann, R. A. Leitgeb, C. K. Hitzenberger, “Speckle noise reduction in high speed polarization sensitive spectral domain optical coherence tomography,” Opt. Express 19(15), 14568–14585 (2011).
    [CrossRef] [PubMed]
  26. M. Pircher, E. Götzinger, B. Baumann, C. K. Hitzenberger, “Corneal birefringence compensation for polarization sensitive optical coherence tomography of the human retina,” J. Biomed. Opt. 12(4), 041210 (2007).
    [CrossRef] [PubMed]

2013 (1)

S. Zotter, M. Pircher, E. Götzinger, T. Torzicky, H. Yoshida, F. Hirose, S. Holzer, J. Kroisamer, C. Vass, U. Schmidt-Erfurth, C. K. Hitzenberger, “Measuring retinal nerve fiber layer birefringence, retardation, and thickness using wide-field, high-speed polarization sensitive spectral domain OCT,” Invest. Ophthalmol. Vis. Sci. 54(1), 72–84 (2013).
[CrossRef] [PubMed]

2012 (2)

J. Dwelle, S. Liu, B. Q. Wang, A. McElroy, D. Ho, M. K. Markey, T. Milner, H. G. Rylander, “Thickness, phase retardation, birefringence, and reflectance of the retinal nerve fiber layer in normal and glaucomatous non-human primates,” Invest. Ophthalmol. Vis. Sci. 53(8), 4380–4395 (2012).
[CrossRef] [PubMed]

S. Zotter, M. Pircher, T. Torzicky, B. Baumann, H. Yoshida, F. Hirose, P. Roberts, M. Ritter, C. Schütze, E. Götzinger, W. Trasischker, C. Vass, U. Schmidt-Erfurth, C. K. Hitzenberger, “Large-field high-speed polarization sensitive spectral domain OCT and its applications in ophthalmology,” Biomed. Opt. Express 3(11), 2720–2732 (2012).
[CrossRef] [PubMed]

2011 (4)

E. Götzinger, M. Pircher, B. Baumann, T. Schmoll, H. Sattmann, R. A. Leitgeb, C. K. Hitzenberger, “Speckle noise reduction in high speed polarization sensitive spectral domain optical coherence tomography,” Opt. Express 19(15), 14568–14585 (2011).
[CrossRef] [PubMed]

B. J. Lujan, A. Roorda, R. W. Knighton, J. Carroll, “Revealing Henle’s fiber layer using spectral domain optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 52(3), 1486–1492 (2011).
[CrossRef] [PubMed]

C. A. Curcio, J. D. Messinger, K. R. Sloan, A. Mitra, G. McGwin, R. F. Spaide, “Human chorioretinal layer thicknesses measured in macula-wide, high-resolution histologic sections,” Invest. Ophthalmol. Vis. Sci. 52(7), 3943–3954 (2011).
[CrossRef] [PubMed]

D. A. VanNasdale, A. E. Elsner, T. Hobbs, S. A. Burns, “Foveal phase retardation changes associated with normal aging,” Vision Res. 51(21-22), 2263–2272 (2011).
[CrossRef] [PubMed]

2009 (1)

2008 (4)

E. Götzinger, M. Pircher, W. Geitzenauer, C. Ahlers, B. Baumann, S. Michels, U. Schmidt-Erfurth, C. K. Hitzenberger, “Retinal pigment epithelium segmentation by polarization sensitive optical coherence tomography,” Opt. Express 16(21), 16410–16422 (2008).
[CrossRef] [PubMed]

K. M. Twietmeyer, R. A. Chipman, A. E. Elsner, Y. Zhao, D. VanNasdale, “Mueller matrix retinal imager with optimized polarization conditions,” Opt. Express 16(26), 21339–21354 (2008).
[CrossRef] [PubMed]

M. Yamanari, M. Miura, S. Makita, T. Yatagai, Y. Yasuno, “Phase retardation measurement of retinal nerve fiber layer by polarization-sensitive spectral-domain optical coherence tomography and scanning laser polarimetry,” J. Biomed. Opt. 13(1), 014013 (2008).
[CrossRef] [PubMed]

E. Götzinger, M. Pircher, B. Baumann, C. Hirn, C. Vass, C. K. Hitzenberger, “Retinal nerve fiber layer birefringence evaluated with polarization sensitive spectral domain OCT and scanning laser polarimetry: A comparison,” J Biophotonics 1(2), 129–139 (2008).
[CrossRef] [PubMed]

2007 (3)

M. Pircher, E. Götzinger, B. Baumann, C. K. Hitzenberger, “Corneal birefringence compensation for polarization sensitive optical coherence tomography of the human retina,” J. Biomed. Opt. 12(4), 041210 (2007).
[CrossRef] [PubMed]

A. Weber, A. E. Elsner, M. Miura, S. Kompa, M. C. Cheney, “Relationship between foveal birefringence and visual acuity in neovascular age-related macular degeneration,” Eye (Lond.) 21(3), 353–361 (2007).
[CrossRef] [PubMed]

B. Cense, M. Mujat, T. C. Chen, B. H. Park, J. F. de Boer, “Polarization-sensitive spectral-domain optical coherence tomography using a single line scan camera,” Opt. Express 15(5), 2421–2431 (2007).
[CrossRef] [PubMed]

2005 (2)

2004 (3)

B. Cense, T. C. Chen, B. H. Park, M. C. Pierce, J. F. de Boer, “In vivo birefringence and thickness measurements of the human retinal nerve fiber layer using polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 9(1), 121–125 (2004).
[CrossRef] [PubMed]

B. Cense, T. C. Chen, B. H. Park, M. C. Pierce, J. F. de Boer, “Thickness and birefringence of healthy retinal nerve fiber layer tissue measured with polarization-sensitive optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 45(8), 2606–2612 (2004).
[CrossRef] [PubMed]

M. Pircher, E. Götzinger, R. Leitgeb, H. Sattmann, O. Findl, C. K. Hitzenberger, “Imaging of polarization properties of human retina in vivo with phase resolved transversal PS-OCT,” Opt. Express 12(24), 5940–5951 (2004).
[CrossRef] [PubMed]

2003 (1)

2002 (1)

2000 (1)

1988 (1)

1966 (1)

H. H. Ku, “Notes on use of propagation of error formulas,” J. Res. Nbs. C Eng. Inst. C 70, 263–273 (1966).

Ahlers, C.

Baumann, B.

Brink, H. B. K.

Brown, J. M.

Burns, S. A.

D. A. VanNasdale, A. E. Elsner, T. Hobbs, S. A. Burns, “Foveal phase retardation changes associated with normal aging,” Vision Res. 51(21-22), 2263–2272 (2011).
[CrossRef] [PubMed]

Carroll, J.

B. J. Lujan, A. Roorda, R. W. Knighton, J. Carroll, “Revealing Henle’s fiber layer using spectral domain optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 52(3), 1486–1492 (2011).
[CrossRef] [PubMed]

Cense, B.

B. Cense, W. Gao, J. M. Brown, S. M. Jones, R. S. Jonnal, M. Mujat, B. H. Park, J. F. de Boer, D. T. Miller, “Retinal imaging with polarization-sensitive optical coherence tomography and adaptive optics,” Opt. Express 17(24), 21634–21651 (2009).
[CrossRef] [PubMed]

B. Cense, M. Mujat, T. C. Chen, B. H. Park, J. F. de Boer, “Polarization-sensitive spectral-domain optical coherence tomography using a single line scan camera,” Opt. Express 15(5), 2421–2431 (2007).
[CrossRef] [PubMed]

B. H. Park, M. C. Pierce, B. Cense, J. F. de Boer, “Optic axis determination accuracy for fiber-based polarization-sensitive optical coherence tomography,” Opt. Lett. 30(19), 2587–2589 (2005).
[CrossRef] [PubMed]

B. Cense, T. C. Chen, B. H. Park, M. C. Pierce, J. F. de Boer, “In vivo birefringence and thickness measurements of the human retinal nerve fiber layer using polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 9(1), 121–125 (2004).
[CrossRef] [PubMed]

B. Cense, T. C. Chen, B. H. Park, M. C. Pierce, J. F. de Boer, “Thickness and birefringence of healthy retinal nerve fiber layer tissue measured with polarization-sensitive optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 45(8), 2606–2612 (2004).
[CrossRef] [PubMed]

B. H. Park, M. C. Pierce, B. Cense, J. F. de Boer, “Real-time multi-functional optical coherence tomography,” Opt. Express 11(7), 782–793 (2003).
[CrossRef] [PubMed]

B. Cense, T. C. Chen, B. H. Park, M. C. Pierce, J. F. de Boer, “In vivo depth-resolved birefringence measurements of the human retinal nerve fiber layer by polarization-sensitive optical coherence tomography,” Opt. Lett. 27(18), 1610–1612 (2002).
[CrossRef] [PubMed]

Chen, T. C.

B. Cense, M. Mujat, T. C. Chen, B. H. Park, J. F. de Boer, “Polarization-sensitive spectral-domain optical coherence tomography using a single line scan camera,” Opt. Express 15(5), 2421–2431 (2007).
[CrossRef] [PubMed]

B. Cense, T. C. Chen, B. H. Park, M. C. Pierce, J. F. de Boer, “In vivo birefringence and thickness measurements of the human retinal nerve fiber layer using polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 9(1), 121–125 (2004).
[CrossRef] [PubMed]

B. Cense, T. C. Chen, B. H. Park, M. C. Pierce, J. F. de Boer, “Thickness and birefringence of healthy retinal nerve fiber layer tissue measured with polarization-sensitive optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 45(8), 2606–2612 (2004).
[CrossRef] [PubMed]

B. Cense, T. C. Chen, B. H. Park, M. C. Pierce, J. F. de Boer, “In vivo depth-resolved birefringence measurements of the human retinal nerve fiber layer by polarization-sensitive optical coherence tomography,” Opt. Lett. 27(18), 1610–1612 (2002).
[CrossRef] [PubMed]

Chen, Z. P.

Cheney, M. C.

A. Weber, A. E. Elsner, M. Miura, S. Kompa, M. C. Cheney, “Relationship between foveal birefringence and visual acuity in neovascular age-related macular degeneration,” Eye (Lond.) 21(3), 353–361 (2007).
[CrossRef] [PubMed]

Chipman, R. A.

Curcio, C. A.

C. A. Curcio, J. D. Messinger, K. R. Sloan, A. Mitra, G. McGwin, R. F. Spaide, “Human chorioretinal layer thicknesses measured in macula-wide, high-resolution histologic sections,” Invest. Ophthalmol. Vis. Sci. 52(7), 3943–3954 (2011).
[CrossRef] [PubMed]

de Boer, J. F.

B. Cense, W. Gao, J. M. Brown, S. M. Jones, R. S. Jonnal, M. Mujat, B. H. Park, J. F. de Boer, D. T. Miller, “Retinal imaging with polarization-sensitive optical coherence tomography and adaptive optics,” Opt. Express 17(24), 21634–21651 (2009).
[CrossRef] [PubMed]

B. Cense, M. Mujat, T. C. Chen, B. H. Park, J. F. de Boer, “Polarization-sensitive spectral-domain optical coherence tomography using a single line scan camera,” Opt. Express 15(5), 2421–2431 (2007).
[CrossRef] [PubMed]

B. H. Park, M. C. Pierce, B. Cense, J. F. de Boer, “Optic axis determination accuracy for fiber-based polarization-sensitive optical coherence tomography,” Opt. Lett. 30(19), 2587–2589 (2005).
[CrossRef] [PubMed]

B. Cense, T. C. Chen, B. H. Park, M. C. Pierce, J. F. de Boer, “In vivo birefringence and thickness measurements of the human retinal nerve fiber layer using polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 9(1), 121–125 (2004).
[CrossRef] [PubMed]

B. Cense, T. C. Chen, B. H. Park, M. C. Pierce, J. F. de Boer, “Thickness and birefringence of healthy retinal nerve fiber layer tissue measured with polarization-sensitive optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 45(8), 2606–2612 (2004).
[CrossRef] [PubMed]

B. H. Park, M. C. Pierce, B. Cense, J. F. de Boer, “Real-time multi-functional optical coherence tomography,” Opt. Express 11(7), 782–793 (2003).
[CrossRef] [PubMed]

B. Cense, T. C. Chen, B. H. Park, M. C. Pierce, J. F. de Boer, “In vivo depth-resolved birefringence measurements of the human retinal nerve fiber layer by polarization-sensitive optical coherence tomography,” Opt. Lett. 27(18), 1610–1612 (2002).
[CrossRef] [PubMed]

C. E. Saxer, J. F. de Boer, B. H. Park, Y. H. Zhao, Z. P. Chen, J. S. Nelson, “High-speed fiber based polarization-sensitive optical coherence tomography of in vivo human skin,” Opt. Lett. 25(18), 1355–1357 (2000).
[CrossRef] [PubMed]

Dwelle, J.

J. Dwelle, S. Liu, B. Q. Wang, A. McElroy, D. Ho, M. K. Markey, T. Milner, H. G. Rylander, “Thickness, phase retardation, birefringence, and reflectance of the retinal nerve fiber layer in normal and glaucomatous non-human primates,” Invest. Ophthalmol. Vis. Sci. 53(8), 4380–4395 (2012).
[CrossRef] [PubMed]

Elsner, A. E.

D. A. VanNasdale, A. E. Elsner, T. Hobbs, S. A. Burns, “Foveal phase retardation changes associated with normal aging,” Vision Res. 51(21-22), 2263–2272 (2011).
[CrossRef] [PubMed]

K. M. Twietmeyer, R. A. Chipman, A. E. Elsner, Y. Zhao, D. VanNasdale, “Mueller matrix retinal imager with optimized polarization conditions,” Opt. Express 16(26), 21339–21354 (2008).
[CrossRef] [PubMed]

A. Weber, A. E. Elsner, M. Miura, S. Kompa, M. C. Cheney, “Relationship between foveal birefringence and visual acuity in neovascular age-related macular degeneration,” Eye (Lond.) 21(3), 353–361 (2007).
[CrossRef] [PubMed]

Findl, O.

Gao, W.

Geitzenauer, W.

Götzinger, E.

S. Zotter, M. Pircher, E. Götzinger, T. Torzicky, H. Yoshida, F. Hirose, S. Holzer, J. Kroisamer, C. Vass, U. Schmidt-Erfurth, C. K. Hitzenberger, “Measuring retinal nerve fiber layer birefringence, retardation, and thickness using wide-field, high-speed polarization sensitive spectral domain OCT,” Invest. Ophthalmol. Vis. Sci. 54(1), 72–84 (2013).
[CrossRef] [PubMed]

S. Zotter, M. Pircher, T. Torzicky, B. Baumann, H. Yoshida, F. Hirose, P. Roberts, M. Ritter, C. Schütze, E. Götzinger, W. Trasischker, C. Vass, U. Schmidt-Erfurth, C. K. Hitzenberger, “Large-field high-speed polarization sensitive spectral domain OCT and its applications in ophthalmology,” Biomed. Opt. Express 3(11), 2720–2732 (2012).
[CrossRef] [PubMed]

E. Götzinger, M. Pircher, B. Baumann, T. Schmoll, H. Sattmann, R. A. Leitgeb, C. K. Hitzenberger, “Speckle noise reduction in high speed polarization sensitive spectral domain optical coherence tomography,” Opt. Express 19(15), 14568–14585 (2011).
[CrossRef] [PubMed]

E. Götzinger, M. Pircher, W. Geitzenauer, C. Ahlers, B. Baumann, S. Michels, U. Schmidt-Erfurth, C. K. Hitzenberger, “Retinal pigment epithelium segmentation by polarization sensitive optical coherence tomography,” Opt. Express 16(21), 16410–16422 (2008).
[CrossRef] [PubMed]

E. Götzinger, M. Pircher, B. Baumann, C. Hirn, C. Vass, C. K. Hitzenberger, “Retinal nerve fiber layer birefringence evaluated with polarization sensitive spectral domain OCT and scanning laser polarimetry: A comparison,” J Biophotonics 1(2), 129–139 (2008).
[CrossRef] [PubMed]

M. Pircher, E. Götzinger, B. Baumann, C. K. Hitzenberger, “Corneal birefringence compensation for polarization sensitive optical coherence tomography of the human retina,” J. Biomed. Opt. 12(4), 041210 (2007).
[CrossRef] [PubMed]

M. Pircher, E. Götzinger, R. Leitgeb, H. Sattmann, O. Findl, C. K. Hitzenberger, “Imaging of polarization properties of human retina in vivo with phase resolved transversal PS-OCT,” Opt. Express 12(24), 5940–5951 (2004).
[CrossRef] [PubMed]

Hirn, C.

E. Götzinger, M. Pircher, B. Baumann, C. Hirn, C. Vass, C. K. Hitzenberger, “Retinal nerve fiber layer birefringence evaluated with polarization sensitive spectral domain OCT and scanning laser polarimetry: A comparison,” J Biophotonics 1(2), 129–139 (2008).
[CrossRef] [PubMed]

Hirose, F.

S. Zotter, M. Pircher, E. Götzinger, T. Torzicky, H. Yoshida, F. Hirose, S. Holzer, J. Kroisamer, C. Vass, U. Schmidt-Erfurth, C. K. Hitzenberger, “Measuring retinal nerve fiber layer birefringence, retardation, and thickness using wide-field, high-speed polarization sensitive spectral domain OCT,” Invest. Ophthalmol. Vis. Sci. 54(1), 72–84 (2013).
[CrossRef] [PubMed]

S. Zotter, M. Pircher, T. Torzicky, B. Baumann, H. Yoshida, F. Hirose, P. Roberts, M. Ritter, C. Schütze, E. Götzinger, W. Trasischker, C. Vass, U. Schmidt-Erfurth, C. K. Hitzenberger, “Large-field high-speed polarization sensitive spectral domain OCT and its applications in ophthalmology,” Biomed. Opt. Express 3(11), 2720–2732 (2012).
[CrossRef] [PubMed]

Hitzenberger, C. K.

S. Zotter, M. Pircher, E. Götzinger, T. Torzicky, H. Yoshida, F. Hirose, S. Holzer, J. Kroisamer, C. Vass, U. Schmidt-Erfurth, C. K. Hitzenberger, “Measuring retinal nerve fiber layer birefringence, retardation, and thickness using wide-field, high-speed polarization sensitive spectral domain OCT,” Invest. Ophthalmol. Vis. Sci. 54(1), 72–84 (2013).
[CrossRef] [PubMed]

S. Zotter, M. Pircher, T. Torzicky, B. Baumann, H. Yoshida, F. Hirose, P. Roberts, M. Ritter, C. Schütze, E. Götzinger, W. Trasischker, C. Vass, U. Schmidt-Erfurth, C. K. Hitzenberger, “Large-field high-speed polarization sensitive spectral domain OCT and its applications in ophthalmology,” Biomed. Opt. Express 3(11), 2720–2732 (2012).
[CrossRef] [PubMed]

E. Götzinger, M. Pircher, B. Baumann, T. Schmoll, H. Sattmann, R. A. Leitgeb, C. K. Hitzenberger, “Speckle noise reduction in high speed polarization sensitive spectral domain optical coherence tomography,” Opt. Express 19(15), 14568–14585 (2011).
[CrossRef] [PubMed]

E. Götzinger, M. Pircher, B. Baumann, C. Hirn, C. Vass, C. K. Hitzenberger, “Retinal nerve fiber layer birefringence evaluated with polarization sensitive spectral domain OCT and scanning laser polarimetry: A comparison,” J Biophotonics 1(2), 129–139 (2008).
[CrossRef] [PubMed]

E. Götzinger, M. Pircher, W. Geitzenauer, C. Ahlers, B. Baumann, S. Michels, U. Schmidt-Erfurth, C. K. Hitzenberger, “Retinal pigment epithelium segmentation by polarization sensitive optical coherence tomography,” Opt. Express 16(21), 16410–16422 (2008).
[CrossRef] [PubMed]

M. Pircher, E. Götzinger, B. Baumann, C. K. Hitzenberger, “Corneal birefringence compensation for polarization sensitive optical coherence tomography of the human retina,” J. Biomed. Opt. 12(4), 041210 (2007).
[CrossRef] [PubMed]

M. Pircher, E. Götzinger, R. Leitgeb, H. Sattmann, O. Findl, C. K. Hitzenberger, “Imaging of polarization properties of human retina in vivo with phase resolved transversal PS-OCT,” Opt. Express 12(24), 5940–5951 (2004).
[CrossRef] [PubMed]

Ho, D.

J. Dwelle, S. Liu, B. Q. Wang, A. McElroy, D. Ho, M. K. Markey, T. Milner, H. G. Rylander, “Thickness, phase retardation, birefringence, and reflectance of the retinal nerve fiber layer in normal and glaucomatous non-human primates,” Invest. Ophthalmol. Vis. Sci. 53(8), 4380–4395 (2012).
[CrossRef] [PubMed]

Hobbs, T.

D. A. VanNasdale, A. E. Elsner, T. Hobbs, S. A. Burns, “Foveal phase retardation changes associated with normal aging,” Vision Res. 51(21-22), 2263–2272 (2011).
[CrossRef] [PubMed]

Holzer, S.

S. Zotter, M. Pircher, E. Götzinger, T. Torzicky, H. Yoshida, F. Hirose, S. Holzer, J. Kroisamer, C. Vass, U. Schmidt-Erfurth, C. K. Hitzenberger, “Measuring retinal nerve fiber layer birefringence, retardation, and thickness using wide-field, high-speed polarization sensitive spectral domain OCT,” Invest. Ophthalmol. Vis. Sci. 54(1), 72–84 (2013).
[CrossRef] [PubMed]

Jones, S. M.

Jonnal, R. S.

Kemp, N. J.

Knighton, R. W.

B. J. Lujan, A. Roorda, R. W. Knighton, J. Carroll, “Revealing Henle’s fiber layer using spectral domain optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 52(3), 1486–1492 (2011).
[CrossRef] [PubMed]

Kompa, S.

A. Weber, A. E. Elsner, M. Miura, S. Kompa, M. C. Cheney, “Relationship between foveal birefringence and visual acuity in neovascular age-related macular degeneration,” Eye (Lond.) 21(3), 353–361 (2007).
[CrossRef] [PubMed]

Kroisamer, J.

S. Zotter, M. Pircher, E. Götzinger, T. Torzicky, H. Yoshida, F. Hirose, S. Holzer, J. Kroisamer, C. Vass, U. Schmidt-Erfurth, C. K. Hitzenberger, “Measuring retinal nerve fiber layer birefringence, retardation, and thickness using wide-field, high-speed polarization sensitive spectral domain OCT,” Invest. Ophthalmol. Vis. Sci. 54(1), 72–84 (2013).
[CrossRef] [PubMed]

Ku, H. H.

H. H. Ku, “Notes on use of propagation of error formulas,” J. Res. Nbs. C Eng. Inst. C 70, 263–273 (1966).

Leitgeb, R.

Leitgeb, R. A.

Liu, S.

J. Dwelle, S. Liu, B. Q. Wang, A. McElroy, D. Ho, M. K. Markey, T. Milner, H. G. Rylander, “Thickness, phase retardation, birefringence, and reflectance of the retinal nerve fiber layer in normal and glaucomatous non-human primates,” Invest. Ophthalmol. Vis. Sci. 53(8), 4380–4395 (2012).
[CrossRef] [PubMed]

Lujan, B. J.

B. J. Lujan, A. Roorda, R. W. Knighton, J. Carroll, “Revealing Henle’s fiber layer using spectral domain optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 52(3), 1486–1492 (2011).
[CrossRef] [PubMed]

Makita, S.

M. Yamanari, M. Miura, S. Makita, T. Yatagai, Y. Yasuno, “Phase retardation measurement of retinal nerve fiber layer by polarization-sensitive spectral-domain optical coherence tomography and scanning laser polarimetry,” J. Biomed. Opt. 13(1), 014013 (2008).
[CrossRef] [PubMed]

Markey, M. K.

J. Dwelle, S. Liu, B. Q. Wang, A. McElroy, D. Ho, M. K. Markey, T. Milner, H. G. Rylander, “Thickness, phase retardation, birefringence, and reflectance of the retinal nerve fiber layer in normal and glaucomatous non-human primates,” Invest. Ophthalmol. Vis. Sci. 53(8), 4380–4395 (2012).
[CrossRef] [PubMed]

McElroy, A.

J. Dwelle, S. Liu, B. Q. Wang, A. McElroy, D. Ho, M. K. Markey, T. Milner, H. G. Rylander, “Thickness, phase retardation, birefringence, and reflectance of the retinal nerve fiber layer in normal and glaucomatous non-human primates,” Invest. Ophthalmol. Vis. Sci. 53(8), 4380–4395 (2012).
[CrossRef] [PubMed]

McGwin, G.

C. A. Curcio, J. D. Messinger, K. R. Sloan, A. Mitra, G. McGwin, R. F. Spaide, “Human chorioretinal layer thicknesses measured in macula-wide, high-resolution histologic sections,” Invest. Ophthalmol. Vis. Sci. 52(7), 3943–3954 (2011).
[CrossRef] [PubMed]

Messinger, J. D.

C. A. Curcio, J. D. Messinger, K. R. Sloan, A. Mitra, G. McGwin, R. F. Spaide, “Human chorioretinal layer thicknesses measured in macula-wide, high-resolution histologic sections,” Invest. Ophthalmol. Vis. Sci. 52(7), 3943–3954 (2011).
[CrossRef] [PubMed]

Michels, S.

Miller, D. T.

Milner, T.

J. Dwelle, S. Liu, B. Q. Wang, A. McElroy, D. Ho, M. K. Markey, T. Milner, H. G. Rylander, “Thickness, phase retardation, birefringence, and reflectance of the retinal nerve fiber layer in normal and glaucomatous non-human primates,” Invest. Ophthalmol. Vis. Sci. 53(8), 4380–4395 (2012).
[CrossRef] [PubMed]

Milner, T. E.

Mitra, A.

C. A. Curcio, J. D. Messinger, K. R. Sloan, A. Mitra, G. McGwin, R. F. Spaide, “Human chorioretinal layer thicknesses measured in macula-wide, high-resolution histologic sections,” Invest. Ophthalmol. Vis. Sci. 52(7), 3943–3954 (2011).
[CrossRef] [PubMed]

Miura, M.

M. Yamanari, M. Miura, S. Makita, T. Yatagai, Y. Yasuno, “Phase retardation measurement of retinal nerve fiber layer by polarization-sensitive spectral-domain optical coherence tomography and scanning laser polarimetry,” J. Biomed. Opt. 13(1), 014013 (2008).
[CrossRef] [PubMed]

A. Weber, A. E. Elsner, M. Miura, S. Kompa, M. C. Cheney, “Relationship between foveal birefringence and visual acuity in neovascular age-related macular degeneration,” Eye (Lond.) 21(3), 353–361 (2007).
[CrossRef] [PubMed]

Mujat, M.

Nelson, J. S.

Park, B. H.

B. Cense, W. Gao, J. M. Brown, S. M. Jones, R. S. Jonnal, M. Mujat, B. H. Park, J. F. de Boer, D. T. Miller, “Retinal imaging with polarization-sensitive optical coherence tomography and adaptive optics,” Opt. Express 17(24), 21634–21651 (2009).
[CrossRef] [PubMed]

B. Cense, M. Mujat, T. C. Chen, B. H. Park, J. F. de Boer, “Polarization-sensitive spectral-domain optical coherence tomography using a single line scan camera,” Opt. Express 15(5), 2421–2431 (2007).
[CrossRef] [PubMed]

B. H. Park, M. C. Pierce, B. Cense, J. F. de Boer, “Optic axis determination accuracy for fiber-based polarization-sensitive optical coherence tomography,” Opt. Lett. 30(19), 2587–2589 (2005).
[CrossRef] [PubMed]

B. Cense, T. C. Chen, B. H. Park, M. C. Pierce, J. F. de Boer, “In vivo birefringence and thickness measurements of the human retinal nerve fiber layer using polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 9(1), 121–125 (2004).
[CrossRef] [PubMed]

B. Cense, T. C. Chen, B. H. Park, M. C. Pierce, J. F. de Boer, “Thickness and birefringence of healthy retinal nerve fiber layer tissue measured with polarization-sensitive optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 45(8), 2606–2612 (2004).
[CrossRef] [PubMed]

B. H. Park, M. C. Pierce, B. Cense, J. F. de Boer, “Real-time multi-functional optical coherence tomography,” Opt. Express 11(7), 782–793 (2003).
[CrossRef] [PubMed]

B. Cense, T. C. Chen, B. H. Park, M. C. Pierce, J. F. de Boer, “In vivo depth-resolved birefringence measurements of the human retinal nerve fiber layer by polarization-sensitive optical coherence tomography,” Opt. Lett. 27(18), 1610–1612 (2002).
[CrossRef] [PubMed]

C. E. Saxer, J. F. de Boer, B. H. Park, Y. H. Zhao, Z. P. Chen, J. S. Nelson, “High-speed fiber based polarization-sensitive optical coherence tomography of in vivo human skin,” Opt. Lett. 25(18), 1355–1357 (2000).
[CrossRef] [PubMed]

Park, J.

Pierce, M. C.

B. H. Park, M. C. Pierce, B. Cense, J. F. de Boer, “Optic axis determination accuracy for fiber-based polarization-sensitive optical coherence tomography,” Opt. Lett. 30(19), 2587–2589 (2005).
[CrossRef] [PubMed]

B. Cense, T. C. Chen, B. H. Park, M. C. Pierce, J. F. de Boer, “In vivo birefringence and thickness measurements of the human retinal nerve fiber layer using polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 9(1), 121–125 (2004).
[CrossRef] [PubMed]

B. Cense, T. C. Chen, B. H. Park, M. C. Pierce, J. F. de Boer, “Thickness and birefringence of healthy retinal nerve fiber layer tissue measured with polarization-sensitive optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 45(8), 2606–2612 (2004).
[CrossRef] [PubMed]

B. H. Park, M. C. Pierce, B. Cense, J. F. de Boer, “Real-time multi-functional optical coherence tomography,” Opt. Express 11(7), 782–793 (2003).
[CrossRef] [PubMed]

B. Cense, T. C. Chen, B. H. Park, M. C. Pierce, J. F. de Boer, “In vivo depth-resolved birefringence measurements of the human retinal nerve fiber layer by polarization-sensitive optical coherence tomography,” Opt. Lett. 27(18), 1610–1612 (2002).
[CrossRef] [PubMed]

Pircher, M.

S. Zotter, M. Pircher, E. Götzinger, T. Torzicky, H. Yoshida, F. Hirose, S. Holzer, J. Kroisamer, C. Vass, U. Schmidt-Erfurth, C. K. Hitzenberger, “Measuring retinal nerve fiber layer birefringence, retardation, and thickness using wide-field, high-speed polarization sensitive spectral domain OCT,” Invest. Ophthalmol. Vis. Sci. 54(1), 72–84 (2013).
[CrossRef] [PubMed]

S. Zotter, M. Pircher, T. Torzicky, B. Baumann, H. Yoshida, F. Hirose, P. Roberts, M. Ritter, C. Schütze, E. Götzinger, W. Trasischker, C. Vass, U. Schmidt-Erfurth, C. K. Hitzenberger, “Large-field high-speed polarization sensitive spectral domain OCT and its applications in ophthalmology,” Biomed. Opt. Express 3(11), 2720–2732 (2012).
[CrossRef] [PubMed]

E. Götzinger, M. Pircher, B. Baumann, T. Schmoll, H. Sattmann, R. A. Leitgeb, C. K. Hitzenberger, “Speckle noise reduction in high speed polarization sensitive spectral domain optical coherence tomography,” Opt. Express 19(15), 14568–14585 (2011).
[CrossRef] [PubMed]

E. Götzinger, M. Pircher, B. Baumann, C. Hirn, C. Vass, C. K. Hitzenberger, “Retinal nerve fiber layer birefringence evaluated with polarization sensitive spectral domain OCT and scanning laser polarimetry: A comparison,” J Biophotonics 1(2), 129–139 (2008).
[CrossRef] [PubMed]

E. Götzinger, M. Pircher, W. Geitzenauer, C. Ahlers, B. Baumann, S. Michels, U. Schmidt-Erfurth, C. K. Hitzenberger, “Retinal pigment epithelium segmentation by polarization sensitive optical coherence tomography,” Opt. Express 16(21), 16410–16422 (2008).
[CrossRef] [PubMed]

M. Pircher, E. Götzinger, B. Baumann, C. K. Hitzenberger, “Corneal birefringence compensation for polarization sensitive optical coherence tomography of the human retina,” J. Biomed. Opt. 12(4), 041210 (2007).
[CrossRef] [PubMed]

M. Pircher, E. Götzinger, R. Leitgeb, H. Sattmann, O. Findl, C. K. Hitzenberger, “Imaging of polarization properties of human retina in vivo with phase resolved transversal PS-OCT,” Opt. Express 12(24), 5940–5951 (2004).
[CrossRef] [PubMed]

Ritter, M.

Roberts, P.

Roorda, A.

B. J. Lujan, A. Roorda, R. W. Knighton, J. Carroll, “Revealing Henle’s fiber layer using spectral domain optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 52(3), 1486–1492 (2011).
[CrossRef] [PubMed]

Rylander, H. G.

J. Dwelle, S. Liu, B. Q. Wang, A. McElroy, D. Ho, M. K. Markey, T. Milner, H. G. Rylander, “Thickness, phase retardation, birefringence, and reflectance of the retinal nerve fiber layer in normal and glaucomatous non-human primates,” Invest. Ophthalmol. Vis. Sci. 53(8), 4380–4395 (2012).
[CrossRef] [PubMed]

Rylander III, H. G.

Sattmann, H.

Saxer, C. E.

Schmidt-Erfurth, U.

Schmoll, T.

Schütze, C.

Sloan, K. R.

C. A. Curcio, J. D. Messinger, K. R. Sloan, A. Mitra, G. McGwin, R. F. Spaide, “Human chorioretinal layer thicknesses measured in macula-wide, high-resolution histologic sections,” Invest. Ophthalmol. Vis. Sci. 52(7), 3943–3954 (2011).
[CrossRef] [PubMed]

Spaide, R. F.

C. A. Curcio, J. D. Messinger, K. R. Sloan, A. Mitra, G. McGwin, R. F. Spaide, “Human chorioretinal layer thicknesses measured in macula-wide, high-resolution histologic sections,” Invest. Ophthalmol. Vis. Sci. 52(7), 3943–3954 (2011).
[CrossRef] [PubMed]

Torzicky, T.

S. Zotter, M. Pircher, E. Götzinger, T. Torzicky, H. Yoshida, F. Hirose, S. Holzer, J. Kroisamer, C. Vass, U. Schmidt-Erfurth, C. K. Hitzenberger, “Measuring retinal nerve fiber layer birefringence, retardation, and thickness using wide-field, high-speed polarization sensitive spectral domain OCT,” Invest. Ophthalmol. Vis. Sci. 54(1), 72–84 (2013).
[CrossRef] [PubMed]

S. Zotter, M. Pircher, T. Torzicky, B. Baumann, H. Yoshida, F. Hirose, P. Roberts, M. Ritter, C. Schütze, E. Götzinger, W. Trasischker, C. Vass, U. Schmidt-Erfurth, C. K. Hitzenberger, “Large-field high-speed polarization sensitive spectral domain OCT and its applications in ophthalmology,” Biomed. Opt. Express 3(11), 2720–2732 (2012).
[CrossRef] [PubMed]

Trasischker, W.

Twietmeyer, K. M.

van Blokland, G. J.

VanNasdale, D.

VanNasdale, D. A.

D. A. VanNasdale, A. E. Elsner, T. Hobbs, S. A. Burns, “Foveal phase retardation changes associated with normal aging,” Vision Res. 51(21-22), 2263–2272 (2011).
[CrossRef] [PubMed]

Vass, C.

S. Zotter, M. Pircher, E. Götzinger, T. Torzicky, H. Yoshida, F. Hirose, S. Holzer, J. Kroisamer, C. Vass, U. Schmidt-Erfurth, C. K. Hitzenberger, “Measuring retinal nerve fiber layer birefringence, retardation, and thickness using wide-field, high-speed polarization sensitive spectral domain OCT,” Invest. Ophthalmol. Vis. Sci. 54(1), 72–84 (2013).
[CrossRef] [PubMed]

S. Zotter, M. Pircher, T. Torzicky, B. Baumann, H. Yoshida, F. Hirose, P. Roberts, M. Ritter, C. Schütze, E. Götzinger, W. Trasischker, C. Vass, U. Schmidt-Erfurth, C. K. Hitzenberger, “Large-field high-speed polarization sensitive spectral domain OCT and its applications in ophthalmology,” Biomed. Opt. Express 3(11), 2720–2732 (2012).
[CrossRef] [PubMed]

E. Götzinger, M. Pircher, B. Baumann, C. Hirn, C. Vass, C. K. Hitzenberger, “Retinal nerve fiber layer birefringence evaluated with polarization sensitive spectral domain OCT and scanning laser polarimetry: A comparison,” J Biophotonics 1(2), 129–139 (2008).
[CrossRef] [PubMed]

Wang, B. Q.

J. Dwelle, S. Liu, B. Q. Wang, A. McElroy, D. Ho, M. K. Markey, T. Milner, H. G. Rylander, “Thickness, phase retardation, birefringence, and reflectance of the retinal nerve fiber layer in normal and glaucomatous non-human primates,” Invest. Ophthalmol. Vis. Sci. 53(8), 4380–4395 (2012).
[CrossRef] [PubMed]

Weber, A.

A. Weber, A. E. Elsner, M. Miura, S. Kompa, M. C. Cheney, “Relationship between foveal birefringence and visual acuity in neovascular age-related macular degeneration,” Eye (Lond.) 21(3), 353–361 (2007).
[CrossRef] [PubMed]

Yamanari, M.

M. Yamanari, M. Miura, S. Makita, T. Yatagai, Y. Yasuno, “Phase retardation measurement of retinal nerve fiber layer by polarization-sensitive spectral-domain optical coherence tomography and scanning laser polarimetry,” J. Biomed. Opt. 13(1), 014013 (2008).
[CrossRef] [PubMed]

Yasuno, Y.

M. Yamanari, M. Miura, S. Makita, T. Yatagai, Y. Yasuno, “Phase retardation measurement of retinal nerve fiber layer by polarization-sensitive spectral-domain optical coherence tomography and scanning laser polarimetry,” J. Biomed. Opt. 13(1), 014013 (2008).
[CrossRef] [PubMed]

Yatagai, T.

M. Yamanari, M. Miura, S. Makita, T. Yatagai, Y. Yasuno, “Phase retardation measurement of retinal nerve fiber layer by polarization-sensitive spectral-domain optical coherence tomography and scanning laser polarimetry,” J. Biomed. Opt. 13(1), 014013 (2008).
[CrossRef] [PubMed]

Yoshida, H.

S. Zotter, M. Pircher, E. Götzinger, T. Torzicky, H. Yoshida, F. Hirose, S. Holzer, J. Kroisamer, C. Vass, U. Schmidt-Erfurth, C. K. Hitzenberger, “Measuring retinal nerve fiber layer birefringence, retardation, and thickness using wide-field, high-speed polarization sensitive spectral domain OCT,” Invest. Ophthalmol. Vis. Sci. 54(1), 72–84 (2013).
[CrossRef] [PubMed]

S. Zotter, M. Pircher, T. Torzicky, B. Baumann, H. Yoshida, F. Hirose, P. Roberts, M. Ritter, C. Schütze, E. Götzinger, W. Trasischker, C. Vass, U. Schmidt-Erfurth, C. K. Hitzenberger, “Large-field high-speed polarization sensitive spectral domain OCT and its applications in ophthalmology,” Biomed. Opt. Express 3(11), 2720–2732 (2012).
[CrossRef] [PubMed]

Zaatari, H. N.

Zhao, Y.

Zhao, Y. H.

Zotter, S.

S. Zotter, M. Pircher, E. Götzinger, T. Torzicky, H. Yoshida, F. Hirose, S. Holzer, J. Kroisamer, C. Vass, U. Schmidt-Erfurth, C. K. Hitzenberger, “Measuring retinal nerve fiber layer birefringence, retardation, and thickness using wide-field, high-speed polarization sensitive spectral domain OCT,” Invest. Ophthalmol. Vis. Sci. 54(1), 72–84 (2013).
[CrossRef] [PubMed]

S. Zotter, M. Pircher, T. Torzicky, B. Baumann, H. Yoshida, F. Hirose, P. Roberts, M. Ritter, C. Schütze, E. Götzinger, W. Trasischker, C. Vass, U. Schmidt-Erfurth, C. K. Hitzenberger, “Large-field high-speed polarization sensitive spectral domain OCT and its applications in ophthalmology,” Biomed. Opt. Express 3(11), 2720–2732 (2012).
[CrossRef] [PubMed]

Biomed. Opt. Express (1)

Eye (Lond.) (1)

A. Weber, A. E. Elsner, M. Miura, S. Kompa, M. C. Cheney, “Relationship between foveal birefringence and visual acuity in neovascular age-related macular degeneration,” Eye (Lond.) 21(3), 353–361 (2007).
[CrossRef] [PubMed]

Invest. Ophthalmol. Vis. Sci. (5)

B. Cense, T. C. Chen, B. H. Park, M. C. Pierce, J. F. de Boer, “Thickness and birefringence of healthy retinal nerve fiber layer tissue measured with polarization-sensitive optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 45(8), 2606–2612 (2004).
[CrossRef] [PubMed]

J. Dwelle, S. Liu, B. Q. Wang, A. McElroy, D. Ho, M. K. Markey, T. Milner, H. G. Rylander, “Thickness, phase retardation, birefringence, and reflectance of the retinal nerve fiber layer in normal and glaucomatous non-human primates,” Invest. Ophthalmol. Vis. Sci. 53(8), 4380–4395 (2012).
[CrossRef] [PubMed]

S. Zotter, M. Pircher, E. Götzinger, T. Torzicky, H. Yoshida, F. Hirose, S. Holzer, J. Kroisamer, C. Vass, U. Schmidt-Erfurth, C. K. Hitzenberger, “Measuring retinal nerve fiber layer birefringence, retardation, and thickness using wide-field, high-speed polarization sensitive spectral domain OCT,” Invest. Ophthalmol. Vis. Sci. 54(1), 72–84 (2013).
[CrossRef] [PubMed]

B. J. Lujan, A. Roorda, R. W. Knighton, J. Carroll, “Revealing Henle’s fiber layer using spectral domain optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 52(3), 1486–1492 (2011).
[CrossRef] [PubMed]

C. A. Curcio, J. D. Messinger, K. R. Sloan, A. Mitra, G. McGwin, R. F. Spaide, “Human chorioretinal layer thicknesses measured in macula-wide, high-resolution histologic sections,” Invest. Ophthalmol. Vis. Sci. 52(7), 3943–3954 (2011).
[CrossRef] [PubMed]

J Biophotonics (1)

E. Götzinger, M. Pircher, B. Baumann, C. Hirn, C. Vass, C. K. Hitzenberger, “Retinal nerve fiber layer birefringence evaluated with polarization sensitive spectral domain OCT and scanning laser polarimetry: A comparison,” J Biophotonics 1(2), 129–139 (2008).
[CrossRef] [PubMed]

J. Biomed. Opt. (3)

M. Pircher, E. Götzinger, B. Baumann, C. K. Hitzenberger, “Corneal birefringence compensation for polarization sensitive optical coherence tomography of the human retina,” J. Biomed. Opt. 12(4), 041210 (2007).
[CrossRef] [PubMed]

B. Cense, T. C. Chen, B. H. Park, M. C. Pierce, J. F. de Boer, “In vivo birefringence and thickness measurements of the human retinal nerve fiber layer using polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 9(1), 121–125 (2004).
[CrossRef] [PubMed]

M. Yamanari, M. Miura, S. Makita, T. Yatagai, Y. Yasuno, “Phase retardation measurement of retinal nerve fiber layer by polarization-sensitive spectral-domain optical coherence tomography and scanning laser polarimetry,” J. Biomed. Opt. 13(1), 014013 (2008).
[CrossRef] [PubMed]

J. Opt. Soc. Am. A (1)

J. Res. Nbs. C Eng. Inst. C (1)

H. H. Ku, “Notes on use of propagation of error formulas,” J. Res. Nbs. C Eng. Inst. C 70, 263–273 (1966).

Opt. Express (8)

E. Götzinger, M. Pircher, B. Baumann, T. Schmoll, H. Sattmann, R. A. Leitgeb, C. K. Hitzenberger, “Speckle noise reduction in high speed polarization sensitive spectral domain optical coherence tomography,” Opt. Express 19(15), 14568–14585 (2011).
[CrossRef] [PubMed]

K. M. Twietmeyer, R. A. Chipman, A. E. Elsner, Y. Zhao, D. VanNasdale, “Mueller matrix retinal imager with optimized polarization conditions,” Opt. Express 16(26), 21339–21354 (2008).
[CrossRef] [PubMed]

M. Pircher, E. Götzinger, R. Leitgeb, H. Sattmann, O. Findl, C. K. Hitzenberger, “Imaging of polarization properties of human retina in vivo with phase resolved transversal PS-OCT,” Opt. Express 12(24), 5940–5951 (2004).
[CrossRef] [PubMed]

B. Cense, M. Mujat, T. C. Chen, B. H. Park, J. F. de Boer, “Polarization-sensitive spectral-domain optical coherence tomography using a single line scan camera,” Opt. Express 15(5), 2421–2431 (2007).
[CrossRef] [PubMed]

N. J. Kemp, H. N. Zaatari, J. Park, H. G. Rylander III, T. E. Milner, “Depth-resolved optic axis orientation in multiple layered anisotropic tissues measured with enhanced polarization-sensitive optical coherence tomography (EPS-OCT),” Opt. Express 13(12), 4507–4518 (2005).
[CrossRef] [PubMed]

B. Cense, W. Gao, J. M. Brown, S. M. Jones, R. S. Jonnal, M. Mujat, B. H. Park, J. F. de Boer, D. T. Miller, “Retinal imaging with polarization-sensitive optical coherence tomography and adaptive optics,” Opt. Express 17(24), 21634–21651 (2009).
[CrossRef] [PubMed]

B. H. Park, M. C. Pierce, B. Cense, J. F. de Boer, “Real-time multi-functional optical coherence tomography,” Opt. Express 11(7), 782–793 (2003).
[CrossRef] [PubMed]

E. Götzinger, M. Pircher, W. Geitzenauer, C. Ahlers, B. Baumann, S. Michels, U. Schmidt-Erfurth, C. K. Hitzenberger, “Retinal pigment epithelium segmentation by polarization sensitive optical coherence tomography,” Opt. Express 16(21), 16410–16422 (2008).
[CrossRef] [PubMed]

Opt. Lett. (3)

Vision Res. (1)

D. A. VanNasdale, A. E. Elsner, T. Hobbs, S. A. Burns, “Foveal phase retardation changes associated with normal aging,” Vision Res. 51(21-22), 2263–2272 (2011).
[CrossRef] [PubMed]

Other (1)

A.N.S.I., “Z136.1 Safe use of lasers,” standard ANSI z136.1 (Laser Institute of America, New York, 2007).

Supplementary Material (1)

» Media 1: AVI (9191 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Logarithmic intensity (A) and DPPR (B) B-scans centered on the fovea of the right eye of a 55-year old subject. Scale bars represent a length of 250 μm. Pixels with an effective standard deviation in the orientation of the polarization state larger than 4° were colored gray. On the right, an en face intensity C-scan obtained at the IS/OS (C) and DPPR C-scan (D) are shown. The location of the B-scan is marked by a yellow line. Red dashed lines in the B-scans indicate the reference and measurement locations for the DPPR calculation. While the DPPR data were averaged to reduce the influence of noise, the intensity data (A,C) were not. This link shows a movie of all 100 B-scans (Media 1).

Fig. 2
Fig. 2

(A) DPPR induced by HFL in the right eye of a 55-year old male subject, color encoded over 45 degrees. The image measures 15° by 15°. (B) DPPR traces are of horizontal and vertical scans that bisect the foveal center. (C) Circumferential average of the en face DPPR map in (A). Error bars represent one standard deviation of the circumferential trace.

Fig. 3
Fig. 3

(A) DPPR induced by HFL in the right eye of a 60-year old female subject, color coded over 45 degrees. (B) Circumferential average of the DPPR map in (A). Similar results are shown for the left eye of a 50-year old female (C, D). Error bars represent one standard deviation of the circumferential trace. Note the elevated DPPR in the lower left corner of the map in (A) due to the birefringent RNFL. This subject had a relatively thick RNFL and large blood vessel at this location that together caused the reference (which was chosen using a fixed offset to the location of the IS/OS) to intersect the RNFL. While the resulting DPPR is high, the corner falls outside the circumferential average window (<7.5° retinal eccentricity) that was used for processing.

Fig. 4
Fig. 4

Poincaré sphere with fast axis of HFL oriented towards the reader, depicted by the black dot in the center of the sphere [17]. Both polarization states of the PS-OCT system (red, blue) are shown at two depths and trace out arcs around the fast axis. Arc angles θ1 and θ2 are used to calculate DPPR (see Eq. (2). Polarization states at the reference (I1 and I2) are shown noisier (larger Δθ) than states at the IS/OS (I1 and I2) to reflect the lower SNR. Lower SNR increases the standard deviation in the phase retardation measurement, which we derive here using error propagation. For reference, the polarization states at Q, U, V equal to +/− 1 are shown in green.

Fig. 5
Fig. 5

Double pass phase retardation induced by HFL (A), and standard deviation in the DPPR (B), both displayed in the same color coding over 45°. Subject is the 55-year old male (see Figs. 1 and 2). The standard deviation in DPPR was determined from the intensity and DPPR data, using Eq. (3). The four boxes located in the extreme regions of the DPPR and standard deviation maps were analyzed to determine if the DPPR values there are dominated by measurement noise. Averaged over the four boxes in (A) and (B), the mean of the DPPR and the mean of the standard deviation of the DPPR are 7° and 4°, respectively. Note that the DPPR of box 4 (11°) for this subject is considerably higher than the average DPPR of the other boxes (6°) as well as the DPPR values of the other two subjects (see Table 1), indicating that this data point may be an outlier.

Fig. 6
Fig. 6

Fast axis orientation of HFL in the right eye of a 55-year old male subject. Axis orientation map is 15° by 15°, and angles are represented on the QU-plane of the Poincaré sphere (A). Color is encoded over 180 degrees, limited by the π-ambiguity of the PS-OCT method. Axis orientation is plotted for circular traces at 2.1° (blue) and 6.8° (red) retinal eccentricities (B), starting at the white stars going anti-clockwise (A). Concentric circles in (A) are color coded to the traces in (B). DPPR results for the same subject are shown in Fig. 2.

Tables (1)

Tables Icon

Table 1 Measured mean DPPR and standard deviation in DPPR obtained with Eq. (3)

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Δθ = 2 SNR = 2 ( I SD noise )
DPPR= (I 1 sin(θ A,I 1 )I 1 ' sin(θ A,I 1 ' ))θ 1 +(I 2 sin(θ A,I 2 )I 2 ' sin(θ A,I 2 ' )) θ 2 (I 1 sin(θ A,I 1 )I 1 ' sin(θ A,I 1 ' ))+(I 2 sin(θ A,I 2 )I 2 ' sin(θ A,I 2 ' )) )
σ DPPR = ( DPPR θ 1 ) 2 σ θ 1 2 + ( DPPR θ 2 ) 2 σ θ 2 2 = ( (I 1 sin(θ A,I 1 )I 1 ' sin(θ A,I 1 ' )) (I 1 sin(θ A,I 1 )I 1 ' sin(θ A,I 1 ' ))+(I 2 sin(θ A,I 2 )I 2 ' sin(θ A,I 2 ' )) ) ) 2 σ θ1 2 + ( (I 2 sin(θ A,I 2 )I 2 ' sin(θ A,I 2 ' )) (I 1 sin(θ A,I 1 )I 1 ' sin(θ A,I 1 ' ))+(I 2 sin(θ A,I 2 )I 2 ' sin(θ A,I 2 ' )) ) 2 σ θ2 2

Metrics