Abstract

We report on the design and first in vivo tests of a novel non-contact scanning imaging system for time-domain near-infrared spectroscopy. Our system is based on a null source-detector separation approach and utilizes polarization-selective detection and a fast-gated single-photon avalanche diode to record late photons only. The in-vivo tests included the recording of hemodynamics during arm occlusion and two brain activation tasks. Localized and non-localized changes in oxy- and deoxyhemoglobin concentration were detected for motor and cognitive tasks, respectively. The tests demonstrate the feasibility of non-contact imaging of absorption changes in deeper tissues.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Wolf, M. Ferrari, and V. Quaresima, “Progress of near-infrared spectroscopy and topography for brain and muscle clinical applications,” J. Biomed. Opt.12(6), 062104 (2007).
    [CrossRef] [PubMed]
  2. J. M. Murkin and M. Arango, “Near-infrared spectroscopy as an index of brain and tissue oxygenation,” Br. J. Anaesth.103(Suppl 1), i3–i13 (2009).
    [CrossRef] [PubMed]
  3. M. Ferrari and V. Quaresima, “A brief review on the history of human functional near-infrared spectroscopy (fNIRS) development and fields of application,” Neuroimage63(2), 921–935 (2012).
    [CrossRef] [PubMed]
  4. O. Steinkellner, C. Gruber, H. Wabnitz, A. Jelzow, J. Steinbrink, J. B. Fiebach, R. Macdonald, and H. Obrig, “Optical bedside monitoring of cerebral perfusion: technological and methodological advances applied in a study on acute ischemic stroke,” J. Biomed. Opt.15(6), 061708 (2010).
    [CrossRef] [PubMed]
  5. H. Rinneberg, D. Grosenick, K. T. Moesta, J. Mucke, B. Gebauer, C. Stroszczynski, H. Wabnitz, M. Moeller, B. Wassermann, and P. M. Schlag, “Scanning time-domain optical mammography: detection and characterization of breast tumors in vivo,” Technol. Cancer Res. Treat.4(5), 483–496 (2005).
    [PubMed]
  6. M. A. Khalil, H. K. Kim, I.-K. Kim, M. Flexman, R. Dayal, G. Shrikhande, and A. H. Hielscher, “Dynamic diffuse optical tomography imaging of peripheral arterial disease,” Biomed. Opt. Express3(9), 2288–2298 (2012).
    [CrossRef] [PubMed]
  7. I. K. Haitsma and A. I. R. Maas, “Monitoring cerebral oxygenation in traumatic brain injury,” Prog. Brain Res.161, 207–216 (2007).
    [CrossRef] [PubMed]
  8. http://clinicaltrials.gov/ .
  9. J. C. Hebden, “Advances in optical imaging of the newborn infant brain,” Psychophysiology40(4), 501–510 (2003).
    [CrossRef] [PubMed]
  10. D. J. Cuccia, F. Bevilacqua, A. J. Durkin, F. R. Ayers, and B. J. Tromberg, “Quantitation and mapping of tissue optical properties using modulated imaging,” J. Biomed. Opt.14(2), 024012 (2009).
    [CrossRef] [PubMed]
  11. J. R. Weber, D. J. Cuccia, A. J. Durkin, and B. J. Tromberg, “Noncontact imaging of absorption and scattering in layered tissue using spatially modulated structured light,” J. Appl. Phys.105(10), 102028 (2009).
    [CrossRef]
  12. S. D. Konecky, A. Mazhar, D. Cuccia, A. J. Durkin, J. C. Schotland, and B. J. Tromberg, “Quantitative optical tomography of sub-surface heterogeneities using spatially modulated structured light,” Opt. Express17(17), 14780–14790 (2009).
    [CrossRef] [PubMed]
  13. A. Mazhar, D. J. Cuccia, S. Gioux, A. J. Durkin, J. V. Frangioni, and B. J. Tromberg, “Structured illumination enhances resolution and contrast in thick tissue fluorescence imaging,” J. Biomed. Opt.15(1), 010506 (2010).
    [CrossRef] [PubMed]
  14. X. Wang, Z. Zhao, W. Becker, T. Troxler, and B. Chance, “Flying spot remote sensing of ICG kinetics of undeformed tissues,” Proc. SPIE5693, 28–33 (2005).
    [CrossRef]
  15. R. A. Bolt and J. J. Ten Bosch, “Method for measuring position-dependent volume reflection,” Appl. Opt.32(24), 4641–4645 (1993).
    [CrossRef] [PubMed]
  16. A. Kienle, L. Lilge, M. S. Patterson, R. Hibst, R. Steiner, and B. C. Wilson, “Spatially resolved absolute diffuse reflectance measurements for noninvasive determination of the optical scattering and absorption coefficients of biological tissue,” Appl. Opt.35(13), 2304–2314 (1996).
    [CrossRef] [PubMed]
  17. M. Kaiser, A. Yafi, M. Cinat, B. Choi, and A. J. Durkin, “Noninvasive assessment of burn wound severity using optical technology: a review of current and future modalities,” Burns37(3), 377–386 (2011).
    [CrossRef] [PubMed]
  18. A. A. Stratonnikov, N. V. Ermishova, and V. B. Loschenov, “Influence of red laser irradiation on hemoglobin oxygen saturation and blood volume in human skin in vivo,” Proc. SPIE4257, 57–64 (2001).
    [CrossRef]
  19. M. Niwayama, H. Murata, and S. Shinohara, “Noncontact tissue oxygenation measurement using near-infrared spectroscopy,” Rev. Sci. Instrum.77(7), 073102 (2006).
    [CrossRef]
  20. T. Funane, H. Atsumori, A. Suzuki, and M. Kiguchi, “Noncontact brain activity measurement system based on near-infrared spectroscopy,” Appl. Phys. Lett.96(12), 123701 (2010).
    [CrossRef]
  21. T. L. Becker, A. D. Paquette, K. R. Keymel, B. W. Henderson, and U. Sunar, “Monitoring blood flow responses during topical ALA-PDT,” Biomed. Opt. Express2(1), 123–130 (2011).
    [CrossRef] [PubMed]
  22. Y. Lin, L. He, Y. Shang, and G. Yu, “Noncontact diffuse correlation spectroscopy for noninvasive deep tissue blood flow measurement,” J. Biomed. Opt.17(1), 010502 (2012).
    [CrossRef] [PubMed]
  23. T. Li, Y. Lin, Y. Shang, L. He, C. Huang, M. Szabunio, and G. Yu, “Simultaneous measurement of deep tissue blood flow and oxygenation using noncontact diffuse correlation spectroscopy flow-oximeter,” Sci Rep3, 1358 (2013).
    [CrossRef] [PubMed]
  24. I. Sase, A. Takatsuki, J. Seki, T. Yanagida, and A. Seiyama, “Noncontact backscatter-mode near-infrared time-resolved imaging system: preliminary study for functional brain mapping,” J. Biomed. Opt.11(5), 054006 (2006).
    [CrossRef] [PubMed]
  25. P. Sawosz, M. Kacprzak, N. Zolek, W. Weigl, S. Wojtkiewicz, R. Maniewski, and A. Liebert, “Optical system based on time-gated, intensified charge-coupled device camera for brain imaging studies,” J. Biomed. Opt.15(6), 066025 (2010).
    [CrossRef] [PubMed]
  26. P. Sawosz, N. Zolek, M. Kacprzak, R. Maniewski, and A. Liebert, “Application of time-gated CCD camera with image intensifier in contactless detection of absorbing inclusions buried in optically turbid medium which mimics local changes in oxygenation of the brain tissue,” Opto-Electron. Rev.20(4), 309–314 (2012).
    [CrossRef]
  27. A. Torricelli, A. Pifferi, L. Spinelli, R. Cubeddu, F. Martelli, S. Del Bianco, and G. Zaccanti, “Time-resolved reflectance at null source-detector separation: improving contrast and resolution in diffuse optical imaging,” Phys. Rev. Lett.95(7), 078101 (2005).
    [CrossRef] [PubMed]
  28. A. Pifferi, A. Torricelli, L. Spinelli, D. Contini, R. Cubeddu, F. Martelli, G. Zaccanti, A. Tosi, A. Dalla Mora, F. Zappa, and S. Cova, “Time-resolved diffuse reflectance using small source-detector separation and fast single-photon gating,” Phys. Rev. Lett.100(13), 138101 (2008).
    [CrossRef] [PubMed]
  29. A. Dalla Mora, A. Tosi, F. Zappa, S. Cova, D. Contini, A. Pifferi, L. Spinelli, A. Torricelli, and R. Cubeddu, “Fast-Gated Single-Photon Avalanche Diode for Wide Dynamic Range Near Infrared Spectroscopy,” J. Sel. Top. Quantum Electron.16(4), 1023–1030 (2010).
    [CrossRef]
  30. A. Tosi, A. Dalla Mora, F. Zappa, A. Gulinatti, D. Contini, A. Pifferi, L. Spinelli, A. Torricelli, and R. Cubeddu, “Fast-gated single-photon counting technique widens dynamic range and speeds up acquisition time in time-resolved measurements,” Opt. Express19(11), 10735–10746 (2011).
    [CrossRef] [PubMed]
  31. E. Alerstam, T. Svensson, S. Andersson-Engels, L. Spinelli, D. Contini, A. Dalla Mora, A. Tosi, F. Zappa, and A. Pifferi, “Single-fiber diffuse optical time-of-flight spectroscopy,” Opt. Lett.37(14), 2877–2879 (2012).
    [CrossRef] [PubMed]
  32. A. Puszka, L. Di Sieno, A. D. Mora, A. Pifferi, D. Contini, G. Boso, A. Tosi, L. Hervé, A. Planat-Chrétien, A. Koenig, and J.-M. Dinten, “Time-resolved diffuse optical tomography using fast-gated single-photon avalanche diodes,” Biomed. Opt. Express4(8), 1351–1365 (2013).
    [CrossRef] [PubMed]
  33. L. Di Sieno, D. Contini, A. Dalla Mora, A. Torricelli, L. Spinelli, R. Cubeddu, A. Tosi, G. Boso, and A. Pifferi, “Functional near-infrared spectroscopy at small source-detector distance by means of high dynamic-range fast-gated SPAD acquisitions: first in-vivo measurements,” Proc. SPIE8804, 880402, 880402-6 (2013).
    [CrossRef]
  34. M. Mazurenka, A. Jelzow, H. Wabnitz, D. Contini, L. Spinelli, A. Pifferi, R. Cubeddu, A. D. Mora, A. Tosi, F. Zappa, and R. Macdonald, “Non-contact time-resolved diffuse reflectance imaging at null source-detector separation,” Opt. Express20(1), 283–290 (2012).
    [CrossRef] [PubMed]
  35. V. Sankaran, J. T. Walsh, and D. J. Maitland, “Comparative study of polarized light propagation in biologic tissues,” J. Biomed. Opt.7(3), 300–306 (2002).
    [CrossRef] [PubMed]
  36. G. Boso, A. Dalla Mora, A. Della Frera, and A. Tosi, “Fast-gating of single-photon avalanche diodes with 200 ps transitions and 30 ps timing jitter,” Sens. Actuators A Phys.191, 61–67 (2013).
    [CrossRef]
  37. A. Dalla Mora, D. Contini, A. Pifferi, R. Cubeddu, A. Tosi, and F. Zappa, “Afterpulse-like noise limits dynamic range in time-gated applications of thin-junction silicon single-photon avalanche diode,” Appl. Phys. Lett.100(24), 241111 (2012).
    [CrossRef]
  38. L. Spinelli, F. Martelli, S. Del Bianco, A. Pifferi, A. Torricelli, R. Cubeddu, and G. Zaccanti, “Absorption and scattering perturbations in homogeneous and layered diffusive media probed by time-resolved reflectance at null source-detector separation,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.74(2), 021919 (2006).
    [CrossRef] [PubMed]
  39. W. Becker, The bh TCSPC Handbook (Becker & Hickl GmbH, 2012).
  40. Y. Nomura, O. Hazeki, and M. Tamura, “Relationship between time-resolved and non-time-resolved Beer-Lambert law in turbid media,” Phys. Med. Biol.42(6), 1009–1022 (1997).
    [CrossRef] [PubMed]
  41. M. Cope, The development of a near infrared spectroscopy system and its application for non invasive monitoring of cerebral blood and tissue oxygenation in the newborn infant, PhD Thesis, University College London (1991).
  42. M. Mazurenka, L. Di Sieno, G. Boso, D. Contini, A. Pifferi, A. Dalla Mora, A. Tosi, H. Wabnitz, and R. Macdonald, “A non-contact time-domain scanning brain imaging system: first in-vivo results,” Proc. SPIE8799, 87990L, 87990L-7 (2013).
    [CrossRef]
  43. R. Re, D. Contini, M. Caffini, R. Cubeddu, L. Spinelli, and A. Torricelli, “A compact time-resolved system for near infrared spectroscopy based on wavelength space multiplexing,” Rev. Sci. Instrum.81(11), 113101 (2010).
    [CrossRef] [PubMed]
  44. E. Molteni, D. Contini, M. Caffini, G. Baselli, L. Spinelli, R. Cubeddu, S. Cerutti, A. M. Bianchi, and A. Torricelli, “Load-dependent brain activation assessed by time-domain functional near-infrared spectroscopy during a working memory task with graded levels of difficulty,” J. Biomed. Opt.17(5), 056005 (2012).
    [CrossRef] [PubMed]
  45. E. Kirilina, A. Jelzow, A. Heine, M. Niessing, H. Wabnitz, R. Brühl, B. Ittermann, A. M. Jacobs, and I. Tachtsidis, “The physiological origin of task-evoked systemic artefacts in functional near infrared spectroscopy,” Neuroimage61(1), 70–81 (2012).
    [CrossRef] [PubMed]
  46. J. Selb, J. J. Stott, M. A. Franceschini, A. G. Sorensen, and D. A. Boas, “Improved sensitivity to cerebral hemodynamics during brain activation with a time-gated optical system: analytical model and experimental validation,” J. Biomed. Opt.10(1), 011013 (2005).
    [CrossRef] [PubMed]
  47. D. Contini, L. Spinelli, A. Torricelli, A. Pifferi, and R. Cubeddu, “Novel method for depth-resolved brain functional imaging by time-domain NIRS,” Proc. SPIE6629, 662908, 662908-7 (2007).
    [CrossRef]

2013 (5)

T. Li, Y. Lin, Y. Shang, L. He, C. Huang, M. Szabunio, and G. Yu, “Simultaneous measurement of deep tissue blood flow and oxygenation using noncontact diffuse correlation spectroscopy flow-oximeter,” Sci Rep3, 1358 (2013).
[CrossRef] [PubMed]

G. Boso, A. Dalla Mora, A. Della Frera, and A. Tosi, “Fast-gating of single-photon avalanche diodes with 200 ps transitions and 30 ps timing jitter,” Sens. Actuators A Phys.191, 61–67 (2013).
[CrossRef]

M. Mazurenka, L. Di Sieno, G. Boso, D. Contini, A. Pifferi, A. Dalla Mora, A. Tosi, H. Wabnitz, and R. Macdonald, “A non-contact time-domain scanning brain imaging system: first in-vivo results,” Proc. SPIE8799, 87990L, 87990L-7 (2013).
[CrossRef]

L. Di Sieno, D. Contini, A. Dalla Mora, A. Torricelli, L. Spinelli, R. Cubeddu, A. Tosi, G. Boso, and A. Pifferi, “Functional near-infrared spectroscopy at small source-detector distance by means of high dynamic-range fast-gated SPAD acquisitions: first in-vivo measurements,” Proc. SPIE8804, 880402, 880402-6 (2013).
[CrossRef]

A. Puszka, L. Di Sieno, A. D. Mora, A. Pifferi, D. Contini, G. Boso, A. Tosi, L. Hervé, A. Planat-Chrétien, A. Koenig, and J.-M. Dinten, “Time-resolved diffuse optical tomography using fast-gated single-photon avalanche diodes,” Biomed. Opt. Express4(8), 1351–1365 (2013).
[CrossRef] [PubMed]

2012 (9)

M. Mazurenka, A. Jelzow, H. Wabnitz, D. Contini, L. Spinelli, A. Pifferi, R. Cubeddu, A. D. Mora, A. Tosi, F. Zappa, and R. Macdonald, “Non-contact time-resolved diffuse reflectance imaging at null source-detector separation,” Opt. Express20(1), 283–290 (2012).
[CrossRef] [PubMed]

E. Alerstam, T. Svensson, S. Andersson-Engels, L. Spinelli, D. Contini, A. Dalla Mora, A. Tosi, F. Zappa, and A. Pifferi, “Single-fiber diffuse optical time-of-flight spectroscopy,” Opt. Lett.37(14), 2877–2879 (2012).
[CrossRef] [PubMed]

M. A. Khalil, H. K. Kim, I.-K. Kim, M. Flexman, R. Dayal, G. Shrikhande, and A. H. Hielscher, “Dynamic diffuse optical tomography imaging of peripheral arterial disease,” Biomed. Opt. Express3(9), 2288–2298 (2012).
[CrossRef] [PubMed]

E. Molteni, D. Contini, M. Caffini, G. Baselli, L. Spinelli, R. Cubeddu, S. Cerutti, A. M. Bianchi, and A. Torricelli, “Load-dependent brain activation assessed by time-domain functional near-infrared spectroscopy during a working memory task with graded levels of difficulty,” J. Biomed. Opt.17(5), 056005 (2012).
[CrossRef] [PubMed]

E. Kirilina, A. Jelzow, A. Heine, M. Niessing, H. Wabnitz, R. Brühl, B. Ittermann, A. M. Jacobs, and I. Tachtsidis, “The physiological origin of task-evoked systemic artefacts in functional near infrared spectroscopy,” Neuroimage61(1), 70–81 (2012).
[CrossRef] [PubMed]

A. Dalla Mora, D. Contini, A. Pifferi, R. Cubeddu, A. Tosi, and F. Zappa, “Afterpulse-like noise limits dynamic range in time-gated applications of thin-junction silicon single-photon avalanche diode,” Appl. Phys. Lett.100(24), 241111 (2012).
[CrossRef]

Y. Lin, L. He, Y. Shang, and G. Yu, “Noncontact diffuse correlation spectroscopy for noninvasive deep tissue blood flow measurement,” J. Biomed. Opt.17(1), 010502 (2012).
[CrossRef] [PubMed]

P. Sawosz, N. Zolek, M. Kacprzak, R. Maniewski, and A. Liebert, “Application of time-gated CCD camera with image intensifier in contactless detection of absorbing inclusions buried in optically turbid medium which mimics local changes in oxygenation of the brain tissue,” Opto-Electron. Rev.20(4), 309–314 (2012).
[CrossRef]

M. Ferrari and V. Quaresima, “A brief review on the history of human functional near-infrared spectroscopy (fNIRS) development and fields of application,” Neuroimage63(2), 921–935 (2012).
[CrossRef] [PubMed]

2011 (3)

2010 (6)

A. Mazhar, D. J. Cuccia, S. Gioux, A. J. Durkin, J. V. Frangioni, and B. J. Tromberg, “Structured illumination enhances resolution and contrast in thick tissue fluorescence imaging,” J. Biomed. Opt.15(1), 010506 (2010).
[CrossRef] [PubMed]

T. Funane, H. Atsumori, A. Suzuki, and M. Kiguchi, “Noncontact brain activity measurement system based on near-infrared spectroscopy,” Appl. Phys. Lett.96(12), 123701 (2010).
[CrossRef]

O. Steinkellner, C. Gruber, H. Wabnitz, A. Jelzow, J. Steinbrink, J. B. Fiebach, R. Macdonald, and H. Obrig, “Optical bedside monitoring of cerebral perfusion: technological and methodological advances applied in a study on acute ischemic stroke,” J. Biomed. Opt.15(6), 061708 (2010).
[CrossRef] [PubMed]

P. Sawosz, M. Kacprzak, N. Zolek, W. Weigl, S. Wojtkiewicz, R. Maniewski, and A. Liebert, “Optical system based on time-gated, intensified charge-coupled device camera for brain imaging studies,” J. Biomed. Opt.15(6), 066025 (2010).
[CrossRef] [PubMed]

R. Re, D. Contini, M. Caffini, R. Cubeddu, L. Spinelli, and A. Torricelli, “A compact time-resolved system for near infrared spectroscopy based on wavelength space multiplexing,” Rev. Sci. Instrum.81(11), 113101 (2010).
[CrossRef] [PubMed]

A. Dalla Mora, A. Tosi, F. Zappa, S. Cova, D. Contini, A. Pifferi, L. Spinelli, A. Torricelli, and R. Cubeddu, “Fast-Gated Single-Photon Avalanche Diode for Wide Dynamic Range Near Infrared Spectroscopy,” J. Sel. Top. Quantum Electron.16(4), 1023–1030 (2010).
[CrossRef]

2009 (4)

J. M. Murkin and M. Arango, “Near-infrared spectroscopy as an index of brain and tissue oxygenation,” Br. J. Anaesth.103(Suppl 1), i3–i13 (2009).
[CrossRef] [PubMed]

D. J. Cuccia, F. Bevilacqua, A. J. Durkin, F. R. Ayers, and B. J. Tromberg, “Quantitation and mapping of tissue optical properties using modulated imaging,” J. Biomed. Opt.14(2), 024012 (2009).
[CrossRef] [PubMed]

J. R. Weber, D. J. Cuccia, A. J. Durkin, and B. J. Tromberg, “Noncontact imaging of absorption and scattering in layered tissue using spatially modulated structured light,” J. Appl. Phys.105(10), 102028 (2009).
[CrossRef]

S. D. Konecky, A. Mazhar, D. Cuccia, A. J. Durkin, J. C. Schotland, and B. J. Tromberg, “Quantitative optical tomography of sub-surface heterogeneities using spatially modulated structured light,” Opt. Express17(17), 14780–14790 (2009).
[CrossRef] [PubMed]

2008 (1)

A. Pifferi, A. Torricelli, L. Spinelli, D. Contini, R. Cubeddu, F. Martelli, G. Zaccanti, A. Tosi, A. Dalla Mora, F. Zappa, and S. Cova, “Time-resolved diffuse reflectance using small source-detector separation and fast single-photon gating,” Phys. Rev. Lett.100(13), 138101 (2008).
[CrossRef] [PubMed]

2007 (3)

D. Contini, L. Spinelli, A. Torricelli, A. Pifferi, and R. Cubeddu, “Novel method for depth-resolved brain functional imaging by time-domain NIRS,” Proc. SPIE6629, 662908, 662908-7 (2007).
[CrossRef]

I. K. Haitsma and A. I. R. Maas, “Monitoring cerebral oxygenation in traumatic brain injury,” Prog. Brain Res.161, 207–216 (2007).
[CrossRef] [PubMed]

M. Wolf, M. Ferrari, and V. Quaresima, “Progress of near-infrared spectroscopy and topography for brain and muscle clinical applications,” J. Biomed. Opt.12(6), 062104 (2007).
[CrossRef] [PubMed]

2006 (3)

M. Niwayama, H. Murata, and S. Shinohara, “Noncontact tissue oxygenation measurement using near-infrared spectroscopy,” Rev. Sci. Instrum.77(7), 073102 (2006).
[CrossRef]

I. Sase, A. Takatsuki, J. Seki, T. Yanagida, and A. Seiyama, “Noncontact backscatter-mode near-infrared time-resolved imaging system: preliminary study for functional brain mapping,” J. Biomed. Opt.11(5), 054006 (2006).
[CrossRef] [PubMed]

L. Spinelli, F. Martelli, S. Del Bianco, A. Pifferi, A. Torricelli, R. Cubeddu, and G. Zaccanti, “Absorption and scattering perturbations in homogeneous and layered diffusive media probed by time-resolved reflectance at null source-detector separation,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.74(2), 021919 (2006).
[CrossRef] [PubMed]

2005 (4)

A. Torricelli, A. Pifferi, L. Spinelli, R. Cubeddu, F. Martelli, S. Del Bianco, and G. Zaccanti, “Time-resolved reflectance at null source-detector separation: improving contrast and resolution in diffuse optical imaging,” Phys. Rev. Lett.95(7), 078101 (2005).
[CrossRef] [PubMed]

J. Selb, J. J. Stott, M. A. Franceschini, A. G. Sorensen, and D. A. Boas, “Improved sensitivity to cerebral hemodynamics during brain activation with a time-gated optical system: analytical model and experimental validation,” J. Biomed. Opt.10(1), 011013 (2005).
[CrossRef] [PubMed]

X. Wang, Z. Zhao, W. Becker, T. Troxler, and B. Chance, “Flying spot remote sensing of ICG kinetics of undeformed tissues,” Proc. SPIE5693, 28–33 (2005).
[CrossRef]

H. Rinneberg, D. Grosenick, K. T. Moesta, J. Mucke, B. Gebauer, C. Stroszczynski, H. Wabnitz, M. Moeller, B. Wassermann, and P. M. Schlag, “Scanning time-domain optical mammography: detection and characterization of breast tumors in vivo,” Technol. Cancer Res. Treat.4(5), 483–496 (2005).
[PubMed]

2003 (1)

J. C. Hebden, “Advances in optical imaging of the newborn infant brain,” Psychophysiology40(4), 501–510 (2003).
[CrossRef] [PubMed]

2002 (1)

V. Sankaran, J. T. Walsh, and D. J. Maitland, “Comparative study of polarized light propagation in biologic tissues,” J. Biomed. Opt.7(3), 300–306 (2002).
[CrossRef] [PubMed]

2001 (1)

A. A. Stratonnikov, N. V. Ermishova, and V. B. Loschenov, “Influence of red laser irradiation on hemoglobin oxygen saturation and blood volume in human skin in vivo,” Proc. SPIE4257, 57–64 (2001).
[CrossRef]

1997 (1)

Y. Nomura, O. Hazeki, and M. Tamura, “Relationship between time-resolved and non-time-resolved Beer-Lambert law in turbid media,” Phys. Med. Biol.42(6), 1009–1022 (1997).
[CrossRef] [PubMed]

1996 (1)

1993 (1)

Alerstam, E.

Andersson-Engels, S.

Arango, M.

J. M. Murkin and M. Arango, “Near-infrared spectroscopy as an index of brain and tissue oxygenation,” Br. J. Anaesth.103(Suppl 1), i3–i13 (2009).
[CrossRef] [PubMed]

Atsumori, H.

T. Funane, H. Atsumori, A. Suzuki, and M. Kiguchi, “Noncontact brain activity measurement system based on near-infrared spectroscopy,” Appl. Phys. Lett.96(12), 123701 (2010).
[CrossRef]

Ayers, F. R.

D. J. Cuccia, F. Bevilacqua, A. J. Durkin, F. R. Ayers, and B. J. Tromberg, “Quantitation and mapping of tissue optical properties using modulated imaging,” J. Biomed. Opt.14(2), 024012 (2009).
[CrossRef] [PubMed]

Baselli, G.

E. Molteni, D. Contini, M. Caffini, G. Baselli, L. Spinelli, R. Cubeddu, S. Cerutti, A. M. Bianchi, and A. Torricelli, “Load-dependent brain activation assessed by time-domain functional near-infrared spectroscopy during a working memory task with graded levels of difficulty,” J. Biomed. Opt.17(5), 056005 (2012).
[CrossRef] [PubMed]

Becker, T. L.

Becker, W.

X. Wang, Z. Zhao, W. Becker, T. Troxler, and B. Chance, “Flying spot remote sensing of ICG kinetics of undeformed tissues,” Proc. SPIE5693, 28–33 (2005).
[CrossRef]

Bevilacqua, F.

D. J. Cuccia, F. Bevilacqua, A. J. Durkin, F. R. Ayers, and B. J. Tromberg, “Quantitation and mapping of tissue optical properties using modulated imaging,” J. Biomed. Opt.14(2), 024012 (2009).
[CrossRef] [PubMed]

Bianchi, A. M.

E. Molteni, D. Contini, M. Caffini, G. Baselli, L. Spinelli, R. Cubeddu, S. Cerutti, A. M. Bianchi, and A. Torricelli, “Load-dependent brain activation assessed by time-domain functional near-infrared spectroscopy during a working memory task with graded levels of difficulty,” J. Biomed. Opt.17(5), 056005 (2012).
[CrossRef] [PubMed]

Boas, D. A.

J. Selb, J. J. Stott, M. A. Franceschini, A. G. Sorensen, and D. A. Boas, “Improved sensitivity to cerebral hemodynamics during brain activation with a time-gated optical system: analytical model and experimental validation,” J. Biomed. Opt.10(1), 011013 (2005).
[CrossRef] [PubMed]

Bolt, R. A.

Boso, G.

A. Puszka, L. Di Sieno, A. D. Mora, A. Pifferi, D. Contini, G. Boso, A. Tosi, L. Hervé, A. Planat-Chrétien, A. Koenig, and J.-M. Dinten, “Time-resolved diffuse optical tomography using fast-gated single-photon avalanche diodes,” Biomed. Opt. Express4(8), 1351–1365 (2013).
[CrossRef] [PubMed]

G. Boso, A. Dalla Mora, A. Della Frera, and A. Tosi, “Fast-gating of single-photon avalanche diodes with 200 ps transitions and 30 ps timing jitter,” Sens. Actuators A Phys.191, 61–67 (2013).
[CrossRef]

M. Mazurenka, L. Di Sieno, G. Boso, D. Contini, A. Pifferi, A. Dalla Mora, A. Tosi, H. Wabnitz, and R. Macdonald, “A non-contact time-domain scanning brain imaging system: first in-vivo results,” Proc. SPIE8799, 87990L, 87990L-7 (2013).
[CrossRef]

L. Di Sieno, D. Contini, A. Dalla Mora, A. Torricelli, L. Spinelli, R. Cubeddu, A. Tosi, G. Boso, and A. Pifferi, “Functional near-infrared spectroscopy at small source-detector distance by means of high dynamic-range fast-gated SPAD acquisitions: first in-vivo measurements,” Proc. SPIE8804, 880402, 880402-6 (2013).
[CrossRef]

Brühl, R.

E. Kirilina, A. Jelzow, A. Heine, M. Niessing, H. Wabnitz, R. Brühl, B. Ittermann, A. M. Jacobs, and I. Tachtsidis, “The physiological origin of task-evoked systemic artefacts in functional near infrared spectroscopy,” Neuroimage61(1), 70–81 (2012).
[CrossRef] [PubMed]

Caffini, M.

E. Molteni, D. Contini, M. Caffini, G. Baselli, L. Spinelli, R. Cubeddu, S. Cerutti, A. M. Bianchi, and A. Torricelli, “Load-dependent brain activation assessed by time-domain functional near-infrared spectroscopy during a working memory task with graded levels of difficulty,” J. Biomed. Opt.17(5), 056005 (2012).
[CrossRef] [PubMed]

R. Re, D. Contini, M. Caffini, R. Cubeddu, L. Spinelli, and A. Torricelli, “A compact time-resolved system for near infrared spectroscopy based on wavelength space multiplexing,” Rev. Sci. Instrum.81(11), 113101 (2010).
[CrossRef] [PubMed]

Cerutti, S.

E. Molteni, D. Contini, M. Caffini, G. Baselli, L. Spinelli, R. Cubeddu, S. Cerutti, A. M. Bianchi, and A. Torricelli, “Load-dependent brain activation assessed by time-domain functional near-infrared spectroscopy during a working memory task with graded levels of difficulty,” J. Biomed. Opt.17(5), 056005 (2012).
[CrossRef] [PubMed]

Chance, B.

X. Wang, Z. Zhao, W. Becker, T. Troxler, and B. Chance, “Flying spot remote sensing of ICG kinetics of undeformed tissues,” Proc. SPIE5693, 28–33 (2005).
[CrossRef]

Choi, B.

M. Kaiser, A. Yafi, M. Cinat, B. Choi, and A. J. Durkin, “Noninvasive assessment of burn wound severity using optical technology: a review of current and future modalities,” Burns37(3), 377–386 (2011).
[CrossRef] [PubMed]

Cinat, M.

M. Kaiser, A. Yafi, M. Cinat, B. Choi, and A. J. Durkin, “Noninvasive assessment of burn wound severity using optical technology: a review of current and future modalities,” Burns37(3), 377–386 (2011).
[CrossRef] [PubMed]

Contini, D.

A. Puszka, L. Di Sieno, A. D. Mora, A. Pifferi, D. Contini, G. Boso, A. Tosi, L. Hervé, A. Planat-Chrétien, A. Koenig, and J.-M. Dinten, “Time-resolved diffuse optical tomography using fast-gated single-photon avalanche diodes,” Biomed. Opt. Express4(8), 1351–1365 (2013).
[CrossRef] [PubMed]

M. Mazurenka, L. Di Sieno, G. Boso, D. Contini, A. Pifferi, A. Dalla Mora, A. Tosi, H. Wabnitz, and R. Macdonald, “A non-contact time-domain scanning brain imaging system: first in-vivo results,” Proc. SPIE8799, 87990L, 87990L-7 (2013).
[CrossRef]

L. Di Sieno, D. Contini, A. Dalla Mora, A. Torricelli, L. Spinelli, R. Cubeddu, A. Tosi, G. Boso, and A. Pifferi, “Functional near-infrared spectroscopy at small source-detector distance by means of high dynamic-range fast-gated SPAD acquisitions: first in-vivo measurements,” Proc. SPIE8804, 880402, 880402-6 (2013).
[CrossRef]

E. Alerstam, T. Svensson, S. Andersson-Engels, L. Spinelli, D. Contini, A. Dalla Mora, A. Tosi, F. Zappa, and A. Pifferi, “Single-fiber diffuse optical time-of-flight spectroscopy,” Opt. Lett.37(14), 2877–2879 (2012).
[CrossRef] [PubMed]

E. Molteni, D. Contini, M. Caffini, G. Baselli, L. Spinelli, R. Cubeddu, S. Cerutti, A. M. Bianchi, and A. Torricelli, “Load-dependent brain activation assessed by time-domain functional near-infrared spectroscopy during a working memory task with graded levels of difficulty,” J. Biomed. Opt.17(5), 056005 (2012).
[CrossRef] [PubMed]

M. Mazurenka, A. Jelzow, H. Wabnitz, D. Contini, L. Spinelli, A. Pifferi, R. Cubeddu, A. D. Mora, A. Tosi, F. Zappa, and R. Macdonald, “Non-contact time-resolved diffuse reflectance imaging at null source-detector separation,” Opt. Express20(1), 283–290 (2012).
[CrossRef] [PubMed]

A. Dalla Mora, D. Contini, A. Pifferi, R. Cubeddu, A. Tosi, and F. Zappa, “Afterpulse-like noise limits dynamic range in time-gated applications of thin-junction silicon single-photon avalanche diode,” Appl. Phys. Lett.100(24), 241111 (2012).
[CrossRef]

A. Tosi, A. Dalla Mora, F. Zappa, A. Gulinatti, D. Contini, A. Pifferi, L. Spinelli, A. Torricelli, and R. Cubeddu, “Fast-gated single-photon counting technique widens dynamic range and speeds up acquisition time in time-resolved measurements,” Opt. Express19(11), 10735–10746 (2011).
[CrossRef] [PubMed]

A. Dalla Mora, A. Tosi, F. Zappa, S. Cova, D. Contini, A. Pifferi, L. Spinelli, A. Torricelli, and R. Cubeddu, “Fast-Gated Single-Photon Avalanche Diode for Wide Dynamic Range Near Infrared Spectroscopy,” J. Sel. Top. Quantum Electron.16(4), 1023–1030 (2010).
[CrossRef]

R. Re, D. Contini, M. Caffini, R. Cubeddu, L. Spinelli, and A. Torricelli, “A compact time-resolved system for near infrared spectroscopy based on wavelength space multiplexing,” Rev. Sci. Instrum.81(11), 113101 (2010).
[CrossRef] [PubMed]

A. Pifferi, A. Torricelli, L. Spinelli, D. Contini, R. Cubeddu, F. Martelli, G. Zaccanti, A. Tosi, A. Dalla Mora, F. Zappa, and S. Cova, “Time-resolved diffuse reflectance using small source-detector separation and fast single-photon gating,” Phys. Rev. Lett.100(13), 138101 (2008).
[CrossRef] [PubMed]

D. Contini, L. Spinelli, A. Torricelli, A. Pifferi, and R. Cubeddu, “Novel method for depth-resolved brain functional imaging by time-domain NIRS,” Proc. SPIE6629, 662908, 662908-7 (2007).
[CrossRef]

Cova, S.

A. Dalla Mora, A. Tosi, F. Zappa, S. Cova, D. Contini, A. Pifferi, L. Spinelli, A. Torricelli, and R. Cubeddu, “Fast-Gated Single-Photon Avalanche Diode for Wide Dynamic Range Near Infrared Spectroscopy,” J. Sel. Top. Quantum Electron.16(4), 1023–1030 (2010).
[CrossRef]

A. Pifferi, A. Torricelli, L. Spinelli, D. Contini, R. Cubeddu, F. Martelli, G. Zaccanti, A. Tosi, A. Dalla Mora, F. Zappa, and S. Cova, “Time-resolved diffuse reflectance using small source-detector separation and fast single-photon gating,” Phys. Rev. Lett.100(13), 138101 (2008).
[CrossRef] [PubMed]

Cubeddu, R.

L. Di Sieno, D. Contini, A. Dalla Mora, A. Torricelli, L. Spinelli, R. Cubeddu, A. Tosi, G. Boso, and A. Pifferi, “Functional near-infrared spectroscopy at small source-detector distance by means of high dynamic-range fast-gated SPAD acquisitions: first in-vivo measurements,” Proc. SPIE8804, 880402, 880402-6 (2013).
[CrossRef]

E. Molteni, D. Contini, M. Caffini, G. Baselli, L. Spinelli, R. Cubeddu, S. Cerutti, A. M. Bianchi, and A. Torricelli, “Load-dependent brain activation assessed by time-domain functional near-infrared spectroscopy during a working memory task with graded levels of difficulty,” J. Biomed. Opt.17(5), 056005 (2012).
[CrossRef] [PubMed]

A. Dalla Mora, D. Contini, A. Pifferi, R. Cubeddu, A. Tosi, and F. Zappa, “Afterpulse-like noise limits dynamic range in time-gated applications of thin-junction silicon single-photon avalanche diode,” Appl. Phys. Lett.100(24), 241111 (2012).
[CrossRef]

M. Mazurenka, A. Jelzow, H. Wabnitz, D. Contini, L. Spinelli, A. Pifferi, R. Cubeddu, A. D. Mora, A. Tosi, F. Zappa, and R. Macdonald, “Non-contact time-resolved diffuse reflectance imaging at null source-detector separation,” Opt. Express20(1), 283–290 (2012).
[CrossRef] [PubMed]

A. Tosi, A. Dalla Mora, F. Zappa, A. Gulinatti, D. Contini, A. Pifferi, L. Spinelli, A. Torricelli, and R. Cubeddu, “Fast-gated single-photon counting technique widens dynamic range and speeds up acquisition time in time-resolved measurements,” Opt. Express19(11), 10735–10746 (2011).
[CrossRef] [PubMed]

A. Dalla Mora, A. Tosi, F. Zappa, S. Cova, D. Contini, A. Pifferi, L. Spinelli, A. Torricelli, and R. Cubeddu, “Fast-Gated Single-Photon Avalanche Diode for Wide Dynamic Range Near Infrared Spectroscopy,” J. Sel. Top. Quantum Electron.16(4), 1023–1030 (2010).
[CrossRef]

R. Re, D. Contini, M. Caffini, R. Cubeddu, L. Spinelli, and A. Torricelli, “A compact time-resolved system for near infrared spectroscopy based on wavelength space multiplexing,” Rev. Sci. Instrum.81(11), 113101 (2010).
[CrossRef] [PubMed]

A. Pifferi, A. Torricelli, L. Spinelli, D. Contini, R. Cubeddu, F. Martelli, G. Zaccanti, A. Tosi, A. Dalla Mora, F. Zappa, and S. Cova, “Time-resolved diffuse reflectance using small source-detector separation and fast single-photon gating,” Phys. Rev. Lett.100(13), 138101 (2008).
[CrossRef] [PubMed]

D. Contini, L. Spinelli, A. Torricelli, A. Pifferi, and R. Cubeddu, “Novel method for depth-resolved brain functional imaging by time-domain NIRS,” Proc. SPIE6629, 662908, 662908-7 (2007).
[CrossRef]

L. Spinelli, F. Martelli, S. Del Bianco, A. Pifferi, A. Torricelli, R. Cubeddu, and G. Zaccanti, “Absorption and scattering perturbations in homogeneous and layered diffusive media probed by time-resolved reflectance at null source-detector separation,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.74(2), 021919 (2006).
[CrossRef] [PubMed]

A. Torricelli, A. Pifferi, L. Spinelli, R. Cubeddu, F. Martelli, S. Del Bianco, and G. Zaccanti, “Time-resolved reflectance at null source-detector separation: improving contrast and resolution in diffuse optical imaging,” Phys. Rev. Lett.95(7), 078101 (2005).
[CrossRef] [PubMed]

Cuccia, D.

Cuccia, D. J.

A. Mazhar, D. J. Cuccia, S. Gioux, A. J. Durkin, J. V. Frangioni, and B. J. Tromberg, “Structured illumination enhances resolution and contrast in thick tissue fluorescence imaging,” J. Biomed. Opt.15(1), 010506 (2010).
[CrossRef] [PubMed]

J. R. Weber, D. J. Cuccia, A. J. Durkin, and B. J. Tromberg, “Noncontact imaging of absorption and scattering in layered tissue using spatially modulated structured light,” J. Appl. Phys.105(10), 102028 (2009).
[CrossRef]

D. J. Cuccia, F. Bevilacqua, A. J. Durkin, F. R. Ayers, and B. J. Tromberg, “Quantitation and mapping of tissue optical properties using modulated imaging,” J. Biomed. Opt.14(2), 024012 (2009).
[CrossRef] [PubMed]

Dalla Mora, A.

M. Mazurenka, L. Di Sieno, G. Boso, D. Contini, A. Pifferi, A. Dalla Mora, A. Tosi, H. Wabnitz, and R. Macdonald, “A non-contact time-domain scanning brain imaging system: first in-vivo results,” Proc. SPIE8799, 87990L, 87990L-7 (2013).
[CrossRef]

L. Di Sieno, D. Contini, A. Dalla Mora, A. Torricelli, L. Spinelli, R. Cubeddu, A. Tosi, G. Boso, and A. Pifferi, “Functional near-infrared spectroscopy at small source-detector distance by means of high dynamic-range fast-gated SPAD acquisitions: first in-vivo measurements,” Proc. SPIE8804, 880402, 880402-6 (2013).
[CrossRef]

G. Boso, A. Dalla Mora, A. Della Frera, and A. Tosi, “Fast-gating of single-photon avalanche diodes with 200 ps transitions and 30 ps timing jitter,” Sens. Actuators A Phys.191, 61–67 (2013).
[CrossRef]

E. Alerstam, T. Svensson, S. Andersson-Engels, L. Spinelli, D. Contini, A. Dalla Mora, A. Tosi, F. Zappa, and A. Pifferi, “Single-fiber diffuse optical time-of-flight spectroscopy,” Opt. Lett.37(14), 2877–2879 (2012).
[CrossRef] [PubMed]

A. Dalla Mora, D. Contini, A. Pifferi, R. Cubeddu, A. Tosi, and F. Zappa, “Afterpulse-like noise limits dynamic range in time-gated applications of thin-junction silicon single-photon avalanche diode,” Appl. Phys. Lett.100(24), 241111 (2012).
[CrossRef]

A. Tosi, A. Dalla Mora, F. Zappa, A. Gulinatti, D. Contini, A. Pifferi, L. Spinelli, A. Torricelli, and R. Cubeddu, “Fast-gated single-photon counting technique widens dynamic range and speeds up acquisition time in time-resolved measurements,” Opt. Express19(11), 10735–10746 (2011).
[CrossRef] [PubMed]

A. Dalla Mora, A. Tosi, F. Zappa, S. Cova, D. Contini, A. Pifferi, L. Spinelli, A. Torricelli, and R. Cubeddu, “Fast-Gated Single-Photon Avalanche Diode for Wide Dynamic Range Near Infrared Spectroscopy,” J. Sel. Top. Quantum Electron.16(4), 1023–1030 (2010).
[CrossRef]

A. Pifferi, A. Torricelli, L. Spinelli, D. Contini, R. Cubeddu, F. Martelli, G. Zaccanti, A. Tosi, A. Dalla Mora, F. Zappa, and S. Cova, “Time-resolved diffuse reflectance using small source-detector separation and fast single-photon gating,” Phys. Rev. Lett.100(13), 138101 (2008).
[CrossRef] [PubMed]

Dayal, R.

Del Bianco, S.

L. Spinelli, F. Martelli, S. Del Bianco, A. Pifferi, A. Torricelli, R. Cubeddu, and G. Zaccanti, “Absorption and scattering perturbations in homogeneous and layered diffusive media probed by time-resolved reflectance at null source-detector separation,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.74(2), 021919 (2006).
[CrossRef] [PubMed]

A. Torricelli, A. Pifferi, L. Spinelli, R. Cubeddu, F. Martelli, S. Del Bianco, and G. Zaccanti, “Time-resolved reflectance at null source-detector separation: improving contrast and resolution in diffuse optical imaging,” Phys. Rev. Lett.95(7), 078101 (2005).
[CrossRef] [PubMed]

Della Frera, A.

G. Boso, A. Dalla Mora, A. Della Frera, and A. Tosi, “Fast-gating of single-photon avalanche diodes with 200 ps transitions and 30 ps timing jitter,” Sens. Actuators A Phys.191, 61–67 (2013).
[CrossRef]

Di Sieno, L.

A. Puszka, L. Di Sieno, A. D. Mora, A. Pifferi, D. Contini, G. Boso, A. Tosi, L. Hervé, A. Planat-Chrétien, A. Koenig, and J.-M. Dinten, “Time-resolved diffuse optical tomography using fast-gated single-photon avalanche diodes,” Biomed. Opt. Express4(8), 1351–1365 (2013).
[CrossRef] [PubMed]

M. Mazurenka, L. Di Sieno, G. Boso, D. Contini, A. Pifferi, A. Dalla Mora, A. Tosi, H. Wabnitz, and R. Macdonald, “A non-contact time-domain scanning brain imaging system: first in-vivo results,” Proc. SPIE8799, 87990L, 87990L-7 (2013).
[CrossRef]

L. Di Sieno, D. Contini, A. Dalla Mora, A. Torricelli, L. Spinelli, R. Cubeddu, A. Tosi, G. Boso, and A. Pifferi, “Functional near-infrared spectroscopy at small source-detector distance by means of high dynamic-range fast-gated SPAD acquisitions: first in-vivo measurements,” Proc. SPIE8804, 880402, 880402-6 (2013).
[CrossRef]

Dinten, J.-M.

Durkin, A. J.

M. Kaiser, A. Yafi, M. Cinat, B. Choi, and A. J. Durkin, “Noninvasive assessment of burn wound severity using optical technology: a review of current and future modalities,” Burns37(3), 377–386 (2011).
[CrossRef] [PubMed]

A. Mazhar, D. J. Cuccia, S. Gioux, A. J. Durkin, J. V. Frangioni, and B. J. Tromberg, “Structured illumination enhances resolution and contrast in thick tissue fluorescence imaging,” J. Biomed. Opt.15(1), 010506 (2010).
[CrossRef] [PubMed]

J. R. Weber, D. J. Cuccia, A. J. Durkin, and B. J. Tromberg, “Noncontact imaging of absorption and scattering in layered tissue using spatially modulated structured light,” J. Appl. Phys.105(10), 102028 (2009).
[CrossRef]

S. D. Konecky, A. Mazhar, D. Cuccia, A. J. Durkin, J. C. Schotland, and B. J. Tromberg, “Quantitative optical tomography of sub-surface heterogeneities using spatially modulated structured light,” Opt. Express17(17), 14780–14790 (2009).
[CrossRef] [PubMed]

D. J. Cuccia, F. Bevilacqua, A. J. Durkin, F. R. Ayers, and B. J. Tromberg, “Quantitation and mapping of tissue optical properties using modulated imaging,” J. Biomed. Opt.14(2), 024012 (2009).
[CrossRef] [PubMed]

Ermishova, N. V.

A. A. Stratonnikov, N. V. Ermishova, and V. B. Loschenov, “Influence of red laser irradiation on hemoglobin oxygen saturation and blood volume in human skin in vivo,” Proc. SPIE4257, 57–64 (2001).
[CrossRef]

Ferrari, M.

M. Ferrari and V. Quaresima, “A brief review on the history of human functional near-infrared spectroscopy (fNIRS) development and fields of application,” Neuroimage63(2), 921–935 (2012).
[CrossRef] [PubMed]

M. Wolf, M. Ferrari, and V. Quaresima, “Progress of near-infrared spectroscopy and topography for brain and muscle clinical applications,” J. Biomed. Opt.12(6), 062104 (2007).
[CrossRef] [PubMed]

Fiebach, J. B.

O. Steinkellner, C. Gruber, H. Wabnitz, A. Jelzow, J. Steinbrink, J. B. Fiebach, R. Macdonald, and H. Obrig, “Optical bedside monitoring of cerebral perfusion: technological and methodological advances applied in a study on acute ischemic stroke,” J. Biomed. Opt.15(6), 061708 (2010).
[CrossRef] [PubMed]

Flexman, M.

Franceschini, M. A.

J. Selb, J. J. Stott, M. A. Franceschini, A. G. Sorensen, and D. A. Boas, “Improved sensitivity to cerebral hemodynamics during brain activation with a time-gated optical system: analytical model and experimental validation,” J. Biomed. Opt.10(1), 011013 (2005).
[CrossRef] [PubMed]

Frangioni, J. V.

A. Mazhar, D. J. Cuccia, S. Gioux, A. J. Durkin, J. V. Frangioni, and B. J. Tromberg, “Structured illumination enhances resolution and contrast in thick tissue fluorescence imaging,” J. Biomed. Opt.15(1), 010506 (2010).
[CrossRef] [PubMed]

Funane, T.

T. Funane, H. Atsumori, A. Suzuki, and M. Kiguchi, “Noncontact brain activity measurement system based on near-infrared spectroscopy,” Appl. Phys. Lett.96(12), 123701 (2010).
[CrossRef]

Gebauer, B.

H. Rinneberg, D. Grosenick, K. T. Moesta, J. Mucke, B. Gebauer, C. Stroszczynski, H. Wabnitz, M. Moeller, B. Wassermann, and P. M. Schlag, “Scanning time-domain optical mammography: detection and characterization of breast tumors in vivo,” Technol. Cancer Res. Treat.4(5), 483–496 (2005).
[PubMed]

Gioux, S.

A. Mazhar, D. J. Cuccia, S. Gioux, A. J. Durkin, J. V. Frangioni, and B. J. Tromberg, “Structured illumination enhances resolution and contrast in thick tissue fluorescence imaging,” J. Biomed. Opt.15(1), 010506 (2010).
[CrossRef] [PubMed]

Grosenick, D.

H. Rinneberg, D. Grosenick, K. T. Moesta, J. Mucke, B. Gebauer, C. Stroszczynski, H. Wabnitz, M. Moeller, B. Wassermann, and P. M. Schlag, “Scanning time-domain optical mammography: detection and characterization of breast tumors in vivo,” Technol. Cancer Res. Treat.4(5), 483–496 (2005).
[PubMed]

Gruber, C.

O. Steinkellner, C. Gruber, H. Wabnitz, A. Jelzow, J. Steinbrink, J. B. Fiebach, R. Macdonald, and H. Obrig, “Optical bedside monitoring of cerebral perfusion: technological and methodological advances applied in a study on acute ischemic stroke,” J. Biomed. Opt.15(6), 061708 (2010).
[CrossRef] [PubMed]

Gulinatti, A.

Haitsma, I. K.

I. K. Haitsma and A. I. R. Maas, “Monitoring cerebral oxygenation in traumatic brain injury,” Prog. Brain Res.161, 207–216 (2007).
[CrossRef] [PubMed]

Hazeki, O.

Y. Nomura, O. Hazeki, and M. Tamura, “Relationship between time-resolved and non-time-resolved Beer-Lambert law in turbid media,” Phys. Med. Biol.42(6), 1009–1022 (1997).
[CrossRef] [PubMed]

He, L.

T. Li, Y. Lin, Y. Shang, L. He, C. Huang, M. Szabunio, and G. Yu, “Simultaneous measurement of deep tissue blood flow and oxygenation using noncontact diffuse correlation spectroscopy flow-oximeter,” Sci Rep3, 1358 (2013).
[CrossRef] [PubMed]

Y. Lin, L. He, Y. Shang, and G. Yu, “Noncontact diffuse correlation spectroscopy for noninvasive deep tissue blood flow measurement,” J. Biomed. Opt.17(1), 010502 (2012).
[CrossRef] [PubMed]

Hebden, J. C.

J. C. Hebden, “Advances in optical imaging of the newborn infant brain,” Psychophysiology40(4), 501–510 (2003).
[CrossRef] [PubMed]

Heine, A.

E. Kirilina, A. Jelzow, A. Heine, M. Niessing, H. Wabnitz, R. Brühl, B. Ittermann, A. M. Jacobs, and I. Tachtsidis, “The physiological origin of task-evoked systemic artefacts in functional near infrared spectroscopy,” Neuroimage61(1), 70–81 (2012).
[CrossRef] [PubMed]

Henderson, B. W.

Hervé, L.

Hibst, R.

Hielscher, A. H.

Huang, C.

T. Li, Y. Lin, Y. Shang, L. He, C. Huang, M. Szabunio, and G. Yu, “Simultaneous measurement of deep tissue blood flow and oxygenation using noncontact diffuse correlation spectroscopy flow-oximeter,” Sci Rep3, 1358 (2013).
[CrossRef] [PubMed]

Ittermann, B.

E. Kirilina, A. Jelzow, A. Heine, M. Niessing, H. Wabnitz, R. Brühl, B. Ittermann, A. M. Jacobs, and I. Tachtsidis, “The physiological origin of task-evoked systemic artefacts in functional near infrared spectroscopy,” Neuroimage61(1), 70–81 (2012).
[CrossRef] [PubMed]

Jacobs, A. M.

E. Kirilina, A. Jelzow, A. Heine, M. Niessing, H. Wabnitz, R. Brühl, B. Ittermann, A. M. Jacobs, and I. Tachtsidis, “The physiological origin of task-evoked systemic artefacts in functional near infrared spectroscopy,” Neuroimage61(1), 70–81 (2012).
[CrossRef] [PubMed]

Jelzow, A.

E. Kirilina, A. Jelzow, A. Heine, M. Niessing, H. Wabnitz, R. Brühl, B. Ittermann, A. M. Jacobs, and I. Tachtsidis, “The physiological origin of task-evoked systemic artefacts in functional near infrared spectroscopy,” Neuroimage61(1), 70–81 (2012).
[CrossRef] [PubMed]

M. Mazurenka, A. Jelzow, H. Wabnitz, D. Contini, L. Spinelli, A. Pifferi, R. Cubeddu, A. D. Mora, A. Tosi, F. Zappa, and R. Macdonald, “Non-contact time-resolved diffuse reflectance imaging at null source-detector separation,” Opt. Express20(1), 283–290 (2012).
[CrossRef] [PubMed]

O. Steinkellner, C. Gruber, H. Wabnitz, A. Jelzow, J. Steinbrink, J. B. Fiebach, R. Macdonald, and H. Obrig, “Optical bedside monitoring of cerebral perfusion: technological and methodological advances applied in a study on acute ischemic stroke,” J. Biomed. Opt.15(6), 061708 (2010).
[CrossRef] [PubMed]

Kacprzak, M.

P. Sawosz, N. Zolek, M. Kacprzak, R. Maniewski, and A. Liebert, “Application of time-gated CCD camera with image intensifier in contactless detection of absorbing inclusions buried in optically turbid medium which mimics local changes in oxygenation of the brain tissue,” Opto-Electron. Rev.20(4), 309–314 (2012).
[CrossRef]

P. Sawosz, M. Kacprzak, N. Zolek, W. Weigl, S. Wojtkiewicz, R. Maniewski, and A. Liebert, “Optical system based on time-gated, intensified charge-coupled device camera for brain imaging studies,” J. Biomed. Opt.15(6), 066025 (2010).
[CrossRef] [PubMed]

Kaiser, M.

M. Kaiser, A. Yafi, M. Cinat, B. Choi, and A. J. Durkin, “Noninvasive assessment of burn wound severity using optical technology: a review of current and future modalities,” Burns37(3), 377–386 (2011).
[CrossRef] [PubMed]

Keymel, K. R.

Khalil, M. A.

Kienle, A.

Kiguchi, M.

T. Funane, H. Atsumori, A. Suzuki, and M. Kiguchi, “Noncontact brain activity measurement system based on near-infrared spectroscopy,” Appl. Phys. Lett.96(12), 123701 (2010).
[CrossRef]

Kim, H. K.

Kim, I.-K.

Kirilina, E.

E. Kirilina, A. Jelzow, A. Heine, M. Niessing, H. Wabnitz, R. Brühl, B. Ittermann, A. M. Jacobs, and I. Tachtsidis, “The physiological origin of task-evoked systemic artefacts in functional near infrared spectroscopy,” Neuroimage61(1), 70–81 (2012).
[CrossRef] [PubMed]

Koenig, A.

Konecky, S. D.

Li, T.

T. Li, Y. Lin, Y. Shang, L. He, C. Huang, M. Szabunio, and G. Yu, “Simultaneous measurement of deep tissue blood flow and oxygenation using noncontact diffuse correlation spectroscopy flow-oximeter,” Sci Rep3, 1358 (2013).
[CrossRef] [PubMed]

Liebert, A.

P. Sawosz, N. Zolek, M. Kacprzak, R. Maniewski, and A. Liebert, “Application of time-gated CCD camera with image intensifier in contactless detection of absorbing inclusions buried in optically turbid medium which mimics local changes in oxygenation of the brain tissue,” Opto-Electron. Rev.20(4), 309–314 (2012).
[CrossRef]

P. Sawosz, M. Kacprzak, N. Zolek, W. Weigl, S. Wojtkiewicz, R. Maniewski, and A. Liebert, “Optical system based on time-gated, intensified charge-coupled device camera for brain imaging studies,” J. Biomed. Opt.15(6), 066025 (2010).
[CrossRef] [PubMed]

Lilge, L.

Lin, Y.

T. Li, Y. Lin, Y. Shang, L. He, C. Huang, M. Szabunio, and G. Yu, “Simultaneous measurement of deep tissue blood flow and oxygenation using noncontact diffuse correlation spectroscopy flow-oximeter,” Sci Rep3, 1358 (2013).
[CrossRef] [PubMed]

Y. Lin, L. He, Y. Shang, and G. Yu, “Noncontact diffuse correlation spectroscopy for noninvasive deep tissue blood flow measurement,” J. Biomed. Opt.17(1), 010502 (2012).
[CrossRef] [PubMed]

Loschenov, V. B.

A. A. Stratonnikov, N. V. Ermishova, and V. B. Loschenov, “Influence of red laser irradiation on hemoglobin oxygen saturation and blood volume in human skin in vivo,” Proc. SPIE4257, 57–64 (2001).
[CrossRef]

Maas, A. I. R.

I. K. Haitsma and A. I. R. Maas, “Monitoring cerebral oxygenation in traumatic brain injury,” Prog. Brain Res.161, 207–216 (2007).
[CrossRef] [PubMed]

Macdonald, R.

M. Mazurenka, L. Di Sieno, G. Boso, D. Contini, A. Pifferi, A. Dalla Mora, A. Tosi, H. Wabnitz, and R. Macdonald, “A non-contact time-domain scanning brain imaging system: first in-vivo results,” Proc. SPIE8799, 87990L, 87990L-7 (2013).
[CrossRef]

M. Mazurenka, A. Jelzow, H. Wabnitz, D. Contini, L. Spinelli, A. Pifferi, R. Cubeddu, A. D. Mora, A. Tosi, F. Zappa, and R. Macdonald, “Non-contact time-resolved diffuse reflectance imaging at null source-detector separation,” Opt. Express20(1), 283–290 (2012).
[CrossRef] [PubMed]

O. Steinkellner, C. Gruber, H. Wabnitz, A. Jelzow, J. Steinbrink, J. B. Fiebach, R. Macdonald, and H. Obrig, “Optical bedside monitoring of cerebral perfusion: technological and methodological advances applied in a study on acute ischemic stroke,” J. Biomed. Opt.15(6), 061708 (2010).
[CrossRef] [PubMed]

Maitland, D. J.

V. Sankaran, J. T. Walsh, and D. J. Maitland, “Comparative study of polarized light propagation in biologic tissues,” J. Biomed. Opt.7(3), 300–306 (2002).
[CrossRef] [PubMed]

Maniewski, R.

P. Sawosz, N. Zolek, M. Kacprzak, R. Maniewski, and A. Liebert, “Application of time-gated CCD camera with image intensifier in contactless detection of absorbing inclusions buried in optically turbid medium which mimics local changes in oxygenation of the brain tissue,” Opto-Electron. Rev.20(4), 309–314 (2012).
[CrossRef]

P. Sawosz, M. Kacprzak, N. Zolek, W. Weigl, S. Wojtkiewicz, R. Maniewski, and A. Liebert, “Optical system based on time-gated, intensified charge-coupled device camera for brain imaging studies,” J. Biomed. Opt.15(6), 066025 (2010).
[CrossRef] [PubMed]

Martelli, F.

A. Pifferi, A. Torricelli, L. Spinelli, D. Contini, R. Cubeddu, F. Martelli, G. Zaccanti, A. Tosi, A. Dalla Mora, F. Zappa, and S. Cova, “Time-resolved diffuse reflectance using small source-detector separation and fast single-photon gating,” Phys. Rev. Lett.100(13), 138101 (2008).
[CrossRef] [PubMed]

L. Spinelli, F. Martelli, S. Del Bianco, A. Pifferi, A. Torricelli, R. Cubeddu, and G. Zaccanti, “Absorption and scattering perturbations in homogeneous and layered diffusive media probed by time-resolved reflectance at null source-detector separation,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.74(2), 021919 (2006).
[CrossRef] [PubMed]

A. Torricelli, A. Pifferi, L. Spinelli, R. Cubeddu, F. Martelli, S. Del Bianco, and G. Zaccanti, “Time-resolved reflectance at null source-detector separation: improving contrast and resolution in diffuse optical imaging,” Phys. Rev. Lett.95(7), 078101 (2005).
[CrossRef] [PubMed]

Mazhar, A.

A. Mazhar, D. J. Cuccia, S. Gioux, A. J. Durkin, J. V. Frangioni, and B. J. Tromberg, “Structured illumination enhances resolution and contrast in thick tissue fluorescence imaging,” J. Biomed. Opt.15(1), 010506 (2010).
[CrossRef] [PubMed]

S. D. Konecky, A. Mazhar, D. Cuccia, A. J. Durkin, J. C. Schotland, and B. J. Tromberg, “Quantitative optical tomography of sub-surface heterogeneities using spatially modulated structured light,” Opt. Express17(17), 14780–14790 (2009).
[CrossRef] [PubMed]

Mazurenka, M.

M. Mazurenka, L. Di Sieno, G. Boso, D. Contini, A. Pifferi, A. Dalla Mora, A. Tosi, H. Wabnitz, and R. Macdonald, “A non-contact time-domain scanning brain imaging system: first in-vivo results,” Proc. SPIE8799, 87990L, 87990L-7 (2013).
[CrossRef]

M. Mazurenka, A. Jelzow, H. Wabnitz, D. Contini, L. Spinelli, A. Pifferi, R. Cubeddu, A. D. Mora, A. Tosi, F. Zappa, and R. Macdonald, “Non-contact time-resolved diffuse reflectance imaging at null source-detector separation,” Opt. Express20(1), 283–290 (2012).
[CrossRef] [PubMed]

Moeller, M.

H. Rinneberg, D. Grosenick, K. T. Moesta, J. Mucke, B. Gebauer, C. Stroszczynski, H. Wabnitz, M. Moeller, B. Wassermann, and P. M. Schlag, “Scanning time-domain optical mammography: detection and characterization of breast tumors in vivo,” Technol. Cancer Res. Treat.4(5), 483–496 (2005).
[PubMed]

Moesta, K. T.

H. Rinneberg, D. Grosenick, K. T. Moesta, J. Mucke, B. Gebauer, C. Stroszczynski, H. Wabnitz, M. Moeller, B. Wassermann, and P. M. Schlag, “Scanning time-domain optical mammography: detection and characterization of breast tumors in vivo,” Technol. Cancer Res. Treat.4(5), 483–496 (2005).
[PubMed]

Molteni, E.

E. Molteni, D. Contini, M. Caffini, G. Baselli, L. Spinelli, R. Cubeddu, S. Cerutti, A. M. Bianchi, and A. Torricelli, “Load-dependent brain activation assessed by time-domain functional near-infrared spectroscopy during a working memory task with graded levels of difficulty,” J. Biomed. Opt.17(5), 056005 (2012).
[CrossRef] [PubMed]

Mora, A. D.

Mucke, J.

H. Rinneberg, D. Grosenick, K. T. Moesta, J. Mucke, B. Gebauer, C. Stroszczynski, H. Wabnitz, M. Moeller, B. Wassermann, and P. M. Schlag, “Scanning time-domain optical mammography: detection and characterization of breast tumors in vivo,” Technol. Cancer Res. Treat.4(5), 483–496 (2005).
[PubMed]

Murata, H.

M. Niwayama, H. Murata, and S. Shinohara, “Noncontact tissue oxygenation measurement using near-infrared spectroscopy,” Rev. Sci. Instrum.77(7), 073102 (2006).
[CrossRef]

Murkin, J. M.

J. M. Murkin and M. Arango, “Near-infrared spectroscopy as an index of brain and tissue oxygenation,” Br. J. Anaesth.103(Suppl 1), i3–i13 (2009).
[CrossRef] [PubMed]

Niessing, M.

E. Kirilina, A. Jelzow, A. Heine, M. Niessing, H. Wabnitz, R. Brühl, B. Ittermann, A. M. Jacobs, and I. Tachtsidis, “The physiological origin of task-evoked systemic artefacts in functional near infrared spectroscopy,” Neuroimage61(1), 70–81 (2012).
[CrossRef] [PubMed]

Niwayama, M.

M. Niwayama, H. Murata, and S. Shinohara, “Noncontact tissue oxygenation measurement using near-infrared spectroscopy,” Rev. Sci. Instrum.77(7), 073102 (2006).
[CrossRef]

Nomura, Y.

Y. Nomura, O. Hazeki, and M. Tamura, “Relationship between time-resolved and non-time-resolved Beer-Lambert law in turbid media,” Phys. Med. Biol.42(6), 1009–1022 (1997).
[CrossRef] [PubMed]

Obrig, H.

O. Steinkellner, C. Gruber, H. Wabnitz, A. Jelzow, J. Steinbrink, J. B. Fiebach, R. Macdonald, and H. Obrig, “Optical bedside monitoring of cerebral perfusion: technological and methodological advances applied in a study on acute ischemic stroke,” J. Biomed. Opt.15(6), 061708 (2010).
[CrossRef] [PubMed]

Paquette, A. D.

Patterson, M. S.

Pifferi, A.

L. Di Sieno, D. Contini, A. Dalla Mora, A. Torricelli, L. Spinelli, R. Cubeddu, A. Tosi, G. Boso, and A. Pifferi, “Functional near-infrared spectroscopy at small source-detector distance by means of high dynamic-range fast-gated SPAD acquisitions: first in-vivo measurements,” Proc. SPIE8804, 880402, 880402-6 (2013).
[CrossRef]

M. Mazurenka, L. Di Sieno, G. Boso, D. Contini, A. Pifferi, A. Dalla Mora, A. Tosi, H. Wabnitz, and R. Macdonald, “A non-contact time-domain scanning brain imaging system: first in-vivo results,” Proc. SPIE8799, 87990L, 87990L-7 (2013).
[CrossRef]

A. Puszka, L. Di Sieno, A. D. Mora, A. Pifferi, D. Contini, G. Boso, A. Tosi, L. Hervé, A. Planat-Chrétien, A. Koenig, and J.-M. Dinten, “Time-resolved diffuse optical tomography using fast-gated single-photon avalanche diodes,” Biomed. Opt. Express4(8), 1351–1365 (2013).
[CrossRef] [PubMed]

E. Alerstam, T. Svensson, S. Andersson-Engels, L. Spinelli, D. Contini, A. Dalla Mora, A. Tosi, F. Zappa, and A. Pifferi, “Single-fiber diffuse optical time-of-flight spectroscopy,” Opt. Lett.37(14), 2877–2879 (2012).
[CrossRef] [PubMed]

M. Mazurenka, A. Jelzow, H. Wabnitz, D. Contini, L. Spinelli, A. Pifferi, R. Cubeddu, A. D. Mora, A. Tosi, F. Zappa, and R. Macdonald, “Non-contact time-resolved diffuse reflectance imaging at null source-detector separation,” Opt. Express20(1), 283–290 (2012).
[CrossRef] [PubMed]

A. Dalla Mora, D. Contini, A. Pifferi, R. Cubeddu, A. Tosi, and F. Zappa, “Afterpulse-like noise limits dynamic range in time-gated applications of thin-junction silicon single-photon avalanche diode,” Appl. Phys. Lett.100(24), 241111 (2012).
[CrossRef]

A. Tosi, A. Dalla Mora, F. Zappa, A. Gulinatti, D. Contini, A. Pifferi, L. Spinelli, A. Torricelli, and R. Cubeddu, “Fast-gated single-photon counting technique widens dynamic range and speeds up acquisition time in time-resolved measurements,” Opt. Express19(11), 10735–10746 (2011).
[CrossRef] [PubMed]

A. Dalla Mora, A. Tosi, F. Zappa, S. Cova, D. Contini, A. Pifferi, L. Spinelli, A. Torricelli, and R. Cubeddu, “Fast-Gated Single-Photon Avalanche Diode for Wide Dynamic Range Near Infrared Spectroscopy,” J. Sel. Top. Quantum Electron.16(4), 1023–1030 (2010).
[CrossRef]

A. Pifferi, A. Torricelli, L. Spinelli, D. Contini, R. Cubeddu, F. Martelli, G. Zaccanti, A. Tosi, A. Dalla Mora, F. Zappa, and S. Cova, “Time-resolved diffuse reflectance using small source-detector separation and fast single-photon gating,” Phys. Rev. Lett.100(13), 138101 (2008).
[CrossRef] [PubMed]

D. Contini, L. Spinelli, A. Torricelli, A. Pifferi, and R. Cubeddu, “Novel method for depth-resolved brain functional imaging by time-domain NIRS,” Proc. SPIE6629, 662908, 662908-7 (2007).
[CrossRef]

L. Spinelli, F. Martelli, S. Del Bianco, A. Pifferi, A. Torricelli, R. Cubeddu, and G. Zaccanti, “Absorption and scattering perturbations in homogeneous and layered diffusive media probed by time-resolved reflectance at null source-detector separation,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.74(2), 021919 (2006).
[CrossRef] [PubMed]

A. Torricelli, A. Pifferi, L. Spinelli, R. Cubeddu, F. Martelli, S. Del Bianco, and G. Zaccanti, “Time-resolved reflectance at null source-detector separation: improving contrast and resolution in diffuse optical imaging,” Phys. Rev. Lett.95(7), 078101 (2005).
[CrossRef] [PubMed]

Planat-Chrétien, A.

Puszka, A.

Quaresima, V.

M. Ferrari and V. Quaresima, “A brief review on the history of human functional near-infrared spectroscopy (fNIRS) development and fields of application,” Neuroimage63(2), 921–935 (2012).
[CrossRef] [PubMed]

M. Wolf, M. Ferrari, and V. Quaresima, “Progress of near-infrared spectroscopy and topography for brain and muscle clinical applications,” J. Biomed. Opt.12(6), 062104 (2007).
[CrossRef] [PubMed]

Re, R.

R. Re, D. Contini, M. Caffini, R. Cubeddu, L. Spinelli, and A. Torricelli, “A compact time-resolved system for near infrared spectroscopy based on wavelength space multiplexing,” Rev. Sci. Instrum.81(11), 113101 (2010).
[CrossRef] [PubMed]

Rinneberg, H.

H. Rinneberg, D. Grosenick, K. T. Moesta, J. Mucke, B. Gebauer, C. Stroszczynski, H. Wabnitz, M. Moeller, B. Wassermann, and P. M. Schlag, “Scanning time-domain optical mammography: detection and characterization of breast tumors in vivo,” Technol. Cancer Res. Treat.4(5), 483–496 (2005).
[PubMed]

Sankaran, V.

V. Sankaran, J. T. Walsh, and D. J. Maitland, “Comparative study of polarized light propagation in biologic tissues,” J. Biomed. Opt.7(3), 300–306 (2002).
[CrossRef] [PubMed]

Sase, I.

I. Sase, A. Takatsuki, J. Seki, T. Yanagida, and A. Seiyama, “Noncontact backscatter-mode near-infrared time-resolved imaging system: preliminary study for functional brain mapping,” J. Biomed. Opt.11(5), 054006 (2006).
[CrossRef] [PubMed]

Sawosz, P.

P. Sawosz, N. Zolek, M. Kacprzak, R. Maniewski, and A. Liebert, “Application of time-gated CCD camera with image intensifier in contactless detection of absorbing inclusions buried in optically turbid medium which mimics local changes in oxygenation of the brain tissue,” Opto-Electron. Rev.20(4), 309–314 (2012).
[CrossRef]

P. Sawosz, M. Kacprzak, N. Zolek, W. Weigl, S. Wojtkiewicz, R. Maniewski, and A. Liebert, “Optical system based on time-gated, intensified charge-coupled device camera for brain imaging studies,” J. Biomed. Opt.15(6), 066025 (2010).
[CrossRef] [PubMed]

Schlag, P. M.

H. Rinneberg, D. Grosenick, K. T. Moesta, J. Mucke, B. Gebauer, C. Stroszczynski, H. Wabnitz, M. Moeller, B. Wassermann, and P. M. Schlag, “Scanning time-domain optical mammography: detection and characterization of breast tumors in vivo,” Technol. Cancer Res. Treat.4(5), 483–496 (2005).
[PubMed]

Schotland, J. C.

Seiyama, A.

I. Sase, A. Takatsuki, J. Seki, T. Yanagida, and A. Seiyama, “Noncontact backscatter-mode near-infrared time-resolved imaging system: preliminary study for functional brain mapping,” J. Biomed. Opt.11(5), 054006 (2006).
[CrossRef] [PubMed]

Seki, J.

I. Sase, A. Takatsuki, J. Seki, T. Yanagida, and A. Seiyama, “Noncontact backscatter-mode near-infrared time-resolved imaging system: preliminary study for functional brain mapping,” J. Biomed. Opt.11(5), 054006 (2006).
[CrossRef] [PubMed]

Selb, J.

J. Selb, J. J. Stott, M. A. Franceschini, A. G. Sorensen, and D. A. Boas, “Improved sensitivity to cerebral hemodynamics during brain activation with a time-gated optical system: analytical model and experimental validation,” J. Biomed. Opt.10(1), 011013 (2005).
[CrossRef] [PubMed]

Shang, Y.

T. Li, Y. Lin, Y. Shang, L. He, C. Huang, M. Szabunio, and G. Yu, “Simultaneous measurement of deep tissue blood flow and oxygenation using noncontact diffuse correlation spectroscopy flow-oximeter,” Sci Rep3, 1358 (2013).
[CrossRef] [PubMed]

Y. Lin, L. He, Y. Shang, and G. Yu, “Noncontact diffuse correlation spectroscopy for noninvasive deep tissue blood flow measurement,” J. Biomed. Opt.17(1), 010502 (2012).
[CrossRef] [PubMed]

Shinohara, S.

M. Niwayama, H. Murata, and S. Shinohara, “Noncontact tissue oxygenation measurement using near-infrared spectroscopy,” Rev. Sci. Instrum.77(7), 073102 (2006).
[CrossRef]

Shrikhande, G.

Sorensen, A. G.

J. Selb, J. J. Stott, M. A. Franceschini, A. G. Sorensen, and D. A. Boas, “Improved sensitivity to cerebral hemodynamics during brain activation with a time-gated optical system: analytical model and experimental validation,” J. Biomed. Opt.10(1), 011013 (2005).
[CrossRef] [PubMed]

Spinelli, L.

L. Di Sieno, D. Contini, A. Dalla Mora, A. Torricelli, L. Spinelli, R. Cubeddu, A. Tosi, G. Boso, and A. Pifferi, “Functional near-infrared spectroscopy at small source-detector distance by means of high dynamic-range fast-gated SPAD acquisitions: first in-vivo measurements,” Proc. SPIE8804, 880402, 880402-6 (2013).
[CrossRef]

E. Alerstam, T. Svensson, S. Andersson-Engels, L. Spinelli, D. Contini, A. Dalla Mora, A. Tosi, F. Zappa, and A. Pifferi, “Single-fiber diffuse optical time-of-flight spectroscopy,” Opt. Lett.37(14), 2877–2879 (2012).
[CrossRef] [PubMed]

E. Molteni, D. Contini, M. Caffini, G. Baselli, L. Spinelli, R. Cubeddu, S. Cerutti, A. M. Bianchi, and A. Torricelli, “Load-dependent brain activation assessed by time-domain functional near-infrared spectroscopy during a working memory task with graded levels of difficulty,” J. Biomed. Opt.17(5), 056005 (2012).
[CrossRef] [PubMed]

M. Mazurenka, A. Jelzow, H. Wabnitz, D. Contini, L. Spinelli, A. Pifferi, R. Cubeddu, A. D. Mora, A. Tosi, F. Zappa, and R. Macdonald, “Non-contact time-resolved diffuse reflectance imaging at null source-detector separation,” Opt. Express20(1), 283–290 (2012).
[CrossRef] [PubMed]

A. Tosi, A. Dalla Mora, F. Zappa, A. Gulinatti, D. Contini, A. Pifferi, L. Spinelli, A. Torricelli, and R. Cubeddu, “Fast-gated single-photon counting technique widens dynamic range and speeds up acquisition time in time-resolved measurements,” Opt. Express19(11), 10735–10746 (2011).
[CrossRef] [PubMed]

A. Dalla Mora, A. Tosi, F. Zappa, S. Cova, D. Contini, A. Pifferi, L. Spinelli, A. Torricelli, and R. Cubeddu, “Fast-Gated Single-Photon Avalanche Diode for Wide Dynamic Range Near Infrared Spectroscopy,” J. Sel. Top. Quantum Electron.16(4), 1023–1030 (2010).
[CrossRef]

R. Re, D. Contini, M. Caffini, R. Cubeddu, L. Spinelli, and A. Torricelli, “A compact time-resolved system for near infrared spectroscopy based on wavelength space multiplexing,” Rev. Sci. Instrum.81(11), 113101 (2010).
[CrossRef] [PubMed]

A. Pifferi, A. Torricelli, L. Spinelli, D. Contini, R. Cubeddu, F. Martelli, G. Zaccanti, A. Tosi, A. Dalla Mora, F. Zappa, and S. Cova, “Time-resolved diffuse reflectance using small source-detector separation and fast single-photon gating,” Phys. Rev. Lett.100(13), 138101 (2008).
[CrossRef] [PubMed]

D. Contini, L. Spinelli, A. Torricelli, A. Pifferi, and R. Cubeddu, “Novel method for depth-resolved brain functional imaging by time-domain NIRS,” Proc. SPIE6629, 662908, 662908-7 (2007).
[CrossRef]

L. Spinelli, F. Martelli, S. Del Bianco, A. Pifferi, A. Torricelli, R. Cubeddu, and G. Zaccanti, “Absorption and scattering perturbations in homogeneous and layered diffusive media probed by time-resolved reflectance at null source-detector separation,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.74(2), 021919 (2006).
[CrossRef] [PubMed]

A. Torricelli, A. Pifferi, L. Spinelli, R. Cubeddu, F. Martelli, S. Del Bianco, and G. Zaccanti, “Time-resolved reflectance at null source-detector separation: improving contrast and resolution in diffuse optical imaging,” Phys. Rev. Lett.95(7), 078101 (2005).
[CrossRef] [PubMed]

Steinbrink, J.

O. Steinkellner, C. Gruber, H. Wabnitz, A. Jelzow, J. Steinbrink, J. B. Fiebach, R. Macdonald, and H. Obrig, “Optical bedside monitoring of cerebral perfusion: technological and methodological advances applied in a study on acute ischemic stroke,” J. Biomed. Opt.15(6), 061708 (2010).
[CrossRef] [PubMed]

Steiner, R.

Steinkellner, O.

O. Steinkellner, C. Gruber, H. Wabnitz, A. Jelzow, J. Steinbrink, J. B. Fiebach, R. Macdonald, and H. Obrig, “Optical bedside monitoring of cerebral perfusion: technological and methodological advances applied in a study on acute ischemic stroke,” J. Biomed. Opt.15(6), 061708 (2010).
[CrossRef] [PubMed]

Stott, J. J.

J. Selb, J. J. Stott, M. A. Franceschini, A. G. Sorensen, and D. A. Boas, “Improved sensitivity to cerebral hemodynamics during brain activation with a time-gated optical system: analytical model and experimental validation,” J. Biomed. Opt.10(1), 011013 (2005).
[CrossRef] [PubMed]

Stratonnikov, A. A.

A. A. Stratonnikov, N. V. Ermishova, and V. B. Loschenov, “Influence of red laser irradiation on hemoglobin oxygen saturation and blood volume in human skin in vivo,” Proc. SPIE4257, 57–64 (2001).
[CrossRef]

Stroszczynski, C.

H. Rinneberg, D. Grosenick, K. T. Moesta, J. Mucke, B. Gebauer, C. Stroszczynski, H. Wabnitz, M. Moeller, B. Wassermann, and P. M. Schlag, “Scanning time-domain optical mammography: detection and characterization of breast tumors in vivo,” Technol. Cancer Res. Treat.4(5), 483–496 (2005).
[PubMed]

Sunar, U.

Suzuki, A.

T. Funane, H. Atsumori, A. Suzuki, and M. Kiguchi, “Noncontact brain activity measurement system based on near-infrared spectroscopy,” Appl. Phys. Lett.96(12), 123701 (2010).
[CrossRef]

Svensson, T.

Szabunio, M.

T. Li, Y. Lin, Y. Shang, L. He, C. Huang, M. Szabunio, and G. Yu, “Simultaneous measurement of deep tissue blood flow and oxygenation using noncontact diffuse correlation spectroscopy flow-oximeter,” Sci Rep3, 1358 (2013).
[CrossRef] [PubMed]

Tachtsidis, I.

E. Kirilina, A. Jelzow, A. Heine, M. Niessing, H. Wabnitz, R. Brühl, B. Ittermann, A. M. Jacobs, and I. Tachtsidis, “The physiological origin of task-evoked systemic artefacts in functional near infrared spectroscopy,” Neuroimage61(1), 70–81 (2012).
[CrossRef] [PubMed]

Takatsuki, A.

I. Sase, A. Takatsuki, J. Seki, T. Yanagida, and A. Seiyama, “Noncontact backscatter-mode near-infrared time-resolved imaging system: preliminary study for functional brain mapping,” J. Biomed. Opt.11(5), 054006 (2006).
[CrossRef] [PubMed]

Tamura, M.

Y. Nomura, O. Hazeki, and M. Tamura, “Relationship between time-resolved and non-time-resolved Beer-Lambert law in turbid media,” Phys. Med. Biol.42(6), 1009–1022 (1997).
[CrossRef] [PubMed]

Ten Bosch, J. J.

Torricelli, A.

L. Di Sieno, D. Contini, A. Dalla Mora, A. Torricelli, L. Spinelli, R. Cubeddu, A. Tosi, G. Boso, and A. Pifferi, “Functional near-infrared spectroscopy at small source-detector distance by means of high dynamic-range fast-gated SPAD acquisitions: first in-vivo measurements,” Proc. SPIE8804, 880402, 880402-6 (2013).
[CrossRef]

E. Molteni, D. Contini, M. Caffini, G. Baselli, L. Spinelli, R. Cubeddu, S. Cerutti, A. M. Bianchi, and A. Torricelli, “Load-dependent brain activation assessed by time-domain functional near-infrared spectroscopy during a working memory task with graded levels of difficulty,” J. Biomed. Opt.17(5), 056005 (2012).
[CrossRef] [PubMed]

A. Tosi, A. Dalla Mora, F. Zappa, A. Gulinatti, D. Contini, A. Pifferi, L. Spinelli, A. Torricelli, and R. Cubeddu, “Fast-gated single-photon counting technique widens dynamic range and speeds up acquisition time in time-resolved measurements,” Opt. Express19(11), 10735–10746 (2011).
[CrossRef] [PubMed]

A. Dalla Mora, A. Tosi, F. Zappa, S. Cova, D. Contini, A. Pifferi, L. Spinelli, A. Torricelli, and R. Cubeddu, “Fast-Gated Single-Photon Avalanche Diode for Wide Dynamic Range Near Infrared Spectroscopy,” J. Sel. Top. Quantum Electron.16(4), 1023–1030 (2010).
[CrossRef]

R. Re, D. Contini, M. Caffini, R. Cubeddu, L. Spinelli, and A. Torricelli, “A compact time-resolved system for near infrared spectroscopy based on wavelength space multiplexing,” Rev. Sci. Instrum.81(11), 113101 (2010).
[CrossRef] [PubMed]

A. Pifferi, A. Torricelli, L. Spinelli, D. Contini, R. Cubeddu, F. Martelli, G. Zaccanti, A. Tosi, A. Dalla Mora, F. Zappa, and S. Cova, “Time-resolved diffuse reflectance using small source-detector separation and fast single-photon gating,” Phys. Rev. Lett.100(13), 138101 (2008).
[CrossRef] [PubMed]

D. Contini, L. Spinelli, A. Torricelli, A. Pifferi, and R. Cubeddu, “Novel method for depth-resolved brain functional imaging by time-domain NIRS,” Proc. SPIE6629, 662908, 662908-7 (2007).
[CrossRef]

L. Spinelli, F. Martelli, S. Del Bianco, A. Pifferi, A. Torricelli, R. Cubeddu, and G. Zaccanti, “Absorption and scattering perturbations in homogeneous and layered diffusive media probed by time-resolved reflectance at null source-detector separation,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.74(2), 021919 (2006).
[CrossRef] [PubMed]

A. Torricelli, A. Pifferi, L. Spinelli, R. Cubeddu, F. Martelli, S. Del Bianco, and G. Zaccanti, “Time-resolved reflectance at null source-detector separation: improving contrast and resolution in diffuse optical imaging,” Phys. Rev. Lett.95(7), 078101 (2005).
[CrossRef] [PubMed]

Tosi, A.

M. Mazurenka, L. Di Sieno, G. Boso, D. Contini, A. Pifferi, A. Dalla Mora, A. Tosi, H. Wabnitz, and R. Macdonald, “A non-contact time-domain scanning brain imaging system: first in-vivo results,” Proc. SPIE8799, 87990L, 87990L-7 (2013).
[CrossRef]

L. Di Sieno, D. Contini, A. Dalla Mora, A. Torricelli, L. Spinelli, R. Cubeddu, A. Tosi, G. Boso, and A. Pifferi, “Functional near-infrared spectroscopy at small source-detector distance by means of high dynamic-range fast-gated SPAD acquisitions: first in-vivo measurements,” Proc. SPIE8804, 880402, 880402-6 (2013).
[CrossRef]

A. Puszka, L. Di Sieno, A. D. Mora, A. Pifferi, D. Contini, G. Boso, A. Tosi, L. Hervé, A. Planat-Chrétien, A. Koenig, and J.-M. Dinten, “Time-resolved diffuse optical tomography using fast-gated single-photon avalanche diodes,” Biomed. Opt. Express4(8), 1351–1365 (2013).
[CrossRef] [PubMed]

G. Boso, A. Dalla Mora, A. Della Frera, and A. Tosi, “Fast-gating of single-photon avalanche diodes with 200 ps transitions and 30 ps timing jitter,” Sens. Actuators A Phys.191, 61–67 (2013).
[CrossRef]

E. Alerstam, T. Svensson, S. Andersson-Engels, L. Spinelli, D. Contini, A. Dalla Mora, A. Tosi, F. Zappa, and A. Pifferi, “Single-fiber diffuse optical time-of-flight spectroscopy,” Opt. Lett.37(14), 2877–2879 (2012).
[CrossRef] [PubMed]

A. Dalla Mora, D. Contini, A. Pifferi, R. Cubeddu, A. Tosi, and F. Zappa, “Afterpulse-like noise limits dynamic range in time-gated applications of thin-junction silicon single-photon avalanche diode,” Appl. Phys. Lett.100(24), 241111 (2012).
[CrossRef]

M. Mazurenka, A. Jelzow, H. Wabnitz, D. Contini, L. Spinelli, A. Pifferi, R. Cubeddu, A. D. Mora, A. Tosi, F. Zappa, and R. Macdonald, “Non-contact time-resolved diffuse reflectance imaging at null source-detector separation,” Opt. Express20(1), 283–290 (2012).
[CrossRef] [PubMed]

A. Tosi, A. Dalla Mora, F. Zappa, A. Gulinatti, D. Contini, A. Pifferi, L. Spinelli, A. Torricelli, and R. Cubeddu, “Fast-gated single-photon counting technique widens dynamic range and speeds up acquisition time in time-resolved measurements,” Opt. Express19(11), 10735–10746 (2011).
[CrossRef] [PubMed]

A. Dalla Mora, A. Tosi, F. Zappa, S. Cova, D. Contini, A. Pifferi, L. Spinelli, A. Torricelli, and R. Cubeddu, “Fast-Gated Single-Photon Avalanche Diode for Wide Dynamic Range Near Infrared Spectroscopy,” J. Sel. Top. Quantum Electron.16(4), 1023–1030 (2010).
[CrossRef]

A. Pifferi, A. Torricelli, L. Spinelli, D. Contini, R. Cubeddu, F. Martelli, G. Zaccanti, A. Tosi, A. Dalla Mora, F. Zappa, and S. Cova, “Time-resolved diffuse reflectance using small source-detector separation and fast single-photon gating,” Phys. Rev. Lett.100(13), 138101 (2008).
[CrossRef] [PubMed]

Tromberg, B. J.

A. Mazhar, D. J. Cuccia, S. Gioux, A. J. Durkin, J. V. Frangioni, and B. J. Tromberg, “Structured illumination enhances resolution and contrast in thick tissue fluorescence imaging,” J. Biomed. Opt.15(1), 010506 (2010).
[CrossRef] [PubMed]

J. R. Weber, D. J. Cuccia, A. J. Durkin, and B. J. Tromberg, “Noncontact imaging of absorption and scattering in layered tissue using spatially modulated structured light,” J. Appl. Phys.105(10), 102028 (2009).
[CrossRef]

S. D. Konecky, A. Mazhar, D. Cuccia, A. J. Durkin, J. C. Schotland, and B. J. Tromberg, “Quantitative optical tomography of sub-surface heterogeneities using spatially modulated structured light,” Opt. Express17(17), 14780–14790 (2009).
[CrossRef] [PubMed]

D. J. Cuccia, F. Bevilacqua, A. J. Durkin, F. R. Ayers, and B. J. Tromberg, “Quantitation and mapping of tissue optical properties using modulated imaging,” J. Biomed. Opt.14(2), 024012 (2009).
[CrossRef] [PubMed]

Troxler, T.

X. Wang, Z. Zhao, W. Becker, T. Troxler, and B. Chance, “Flying spot remote sensing of ICG kinetics of undeformed tissues,” Proc. SPIE5693, 28–33 (2005).
[CrossRef]

Wabnitz, H.

M. Mazurenka, L. Di Sieno, G. Boso, D. Contini, A. Pifferi, A. Dalla Mora, A. Tosi, H. Wabnitz, and R. Macdonald, “A non-contact time-domain scanning brain imaging system: first in-vivo results,” Proc. SPIE8799, 87990L, 87990L-7 (2013).
[CrossRef]

M. Mazurenka, A. Jelzow, H. Wabnitz, D. Contini, L. Spinelli, A. Pifferi, R. Cubeddu, A. D. Mora, A. Tosi, F. Zappa, and R. Macdonald, “Non-contact time-resolved diffuse reflectance imaging at null source-detector separation,” Opt. Express20(1), 283–290 (2012).
[CrossRef] [PubMed]

E. Kirilina, A. Jelzow, A. Heine, M. Niessing, H. Wabnitz, R. Brühl, B. Ittermann, A. M. Jacobs, and I. Tachtsidis, “The physiological origin of task-evoked systemic artefacts in functional near infrared spectroscopy,” Neuroimage61(1), 70–81 (2012).
[CrossRef] [PubMed]

O. Steinkellner, C. Gruber, H. Wabnitz, A. Jelzow, J. Steinbrink, J. B. Fiebach, R. Macdonald, and H. Obrig, “Optical bedside monitoring of cerebral perfusion: technological and methodological advances applied in a study on acute ischemic stroke,” J. Biomed. Opt.15(6), 061708 (2010).
[CrossRef] [PubMed]

H. Rinneberg, D. Grosenick, K. T. Moesta, J. Mucke, B. Gebauer, C. Stroszczynski, H. Wabnitz, M. Moeller, B. Wassermann, and P. M. Schlag, “Scanning time-domain optical mammography: detection and characterization of breast tumors in vivo,” Technol. Cancer Res. Treat.4(5), 483–496 (2005).
[PubMed]

Walsh, J. T.

V. Sankaran, J. T. Walsh, and D. J. Maitland, “Comparative study of polarized light propagation in biologic tissues,” J. Biomed. Opt.7(3), 300–306 (2002).
[CrossRef] [PubMed]

Wang, X.

X. Wang, Z. Zhao, W. Becker, T. Troxler, and B. Chance, “Flying spot remote sensing of ICG kinetics of undeformed tissues,” Proc. SPIE5693, 28–33 (2005).
[CrossRef]

Wassermann, B.

H. Rinneberg, D. Grosenick, K. T. Moesta, J. Mucke, B. Gebauer, C. Stroszczynski, H. Wabnitz, M. Moeller, B. Wassermann, and P. M. Schlag, “Scanning time-domain optical mammography: detection and characterization of breast tumors in vivo,” Technol. Cancer Res. Treat.4(5), 483–496 (2005).
[PubMed]

Weber, J. R.

J. R. Weber, D. J. Cuccia, A. J. Durkin, and B. J. Tromberg, “Noncontact imaging of absorption and scattering in layered tissue using spatially modulated structured light,” J. Appl. Phys.105(10), 102028 (2009).
[CrossRef]

Weigl, W.

P. Sawosz, M. Kacprzak, N. Zolek, W. Weigl, S. Wojtkiewicz, R. Maniewski, and A. Liebert, “Optical system based on time-gated, intensified charge-coupled device camera for brain imaging studies,” J. Biomed. Opt.15(6), 066025 (2010).
[CrossRef] [PubMed]

Wilson, B. C.

Wojtkiewicz, S.

P. Sawosz, M. Kacprzak, N. Zolek, W. Weigl, S. Wojtkiewicz, R. Maniewski, and A. Liebert, “Optical system based on time-gated, intensified charge-coupled device camera for brain imaging studies,” J. Biomed. Opt.15(6), 066025 (2010).
[CrossRef] [PubMed]

Wolf, M.

M. Wolf, M. Ferrari, and V. Quaresima, “Progress of near-infrared spectroscopy and topography for brain and muscle clinical applications,” J. Biomed. Opt.12(6), 062104 (2007).
[CrossRef] [PubMed]

Yafi, A.

M. Kaiser, A. Yafi, M. Cinat, B. Choi, and A. J. Durkin, “Noninvasive assessment of burn wound severity using optical technology: a review of current and future modalities,” Burns37(3), 377–386 (2011).
[CrossRef] [PubMed]

Yanagida, T.

I. Sase, A. Takatsuki, J. Seki, T. Yanagida, and A. Seiyama, “Noncontact backscatter-mode near-infrared time-resolved imaging system: preliminary study for functional brain mapping,” J. Biomed. Opt.11(5), 054006 (2006).
[CrossRef] [PubMed]

Yu, G.

T. Li, Y. Lin, Y. Shang, L. He, C. Huang, M. Szabunio, and G. Yu, “Simultaneous measurement of deep tissue blood flow and oxygenation using noncontact diffuse correlation spectroscopy flow-oximeter,” Sci Rep3, 1358 (2013).
[CrossRef] [PubMed]

Y. Lin, L. He, Y. Shang, and G. Yu, “Noncontact diffuse correlation spectroscopy for noninvasive deep tissue blood flow measurement,” J. Biomed. Opt.17(1), 010502 (2012).
[CrossRef] [PubMed]

Zaccanti, G.

A. Pifferi, A. Torricelli, L. Spinelli, D. Contini, R. Cubeddu, F. Martelli, G. Zaccanti, A. Tosi, A. Dalla Mora, F. Zappa, and S. Cova, “Time-resolved diffuse reflectance using small source-detector separation and fast single-photon gating,” Phys. Rev. Lett.100(13), 138101 (2008).
[CrossRef] [PubMed]

L. Spinelli, F. Martelli, S. Del Bianco, A. Pifferi, A. Torricelli, R. Cubeddu, and G. Zaccanti, “Absorption and scattering perturbations in homogeneous and layered diffusive media probed by time-resolved reflectance at null source-detector separation,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.74(2), 021919 (2006).
[CrossRef] [PubMed]

A. Torricelli, A. Pifferi, L. Spinelli, R. Cubeddu, F. Martelli, S. Del Bianco, and G. Zaccanti, “Time-resolved reflectance at null source-detector separation: improving contrast and resolution in diffuse optical imaging,” Phys. Rev. Lett.95(7), 078101 (2005).
[CrossRef] [PubMed]

Zappa, F.

E. Alerstam, T. Svensson, S. Andersson-Engels, L. Spinelli, D. Contini, A. Dalla Mora, A. Tosi, F. Zappa, and A. Pifferi, “Single-fiber diffuse optical time-of-flight spectroscopy,” Opt. Lett.37(14), 2877–2879 (2012).
[CrossRef] [PubMed]

M. Mazurenka, A. Jelzow, H. Wabnitz, D. Contini, L. Spinelli, A. Pifferi, R. Cubeddu, A. D. Mora, A. Tosi, F. Zappa, and R. Macdonald, “Non-contact time-resolved diffuse reflectance imaging at null source-detector separation,” Opt. Express20(1), 283–290 (2012).
[CrossRef] [PubMed]

A. Dalla Mora, D. Contini, A. Pifferi, R. Cubeddu, A. Tosi, and F. Zappa, “Afterpulse-like noise limits dynamic range in time-gated applications of thin-junction silicon single-photon avalanche diode,” Appl. Phys. Lett.100(24), 241111 (2012).
[CrossRef]

A. Tosi, A. Dalla Mora, F. Zappa, A. Gulinatti, D. Contini, A. Pifferi, L. Spinelli, A. Torricelli, and R. Cubeddu, “Fast-gated single-photon counting technique widens dynamic range and speeds up acquisition time in time-resolved measurements,” Opt. Express19(11), 10735–10746 (2011).
[CrossRef] [PubMed]

A. Dalla Mora, A. Tosi, F. Zappa, S. Cova, D. Contini, A. Pifferi, L. Spinelli, A. Torricelli, and R. Cubeddu, “Fast-Gated Single-Photon Avalanche Diode for Wide Dynamic Range Near Infrared Spectroscopy,” J. Sel. Top. Quantum Electron.16(4), 1023–1030 (2010).
[CrossRef]

A. Pifferi, A. Torricelli, L. Spinelli, D. Contini, R. Cubeddu, F. Martelli, G. Zaccanti, A. Tosi, A. Dalla Mora, F. Zappa, and S. Cova, “Time-resolved diffuse reflectance using small source-detector separation and fast single-photon gating,” Phys. Rev. Lett.100(13), 138101 (2008).
[CrossRef] [PubMed]

Zhao, Z.

X. Wang, Z. Zhao, W. Becker, T. Troxler, and B. Chance, “Flying spot remote sensing of ICG kinetics of undeformed tissues,” Proc. SPIE5693, 28–33 (2005).
[CrossRef]

Zolek, N.

P. Sawosz, N. Zolek, M. Kacprzak, R. Maniewski, and A. Liebert, “Application of time-gated CCD camera with image intensifier in contactless detection of absorbing inclusions buried in optically turbid medium which mimics local changes in oxygenation of the brain tissue,” Opto-Electron. Rev.20(4), 309–314 (2012).
[CrossRef]

P. Sawosz, M. Kacprzak, N. Zolek, W. Weigl, S. Wojtkiewicz, R. Maniewski, and A. Liebert, “Optical system based on time-gated, intensified charge-coupled device camera for brain imaging studies,” J. Biomed. Opt.15(6), 066025 (2010).
[CrossRef] [PubMed]

Appl. Opt. (2)

Appl. Phys. Lett. (2)

T. Funane, H. Atsumori, A. Suzuki, and M. Kiguchi, “Noncontact brain activity measurement system based on near-infrared spectroscopy,” Appl. Phys. Lett.96(12), 123701 (2010).
[CrossRef]

A. Dalla Mora, D. Contini, A. Pifferi, R. Cubeddu, A. Tosi, and F. Zappa, “Afterpulse-like noise limits dynamic range in time-gated applications of thin-junction silicon single-photon avalanche diode,” Appl. Phys. Lett.100(24), 241111 (2012).
[CrossRef]

Biomed. Opt. Express (3)

Br. J. Anaesth. (1)

J. M. Murkin and M. Arango, “Near-infrared spectroscopy as an index of brain and tissue oxygenation,” Br. J. Anaesth.103(Suppl 1), i3–i13 (2009).
[CrossRef] [PubMed]

Burns (1)

M. Kaiser, A. Yafi, M. Cinat, B. Choi, and A. J. Durkin, “Noninvasive assessment of burn wound severity using optical technology: a review of current and future modalities,” Burns37(3), 377–386 (2011).
[CrossRef] [PubMed]

J. Appl. Phys. (1)

J. R. Weber, D. J. Cuccia, A. J. Durkin, and B. J. Tromberg, “Noncontact imaging of absorption and scattering in layered tissue using spatially modulated structured light,” J. Appl. Phys.105(10), 102028 (2009).
[CrossRef]

J. Biomed. Opt. (10)

A. Mazhar, D. J. Cuccia, S. Gioux, A. J. Durkin, J. V. Frangioni, and B. J. Tromberg, “Structured illumination enhances resolution and contrast in thick tissue fluorescence imaging,” J. Biomed. Opt.15(1), 010506 (2010).
[CrossRef] [PubMed]

I. Sase, A. Takatsuki, J. Seki, T. Yanagida, and A. Seiyama, “Noncontact backscatter-mode near-infrared time-resolved imaging system: preliminary study for functional brain mapping,” J. Biomed. Opt.11(5), 054006 (2006).
[CrossRef] [PubMed]

P. Sawosz, M. Kacprzak, N. Zolek, W. Weigl, S. Wojtkiewicz, R. Maniewski, and A. Liebert, “Optical system based on time-gated, intensified charge-coupled device camera for brain imaging studies,” J. Biomed. Opt.15(6), 066025 (2010).
[CrossRef] [PubMed]

O. Steinkellner, C. Gruber, H. Wabnitz, A. Jelzow, J. Steinbrink, J. B. Fiebach, R. Macdonald, and H. Obrig, “Optical bedside monitoring of cerebral perfusion: technological and methodological advances applied in a study on acute ischemic stroke,” J. Biomed. Opt.15(6), 061708 (2010).
[CrossRef] [PubMed]

M. Wolf, M. Ferrari, and V. Quaresima, “Progress of near-infrared spectroscopy and topography for brain and muscle clinical applications,” J. Biomed. Opt.12(6), 062104 (2007).
[CrossRef] [PubMed]

V. Sankaran, J. T. Walsh, and D. J. Maitland, “Comparative study of polarized light propagation in biologic tissues,” J. Biomed. Opt.7(3), 300–306 (2002).
[CrossRef] [PubMed]

Y. Lin, L. He, Y. Shang, and G. Yu, “Noncontact diffuse correlation spectroscopy for noninvasive deep tissue blood flow measurement,” J. Biomed. Opt.17(1), 010502 (2012).
[CrossRef] [PubMed]

D. J. Cuccia, F. Bevilacqua, A. J. Durkin, F. R. Ayers, and B. J. Tromberg, “Quantitation and mapping of tissue optical properties using modulated imaging,” J. Biomed. Opt.14(2), 024012 (2009).
[CrossRef] [PubMed]

E. Molteni, D. Contini, M. Caffini, G. Baselli, L. Spinelli, R. Cubeddu, S. Cerutti, A. M. Bianchi, and A. Torricelli, “Load-dependent brain activation assessed by time-domain functional near-infrared spectroscopy during a working memory task with graded levels of difficulty,” J. Biomed. Opt.17(5), 056005 (2012).
[CrossRef] [PubMed]

J. Selb, J. J. Stott, M. A. Franceschini, A. G. Sorensen, and D. A. Boas, “Improved sensitivity to cerebral hemodynamics during brain activation with a time-gated optical system: analytical model and experimental validation,” J. Biomed. Opt.10(1), 011013 (2005).
[CrossRef] [PubMed]

J. Sel. Top. Quantum Electron. (1)

A. Dalla Mora, A. Tosi, F. Zappa, S. Cova, D. Contini, A. Pifferi, L. Spinelli, A. Torricelli, and R. Cubeddu, “Fast-Gated Single-Photon Avalanche Diode for Wide Dynamic Range Near Infrared Spectroscopy,” J. Sel. Top. Quantum Electron.16(4), 1023–1030 (2010).
[CrossRef]

Neuroimage (2)

E. Kirilina, A. Jelzow, A. Heine, M. Niessing, H. Wabnitz, R. Brühl, B. Ittermann, A. M. Jacobs, and I. Tachtsidis, “The physiological origin of task-evoked systemic artefacts in functional near infrared spectroscopy,” Neuroimage61(1), 70–81 (2012).
[CrossRef] [PubMed]

M. Ferrari and V. Quaresima, “A brief review on the history of human functional near-infrared spectroscopy (fNIRS) development and fields of application,” Neuroimage63(2), 921–935 (2012).
[CrossRef] [PubMed]

Opt. Express (3)

Opt. Lett. (1)

Opto-Electron. Rev. (1)

P. Sawosz, N. Zolek, M. Kacprzak, R. Maniewski, and A. Liebert, “Application of time-gated CCD camera with image intensifier in contactless detection of absorbing inclusions buried in optically turbid medium which mimics local changes in oxygenation of the brain tissue,” Opto-Electron. Rev.20(4), 309–314 (2012).
[CrossRef]

Phys. Med. Biol. (1)

Y. Nomura, O. Hazeki, and M. Tamura, “Relationship between time-resolved and non-time-resolved Beer-Lambert law in turbid media,” Phys. Med. Biol.42(6), 1009–1022 (1997).
[CrossRef] [PubMed]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (1)

L. Spinelli, F. Martelli, S. Del Bianco, A. Pifferi, A. Torricelli, R. Cubeddu, and G. Zaccanti, “Absorption and scattering perturbations in homogeneous and layered diffusive media probed by time-resolved reflectance at null source-detector separation,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.74(2), 021919 (2006).
[CrossRef] [PubMed]

Phys. Rev. Lett. (2)

A. Torricelli, A. Pifferi, L. Spinelli, R. Cubeddu, F. Martelli, S. Del Bianco, and G. Zaccanti, “Time-resolved reflectance at null source-detector separation: improving contrast and resolution in diffuse optical imaging,” Phys. Rev. Lett.95(7), 078101 (2005).
[CrossRef] [PubMed]

A. Pifferi, A. Torricelli, L. Spinelli, D. Contini, R. Cubeddu, F. Martelli, G. Zaccanti, A. Tosi, A. Dalla Mora, F. Zappa, and S. Cova, “Time-resolved diffuse reflectance using small source-detector separation and fast single-photon gating,” Phys. Rev. Lett.100(13), 138101 (2008).
[CrossRef] [PubMed]

Proc. SPIE (5)

X. Wang, Z. Zhao, W. Becker, T. Troxler, and B. Chance, “Flying spot remote sensing of ICG kinetics of undeformed tissues,” Proc. SPIE5693, 28–33 (2005).
[CrossRef]

A. A. Stratonnikov, N. V. Ermishova, and V. B. Loschenov, “Influence of red laser irradiation on hemoglobin oxygen saturation and blood volume in human skin in vivo,” Proc. SPIE4257, 57–64 (2001).
[CrossRef]

M. Mazurenka, L. Di Sieno, G. Boso, D. Contini, A. Pifferi, A. Dalla Mora, A. Tosi, H. Wabnitz, and R. Macdonald, “A non-contact time-domain scanning brain imaging system: first in-vivo results,” Proc. SPIE8799, 87990L, 87990L-7 (2013).
[CrossRef]

D. Contini, L. Spinelli, A. Torricelli, A. Pifferi, and R. Cubeddu, “Novel method for depth-resolved brain functional imaging by time-domain NIRS,” Proc. SPIE6629, 662908, 662908-7 (2007).
[CrossRef]

L. Di Sieno, D. Contini, A. Dalla Mora, A. Torricelli, L. Spinelli, R. Cubeddu, A. Tosi, G. Boso, and A. Pifferi, “Functional near-infrared spectroscopy at small source-detector distance by means of high dynamic-range fast-gated SPAD acquisitions: first in-vivo measurements,” Proc. SPIE8804, 880402, 880402-6 (2013).
[CrossRef]

Prog. Brain Res. (1)

I. K. Haitsma and A. I. R. Maas, “Monitoring cerebral oxygenation in traumatic brain injury,” Prog. Brain Res.161, 207–216 (2007).
[CrossRef] [PubMed]

Psychophysiology (1)

J. C. Hebden, “Advances in optical imaging of the newborn infant brain,” Psychophysiology40(4), 501–510 (2003).
[CrossRef] [PubMed]

Rev. Sci. Instrum. (2)

M. Niwayama, H. Murata, and S. Shinohara, “Noncontact tissue oxygenation measurement using near-infrared spectroscopy,” Rev. Sci. Instrum.77(7), 073102 (2006).
[CrossRef]

R. Re, D. Contini, M. Caffini, R. Cubeddu, L. Spinelli, and A. Torricelli, “A compact time-resolved system for near infrared spectroscopy based on wavelength space multiplexing,” Rev. Sci. Instrum.81(11), 113101 (2010).
[CrossRef] [PubMed]

Sci Rep (1)

T. Li, Y. Lin, Y. Shang, L. He, C. Huang, M. Szabunio, and G. Yu, “Simultaneous measurement of deep tissue blood flow and oxygenation using noncontact diffuse correlation spectroscopy flow-oximeter,” Sci Rep3, 1358 (2013).
[CrossRef] [PubMed]

Sens. Actuators A Phys. (1)

G. Boso, A. Dalla Mora, A. Della Frera, and A. Tosi, “Fast-gating of single-photon avalanche diodes with 200 ps transitions and 30 ps timing jitter,” Sens. Actuators A Phys.191, 61–67 (2013).
[CrossRef]

Technol. Cancer Res. Treat. (1)

H. Rinneberg, D. Grosenick, K. T. Moesta, J. Mucke, B. Gebauer, C. Stroszczynski, H. Wabnitz, M. Moeller, B. Wassermann, and P. M. Schlag, “Scanning time-domain optical mammography: detection and characterization of breast tumors in vivo,” Technol. Cancer Res. Treat.4(5), 483–496 (2005).
[PubMed]

Other (3)

http://clinicaltrials.gov/ .

W. Becker, The bh TCSPC Handbook (Becker & Hickl GmbH, 2012).

M. Cope, The development of a near infrared spectroscopy system and its application for non invasive monitoring of cerebral blood and tissue oxygenation in the newborn infant, PhD Thesis, University College London (1991).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic of the non-contact setup: GS – galvo scanner; PSC – polarization splitting cube; SC – super continuum laser; L1, L2, L3 – lenses of focal lengths of 200 mm, 300 mm and 35 mm, respectively; F – detection fiber; AOTF – acousto-optic tunable filter; SPAD – single-photon avalanche diode; P – polarizer; M – turning mirror; DG – delay generator; SPC – time-correlated single photon counting module; GVD – galvano controller card.

Fig. 2
Fig. 2

Spectra of oxy- and deoxyhemoglobin [41] (red and blue curves, respectively); incident power on the sample surface for stacked 8 channels (cyan curve); actual AOTF output spectra stacked for 760 nm and 860 nm, combined (olive curve, arbitrary units).

Fig. 3
Fig. 3

Results of an arterial occlusion measurement: Top row – time courses of HbO2 (red line) and Hb (blue line) for three different regions of binned (4 × 2) pixels, marked by white squares on the images below. A sliding average of 5 s was applied. Grey shaded areas mark the time of occlusion. Bottom row: 32 × 16 pixel images of HbO2 (top) and Hb (bottom) recorded at selected times (shown by green lines on time courses), averaged over 5 frames (5 s). The scanned area was a 4 cm x 4 cm square.

Fig. 4
Fig. 4

Results of motor activation of the brain (for T from 32 s to 64 s). Map of block-averaged time traces of changes of HbO2 (red) and Hb (blue), centered on the left motor cortex (C3). Each pixel of the 4x4 cm2 image corresponds to an area of 5x5 mm2. A sliding average of 5 s was applied to the block-averaged traces. Error bars illustrate the variability over the repetitions (see text). The magenta square shows the localization of the response.

Fig. 5
Fig. 5

Results of cognitive brain activation by solving simple math tasks (for T from 32 s to 64 s). Map of time traces of changes of HbO2 (red) and Hb (blue) on the left forehead. Each pixel of the 4x4 cm2 image corresponds to an area of 5x5 mm2. Error bars illustrate the variability over the repetitions. A sliding average of 5 s was applied to the block-averaged traces.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

I T (t) I 0 (t) =exp(Δ μ a vt)
Δ μ a,1,2 =( ε 1,2 HbO2 Δ c HbO2 + ε 1,2 Hb Δ c Hb )ln(10)

Metrics