Abstract

Noble metal nanoparticles exhibit enhanced scattering and absorption at specific wavelengths due to a localized surface plamson resonance. This unique property can be exploited to enable the use of plasmonic nanoparticles as contrast agents in optical imaging. A range of optical techniques have been developed to detect nanoparticles in order to implement imaging schemes. Here we review several different approaches for using optical interferometry to detect the presence and concentration of nanoparticles. The strengths and weaknesses of the various approaches are discussed and quantitative comparisons of the achievable signal to noise ratios are presented. The benefits of each approach are outlined as they relate to specific application goals.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Seekell, H. Price, S. Marinakos, A. Wax, “Optimization of immunolabeled plasmonic nanoparticles for cell surface receptor analysis,” Methods 56(2), 310–316 (2012).
    [CrossRef] [PubMed]
  2. M. Grzelczak, J. Pérez-Juste, P. Mulvaney, L. M. Liz-Marzán, “Shape control in gold nanoparticle synthesis,” Chem. Soc. Rev. 37(9), 1783–1791 (2008).
    [CrossRef] [PubMed]
  3. P. Alexandridis, “Gold nanoparticle synthesis, morphology control, and stabilization facilitated by functional polymers,” Chem. Eng. Technol. 34(1), 15–28 (2011).
    [CrossRef]
  4. P. P. Joshi, S. J. Yoon, W. G. Hardin, S. Emelianov, and K. V. Sokolov, “Conjugation of Antibodies to Gold Nanorods through Fc Portion: Synthesis and Molecular Specific Imaging,” Bioconj. Chem. (2013).
  5. K. S. Lee, M. A. El-Sayed, “Gold and silver nanoparticles in sensing and imaging: Sensitivity of plasmon response to size, shape, and metal composition,” J. Phys. Chem. B 110(39), 19220–19225 (2006).
    [CrossRef] [PubMed]
  6. A. Wax, K. Sokolov, “Molecular imaging and darkfield microspectroscopy of live cells using gold plasmonic nanoparticles,” Laser Photon. Rev. 3(1-2), 146–158 (2009).
    [CrossRef]
  7. K. Seekell, M. J. Crow, S. Marinakos, J. Ostrander, A. Chilkoti, A. Wax, “Hyperspectral molecular imaging of multiple receptors using immunolabeled plasmonic nanoparticles,” J. Biomed. Opt. 16(11), 116003 (2011).
    [CrossRef] [PubMed]
  8. I. H. El-Sayed, X. H. Huang, M. A. El-Sayed, “Surface plasmon resonance scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics: Applications in oral cancer,” Nano Lett. 5(5), 829–834 (2005).
    [CrossRef] [PubMed]
  9. X. H. Huang, I. H. El-Sayed, W. Qian, M. A. El-Sayed, “Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods,” J. Am. Chem. Soc. 128(6), 2115–2120 (2006).
    [CrossRef] [PubMed]
  10. K. Sokolov, M. Follen, J. Aaron, I. Pavlova, A. Malpica, R. Lotan, R. Richards-Kortum, “Real-time vital optical imaging of precancer using anti-epidermal growth factor receptor antibodies conjugated to gold nanoparticles,” Cancer Res. 63(9), 1999–2004 (2003).
    [PubMed]
  11. S. W. Tsai, Y. Y. Chen, J. W. Liaw, “Compound cellular imaging of laser scanning confocal microscopy by using gold nanoparticles and dyes,” Sensors (Basel Switzerland) 8(4), 2306–2316 (2008).
    [CrossRef]
  12. T. Collier, A. Lacy, R. Richards-Kortum, A. Malpica, M. Follen, “Near real-time confocal microscopy of amelanotic tissue: detection of dysplasia in ex vivo cervical tissue,” Acad. Radiol. 9(5), 504–512 (2002).
    [CrossRef] [PubMed]
  13. N. J. Durr, T. Larson, D. K. Smith, B. A. Korgel, K. Sokolov, A. Ben-Yakar, “Two-photon luminescence imaging of cancer cells using molecularly targeted gold nanorods,” Nano Lett. 7(4), 941–945 (2007).
    [CrossRef] [PubMed]
  14. J. R. Cook, W. Frey, S. Emelianov, “Quantitative Photoacoustic Imaging of Nanoparticles in Cells and Tissues,” ACS Nano 7(2), 1272–1280 (2013).
    [CrossRef] [PubMed]
  15. M. C. Skala, M. J. Crow, A. Wax, J. A. Izatt, “Photothermal Optical Coherence Tomography of Epidermal Growth Factor Receptor in Live Cells Using Immunotargeted Gold Nanospheres,” Nano Lett. 8(10), 3461–3467 (2008).
    [CrossRef] [PubMed]
  16. J.A. Izatt, M.D. Kulkarni, K. Kobayashi, J.K. Barton, A.J. Welch, “Optical coherence tomography for biodiagnostics,” Opt. Photon. News 8, 41-47, 65 (1997).
  17. I. Yamaguchi, T. Zhang, “Phase-shifting digital holography,” Opt. Lett. 22(16), 1268–1270 (1997).
    [CrossRef] [PubMed]
  18. C. Mann, L. Yu, C.-M. Lo, M. Kim, “High-resolution quantitative phase-contrast microscopy by digital holography,” Opt. Express 13(22), 8693–8698 (2005).
    [CrossRef] [PubMed]
  19. A. Curry, W. L. Hwang, A. Wax, “Epi-illumination through the microscope objective applied to darkfield imaging and microspectroscopy of nanoparticle interaction with cells in culture,” Opt. Express 14(14), 6535–6542 (2006).
    [CrossRef] [PubMed]
  20. A. Wax, M. G. Giacomelli, T. E. Matthews, M. T. Rinehart, F. E. Robles, Y. Zhu, “Optical Spectroscopy of Biological Cells,” Adv. Opt. Photon. 4(3), 322–378 (2012).
    [CrossRef]
  21. C. Loo, L. Hirsch, M. H. Lee, E. Chang, J. West, N. Halas, R. Drezek, “Gold nanoshell bioconjugates for molecular imaging in living cells,” Opt. Lett. 30(9), 1012–1014 (2005).
    [CrossRef] [PubMed]
  22. M. J. Crow, G. Grant, J. M. Provenzale, A. Wax, “Molecular Imaging and Quantitative Measurement of Epidermal Growth Factor Receptor Expression in Live Cancer Cells Using Immunolabeled Gold Nanoparticles,” AJR Am. J. Roentgenol. 192(4), 1021–1028 (2009).
    [CrossRef] [PubMed]
  23. J. Gao, X. Huang, H. Liu, F. Zan, J. Ren, “Colloidal Stability of Gold Nanoparticles Modified with Thiol Compounds: Bioconjugation and Application in Cancer Cell Imaging,” Langmuir 28(9), 4464–4471 (2012).
    [CrossRef] [PubMed]
  24. G. Rong, H. Wang, L. R. Skewis, B. M. Reinhard, “Resolving Sub-Diffraction Limit Encounters in Nanoparticle Tracking Using Live Cell Plasmon Coupling Microscopy,” Nano Lett. 8(10), 3386–3393 (2008).
    [CrossRef] [PubMed]
  25. M. J. Crow, K. Seekell, J. H. Ostrander, A. Wax, “Monitoring of Receptor Dimerization Using Plasmonic Coupling of Gold Nanoparticles,” ACS Nano 5(11), 8532–8540 (2011).
    [CrossRef] [PubMed]
  26. J. Aaron, K. Travis, N. Harrison, K. Sokolov, “Dynamic Imaging of Molecular Assemblies in Live Cells Based on Nanoparticle Plasmon Resonance Coupling,” Nano Lett. 9(10), 3612–3618 (2009).
    [CrossRef] [PubMed]
  27. D. Boyer, P. Tamarat, A. Maali, B. Lounis, M. Orrit, “Photothermal Imaging of Nanometer-Sized Metal Particles Among Scatterers,” Science 297(5584), 1160–1163 (2002).
    [CrossRef] [PubMed]
  28. L. Cognet, C. Tardin, D. Boyer, D. Choquet, P. Tamarat, B. Lounis, “Single metallic nanoparticle imaging for protein detection in cells,” Proc. Natl. Acad. Sci. U.S.A. 100(20), 11350–11355 (2003).
    [CrossRef] [PubMed]
  29. V. P. Zharov, D. O. Lapotko, “Photothermal imaging of nanoparticles and cells,” IEEE J. Sel. Top. Quantum Electron. 11(4), 733–751 (2005).
    [CrossRef]
  30. G. Popescu, Chapter 5 Quantitative Phase Imaging of Nanoscale Cell Structure and Dynamics, in Methods in Cell Biology, P.J. Bhanu, Editor. 2008, Academic Press. p. 87–115.
  31. G. Baffou, P. Bon, J. Savatier, J. Polleux, M. Zhu, M. Merlin, H. Rigneault, S. Monneret, “Thermal Imaging of Nanostructures by Quantitative Optical Phase Analysis,” ACS Nano 6(3), 2452–2458 (2012).
    [CrossRef] [PubMed]
  32. S. Berciaud, L. Cognet, G. A. Blab, B. Lounis, “Photothermal Heterodyne Imaging of Individual Nonfluorescent Nanoclusters and Nanocrystals,” Phys. Rev. Lett. 93(25), 257402 (2004).
    [CrossRef] [PubMed]
  33. A. Gaiduk, P. V. Ruijgrok, M. Yorulmaz, M. Orrit, “Detection limits in photothermal microscopy,” Chem. Sci. 1(3), 343–350 (2010).
    [CrossRef]
  34. C. Yang, “Molecular Contrast Optical Coherence Tomography: A Review,” Photochem. Photobiol. 81(2), 215–237 (2005).
    [CrossRef] [PubMed]
  35. B. E. Applegate, J. A. Izatt, “Molecular imaging of endogenous and exogenous chromophores using ground state recovery pump-probe optical coherence tomography,” Opt. Express 14(20), 9142–9155 (2006).
    [CrossRef] [PubMed]
  36. F. E. Robles, C. Wilson, G. Grant, A. Wax, “Molecular imaging true-colour spectroscopic optical coherence tomography,” Nat. Photonics 5(12), 744–747 (2011).
    [CrossRef] [PubMed]
  37. A. L. Oldenburg, M. N. Hansen, D. A. Zweifel, A. Wei, S. A. Boppart, “Plasmon-resonant gold nanorods as low backscattering albedo contrast agents for optical coherence tomography,” Opt. Express 14(15), 6724–6738 (2006).
    [CrossRef] [PubMed]
  38. A. L. Oldenburg, M. N. Hansen, T. S. Ralston, A. Wei, S. A. Boppart, “Imaging gold nanorods in excised human breast carcinoma by spectroscopic optical coherence tomography,” J. Mater. Chem. 19(35), 6407–6411 (2009).
    [CrossRef] [PubMed]
  39. Y. L. Li, K. Seekell, H. Yuan, F. E. Robles, A. Wax, “Multispectral nanoparticle contrast agents for true-color spectroscopic optical coherence tomography,” Biomed. Opt. Express 3(8), 1914–1923 (2012).
    [CrossRef] [PubMed]
  40. F. Robles, R. N. Graf, A. Wax, “Dual window method for processing spectroscopic optical coherence tomography signals with simultaneously high spectral and temporal resolution,” Opt. Express 17(8), 6799–6812 (2009).
    [CrossRef] [PubMed]
  41. J. M. Tucker-Schwartz, T. A. Meyer, C. A. Patil, C. L. Duvall, M. C. Skala, “In vivo photothermal optical coherence tomography of gold nanorod contrast agents,” Biomed. Opt. Express 3(11), 2881–2895 (2012).
    [CrossRef] [PubMed]
  42. S. Kim, M. T. Rinehart, H. Park, Y. Zhu, A. Wax, “Phase-sensitive OCT imaging of multiple nanoparticle species using spectrally multiplexed single pulse photothermal excitation,” Biomed. Opt. Express 3(10), 2579–2586 (2012).
    [CrossRef] [PubMed]
  43. D. C. Adler, S.-W. Huang, R. Huber, J. G. Fujimoto, “Photothermal detection of gold nanoparticles using phase-sensitive optical coherence tomography,” Opt. Express 16(7), 4376–4393 (2008).
    [CrossRef] [PubMed]
  44. C. Pache, N. L. Bocchio, A. Bouwens, M. Villiger, C. Berclaz, J. Goulley, M. I. Gibson, C. Santschi, T. Lasser, “Fast three-dimensional imaging of gold nanoparticles in living cells with photothermal optical lock-in Optical Coherence Microscopy,” Opt. Express 20(19), 21385–21399 (2012).
    [CrossRef] [PubMed]
  45. M. Atlan, M. Gross, P. Desbiolles, É. Absil, G. Tessier, M. Coppey-Moisan, “Heterodyne holographic microscopy of gold particles,” Opt. Lett. 33(5), 500–502 (2008).
    [CrossRef] [PubMed]
  46. K. J. Chalut, W. J. Brown, A. Wax, “Quantitative phase microscopy with asynchronous digital holography,” Opt. Express 15(6), 3047–3052 (2007).
    [CrossRef] [PubMed]
  47. E. Absil, G. Tessier, M. Gross, M. Atlan, N. Warnasooriya, S. Suck, M. Coppey-Moisan, D. Fournier, “Photothermal heterodyne holography of gold nanoparticles,” Opt. Express 18(2), 780–786 (2010).
    [CrossRef] [PubMed]
  48. N. Warnasooriya, F. Joud, P. Bun, G. Tessier, M. Coppey-Moisan, P. Desbiolles, M. Atlan, M. Abboud, M. Gross, “Imaging gold nanoparticles in living cell environments using heterodyne digital holographic microscopy,” Opt. Express 18(4), 3264–3273 (2010).
    [CrossRef] [PubMed]
  49. F. Verpillat, F. Joud, P. Desbiolles, M. Gross, “Dark-field digital holographic microscopy for 3D-tracking of gold nanoparticles,” Opt. Express 19(27), 26044–26055 (2011).
    [CrossRef] [PubMed]
  50. G. Popescu, Quantitative phase imaging of cells and tissues (McGraw-Hill New York 2011).

2013

J. R. Cook, W. Frey, S. Emelianov, “Quantitative Photoacoustic Imaging of Nanoparticles in Cells and Tissues,” ACS Nano 7(2), 1272–1280 (2013).
[CrossRef] [PubMed]

2012

K. Seekell, H. Price, S. Marinakos, A. Wax, “Optimization of immunolabeled plasmonic nanoparticles for cell surface receptor analysis,” Methods 56(2), 310–316 (2012).
[CrossRef] [PubMed]

A. Wax, M. G. Giacomelli, T. E. Matthews, M. T. Rinehart, F. E. Robles, Y. Zhu, “Optical Spectroscopy of Biological Cells,” Adv. Opt. Photon. 4(3), 322–378 (2012).
[CrossRef]

J. Gao, X. Huang, H. Liu, F. Zan, J. Ren, “Colloidal Stability of Gold Nanoparticles Modified with Thiol Compounds: Bioconjugation and Application in Cancer Cell Imaging,” Langmuir 28(9), 4464–4471 (2012).
[CrossRef] [PubMed]

G. Baffou, P. Bon, J. Savatier, J. Polleux, M. Zhu, M. Merlin, H. Rigneault, S. Monneret, “Thermal Imaging of Nanostructures by Quantitative Optical Phase Analysis,” ACS Nano 6(3), 2452–2458 (2012).
[CrossRef] [PubMed]

Y. L. Li, K. Seekell, H. Yuan, F. E. Robles, A. Wax, “Multispectral nanoparticle contrast agents for true-color spectroscopic optical coherence tomography,” Biomed. Opt. Express 3(8), 1914–1923 (2012).
[CrossRef] [PubMed]

J. M. Tucker-Schwartz, T. A. Meyer, C. A. Patil, C. L. Duvall, M. C. Skala, “In vivo photothermal optical coherence tomography of gold nanorod contrast agents,” Biomed. Opt. Express 3(11), 2881–2895 (2012).
[CrossRef] [PubMed]

S. Kim, M. T. Rinehart, H. Park, Y. Zhu, A. Wax, “Phase-sensitive OCT imaging of multiple nanoparticle species using spectrally multiplexed single pulse photothermal excitation,” Biomed. Opt. Express 3(10), 2579–2586 (2012).
[CrossRef] [PubMed]

C. Pache, N. L. Bocchio, A. Bouwens, M. Villiger, C. Berclaz, J. Goulley, M. I. Gibson, C. Santschi, T. Lasser, “Fast three-dimensional imaging of gold nanoparticles in living cells with photothermal optical lock-in Optical Coherence Microscopy,” Opt. Express 20(19), 21385–21399 (2012).
[CrossRef] [PubMed]

2011

F. E. Robles, C. Wilson, G. Grant, A. Wax, “Molecular imaging true-colour spectroscopic optical coherence tomography,” Nat. Photonics 5(12), 744–747 (2011).
[CrossRef] [PubMed]

F. Verpillat, F. Joud, P. Desbiolles, M. Gross, “Dark-field digital holographic microscopy for 3D-tracking of gold nanoparticles,” Opt. Express 19(27), 26044–26055 (2011).
[CrossRef] [PubMed]

M. J. Crow, K. Seekell, J. H. Ostrander, A. Wax, “Monitoring of Receptor Dimerization Using Plasmonic Coupling of Gold Nanoparticles,” ACS Nano 5(11), 8532–8540 (2011).
[CrossRef] [PubMed]

P. Alexandridis, “Gold nanoparticle synthesis, morphology control, and stabilization facilitated by functional polymers,” Chem. Eng. Technol. 34(1), 15–28 (2011).
[CrossRef]

K. Seekell, M. J. Crow, S. Marinakos, J. Ostrander, A. Chilkoti, A. Wax, “Hyperspectral molecular imaging of multiple receptors using immunolabeled plasmonic nanoparticles,” J. Biomed. Opt. 16(11), 116003 (2011).
[CrossRef] [PubMed]

2010

2009

A. L. Oldenburg, M. N. Hansen, T. S. Ralston, A. Wei, S. A. Boppart, “Imaging gold nanorods in excised human breast carcinoma by spectroscopic optical coherence tomography,” J. Mater. Chem. 19(35), 6407–6411 (2009).
[CrossRef] [PubMed]

F. Robles, R. N. Graf, A. Wax, “Dual window method for processing spectroscopic optical coherence tomography signals with simultaneously high spectral and temporal resolution,” Opt. Express 17(8), 6799–6812 (2009).
[CrossRef] [PubMed]

M. J. Crow, G. Grant, J. M. Provenzale, A. Wax, “Molecular Imaging and Quantitative Measurement of Epidermal Growth Factor Receptor Expression in Live Cancer Cells Using Immunolabeled Gold Nanoparticles,” AJR Am. J. Roentgenol. 192(4), 1021–1028 (2009).
[CrossRef] [PubMed]

J. Aaron, K. Travis, N. Harrison, K. Sokolov, “Dynamic Imaging of Molecular Assemblies in Live Cells Based on Nanoparticle Plasmon Resonance Coupling,” Nano Lett. 9(10), 3612–3618 (2009).
[CrossRef] [PubMed]

A. Wax, K. Sokolov, “Molecular imaging and darkfield microspectroscopy of live cells using gold plasmonic nanoparticles,” Laser Photon. Rev. 3(1-2), 146–158 (2009).
[CrossRef]

2008

S. W. Tsai, Y. Y. Chen, J. W. Liaw, “Compound cellular imaging of laser scanning confocal microscopy by using gold nanoparticles and dyes,” Sensors (Basel Switzerland) 8(4), 2306–2316 (2008).
[CrossRef]

M. C. Skala, M. J. Crow, A. Wax, J. A. Izatt, “Photothermal Optical Coherence Tomography of Epidermal Growth Factor Receptor in Live Cells Using Immunotargeted Gold Nanospheres,” Nano Lett. 8(10), 3461–3467 (2008).
[CrossRef] [PubMed]

M. Grzelczak, J. Pérez-Juste, P. Mulvaney, L. M. Liz-Marzán, “Shape control in gold nanoparticle synthesis,” Chem. Soc. Rev. 37(9), 1783–1791 (2008).
[CrossRef] [PubMed]

G. Rong, H. Wang, L. R. Skewis, B. M. Reinhard, “Resolving Sub-Diffraction Limit Encounters in Nanoparticle Tracking Using Live Cell Plasmon Coupling Microscopy,” Nano Lett. 8(10), 3386–3393 (2008).
[CrossRef] [PubMed]

M. Atlan, M. Gross, P. Desbiolles, É. Absil, G. Tessier, M. Coppey-Moisan, “Heterodyne holographic microscopy of gold particles,” Opt. Lett. 33(5), 500–502 (2008).
[CrossRef] [PubMed]

D. C. Adler, S.-W. Huang, R. Huber, J. G. Fujimoto, “Photothermal detection of gold nanoparticles using phase-sensitive optical coherence tomography,” Opt. Express 16(7), 4376–4393 (2008).
[CrossRef] [PubMed]

2007

K. J. Chalut, W. J. Brown, A. Wax, “Quantitative phase microscopy with asynchronous digital holography,” Opt. Express 15(6), 3047–3052 (2007).
[CrossRef] [PubMed]

N. J. Durr, T. Larson, D. K. Smith, B. A. Korgel, K. Sokolov, A. Ben-Yakar, “Two-photon luminescence imaging of cancer cells using molecularly targeted gold nanorods,” Nano Lett. 7(4), 941–945 (2007).
[CrossRef] [PubMed]

2006

2005

V. P. Zharov, D. O. Lapotko, “Photothermal imaging of nanoparticles and cells,” IEEE J. Sel. Top. Quantum Electron. 11(4), 733–751 (2005).
[CrossRef]

C. Yang, “Molecular Contrast Optical Coherence Tomography: A Review,” Photochem. Photobiol. 81(2), 215–237 (2005).
[CrossRef] [PubMed]

C. Mann, L. Yu, C.-M. Lo, M. Kim, “High-resolution quantitative phase-contrast microscopy by digital holography,” Opt. Express 13(22), 8693–8698 (2005).
[CrossRef] [PubMed]

C. Loo, L. Hirsch, M. H. Lee, E. Chang, J. West, N. Halas, R. Drezek, “Gold nanoshell bioconjugates for molecular imaging in living cells,” Opt. Lett. 30(9), 1012–1014 (2005).
[CrossRef] [PubMed]

I. H. El-Sayed, X. H. Huang, M. A. El-Sayed, “Surface plasmon resonance scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics: Applications in oral cancer,” Nano Lett. 5(5), 829–834 (2005).
[CrossRef] [PubMed]

2004

S. Berciaud, L. Cognet, G. A. Blab, B. Lounis, “Photothermal Heterodyne Imaging of Individual Nonfluorescent Nanoclusters and Nanocrystals,” Phys. Rev. Lett. 93(25), 257402 (2004).
[CrossRef] [PubMed]

2003

L. Cognet, C. Tardin, D. Boyer, D. Choquet, P. Tamarat, B. Lounis, “Single metallic nanoparticle imaging for protein detection in cells,” Proc. Natl. Acad. Sci. U.S.A. 100(20), 11350–11355 (2003).
[CrossRef] [PubMed]

K. Sokolov, M. Follen, J. Aaron, I. Pavlova, A. Malpica, R. Lotan, R. Richards-Kortum, “Real-time vital optical imaging of precancer using anti-epidermal growth factor receptor antibodies conjugated to gold nanoparticles,” Cancer Res. 63(9), 1999–2004 (2003).
[PubMed]

2002

T. Collier, A. Lacy, R. Richards-Kortum, A. Malpica, M. Follen, “Near real-time confocal microscopy of amelanotic tissue: detection of dysplasia in ex vivo cervical tissue,” Acad. Radiol. 9(5), 504–512 (2002).
[CrossRef] [PubMed]

D. Boyer, P. Tamarat, A. Maali, B. Lounis, M. Orrit, “Photothermal Imaging of Nanometer-Sized Metal Particles Among Scatterers,” Science 297(5584), 1160–1163 (2002).
[CrossRef] [PubMed]

1997

J.A. Izatt, M.D. Kulkarni, K. Kobayashi, J.K. Barton, A.J. Welch, “Optical coherence tomography for biodiagnostics,” Opt. Photon. News 8, 41-47, 65 (1997).

I. Yamaguchi, T. Zhang, “Phase-shifting digital holography,” Opt. Lett. 22(16), 1268–1270 (1997).
[CrossRef] [PubMed]

Aaron, J.

J. Aaron, K. Travis, N. Harrison, K. Sokolov, “Dynamic Imaging of Molecular Assemblies in Live Cells Based on Nanoparticle Plasmon Resonance Coupling,” Nano Lett. 9(10), 3612–3618 (2009).
[CrossRef] [PubMed]

K. Sokolov, M. Follen, J. Aaron, I. Pavlova, A. Malpica, R. Lotan, R. Richards-Kortum, “Real-time vital optical imaging of precancer using anti-epidermal growth factor receptor antibodies conjugated to gold nanoparticles,” Cancer Res. 63(9), 1999–2004 (2003).
[PubMed]

Abboud, M.

Absil, E.

Absil, É.

Adler, D. C.

Alexandridis, P.

P. Alexandridis, “Gold nanoparticle synthesis, morphology control, and stabilization facilitated by functional polymers,” Chem. Eng. Technol. 34(1), 15–28 (2011).
[CrossRef]

Applegate, B. E.

Atlan, M.

Baffou, G.

G. Baffou, P. Bon, J. Savatier, J. Polleux, M. Zhu, M. Merlin, H. Rigneault, S. Monneret, “Thermal Imaging of Nanostructures by Quantitative Optical Phase Analysis,” ACS Nano 6(3), 2452–2458 (2012).
[CrossRef] [PubMed]

Barton, J.K.

J.A. Izatt, M.D. Kulkarni, K. Kobayashi, J.K. Barton, A.J. Welch, “Optical coherence tomography for biodiagnostics,” Opt. Photon. News 8, 41-47, 65 (1997).

Ben-Yakar, A.

N. J. Durr, T. Larson, D. K. Smith, B. A. Korgel, K. Sokolov, A. Ben-Yakar, “Two-photon luminescence imaging of cancer cells using molecularly targeted gold nanorods,” Nano Lett. 7(4), 941–945 (2007).
[CrossRef] [PubMed]

Berciaud, S.

S. Berciaud, L. Cognet, G. A. Blab, B. Lounis, “Photothermal Heterodyne Imaging of Individual Nonfluorescent Nanoclusters and Nanocrystals,” Phys. Rev. Lett. 93(25), 257402 (2004).
[CrossRef] [PubMed]

Berclaz, C.

Blab, G. A.

S. Berciaud, L. Cognet, G. A. Blab, B. Lounis, “Photothermal Heterodyne Imaging of Individual Nonfluorescent Nanoclusters and Nanocrystals,” Phys. Rev. Lett. 93(25), 257402 (2004).
[CrossRef] [PubMed]

Bocchio, N. L.

Bon, P.

G. Baffou, P. Bon, J. Savatier, J. Polleux, M. Zhu, M. Merlin, H. Rigneault, S. Monneret, “Thermal Imaging of Nanostructures by Quantitative Optical Phase Analysis,” ACS Nano 6(3), 2452–2458 (2012).
[CrossRef] [PubMed]

Boppart, S. A.

A. L. Oldenburg, M. N. Hansen, T. S. Ralston, A. Wei, S. A. Boppart, “Imaging gold nanorods in excised human breast carcinoma by spectroscopic optical coherence tomography,” J. Mater. Chem. 19(35), 6407–6411 (2009).
[CrossRef] [PubMed]

A. L. Oldenburg, M. N. Hansen, D. A. Zweifel, A. Wei, S. A. Boppart, “Plasmon-resonant gold nanorods as low backscattering albedo contrast agents for optical coherence tomography,” Opt. Express 14(15), 6724–6738 (2006).
[CrossRef] [PubMed]

Bouwens, A.

Boyer, D.

L. Cognet, C. Tardin, D. Boyer, D. Choquet, P. Tamarat, B. Lounis, “Single metallic nanoparticle imaging for protein detection in cells,” Proc. Natl. Acad. Sci. U.S.A. 100(20), 11350–11355 (2003).
[CrossRef] [PubMed]

D. Boyer, P. Tamarat, A. Maali, B. Lounis, M. Orrit, “Photothermal Imaging of Nanometer-Sized Metal Particles Among Scatterers,” Science 297(5584), 1160–1163 (2002).
[CrossRef] [PubMed]

Brown, W. J.

Bun, P.

Chalut, K. J.

Chang, E.

Chen, Y. Y.

S. W. Tsai, Y. Y. Chen, J. W. Liaw, “Compound cellular imaging of laser scanning confocal microscopy by using gold nanoparticles and dyes,” Sensors (Basel Switzerland) 8(4), 2306–2316 (2008).
[CrossRef]

Chilkoti, A.

K. Seekell, M. J. Crow, S. Marinakos, J. Ostrander, A. Chilkoti, A. Wax, “Hyperspectral molecular imaging of multiple receptors using immunolabeled plasmonic nanoparticles,” J. Biomed. Opt. 16(11), 116003 (2011).
[CrossRef] [PubMed]

Choquet, D.

L. Cognet, C. Tardin, D. Boyer, D. Choquet, P. Tamarat, B. Lounis, “Single metallic nanoparticle imaging for protein detection in cells,” Proc. Natl. Acad. Sci. U.S.A. 100(20), 11350–11355 (2003).
[CrossRef] [PubMed]

Cognet, L.

S. Berciaud, L. Cognet, G. A. Blab, B. Lounis, “Photothermal Heterodyne Imaging of Individual Nonfluorescent Nanoclusters and Nanocrystals,” Phys. Rev. Lett. 93(25), 257402 (2004).
[CrossRef] [PubMed]

L. Cognet, C. Tardin, D. Boyer, D. Choquet, P. Tamarat, B. Lounis, “Single metallic nanoparticle imaging for protein detection in cells,” Proc. Natl. Acad. Sci. U.S.A. 100(20), 11350–11355 (2003).
[CrossRef] [PubMed]

Collier, T.

T. Collier, A. Lacy, R. Richards-Kortum, A. Malpica, M. Follen, “Near real-time confocal microscopy of amelanotic tissue: detection of dysplasia in ex vivo cervical tissue,” Acad. Radiol. 9(5), 504–512 (2002).
[CrossRef] [PubMed]

Cook, J. R.

J. R. Cook, W. Frey, S. Emelianov, “Quantitative Photoacoustic Imaging of Nanoparticles in Cells and Tissues,” ACS Nano 7(2), 1272–1280 (2013).
[CrossRef] [PubMed]

Coppey-Moisan, M.

Crow, M. J.

K. Seekell, M. J. Crow, S. Marinakos, J. Ostrander, A. Chilkoti, A. Wax, “Hyperspectral molecular imaging of multiple receptors using immunolabeled plasmonic nanoparticles,” J. Biomed. Opt. 16(11), 116003 (2011).
[CrossRef] [PubMed]

M. J. Crow, K. Seekell, J. H. Ostrander, A. Wax, “Monitoring of Receptor Dimerization Using Plasmonic Coupling of Gold Nanoparticles,” ACS Nano 5(11), 8532–8540 (2011).
[CrossRef] [PubMed]

M. J. Crow, G. Grant, J. M. Provenzale, A. Wax, “Molecular Imaging and Quantitative Measurement of Epidermal Growth Factor Receptor Expression in Live Cancer Cells Using Immunolabeled Gold Nanoparticles,” AJR Am. J. Roentgenol. 192(4), 1021–1028 (2009).
[CrossRef] [PubMed]

M. C. Skala, M. J. Crow, A. Wax, J. A. Izatt, “Photothermal Optical Coherence Tomography of Epidermal Growth Factor Receptor in Live Cells Using Immunotargeted Gold Nanospheres,” Nano Lett. 8(10), 3461–3467 (2008).
[CrossRef] [PubMed]

Curry, A.

Desbiolles, P.

Drezek, R.

Durr, N. J.

N. J. Durr, T. Larson, D. K. Smith, B. A. Korgel, K. Sokolov, A. Ben-Yakar, “Two-photon luminescence imaging of cancer cells using molecularly targeted gold nanorods,” Nano Lett. 7(4), 941–945 (2007).
[CrossRef] [PubMed]

Duvall, C. L.

El-Sayed, I. H.

X. H. Huang, I. H. El-Sayed, W. Qian, M. A. El-Sayed, “Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods,” J. Am. Chem. Soc. 128(6), 2115–2120 (2006).
[CrossRef] [PubMed]

I. H. El-Sayed, X. H. Huang, M. A. El-Sayed, “Surface plasmon resonance scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics: Applications in oral cancer,” Nano Lett. 5(5), 829–834 (2005).
[CrossRef] [PubMed]

El-Sayed, M. A.

X. H. Huang, I. H. El-Sayed, W. Qian, M. A. El-Sayed, “Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods,” J. Am. Chem. Soc. 128(6), 2115–2120 (2006).
[CrossRef] [PubMed]

K. S. Lee, M. A. El-Sayed, “Gold and silver nanoparticles in sensing and imaging: Sensitivity of plasmon response to size, shape, and metal composition,” J. Phys. Chem. B 110(39), 19220–19225 (2006).
[CrossRef] [PubMed]

I. H. El-Sayed, X. H. Huang, M. A. El-Sayed, “Surface plasmon resonance scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics: Applications in oral cancer,” Nano Lett. 5(5), 829–834 (2005).
[CrossRef] [PubMed]

Emelianov, S.

J. R. Cook, W. Frey, S. Emelianov, “Quantitative Photoacoustic Imaging of Nanoparticles in Cells and Tissues,” ACS Nano 7(2), 1272–1280 (2013).
[CrossRef] [PubMed]

Follen, M.

K. Sokolov, M. Follen, J. Aaron, I. Pavlova, A. Malpica, R. Lotan, R. Richards-Kortum, “Real-time vital optical imaging of precancer using anti-epidermal growth factor receptor antibodies conjugated to gold nanoparticles,” Cancer Res. 63(9), 1999–2004 (2003).
[PubMed]

T. Collier, A. Lacy, R. Richards-Kortum, A. Malpica, M. Follen, “Near real-time confocal microscopy of amelanotic tissue: detection of dysplasia in ex vivo cervical tissue,” Acad. Radiol. 9(5), 504–512 (2002).
[CrossRef] [PubMed]

Fournier, D.

Frey, W.

J. R. Cook, W. Frey, S. Emelianov, “Quantitative Photoacoustic Imaging of Nanoparticles in Cells and Tissues,” ACS Nano 7(2), 1272–1280 (2013).
[CrossRef] [PubMed]

Fujimoto, J. G.

Gaiduk, A.

A. Gaiduk, P. V. Ruijgrok, M. Yorulmaz, M. Orrit, “Detection limits in photothermal microscopy,” Chem. Sci. 1(3), 343–350 (2010).
[CrossRef]

Gao, J.

J. Gao, X. Huang, H. Liu, F. Zan, J. Ren, “Colloidal Stability of Gold Nanoparticles Modified with Thiol Compounds: Bioconjugation and Application in Cancer Cell Imaging,” Langmuir 28(9), 4464–4471 (2012).
[CrossRef] [PubMed]

Giacomelli, M. G.

Gibson, M. I.

Goulley, J.

Graf, R. N.

Grant, G.

F. E. Robles, C. Wilson, G. Grant, A. Wax, “Molecular imaging true-colour spectroscopic optical coherence tomography,” Nat. Photonics 5(12), 744–747 (2011).
[CrossRef] [PubMed]

M. J. Crow, G. Grant, J. M. Provenzale, A. Wax, “Molecular Imaging and Quantitative Measurement of Epidermal Growth Factor Receptor Expression in Live Cancer Cells Using Immunolabeled Gold Nanoparticles,” AJR Am. J. Roentgenol. 192(4), 1021–1028 (2009).
[CrossRef] [PubMed]

Gross, M.

Grzelczak, M.

M. Grzelczak, J. Pérez-Juste, P. Mulvaney, L. M. Liz-Marzán, “Shape control in gold nanoparticle synthesis,” Chem. Soc. Rev. 37(9), 1783–1791 (2008).
[CrossRef] [PubMed]

Halas, N.

Hansen, M. N.

A. L. Oldenburg, M. N. Hansen, T. S. Ralston, A. Wei, S. A. Boppart, “Imaging gold nanorods in excised human breast carcinoma by spectroscopic optical coherence tomography,” J. Mater. Chem. 19(35), 6407–6411 (2009).
[CrossRef] [PubMed]

A. L. Oldenburg, M. N. Hansen, D. A. Zweifel, A. Wei, S. A. Boppart, “Plasmon-resonant gold nanorods as low backscattering albedo contrast agents for optical coherence tomography,” Opt. Express 14(15), 6724–6738 (2006).
[CrossRef] [PubMed]

Harrison, N.

J. Aaron, K. Travis, N. Harrison, K. Sokolov, “Dynamic Imaging of Molecular Assemblies in Live Cells Based on Nanoparticle Plasmon Resonance Coupling,” Nano Lett. 9(10), 3612–3618 (2009).
[CrossRef] [PubMed]

Hirsch, L.

Huang, S.-W.

Huang, X.

J. Gao, X. Huang, H. Liu, F. Zan, J. Ren, “Colloidal Stability of Gold Nanoparticles Modified with Thiol Compounds: Bioconjugation and Application in Cancer Cell Imaging,” Langmuir 28(9), 4464–4471 (2012).
[CrossRef] [PubMed]

Huang, X. H.

X. H. Huang, I. H. El-Sayed, W. Qian, M. A. El-Sayed, “Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods,” J. Am. Chem. Soc. 128(6), 2115–2120 (2006).
[CrossRef] [PubMed]

I. H. El-Sayed, X. H. Huang, M. A. El-Sayed, “Surface plasmon resonance scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics: Applications in oral cancer,” Nano Lett. 5(5), 829–834 (2005).
[CrossRef] [PubMed]

Huber, R.

Hwang, W. L.

Izatt, J. A.

M. C. Skala, M. J. Crow, A. Wax, J. A. Izatt, “Photothermal Optical Coherence Tomography of Epidermal Growth Factor Receptor in Live Cells Using Immunotargeted Gold Nanospheres,” Nano Lett. 8(10), 3461–3467 (2008).
[CrossRef] [PubMed]

B. E. Applegate, J. A. Izatt, “Molecular imaging of endogenous and exogenous chromophores using ground state recovery pump-probe optical coherence tomography,” Opt. Express 14(20), 9142–9155 (2006).
[CrossRef] [PubMed]

Izatt, J.A.

J.A. Izatt, M.D. Kulkarni, K. Kobayashi, J.K. Barton, A.J. Welch, “Optical coherence tomography for biodiagnostics,” Opt. Photon. News 8, 41-47, 65 (1997).

Joud, F.

Kim, M.

Kim, S.

Kobayashi, K.

J.A. Izatt, M.D. Kulkarni, K. Kobayashi, J.K. Barton, A.J. Welch, “Optical coherence tomography for biodiagnostics,” Opt. Photon. News 8, 41-47, 65 (1997).

Korgel, B. A.

N. J. Durr, T. Larson, D. K. Smith, B. A. Korgel, K. Sokolov, A. Ben-Yakar, “Two-photon luminescence imaging of cancer cells using molecularly targeted gold nanorods,” Nano Lett. 7(4), 941–945 (2007).
[CrossRef] [PubMed]

Kulkarni, M.D.

J.A. Izatt, M.D. Kulkarni, K. Kobayashi, J.K. Barton, A.J. Welch, “Optical coherence tomography for biodiagnostics,” Opt. Photon. News 8, 41-47, 65 (1997).

Lacy, A.

T. Collier, A. Lacy, R. Richards-Kortum, A. Malpica, M. Follen, “Near real-time confocal microscopy of amelanotic tissue: detection of dysplasia in ex vivo cervical tissue,” Acad. Radiol. 9(5), 504–512 (2002).
[CrossRef] [PubMed]

Lapotko, D. O.

V. P. Zharov, D. O. Lapotko, “Photothermal imaging of nanoparticles and cells,” IEEE J. Sel. Top. Quantum Electron. 11(4), 733–751 (2005).
[CrossRef]

Larson, T.

N. J. Durr, T. Larson, D. K. Smith, B. A. Korgel, K. Sokolov, A. Ben-Yakar, “Two-photon luminescence imaging of cancer cells using molecularly targeted gold nanorods,” Nano Lett. 7(4), 941–945 (2007).
[CrossRef] [PubMed]

Lasser, T.

Lee, K. S.

K. S. Lee, M. A. El-Sayed, “Gold and silver nanoparticles in sensing and imaging: Sensitivity of plasmon response to size, shape, and metal composition,” J. Phys. Chem. B 110(39), 19220–19225 (2006).
[CrossRef] [PubMed]

Lee, M. H.

Li, Y. L.

Liaw, J. W.

S. W. Tsai, Y. Y. Chen, J. W. Liaw, “Compound cellular imaging of laser scanning confocal microscopy by using gold nanoparticles and dyes,” Sensors (Basel Switzerland) 8(4), 2306–2316 (2008).
[CrossRef]

Liu, H.

J. Gao, X. Huang, H. Liu, F. Zan, J. Ren, “Colloidal Stability of Gold Nanoparticles Modified with Thiol Compounds: Bioconjugation and Application in Cancer Cell Imaging,” Langmuir 28(9), 4464–4471 (2012).
[CrossRef] [PubMed]

Liz-Marzán, L. M.

M. Grzelczak, J. Pérez-Juste, P. Mulvaney, L. M. Liz-Marzán, “Shape control in gold nanoparticle synthesis,” Chem. Soc. Rev. 37(9), 1783–1791 (2008).
[CrossRef] [PubMed]

Lo, C.-M.

Loo, C.

Lotan, R.

K. Sokolov, M. Follen, J. Aaron, I. Pavlova, A. Malpica, R. Lotan, R. Richards-Kortum, “Real-time vital optical imaging of precancer using anti-epidermal growth factor receptor antibodies conjugated to gold nanoparticles,” Cancer Res. 63(9), 1999–2004 (2003).
[PubMed]

Lounis, B.

S. Berciaud, L. Cognet, G. A. Blab, B. Lounis, “Photothermal Heterodyne Imaging of Individual Nonfluorescent Nanoclusters and Nanocrystals,” Phys. Rev. Lett. 93(25), 257402 (2004).
[CrossRef] [PubMed]

L. Cognet, C. Tardin, D. Boyer, D. Choquet, P. Tamarat, B. Lounis, “Single metallic nanoparticle imaging for protein detection in cells,” Proc. Natl. Acad. Sci. U.S.A. 100(20), 11350–11355 (2003).
[CrossRef] [PubMed]

D. Boyer, P. Tamarat, A. Maali, B. Lounis, M. Orrit, “Photothermal Imaging of Nanometer-Sized Metal Particles Among Scatterers,” Science 297(5584), 1160–1163 (2002).
[CrossRef] [PubMed]

Maali, A.

D. Boyer, P. Tamarat, A. Maali, B. Lounis, M. Orrit, “Photothermal Imaging of Nanometer-Sized Metal Particles Among Scatterers,” Science 297(5584), 1160–1163 (2002).
[CrossRef] [PubMed]

Malpica, A.

K. Sokolov, M. Follen, J. Aaron, I. Pavlova, A. Malpica, R. Lotan, R. Richards-Kortum, “Real-time vital optical imaging of precancer using anti-epidermal growth factor receptor antibodies conjugated to gold nanoparticles,” Cancer Res. 63(9), 1999–2004 (2003).
[PubMed]

T. Collier, A. Lacy, R. Richards-Kortum, A. Malpica, M. Follen, “Near real-time confocal microscopy of amelanotic tissue: detection of dysplasia in ex vivo cervical tissue,” Acad. Radiol. 9(5), 504–512 (2002).
[CrossRef] [PubMed]

Mann, C.

Marinakos, S.

K. Seekell, H. Price, S. Marinakos, A. Wax, “Optimization of immunolabeled plasmonic nanoparticles for cell surface receptor analysis,” Methods 56(2), 310–316 (2012).
[CrossRef] [PubMed]

K. Seekell, M. J. Crow, S. Marinakos, J. Ostrander, A. Chilkoti, A. Wax, “Hyperspectral molecular imaging of multiple receptors using immunolabeled plasmonic nanoparticles,” J. Biomed. Opt. 16(11), 116003 (2011).
[CrossRef] [PubMed]

Matthews, T. E.

Merlin, M.

G. Baffou, P. Bon, J. Savatier, J. Polleux, M. Zhu, M. Merlin, H. Rigneault, S. Monneret, “Thermal Imaging of Nanostructures by Quantitative Optical Phase Analysis,” ACS Nano 6(3), 2452–2458 (2012).
[CrossRef] [PubMed]

Meyer, T. A.

Monneret, S.

G. Baffou, P. Bon, J. Savatier, J. Polleux, M. Zhu, M. Merlin, H. Rigneault, S. Monneret, “Thermal Imaging of Nanostructures by Quantitative Optical Phase Analysis,” ACS Nano 6(3), 2452–2458 (2012).
[CrossRef] [PubMed]

Mulvaney, P.

M. Grzelczak, J. Pérez-Juste, P. Mulvaney, L. M. Liz-Marzán, “Shape control in gold nanoparticle synthesis,” Chem. Soc. Rev. 37(9), 1783–1791 (2008).
[CrossRef] [PubMed]

Oldenburg, A. L.

A. L. Oldenburg, M. N. Hansen, T. S. Ralston, A. Wei, S. A. Boppart, “Imaging gold nanorods in excised human breast carcinoma by spectroscopic optical coherence tomography,” J. Mater. Chem. 19(35), 6407–6411 (2009).
[CrossRef] [PubMed]

A. L. Oldenburg, M. N. Hansen, D. A. Zweifel, A. Wei, S. A. Boppart, “Plasmon-resonant gold nanorods as low backscattering albedo contrast agents for optical coherence tomography,” Opt. Express 14(15), 6724–6738 (2006).
[CrossRef] [PubMed]

Orrit, M.

A. Gaiduk, P. V. Ruijgrok, M. Yorulmaz, M. Orrit, “Detection limits in photothermal microscopy,” Chem. Sci. 1(3), 343–350 (2010).
[CrossRef]

D. Boyer, P. Tamarat, A. Maali, B. Lounis, M. Orrit, “Photothermal Imaging of Nanometer-Sized Metal Particles Among Scatterers,” Science 297(5584), 1160–1163 (2002).
[CrossRef] [PubMed]

Ostrander, J.

K. Seekell, M. J. Crow, S. Marinakos, J. Ostrander, A. Chilkoti, A. Wax, “Hyperspectral molecular imaging of multiple receptors using immunolabeled plasmonic nanoparticles,” J. Biomed. Opt. 16(11), 116003 (2011).
[CrossRef] [PubMed]

Ostrander, J. H.

M. J. Crow, K. Seekell, J. H. Ostrander, A. Wax, “Monitoring of Receptor Dimerization Using Plasmonic Coupling of Gold Nanoparticles,” ACS Nano 5(11), 8532–8540 (2011).
[CrossRef] [PubMed]

Pache, C.

Park, H.

Patil, C. A.

Pavlova, I.

K. Sokolov, M. Follen, J. Aaron, I. Pavlova, A. Malpica, R. Lotan, R. Richards-Kortum, “Real-time vital optical imaging of precancer using anti-epidermal growth factor receptor antibodies conjugated to gold nanoparticles,” Cancer Res. 63(9), 1999–2004 (2003).
[PubMed]

Pérez-Juste, J.

M. Grzelczak, J. Pérez-Juste, P. Mulvaney, L. M. Liz-Marzán, “Shape control in gold nanoparticle synthesis,” Chem. Soc. Rev. 37(9), 1783–1791 (2008).
[CrossRef] [PubMed]

Polleux, J.

G. Baffou, P. Bon, J. Savatier, J. Polleux, M. Zhu, M. Merlin, H. Rigneault, S. Monneret, “Thermal Imaging of Nanostructures by Quantitative Optical Phase Analysis,” ACS Nano 6(3), 2452–2458 (2012).
[CrossRef] [PubMed]

Price, H.

K. Seekell, H. Price, S. Marinakos, A. Wax, “Optimization of immunolabeled plasmonic nanoparticles for cell surface receptor analysis,” Methods 56(2), 310–316 (2012).
[CrossRef] [PubMed]

Provenzale, J. M.

M. J. Crow, G. Grant, J. M. Provenzale, A. Wax, “Molecular Imaging and Quantitative Measurement of Epidermal Growth Factor Receptor Expression in Live Cancer Cells Using Immunolabeled Gold Nanoparticles,” AJR Am. J. Roentgenol. 192(4), 1021–1028 (2009).
[CrossRef] [PubMed]

Qian, W.

X. H. Huang, I. H. El-Sayed, W. Qian, M. A. El-Sayed, “Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods,” J. Am. Chem. Soc. 128(6), 2115–2120 (2006).
[CrossRef] [PubMed]

Ralston, T. S.

A. L. Oldenburg, M. N. Hansen, T. S. Ralston, A. Wei, S. A. Boppart, “Imaging gold nanorods in excised human breast carcinoma by spectroscopic optical coherence tomography,” J. Mater. Chem. 19(35), 6407–6411 (2009).
[CrossRef] [PubMed]

Reinhard, B. M.

G. Rong, H. Wang, L. R. Skewis, B. M. Reinhard, “Resolving Sub-Diffraction Limit Encounters in Nanoparticle Tracking Using Live Cell Plasmon Coupling Microscopy,” Nano Lett. 8(10), 3386–3393 (2008).
[CrossRef] [PubMed]

Ren, J.

J. Gao, X. Huang, H. Liu, F. Zan, J. Ren, “Colloidal Stability of Gold Nanoparticles Modified with Thiol Compounds: Bioconjugation and Application in Cancer Cell Imaging,” Langmuir 28(9), 4464–4471 (2012).
[CrossRef] [PubMed]

Richards-Kortum, R.

K. Sokolov, M. Follen, J. Aaron, I. Pavlova, A. Malpica, R. Lotan, R. Richards-Kortum, “Real-time vital optical imaging of precancer using anti-epidermal growth factor receptor antibodies conjugated to gold nanoparticles,” Cancer Res. 63(9), 1999–2004 (2003).
[PubMed]

T. Collier, A. Lacy, R. Richards-Kortum, A. Malpica, M. Follen, “Near real-time confocal microscopy of amelanotic tissue: detection of dysplasia in ex vivo cervical tissue,” Acad. Radiol. 9(5), 504–512 (2002).
[CrossRef] [PubMed]

Rigneault, H.

G. Baffou, P. Bon, J. Savatier, J. Polleux, M. Zhu, M. Merlin, H. Rigneault, S. Monneret, “Thermal Imaging of Nanostructures by Quantitative Optical Phase Analysis,” ACS Nano 6(3), 2452–2458 (2012).
[CrossRef] [PubMed]

Rinehart, M. T.

Robles, F.

Robles, F. E.

Rong, G.

G. Rong, H. Wang, L. R. Skewis, B. M. Reinhard, “Resolving Sub-Diffraction Limit Encounters in Nanoparticle Tracking Using Live Cell Plasmon Coupling Microscopy,” Nano Lett. 8(10), 3386–3393 (2008).
[CrossRef] [PubMed]

Ruijgrok, P. V.

A. Gaiduk, P. V. Ruijgrok, M. Yorulmaz, M. Orrit, “Detection limits in photothermal microscopy,” Chem. Sci. 1(3), 343–350 (2010).
[CrossRef]

Santschi, C.

Savatier, J.

G. Baffou, P. Bon, J. Savatier, J. Polleux, M. Zhu, M. Merlin, H. Rigneault, S. Monneret, “Thermal Imaging of Nanostructures by Quantitative Optical Phase Analysis,” ACS Nano 6(3), 2452–2458 (2012).
[CrossRef] [PubMed]

Seekell, K.

K. Seekell, H. Price, S. Marinakos, A. Wax, “Optimization of immunolabeled plasmonic nanoparticles for cell surface receptor analysis,” Methods 56(2), 310–316 (2012).
[CrossRef] [PubMed]

Y. L. Li, K. Seekell, H. Yuan, F. E. Robles, A. Wax, “Multispectral nanoparticle contrast agents for true-color spectroscopic optical coherence tomography,” Biomed. Opt. Express 3(8), 1914–1923 (2012).
[CrossRef] [PubMed]

K. Seekell, M. J. Crow, S. Marinakos, J. Ostrander, A. Chilkoti, A. Wax, “Hyperspectral molecular imaging of multiple receptors using immunolabeled plasmonic nanoparticles,” J. Biomed. Opt. 16(11), 116003 (2011).
[CrossRef] [PubMed]

M. J. Crow, K. Seekell, J. H. Ostrander, A. Wax, “Monitoring of Receptor Dimerization Using Plasmonic Coupling of Gold Nanoparticles,” ACS Nano 5(11), 8532–8540 (2011).
[CrossRef] [PubMed]

Skala, M. C.

J. M. Tucker-Schwartz, T. A. Meyer, C. A. Patil, C. L. Duvall, M. C. Skala, “In vivo photothermal optical coherence tomography of gold nanorod contrast agents,” Biomed. Opt. Express 3(11), 2881–2895 (2012).
[CrossRef] [PubMed]

M. C. Skala, M. J. Crow, A. Wax, J. A. Izatt, “Photothermal Optical Coherence Tomography of Epidermal Growth Factor Receptor in Live Cells Using Immunotargeted Gold Nanospheres,” Nano Lett. 8(10), 3461–3467 (2008).
[CrossRef] [PubMed]

Skewis, L. R.

G. Rong, H. Wang, L. R. Skewis, B. M. Reinhard, “Resolving Sub-Diffraction Limit Encounters in Nanoparticle Tracking Using Live Cell Plasmon Coupling Microscopy,” Nano Lett. 8(10), 3386–3393 (2008).
[CrossRef] [PubMed]

Smith, D. K.

N. J. Durr, T. Larson, D. K. Smith, B. A. Korgel, K. Sokolov, A. Ben-Yakar, “Two-photon luminescence imaging of cancer cells using molecularly targeted gold nanorods,” Nano Lett. 7(4), 941–945 (2007).
[CrossRef] [PubMed]

Sokolov, K.

A. Wax, K. Sokolov, “Molecular imaging and darkfield microspectroscopy of live cells using gold plasmonic nanoparticles,” Laser Photon. Rev. 3(1-2), 146–158 (2009).
[CrossRef]

J. Aaron, K. Travis, N. Harrison, K. Sokolov, “Dynamic Imaging of Molecular Assemblies in Live Cells Based on Nanoparticle Plasmon Resonance Coupling,” Nano Lett. 9(10), 3612–3618 (2009).
[CrossRef] [PubMed]

N. J. Durr, T. Larson, D. K. Smith, B. A. Korgel, K. Sokolov, A. Ben-Yakar, “Two-photon luminescence imaging of cancer cells using molecularly targeted gold nanorods,” Nano Lett. 7(4), 941–945 (2007).
[CrossRef] [PubMed]

K. Sokolov, M. Follen, J. Aaron, I. Pavlova, A. Malpica, R. Lotan, R. Richards-Kortum, “Real-time vital optical imaging of precancer using anti-epidermal growth factor receptor antibodies conjugated to gold nanoparticles,” Cancer Res. 63(9), 1999–2004 (2003).
[PubMed]

Suck, S.

Tamarat, P.

L. Cognet, C. Tardin, D. Boyer, D. Choquet, P. Tamarat, B. Lounis, “Single metallic nanoparticle imaging for protein detection in cells,” Proc. Natl. Acad. Sci. U.S.A. 100(20), 11350–11355 (2003).
[CrossRef] [PubMed]

D. Boyer, P. Tamarat, A. Maali, B. Lounis, M. Orrit, “Photothermal Imaging of Nanometer-Sized Metal Particles Among Scatterers,” Science 297(5584), 1160–1163 (2002).
[CrossRef] [PubMed]

Tardin, C.

L. Cognet, C. Tardin, D. Boyer, D. Choquet, P. Tamarat, B. Lounis, “Single metallic nanoparticle imaging for protein detection in cells,” Proc. Natl. Acad. Sci. U.S.A. 100(20), 11350–11355 (2003).
[CrossRef] [PubMed]

Tessier, G.

Travis, K.

J. Aaron, K. Travis, N. Harrison, K. Sokolov, “Dynamic Imaging of Molecular Assemblies in Live Cells Based on Nanoparticle Plasmon Resonance Coupling,” Nano Lett. 9(10), 3612–3618 (2009).
[CrossRef] [PubMed]

Tsai, S. W.

S. W. Tsai, Y. Y. Chen, J. W. Liaw, “Compound cellular imaging of laser scanning confocal microscopy by using gold nanoparticles and dyes,” Sensors (Basel Switzerland) 8(4), 2306–2316 (2008).
[CrossRef]

Tucker-Schwartz, J. M.

Verpillat, F.

Villiger, M.

Wang, H.

G. Rong, H. Wang, L. R. Skewis, B. M. Reinhard, “Resolving Sub-Diffraction Limit Encounters in Nanoparticle Tracking Using Live Cell Plasmon Coupling Microscopy,” Nano Lett. 8(10), 3386–3393 (2008).
[CrossRef] [PubMed]

Warnasooriya, N.

Wax, A.

S. Kim, M. T. Rinehart, H. Park, Y. Zhu, A. Wax, “Phase-sensitive OCT imaging of multiple nanoparticle species using spectrally multiplexed single pulse photothermal excitation,” Biomed. Opt. Express 3(10), 2579–2586 (2012).
[CrossRef] [PubMed]

Y. L. Li, K. Seekell, H. Yuan, F. E. Robles, A. Wax, “Multispectral nanoparticle contrast agents for true-color spectroscopic optical coherence tomography,” Biomed. Opt. Express 3(8), 1914–1923 (2012).
[CrossRef] [PubMed]

A. Wax, M. G. Giacomelli, T. E. Matthews, M. T. Rinehart, F. E. Robles, Y. Zhu, “Optical Spectroscopy of Biological Cells,” Adv. Opt. Photon. 4(3), 322–378 (2012).
[CrossRef]

K. Seekell, H. Price, S. Marinakos, A. Wax, “Optimization of immunolabeled plasmonic nanoparticles for cell surface receptor analysis,” Methods 56(2), 310–316 (2012).
[CrossRef] [PubMed]

K. Seekell, M. J. Crow, S. Marinakos, J. Ostrander, A. Chilkoti, A. Wax, “Hyperspectral molecular imaging of multiple receptors using immunolabeled plasmonic nanoparticles,” J. Biomed. Opt. 16(11), 116003 (2011).
[CrossRef] [PubMed]

M. J. Crow, K. Seekell, J. H. Ostrander, A. Wax, “Monitoring of Receptor Dimerization Using Plasmonic Coupling of Gold Nanoparticles,” ACS Nano 5(11), 8532–8540 (2011).
[CrossRef] [PubMed]

F. E. Robles, C. Wilson, G. Grant, A. Wax, “Molecular imaging true-colour spectroscopic optical coherence tomography,” Nat. Photonics 5(12), 744–747 (2011).
[CrossRef] [PubMed]

M. J. Crow, G. Grant, J. M. Provenzale, A. Wax, “Molecular Imaging and Quantitative Measurement of Epidermal Growth Factor Receptor Expression in Live Cancer Cells Using Immunolabeled Gold Nanoparticles,” AJR Am. J. Roentgenol. 192(4), 1021–1028 (2009).
[CrossRef] [PubMed]

A. Wax, K. Sokolov, “Molecular imaging and darkfield microspectroscopy of live cells using gold plasmonic nanoparticles,” Laser Photon. Rev. 3(1-2), 146–158 (2009).
[CrossRef]

F. Robles, R. N. Graf, A. Wax, “Dual window method for processing spectroscopic optical coherence tomography signals with simultaneously high spectral and temporal resolution,” Opt. Express 17(8), 6799–6812 (2009).
[CrossRef] [PubMed]

M. C. Skala, M. J. Crow, A. Wax, J. A. Izatt, “Photothermal Optical Coherence Tomography of Epidermal Growth Factor Receptor in Live Cells Using Immunotargeted Gold Nanospheres,” Nano Lett. 8(10), 3461–3467 (2008).
[CrossRef] [PubMed]

K. J. Chalut, W. J. Brown, A. Wax, “Quantitative phase microscopy with asynchronous digital holography,” Opt. Express 15(6), 3047–3052 (2007).
[CrossRef] [PubMed]

A. Curry, W. L. Hwang, A. Wax, “Epi-illumination through the microscope objective applied to darkfield imaging and microspectroscopy of nanoparticle interaction with cells in culture,” Opt. Express 14(14), 6535–6542 (2006).
[CrossRef] [PubMed]

Wei, A.

A. L. Oldenburg, M. N. Hansen, T. S. Ralston, A. Wei, S. A. Boppart, “Imaging gold nanorods in excised human breast carcinoma by spectroscopic optical coherence tomography,” J. Mater. Chem. 19(35), 6407–6411 (2009).
[CrossRef] [PubMed]

A. L. Oldenburg, M. N. Hansen, D. A. Zweifel, A. Wei, S. A. Boppart, “Plasmon-resonant gold nanorods as low backscattering albedo contrast agents for optical coherence tomography,” Opt. Express 14(15), 6724–6738 (2006).
[CrossRef] [PubMed]

Welch, A.J.

J.A. Izatt, M.D. Kulkarni, K. Kobayashi, J.K. Barton, A.J. Welch, “Optical coherence tomography for biodiagnostics,” Opt. Photon. News 8, 41-47, 65 (1997).

West, J.

Wilson, C.

F. E. Robles, C. Wilson, G. Grant, A. Wax, “Molecular imaging true-colour spectroscopic optical coherence tomography,” Nat. Photonics 5(12), 744–747 (2011).
[CrossRef] [PubMed]

Yamaguchi, I.

Yang, C.

C. Yang, “Molecular Contrast Optical Coherence Tomography: A Review,” Photochem. Photobiol. 81(2), 215–237 (2005).
[CrossRef] [PubMed]

Yorulmaz, M.

A. Gaiduk, P. V. Ruijgrok, M. Yorulmaz, M. Orrit, “Detection limits in photothermal microscopy,” Chem. Sci. 1(3), 343–350 (2010).
[CrossRef]

Yu, L.

Yuan, H.

Zan, F.

J. Gao, X. Huang, H. Liu, F. Zan, J. Ren, “Colloidal Stability of Gold Nanoparticles Modified with Thiol Compounds: Bioconjugation and Application in Cancer Cell Imaging,” Langmuir 28(9), 4464–4471 (2012).
[CrossRef] [PubMed]

Zhang, T.

Zharov, V. P.

V. P. Zharov, D. O. Lapotko, “Photothermal imaging of nanoparticles and cells,” IEEE J. Sel. Top. Quantum Electron. 11(4), 733–751 (2005).
[CrossRef]

Zhu, M.

G. Baffou, P. Bon, J. Savatier, J. Polleux, M. Zhu, M. Merlin, H. Rigneault, S. Monneret, “Thermal Imaging of Nanostructures by Quantitative Optical Phase Analysis,” ACS Nano 6(3), 2452–2458 (2012).
[CrossRef] [PubMed]

Zhu, Y.

Zweifel, D. A.

Acad. Radiol.

T. Collier, A. Lacy, R. Richards-Kortum, A. Malpica, M. Follen, “Near real-time confocal microscopy of amelanotic tissue: detection of dysplasia in ex vivo cervical tissue,” Acad. Radiol. 9(5), 504–512 (2002).
[CrossRef] [PubMed]

ACS Nano

J. R. Cook, W. Frey, S. Emelianov, “Quantitative Photoacoustic Imaging of Nanoparticles in Cells and Tissues,” ACS Nano 7(2), 1272–1280 (2013).
[CrossRef] [PubMed]

M. J. Crow, K. Seekell, J. H. Ostrander, A. Wax, “Monitoring of Receptor Dimerization Using Plasmonic Coupling of Gold Nanoparticles,” ACS Nano 5(11), 8532–8540 (2011).
[CrossRef] [PubMed]

G. Baffou, P. Bon, J. Savatier, J. Polleux, M. Zhu, M. Merlin, H. Rigneault, S. Monneret, “Thermal Imaging of Nanostructures by Quantitative Optical Phase Analysis,” ACS Nano 6(3), 2452–2458 (2012).
[CrossRef] [PubMed]

Adv. Opt. Photon.

AJR Am. J. Roentgenol.

M. J. Crow, G. Grant, J. M. Provenzale, A. Wax, “Molecular Imaging and Quantitative Measurement of Epidermal Growth Factor Receptor Expression in Live Cancer Cells Using Immunolabeled Gold Nanoparticles,” AJR Am. J. Roentgenol. 192(4), 1021–1028 (2009).
[CrossRef] [PubMed]

Biomed. Opt. Express

Cancer Res.

K. Sokolov, M. Follen, J. Aaron, I. Pavlova, A. Malpica, R. Lotan, R. Richards-Kortum, “Real-time vital optical imaging of precancer using anti-epidermal growth factor receptor antibodies conjugated to gold nanoparticles,” Cancer Res. 63(9), 1999–2004 (2003).
[PubMed]

Chem. Eng. Technol.

P. Alexandridis, “Gold nanoparticle synthesis, morphology control, and stabilization facilitated by functional polymers,” Chem. Eng. Technol. 34(1), 15–28 (2011).
[CrossRef]

Chem. Sci.

A. Gaiduk, P. V. Ruijgrok, M. Yorulmaz, M. Orrit, “Detection limits in photothermal microscopy,” Chem. Sci. 1(3), 343–350 (2010).
[CrossRef]

Chem. Soc. Rev.

M. Grzelczak, J. Pérez-Juste, P. Mulvaney, L. M. Liz-Marzán, “Shape control in gold nanoparticle synthesis,” Chem. Soc. Rev. 37(9), 1783–1791 (2008).
[CrossRef] [PubMed]

IEEE J. Sel. Top. Quantum Electron.

V. P. Zharov, D. O. Lapotko, “Photothermal imaging of nanoparticles and cells,” IEEE J. Sel. Top. Quantum Electron. 11(4), 733–751 (2005).
[CrossRef]

J. Am. Chem. Soc.

X. H. Huang, I. H. El-Sayed, W. Qian, M. A. El-Sayed, “Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods,” J. Am. Chem. Soc. 128(6), 2115–2120 (2006).
[CrossRef] [PubMed]

J. Biomed. Opt.

K. Seekell, M. J. Crow, S. Marinakos, J. Ostrander, A. Chilkoti, A. Wax, “Hyperspectral molecular imaging of multiple receptors using immunolabeled plasmonic nanoparticles,” J. Biomed. Opt. 16(11), 116003 (2011).
[CrossRef] [PubMed]

J. Mater. Chem.

A. L. Oldenburg, M. N. Hansen, T. S. Ralston, A. Wei, S. A. Boppart, “Imaging gold nanorods in excised human breast carcinoma by spectroscopic optical coherence tomography,” J. Mater. Chem. 19(35), 6407–6411 (2009).
[CrossRef] [PubMed]

J. Phys. Chem. B

K. S. Lee, M. A. El-Sayed, “Gold and silver nanoparticles in sensing and imaging: Sensitivity of plasmon response to size, shape, and metal composition,” J. Phys. Chem. B 110(39), 19220–19225 (2006).
[CrossRef] [PubMed]

Langmuir

J. Gao, X. Huang, H. Liu, F. Zan, J. Ren, “Colloidal Stability of Gold Nanoparticles Modified with Thiol Compounds: Bioconjugation and Application in Cancer Cell Imaging,” Langmuir 28(9), 4464–4471 (2012).
[CrossRef] [PubMed]

Laser Photon. Rev.

A. Wax, K. Sokolov, “Molecular imaging and darkfield microspectroscopy of live cells using gold plasmonic nanoparticles,” Laser Photon. Rev. 3(1-2), 146–158 (2009).
[CrossRef]

Methods

K. Seekell, H. Price, S. Marinakos, A. Wax, “Optimization of immunolabeled plasmonic nanoparticles for cell surface receptor analysis,” Methods 56(2), 310–316 (2012).
[CrossRef] [PubMed]

Nano Lett.

I. H. El-Sayed, X. H. Huang, M. A. El-Sayed, “Surface plasmon resonance scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics: Applications in oral cancer,” Nano Lett. 5(5), 829–834 (2005).
[CrossRef] [PubMed]

M. C. Skala, M. J. Crow, A. Wax, J. A. Izatt, “Photothermal Optical Coherence Tomography of Epidermal Growth Factor Receptor in Live Cells Using Immunotargeted Gold Nanospheres,” Nano Lett. 8(10), 3461–3467 (2008).
[CrossRef] [PubMed]

N. J. Durr, T. Larson, D. K. Smith, B. A. Korgel, K. Sokolov, A. Ben-Yakar, “Two-photon luminescence imaging of cancer cells using molecularly targeted gold nanorods,” Nano Lett. 7(4), 941–945 (2007).
[CrossRef] [PubMed]

G. Rong, H. Wang, L. R. Skewis, B. M. Reinhard, “Resolving Sub-Diffraction Limit Encounters in Nanoparticle Tracking Using Live Cell Plasmon Coupling Microscopy,” Nano Lett. 8(10), 3386–3393 (2008).
[CrossRef] [PubMed]

J. Aaron, K. Travis, N. Harrison, K. Sokolov, “Dynamic Imaging of Molecular Assemblies in Live Cells Based on Nanoparticle Plasmon Resonance Coupling,” Nano Lett. 9(10), 3612–3618 (2009).
[CrossRef] [PubMed]

Nat. Photonics

F. E. Robles, C. Wilson, G. Grant, A. Wax, “Molecular imaging true-colour spectroscopic optical coherence tomography,” Nat. Photonics 5(12), 744–747 (2011).
[CrossRef] [PubMed]

Opt. Express

A. L. Oldenburg, M. N. Hansen, D. A. Zweifel, A. Wei, S. A. Boppart, “Plasmon-resonant gold nanorods as low backscattering albedo contrast agents for optical coherence tomography,” Opt. Express 14(15), 6724–6738 (2006).
[CrossRef] [PubMed]

F. Robles, R. N. Graf, A. Wax, “Dual window method for processing spectroscopic optical coherence tomography signals with simultaneously high spectral and temporal resolution,” Opt. Express 17(8), 6799–6812 (2009).
[CrossRef] [PubMed]

D. C. Adler, S.-W. Huang, R. Huber, J. G. Fujimoto, “Photothermal detection of gold nanoparticles using phase-sensitive optical coherence tomography,” Opt. Express 16(7), 4376–4393 (2008).
[CrossRef] [PubMed]

C. Pache, N. L. Bocchio, A. Bouwens, M. Villiger, C. Berclaz, J. Goulley, M. I. Gibson, C. Santschi, T. Lasser, “Fast three-dimensional imaging of gold nanoparticles in living cells with photothermal optical lock-in Optical Coherence Microscopy,” Opt. Express 20(19), 21385–21399 (2012).
[CrossRef] [PubMed]

K. J. Chalut, W. J. Brown, A. Wax, “Quantitative phase microscopy with asynchronous digital holography,” Opt. Express 15(6), 3047–3052 (2007).
[CrossRef] [PubMed]

E. Absil, G. Tessier, M. Gross, M. Atlan, N. Warnasooriya, S. Suck, M. Coppey-Moisan, D. Fournier, “Photothermal heterodyne holography of gold nanoparticles,” Opt. Express 18(2), 780–786 (2010).
[CrossRef] [PubMed]

N. Warnasooriya, F. Joud, P. Bun, G. Tessier, M. Coppey-Moisan, P. Desbiolles, M. Atlan, M. Abboud, M. Gross, “Imaging gold nanoparticles in living cell environments using heterodyne digital holographic microscopy,” Opt. Express 18(4), 3264–3273 (2010).
[CrossRef] [PubMed]

F. Verpillat, F. Joud, P. Desbiolles, M. Gross, “Dark-field digital holographic microscopy for 3D-tracking of gold nanoparticles,” Opt. Express 19(27), 26044–26055 (2011).
[CrossRef] [PubMed]

C. Mann, L. Yu, C.-M. Lo, M. Kim, “High-resolution quantitative phase-contrast microscopy by digital holography,” Opt. Express 13(22), 8693–8698 (2005).
[CrossRef] [PubMed]

A. Curry, W. L. Hwang, A. Wax, “Epi-illumination through the microscope objective applied to darkfield imaging and microspectroscopy of nanoparticle interaction with cells in culture,” Opt. Express 14(14), 6535–6542 (2006).
[CrossRef] [PubMed]

B. E. Applegate, J. A. Izatt, “Molecular imaging of endogenous and exogenous chromophores using ground state recovery pump-probe optical coherence tomography,” Opt. Express 14(20), 9142–9155 (2006).
[CrossRef] [PubMed]

Opt. Lett.

Opt. Photon. News

J.A. Izatt, M.D. Kulkarni, K. Kobayashi, J.K. Barton, A.J. Welch, “Optical coherence tomography for biodiagnostics,” Opt. Photon. News 8, 41-47, 65 (1997).

Photochem. Photobiol.

C. Yang, “Molecular Contrast Optical Coherence Tomography: A Review,” Photochem. Photobiol. 81(2), 215–237 (2005).
[CrossRef] [PubMed]

Phys. Rev. Lett.

S. Berciaud, L. Cognet, G. A. Blab, B. Lounis, “Photothermal Heterodyne Imaging of Individual Nonfluorescent Nanoclusters and Nanocrystals,” Phys. Rev. Lett. 93(25), 257402 (2004).
[CrossRef] [PubMed]

Proc. Natl. Acad. Sci. U.S.A.

L. Cognet, C. Tardin, D. Boyer, D. Choquet, P. Tamarat, B. Lounis, “Single metallic nanoparticle imaging for protein detection in cells,” Proc. Natl. Acad. Sci. U.S.A. 100(20), 11350–11355 (2003).
[CrossRef] [PubMed]

Science

D. Boyer, P. Tamarat, A. Maali, B. Lounis, M. Orrit, “Photothermal Imaging of Nanometer-Sized Metal Particles Among Scatterers,” Science 297(5584), 1160–1163 (2002).
[CrossRef] [PubMed]

Sensors (Basel Switzerland)

S. W. Tsai, Y. Y. Chen, J. W. Liaw, “Compound cellular imaging of laser scanning confocal microscopy by using gold nanoparticles and dyes,” Sensors (Basel Switzerland) 8(4), 2306–2316 (2008).
[CrossRef]

Other

P. P. Joshi, S. J. Yoon, W. G. Hardin, S. Emelianov, and K. V. Sokolov, “Conjugation of Antibodies to Gold Nanorods through Fc Portion: Synthesis and Molecular Specific Imaging,” Bioconj. Chem. (2013).

G. Popescu, Chapter 5 Quantitative Phase Imaging of Nanoscale Cell Structure and Dynamics, in Methods in Cell Biology, P.J. Bhanu, Editor. 2008, Academic Press. p. 87–115.

G. Popescu, Quantitative phase imaging of cells and tissues (McGraw-Hill New York 2011).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Typical darkfield image of cell lablelled with anti-EGFR gold nanoparticles (b) Scattering spectrum for cell shown in (a). General scheme for darkfield microspectroscopy includes a light source, detector, darkfield optics and wavelength selection at either the illumination or detection section.

Fig. 2
Fig. 2

Illustration of photothermal absorption by nanoparticles. A heating beam matched to the nanoparticle resonance wavelength deposits thermal energy, which in turn creates a local refractive index change as the heat dissipates into the surrounding medium. The local refractive index change can be measured with an imaging scheme sensitive to optical phase. Sinusoidal modulation of the heating beam allows lock-in detection and a subsequent improvement in SNR. Because heat deposition is potentially damaging for biological samples, photothermal detection methods that achieve high SNR while minimizing the amount of heating power required are attractive options for functional imaging.

Fig. 3
Fig. 3

(A) Photothermal OCT system used by Kim, et al. The photothermal excitation lasers (405nm and 532nm) are matched to the excitation peaks of silver and gold nanoparticles, respectively. The OCT system uses illumination from a superluminescent diode with a bandwidth of 50nm, centered at 830nm. (B) Experimental sample geometry. Two coverslips sandwich a 140μm-thick agar matrix with embedded nanoparticles. A-scans are captured at 35kHz. Amplitude peaks arising from surfaces 1 and 2 are identified, and the phase difference between them is computed. (C) Transient photothermal phase response to single excitation pulses. (D) Photothermal phase response to square-wave periodic excitation. Note that the exponential rise corresponds to heat buildup that is not fully dissipated after each excitation period, while the high-frequency modulation corresponds to the periodic heating induced by the periodic excitation. (E) Multiplexed nanoparticle detection. The 405nm and 532nm lasers are modulated at 200Hz and 1 kHz, respectively. The phase profile seen in the inset is Fourier transformed to yield distinct peaks corresponding to the heating responses of each nanoparticle species. Figure adapted from Kim, et al. [42]

Fig. 4
Fig. 4

Experimental Setup for combination darkfield and photothermal imaging. Light from a HeNe 633nm source is split into a reference and probe arms. The probe arm illuminates the sample and interferes with the reference arm which is incident at an angle onto the camera to form an off axis hologram. Both arms pass through identical objective lenses. A second, 532nm Nd:Yag laser is used as a heating beam. A beam expander is used to control the heating beam diameter in order to selectively illuminate the sample. A 532nm notch filter is placed in front of the camera to filter out the 532nm green beam. The LED ring was used for dark field illumination.

Fig. 5
Fig. 5

The phase change as a function of nanoparticle concentration for three different photothermal media: Water, Glycerol and Glycerol Ethanol 50%. The slopes of the linear fit curves are 1.32 r a d i a n s / 10 11 p a r t i c l e s m L , 3.4 r a d i a n s / 10 11 p a r t i c l e s m L 9.76 r a d i a n s / 10 11 p a r t i c l e s m L for Water, Glycerol and Glucerol Ethanol 50% respectively.

Fig. 6
Fig. 6

Comparative images of a single nanoparticle. (Main) Dark field image of a field of 60 nm gold nanoparticles adhered to a glass coverglass using silane and immersed in glycerol/ethanol mixture. (Top inset) A crop of the dark field image centered on the heating beam location. The circle indicates the full width half maximum of the heating beam with nanoparticle present. (Bottom inset) Phase change where the heating beam is incident on the sample, arrow indicates nanoparticle signature.

Tables (1)

Tables Icon

Table 1 Comparison of detection schemes for plasmonic metal nanoparticles.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

S = P σ ( λ ) φ η
N = S t + D t + N r 2 + H t
S N R = S t N = S t ( S h o t n o i s e lim i t e d )

Metrics