K. Ren, H. Gao, and H. Zhao, “A Hybrid Reconstruction Method for Quantitative PAT,” SIAM J. Imaging Sci. 6, 32–55 (2013).

[CrossRef]

G. Bal and K. Ren, “On multi-spectral quantitative photoacoustic tomography in diffusive regime,” Inverse Probl. 28, 025010 (2012).

[CrossRef]

B. Cox, J. G. Laufer, S. R. Arridge, and P. C. Beard, “Quantitative spectroscopic photoacoustic imaging: a review,” J. Biomed. Opt. 17, 061202 (2012).

[CrossRef]
[PubMed]

P. Shao, T. Harrison, and R. J. Zemp, “Iterative algorithm for multiple illumination photoacoustic tomography (mipat) using ultrasound channel data,” Biomed. Opt. Express 3, 3240–3249 (2012).

[CrossRef]
[PubMed]

G. Bal and K. Ren, “Multi-source quantitative photoacoustic tomography in a diffusive regime,” Inverse Probl. 27, 075003 (2011).

[CrossRef]

P. Shao, B. Cox, and R. J. Zemp, “Estimating optical absorption, scattering, and grueneisen distributions with multiple-illumination photoacoustic tomography,” Appl. Opt. 50, 3145–3154 (2011).

[CrossRef]
[PubMed]

G. Bal and G. Uhlmann, “Inverse diffusion theory of photoacoustics,” Inverse Probl. 26, 085010 (2010).

[CrossRef]

R. J. Zemp, “Quantitative photoacoustic tomography with multiple optical sources,” Appl. Opt. 49, 3566–3572 (2010).

[CrossRef]
[PubMed]

Z. Guo, C. Li, L. Song, and L. V. Wang, “Compressed sensing in photoacoustic tomography in vivo,” J. Biomed. Opt. 15, 021311 (2010).

[CrossRef]
[PubMed]

T. Jetzfellner, D. Razansky, A. Rosenthal, R. Schulz, K. H. Englmeier, and V. Ntziachristos, “Performance of iterative optoacoustic tomography with experimental data,” Appl. Phys. Lett. 95, 013703 (2009).

[CrossRef]

B. T. Cox, S. R. Arridge, and P. C. Beard, “Estimating chromophore distributions from multiwavelength photoacoustic images,” J. Opt. Soc. Am. A 26, 443–455 (2009).

[CrossRef]

J. Ripoll and V. Ntziachristos, “Quantitative point source photoacoustic inversion formulas for scattering and absorbing media,” Phys. Rev. E 71, 031912 (2005).

[CrossRef]

M. Xu and L. V. Wang, “Analytic explanation of spatial resolution related to bandwidth and detector aperture size in thermoacoustic or photoacoustic reconstruction,” Phys. Rev. E 67, 056605 (2003).

[CrossRef]

S. R. Arridge, “Optical tomography in medical imaging,” Inverse Probl. 15, R41 (1999).

[CrossRef]

B. Cox, T. Tarvainen, and S. Arridge, “Multiple illumination quantitative photoacoustic tomography using transport and diffusion models,” in “Tomography and Inverse Transport Theory,” G. Bal, D. Finch, J. Schotland, P. Kuchment, and P. Stefanov, eds. (American Mathematical Society, Providence, RI, USA, 2012), pp. 1–12.

B. Cox, J. G. Laufer, S. R. Arridge, and P. C. Beard, “Quantitative spectroscopic photoacoustic imaging: a review,” J. Biomed. Opt. 17, 061202 (2012).

[CrossRef]
[PubMed]

B. T. Cox, S. R. Arridge, and P. C. Beard, “Estimating chromophore distributions from multiwavelength photoacoustic images,” J. Opt. Soc. Am. A 26, 443–455 (2009).

[CrossRef]

B. T. Cox, S. R. Arridge, K. P. Köstli, and P. C. Beard, “Two-dimensional quantitative photoacoustic image reconstruction of absorption distributions in scattering media by use of a simple iterative method,” Appl. Opt. 45, 1866–1875 (2006).

[CrossRef]
[PubMed]

S. R. Arridge, “Optical tomography in medical imaging,” Inverse Probl. 15, R41 (1999).

[CrossRef]

G. Bal and K. Ren, “On multi-spectral quantitative photoacoustic tomography in diffusive regime,” Inverse Probl. 28, 025010 (2012).

[CrossRef]

G. Bal and K. Ren, “Multi-source quantitative photoacoustic tomography in a diffusive regime,” Inverse Probl. 27, 075003 (2011).

[CrossRef]

G. Bal and G. Uhlmann, “Inverse diffusion theory of photoacoustics,” Inverse Probl. 26, 085010 (2010).

[CrossRef]

B. Cox, J. G. Laufer, S. R. Arridge, and P. C. Beard, “Quantitative spectroscopic photoacoustic imaging: a review,” J. Biomed. Opt. 17, 061202 (2012).

[CrossRef]
[PubMed]

B. T. Cox, S. R. Arridge, and P. C. Beard, “Estimating chromophore distributions from multiwavelength photoacoustic images,” J. Opt. Soc. Am. A 26, 443–455 (2009).

[CrossRef]

B. T. Cox, S. R. Arridge, K. P. Köstli, and P. C. Beard, “Two-dimensional quantitative photoacoustic image reconstruction of absorption distributions in scattering media by use of a simple iterative method,” Appl. Opt. 45, 1866–1875 (2006).

[CrossRef]
[PubMed]

B. Cox, J. G. Laufer, S. R. Arridge, and P. C. Beard, “Quantitative spectroscopic photoacoustic imaging: a review,” J. Biomed. Opt. 17, 061202 (2012).

[CrossRef]
[PubMed]

P. Shao, B. Cox, and R. J. Zemp, “Estimating optical absorption, scattering, and grueneisen distributions with multiple-illumination photoacoustic tomography,” Appl. Opt. 50, 3145–3154 (2011).

[CrossRef]
[PubMed]

B. Cox, T. Tarvainen, and S. Arridge, “Multiple illumination quantitative photoacoustic tomography using transport and diffusion models,” in “Tomography and Inverse Transport Theory,” G. Bal, D. Finch, J. Schotland, P. Kuchment, and P. Stefanov, eds. (American Mathematical Society, Providence, RI, USA, 2012), pp. 1–12.

B. T. Cox, S. R. Arridge, and P. C. Beard, “Estimating chromophore distributions from multiwavelength photoacoustic images,” J. Opt. Soc. Am. A 26, 443–455 (2009).

[CrossRef]

B. T. Cox, S. R. Arridge, K. P. Köstli, and P. C. Beard, “Two-dimensional quantitative photoacoustic image reconstruction of absorption distributions in scattering media by use of a simple iterative method,” Appl. Opt. 45, 1866–1875 (2006).

[CrossRef]
[PubMed]

T. Jetzfellner, D. Razansky, A. Rosenthal, R. Schulz, K. H. Englmeier, and V. Ntziachristos, “Performance of iterative optoacoustic tomography with experimental data,” Appl. Phys. Lett. 95, 013703 (2009).

[CrossRef]

K. Ren, H. Gao, and H. Zhao, “A Hybrid Reconstruction Method for Quantitative PAT,” SIAM J. Imaging Sci. 6, 32–55 (2013).

[CrossRef]

H. Gao, S. Osher, and H. Zhao, “Quantitative photoacoustic tomography,” in “Mathematical Modeling in Biomedical Imaging II: Optical, Ultrasound, and Opto-Acoustic Tomographiess,” vol. 2035 of Lecture Notes in Mathematics: Mathematical Biosciences Subseries, H. Ammari, ed. (Springer-Verlag, Berlin, 2011), pp. 131–158.

Z. Guo, C. Li, L. Song, and L. V. Wang, “Compressed sensing in photoacoustic tomography in vivo,” J. Biomed. Opt. 15, 021311 (2010).

[CrossRef]
[PubMed]

T. Jetzfellner, D. Razansky, A. Rosenthal, R. Schulz, K. H. Englmeier, and V. Ntziachristos, “Performance of iterative optoacoustic tomography with experimental data,” Appl. Phys. Lett. 95, 013703 (2009).

[CrossRef]

B. Cox, J. G. Laufer, S. R. Arridge, and P. C. Beard, “Quantitative spectroscopic photoacoustic imaging: a review,” J. Biomed. Opt. 17, 061202 (2012).

[CrossRef]
[PubMed]

Z. Guo, C. Li, L. Song, and L. V. Wang, “Compressed sensing in photoacoustic tomography in vivo,” J. Biomed. Opt. 15, 021311 (2010).

[CrossRef]
[PubMed]

T. Jetzfellner, D. Razansky, A. Rosenthal, R. Schulz, K. H. Englmeier, and V. Ntziachristos, “Performance of iterative optoacoustic tomography with experimental data,” Appl. Phys. Lett. 95, 013703 (2009).

[CrossRef]

J. Ripoll and V. Ntziachristos, “Quantitative point source photoacoustic inversion formulas for scattering and absorbing media,” Phys. Rev. E 71, 031912 (2005).

[CrossRef]

H. Gao, S. Osher, and H. Zhao, “Quantitative photoacoustic tomography,” in “Mathematical Modeling in Biomedical Imaging II: Optical, Ultrasound, and Opto-Acoustic Tomographiess,” vol. 2035 of Lecture Notes in Mathematics: Mathematical Biosciences Subseries, H. Ammari, ed. (Springer-Verlag, Berlin, 2011), pp. 131–158.

T. Jetzfellner, D. Razansky, A. Rosenthal, R. Schulz, K. H. Englmeier, and V. Ntziachristos, “Performance of iterative optoacoustic tomography with experimental data,” Appl. Phys. Lett. 95, 013703 (2009).

[CrossRef]

K. Ren, H. Gao, and H. Zhao, “A Hybrid Reconstruction Method for Quantitative PAT,” SIAM J. Imaging Sci. 6, 32–55 (2013).

[CrossRef]

G. Bal and K. Ren, “On multi-spectral quantitative photoacoustic tomography in diffusive regime,” Inverse Probl. 28, 025010 (2012).

[CrossRef]

G. Bal and K. Ren, “Multi-source quantitative photoacoustic tomography in a diffusive regime,” Inverse Probl. 27, 075003 (2011).

[CrossRef]

J. Ripoll and V. Ntziachristos, “Quantitative point source photoacoustic inversion formulas for scattering and absorbing media,” Phys. Rev. E 71, 031912 (2005).

[CrossRef]

T. Jetzfellner, D. Razansky, A. Rosenthal, R. Schulz, K. H. Englmeier, and V. Ntziachristos, “Performance of iterative optoacoustic tomography with experimental data,” Appl. Phys. Lett. 95, 013703 (2009).

[CrossRef]

T. Jetzfellner, D. Razansky, A. Rosenthal, R. Schulz, K. H. Englmeier, and V. Ntziachristos, “Performance of iterative optoacoustic tomography with experimental data,” Appl. Phys. Lett. 95, 013703 (2009).

[CrossRef]

P. Shao, T. Harrison, and R. J. Zemp, “Iterative algorithm for multiple illumination photoacoustic tomography (mipat) using ultrasound channel data,” Biomed. Opt. Express 3, 3240–3249 (2012).

[CrossRef]
[PubMed]

P. Shao, B. Cox, and R. J. Zemp, “Estimating optical absorption, scattering, and grueneisen distributions with multiple-illumination photoacoustic tomography,” Appl. Opt. 50, 3145–3154 (2011).

[CrossRef]
[PubMed]

Z. Guo, C. Li, L. Song, and L. V. Wang, “Compressed sensing in photoacoustic tomography in vivo,” J. Biomed. Opt. 15, 021311 (2010).

[CrossRef]
[PubMed]

B. Cox, T. Tarvainen, and S. Arridge, “Multiple illumination quantitative photoacoustic tomography using transport and diffusion models,” in “Tomography and Inverse Transport Theory,” G. Bal, D. Finch, J. Schotland, P. Kuchment, and P. Stefanov, eds. (American Mathematical Society, Providence, RI, USA, 2012), pp. 1–12.

G. Bal and G. Uhlmann, “Inverse diffusion theory of photoacoustics,” Inverse Probl. 26, 085010 (2010).

[CrossRef]

L. Wang, “Tutorial on photoacoustic microscopy and computed tomography,” IEEE J. Sel. Top. Quant. 14, 171–179 (2008).

[CrossRef]

Z. Guo, C. Li, L. Song, and L. V. Wang, “Compressed sensing in photoacoustic tomography in vivo,” J. Biomed. Opt. 15, 021311 (2010).

[CrossRef]
[PubMed]

M. Xu and L. V. Wang, “Analytic explanation of spatial resolution related to bandwidth and detector aperture size in thermoacoustic or photoacoustic reconstruction,” Phys. Rev. E 67, 056605 (2003).

[CrossRef]

M. Xu and L. V. Wang, “Analytic explanation of spatial resolution related to bandwidth and detector aperture size in thermoacoustic or photoacoustic reconstruction,” Phys. Rev. E 67, 056605 (2003).

[CrossRef]

Z. Yuan and H. Jiang, “Quantitative photoacoustic tomography: Recovery of optical absorption coefficient maps of heterogeneous media,” Appl. Phys. Lett. 88, 231101 (2006).

[CrossRef]

P. Shao, T. Harrison, and R. J. Zemp, “Iterative algorithm for multiple illumination photoacoustic tomography (mipat) using ultrasound channel data,” Biomed. Opt. Express 3, 3240–3249 (2012).

[CrossRef]
[PubMed]

P. Shao, B. Cox, and R. J. Zemp, “Estimating optical absorption, scattering, and grueneisen distributions with multiple-illumination photoacoustic tomography,” Appl. Opt. 50, 3145–3154 (2011).

[CrossRef]
[PubMed]

R. J. Zemp, “Quantitative photoacoustic tomography with multiple optical sources,” Appl. Opt. 49, 3566–3572 (2010).

[CrossRef]
[PubMed]

K. Ren, H. Gao, and H. Zhao, “A Hybrid Reconstruction Method for Quantitative PAT,” SIAM J. Imaging Sci. 6, 32–55 (2013).

[CrossRef]

H. Gao, S. Osher, and H. Zhao, “Quantitative photoacoustic tomography,” in “Mathematical Modeling in Biomedical Imaging II: Optical, Ultrasound, and Opto-Acoustic Tomographiess,” vol. 2035 of Lecture Notes in Mathematics: Mathematical Biosciences Subseries, H. Ammari, ed. (Springer-Verlag, Berlin, 2011), pp. 131–158.

B. T. Cox, S. R. Arridge, K. P. Köstli, and P. C. Beard, “Two-dimensional quantitative photoacoustic image reconstruction of absorption distributions in scattering media by use of a simple iterative method,” Appl. Opt. 45, 1866–1875 (2006).

[CrossRef]
[PubMed]

R. J. Zemp, “Quantitative photoacoustic tomography with multiple optical sources,” Appl. Opt. 49, 3566–3572 (2010).

[CrossRef]
[PubMed]

P. Shao, B. Cox, and R. J. Zemp, “Estimating optical absorption, scattering, and grueneisen distributions with multiple-illumination photoacoustic tomography,” Appl. Opt. 50, 3145–3154 (2011).

[CrossRef]
[PubMed]

T. Jetzfellner, D. Razansky, A. Rosenthal, R. Schulz, K. H. Englmeier, and V. Ntziachristos, “Performance of iterative optoacoustic tomography with experimental data,” Appl. Phys. Lett. 95, 013703 (2009).

[CrossRef]

Z. Yuan and H. Jiang, “Quantitative photoacoustic tomography: Recovery of optical absorption coefficient maps of heterogeneous media,” Appl. Phys. Lett. 88, 231101 (2006).

[CrossRef]

L. Wang, “Tutorial on photoacoustic microscopy and computed tomography,” IEEE J. Sel. Top. Quant. 14, 171–179 (2008).

[CrossRef]

G. Bal and K. Ren, “Multi-source quantitative photoacoustic tomography in a diffusive regime,” Inverse Probl. 27, 075003 (2011).

[CrossRef]

G. Bal and K. Ren, “On multi-spectral quantitative photoacoustic tomography in diffusive regime,” Inverse Probl. 28, 025010 (2012).

[CrossRef]

G. Bal and G. Uhlmann, “Inverse diffusion theory of photoacoustics,” Inverse Probl. 26, 085010 (2010).

[CrossRef]

S. R. Arridge, “Optical tomography in medical imaging,” Inverse Probl. 15, R41 (1999).

[CrossRef]

Z. Guo, C. Li, L. Song, and L. V. Wang, “Compressed sensing in photoacoustic tomography in vivo,” J. Biomed. Opt. 15, 021311 (2010).

[CrossRef]
[PubMed]

B. Cox, J. G. Laufer, S. R. Arridge, and P. C. Beard, “Quantitative spectroscopic photoacoustic imaging: a review,” J. Biomed. Opt. 17, 061202 (2012).

[CrossRef]
[PubMed]

B. Banerjee, S. Bagchi, R. M. Vasu, and D. Roy, “Quantitative photoacoustic tomography from boundary pressure measurements: noniterative recovery of optical absorption coefficient from the reconstructed absorbed energy map,” J. Opt. Soc. Am. A 25, 2347–2356 (2008).

[CrossRef]

B. T. Cox, S. R. Arridge, and P. C. Beard, “Estimating chromophore distributions from multiwavelength photoacoustic images,” J. Opt. Soc. Am. A 26, 443–455 (2009).

[CrossRef]

J. Ripoll and V. Ntziachristos, “Quantitative point source photoacoustic inversion formulas for scattering and absorbing media,” Phys. Rev. E 71, 031912 (2005).

[CrossRef]

M. Xu and L. V. Wang, “Analytic explanation of spatial resolution related to bandwidth and detector aperture size in thermoacoustic or photoacoustic reconstruction,” Phys. Rev. E 67, 056605 (2003).

[CrossRef]

K. Ren, H. Gao, and H. Zhao, “A Hybrid Reconstruction Method for Quantitative PAT,” SIAM J. Imaging Sci. 6, 32–55 (2013).

[CrossRef]

B. Cox, T. Tarvainen, and S. Arridge, “Multiple illumination quantitative photoacoustic tomography using transport and diffusion models,” in “Tomography and Inverse Transport Theory,” G. Bal, D. Finch, J. Schotland, P. Kuchment, and P. Stefanov, eds. (American Mathematical Society, Providence, RI, USA, 2012), pp. 1–12.

H. Gao, S. Osher, and H. Zhao, “Quantitative photoacoustic tomography,” in “Mathematical Modeling in Biomedical Imaging II: Optical, Ultrasound, and Opto-Acoustic Tomographiess,” vol. 2035 of Lecture Notes in Mathematics: Mathematical Biosciences Subseries, H. Ammari, ed. (Springer-Verlag, Berlin, 2011), pp. 131–158.