Abstract

Full-Field OCT (FF-OCT) is able to image biological tissues in 3D with micrometer resolution. In this study we add elastographic contrast to the FF-OCT modality. By combining FF-OCT with elastography, we create a virtual palpation map at the micrometer scale. We present here a proof of concept on multi-layer phantoms and preliminary results on ex vivo biological samples such as porcine cornea, human breast tissues and rat heart. The 3D digital volume correlation that is used in connection with the 3D stack of images allows to access to the full 3D strain tensor and to reveal stiffness anisotropy.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Sarvazyan, Shear acoustic properties of soft biological tissues in medical diagnostics, J. Acoust. Soc. Am.93(4), 2329–2330 (1993).
    [CrossRef]
  2. Y. K. Mariappan, K. J. Glaser, and R. L. Ehman, Magnetic resonance elastography: a review, Clin Anat.23, 497–511 (2010).
    [CrossRef] [PubMed]
  3. M. Tanter, J. Bercoff, A. Athanasiou, T. Deffieux, J.-L. Gennisson, G. Montaldo, M. Muller, A. Tardivon, and M. Fink, Quantitative assessment of breast lesion viscoelasticity: initial clinical results using supersonic shear imaging, Ultrasound Med. Biol.34(9), 137386 (2008).
    [CrossRef]
  4. J. Schmitt, OCT elastography: imaging microscopic deformation and strain of tissue, Opt. Express3(6), 199211 (1998).
    [CrossRef]
  5. C. Sun, B. Standish, and V. X. D. Yang, Optical coherence elastography: current status and future applications, J. Biomed. Optics16(4), 043001 (2011).
    [CrossRef]
  6. A. S. Khalil, R. C. Chan, A. H. Chau, B.E. Bouma, and M. R. K. Mofrad, Tissue elasticity estimation with optical coherence elastography: toward mechanical characterization of in vivo soft tissue, Ann. Biomed. Eng.33(11), 1631–1639 (2005).
  7. R. K. Wang, S. Kirkpatrick, and M. Hinds, Phase-sensitive optical coherence elastography for mapping tissue microstrains in real time, Appl. Phys. Lett.90(16), 164105 (2007).
    [CrossRef]
  8. R. K. Wang, Z. Ma, and S. J. Kirkpatrick, Tissue Doppler optical coherence elastography for real time strain rate and strain mapping of soft tissue, Appl. Phys. Lett.89(14), 144103 (2006).
    [CrossRef]
  9. X. Liang, V. Crecea, and S. A. Boppart, Dynamic Optical Coherence Elastography: a Review, J. Innov. Opt. Health Sci.3(4), 221–233 (2010).
    [CrossRef] [PubMed]
  10. B. F. Kennedy, X. Liang, S. G. Adie, D. K. Gerstmann, B.C. Quirk, S.A. Boppart, and D.D. Sampson, In vivo three-dimensional optical coherence elastography, Opt. Express19(7), 66236634 (2011).
    [CrossRef]
  11. A. Dubois, K. Grieve, G. Moneron, R. Lecaque, L. Vabre, and A. C. Boccara, Ultrahigh-resolution full-field optical coherence tomography, Appl. Opt.43(14), 2874–2883 (2004).
    [CrossRef] [PubMed]
  12. B. F. Kennedy, S. Howe Koh, R. A. McLaughlin, K. M. Kennedy, P. R. T. Munro, and D. D. Sampson, Strain estimation in phase-sensitive optical coherence elastography, Biomed. Opt. Express3(8), 1865–1879 (2012).
    [CrossRef] [PubMed]
  13. H. Leclerc, J.N. Pri, F. Hild, and S. Roux, Digital Volume Correlation: What are the limits to the spatial resolution?, Meca. Ind.13, 361–371 (2013).
    [CrossRef]
  14. S. Roux, F. Hild, P. Viot, and D. Bernard, Three dimensional image correlation from X-Ray computed tomography of solid foam, Compos. Part A-Appl. S.39, 1253–1265 (2008).
    [CrossRef]
  15. H Wang Zhixin, Polydimethylsiloxane Mechanical Properties Measured by Macroscopic Compression and NanoindentationTechniques(2011). Graduate School Theses and Dissertations.
  16. K. Grieve, G. Moneron, A. Dubois, J.-F. Le Gargasson, and A. C. Boccara, Ultrahigh resolution ex vivo ocular imaging using ultrashort acquisition time en face optical coherence tomography, J. Opt. A-Pure Appl. Op.7(8), 368373 (2005).
    [CrossRef]
  17. O. Assayag, M. Antoine, B. Sigal-Zafrani, M. Riben, F. Harms, A. Burcheri, B. Le Conte de Poly, and A. C. Boccara, Large Field High Resolution Full Field Optical Coherence Tomography: A Pre-clinical study of human breast tissue and cancer assessment, Tech. Canc. Res. Treat.1(1), 21–34 (2013).
  18. J. Bercoff, M. Tanter, and M. Fink, Supersonic Shear Imaging : A New Technique for Soft Tissue Elasticity Mapping, IEEE Trans. Ultrason., Ferroelectr., Freq. Control51(4), 396–409 (2004).
    [CrossRef]
  19. J.-L. Gennisson, S. Catheline, S. Chaffai, and M. Fink, Transient elastography in anisotropic medium: Application to the measurement of slow and fast shear wave speeds in muscles, J. Acoust. Soc. Am.114(1), 536–541 (2003).
    [CrossRef] [PubMed]
  20. W.-N. Lee, M. Pernot, M. Couade, E. Messas, P. Bruneval, A. Bel, A.-A. Hagege, M. Fink, and M. Tanter, Mapping Myocardial Fiber Orientation Using Echocardiography-Based Shear Wave Imaging, IEEE Trans. Med. Imag.31(3), 554–562 (2012).
    [CrossRef]
  21. I. M. Ariel and J.B. Cleary, Breast Cancer Diagnosis and Treatment (New-York: McGraw-Hill, 1987).
  22. P. Wellman, R. H. Howe, E. Dalton, and K. A. Kern, Breast tissue stiffness in compression is correlated to histological diagnosis, Harvard BioRobotics Laboratory Technical Report, (1999).
  23. A. Latrive and A. C. Boccara, Full-field optical coherence tomography with a rigid endoscopic probe, Biomed. Opt. Express2(10), 2897–2904 (2011).
    [CrossRef]
  24. A. Latrive, A. Nahas, and A. C. Boccara, Multimodal endoscopic Full-Field OCT imaging and elasticity mapping with a needle-like probe, SPIE photonics WEST BIOS conference, paper 8571-25 of conference 8571 (2013).

2013

H. Leclerc, J.N. Pri, F. Hild, and S. Roux, Digital Volume Correlation: What are the limits to the spatial resolution?, Meca. Ind.13, 361–371 (2013).
[CrossRef]

O. Assayag, M. Antoine, B. Sigal-Zafrani, M. Riben, F. Harms, A. Burcheri, B. Le Conte de Poly, and A. C. Boccara, Large Field High Resolution Full Field Optical Coherence Tomography: A Pre-clinical study of human breast tissue and cancer assessment, Tech. Canc. Res. Treat.1(1), 21–34 (2013).

2012

W.-N. Lee, M. Pernot, M. Couade, E. Messas, P. Bruneval, A. Bel, A.-A. Hagege, M. Fink, and M. Tanter, Mapping Myocardial Fiber Orientation Using Echocardiography-Based Shear Wave Imaging, IEEE Trans. Med. Imag.31(3), 554–562 (2012).
[CrossRef]

B. F. Kennedy, S. Howe Koh, R. A. McLaughlin, K. M. Kennedy, P. R. T. Munro, and D. D. Sampson, Strain estimation in phase-sensitive optical coherence elastography, Biomed. Opt. Express3(8), 1865–1879 (2012).
[CrossRef] [PubMed]

2011

A. Latrive and A. C. Boccara, Full-field optical coherence tomography with a rigid endoscopic probe, Biomed. Opt. Express2(10), 2897–2904 (2011).
[CrossRef]

B. F. Kennedy, X. Liang, S. G. Adie, D. K. Gerstmann, B.C. Quirk, S.A. Boppart, and D.D. Sampson, In vivo three-dimensional optical coherence elastography, Opt. Express19(7), 66236634 (2011).
[CrossRef]

C. Sun, B. Standish, and V. X. D. Yang, Optical coherence elastography: current status and future applications, J. Biomed. Optics16(4), 043001 (2011).
[CrossRef]

2010

Y. K. Mariappan, K. J. Glaser, and R. L. Ehman, Magnetic resonance elastography: a review, Clin Anat.23, 497–511 (2010).
[CrossRef] [PubMed]

X. Liang, V. Crecea, and S. A. Boppart, Dynamic Optical Coherence Elastography: a Review, J. Innov. Opt. Health Sci.3(4), 221–233 (2010).
[CrossRef] [PubMed]

2008

M. Tanter, J. Bercoff, A. Athanasiou, T. Deffieux, J.-L. Gennisson, G. Montaldo, M. Muller, A. Tardivon, and M. Fink, Quantitative assessment of breast lesion viscoelasticity: initial clinical results using supersonic shear imaging, Ultrasound Med. Biol.34(9), 137386 (2008).
[CrossRef]

S. Roux, F. Hild, P. Viot, and D. Bernard, Three dimensional image correlation from X-Ray computed tomography of solid foam, Compos. Part A-Appl. S.39, 1253–1265 (2008).
[CrossRef]

2007

R. K. Wang, S. Kirkpatrick, and M. Hinds, Phase-sensitive optical coherence elastography for mapping tissue microstrains in real time, Appl. Phys. Lett.90(16), 164105 (2007).
[CrossRef]

2006

R. K. Wang, Z. Ma, and S. J. Kirkpatrick, Tissue Doppler optical coherence elastography for real time strain rate and strain mapping of soft tissue, Appl. Phys. Lett.89(14), 144103 (2006).
[CrossRef]

2005

A. S. Khalil, R. C. Chan, A. H. Chau, B.E. Bouma, and M. R. K. Mofrad, Tissue elasticity estimation with optical coherence elastography: toward mechanical characterization of in vivo soft tissue, Ann. Biomed. Eng.33(11), 1631–1639 (2005).

K. Grieve, G. Moneron, A. Dubois, J.-F. Le Gargasson, and A. C. Boccara, Ultrahigh resolution ex vivo ocular imaging using ultrashort acquisition time en face optical coherence tomography, J. Opt. A-Pure Appl. Op.7(8), 368373 (2005).
[CrossRef]

2004

A. Dubois, K. Grieve, G. Moneron, R. Lecaque, L. Vabre, and A. C. Boccara, Ultrahigh-resolution full-field optical coherence tomography, Appl. Opt.43(14), 2874–2883 (2004).
[CrossRef] [PubMed]

J. Bercoff, M. Tanter, and M. Fink, Supersonic Shear Imaging : A New Technique for Soft Tissue Elasticity Mapping, IEEE Trans. Ultrason., Ferroelectr., Freq. Control51(4), 396–409 (2004).
[CrossRef]

2003

J.-L. Gennisson, S. Catheline, S. Chaffai, and M. Fink, Transient elastography in anisotropic medium: Application to the measurement of slow and fast shear wave speeds in muscles, J. Acoust. Soc. Am.114(1), 536–541 (2003).
[CrossRef] [PubMed]

1999

P. Wellman, R. H. Howe, E. Dalton, and K. A. Kern, Breast tissue stiffness in compression is correlated to histological diagnosis, Harvard BioRobotics Laboratory Technical Report, (1999).

1998

J. Schmitt, OCT elastography: imaging microscopic deformation and strain of tissue, Opt. Express3(6), 199211 (1998).
[CrossRef]

1993

A. Sarvazyan, Shear acoustic properties of soft biological tissues in medical diagnostics, J. Acoust. Soc. Am.93(4), 2329–2330 (1993).
[CrossRef]

Adie, S. G.

B. F. Kennedy, X. Liang, S. G. Adie, D. K. Gerstmann, B.C. Quirk, S.A. Boppart, and D.D. Sampson, In vivo three-dimensional optical coherence elastography, Opt. Express19(7), 66236634 (2011).
[CrossRef]

Antoine, M.

O. Assayag, M. Antoine, B. Sigal-Zafrani, M. Riben, F. Harms, A. Burcheri, B. Le Conte de Poly, and A. C. Boccara, Large Field High Resolution Full Field Optical Coherence Tomography: A Pre-clinical study of human breast tissue and cancer assessment, Tech. Canc. Res. Treat.1(1), 21–34 (2013).

Ariel, I. M.

I. M. Ariel and J.B. Cleary, Breast Cancer Diagnosis and Treatment (New-York: McGraw-Hill, 1987).

Assayag, O.

O. Assayag, M. Antoine, B. Sigal-Zafrani, M. Riben, F. Harms, A. Burcheri, B. Le Conte de Poly, and A. C. Boccara, Large Field High Resolution Full Field Optical Coherence Tomography: A Pre-clinical study of human breast tissue and cancer assessment, Tech. Canc. Res. Treat.1(1), 21–34 (2013).

Athanasiou, A.

M. Tanter, J. Bercoff, A. Athanasiou, T. Deffieux, J.-L. Gennisson, G. Montaldo, M. Muller, A. Tardivon, and M. Fink, Quantitative assessment of breast lesion viscoelasticity: initial clinical results using supersonic shear imaging, Ultrasound Med. Biol.34(9), 137386 (2008).
[CrossRef]

Bel, A.

W.-N. Lee, M. Pernot, M. Couade, E. Messas, P. Bruneval, A. Bel, A.-A. Hagege, M. Fink, and M. Tanter, Mapping Myocardial Fiber Orientation Using Echocardiography-Based Shear Wave Imaging, IEEE Trans. Med. Imag.31(3), 554–562 (2012).
[CrossRef]

Bercoff, J.

M. Tanter, J. Bercoff, A. Athanasiou, T. Deffieux, J.-L. Gennisson, G. Montaldo, M. Muller, A. Tardivon, and M. Fink, Quantitative assessment of breast lesion viscoelasticity: initial clinical results using supersonic shear imaging, Ultrasound Med. Biol.34(9), 137386 (2008).
[CrossRef]

J. Bercoff, M. Tanter, and M. Fink, Supersonic Shear Imaging : A New Technique for Soft Tissue Elasticity Mapping, IEEE Trans. Ultrason., Ferroelectr., Freq. Control51(4), 396–409 (2004).
[CrossRef]

Bernard, D.

S. Roux, F. Hild, P. Viot, and D. Bernard, Three dimensional image correlation from X-Ray computed tomography of solid foam, Compos. Part A-Appl. S.39, 1253–1265 (2008).
[CrossRef]

Boccara, A. C.

O. Assayag, M. Antoine, B. Sigal-Zafrani, M. Riben, F. Harms, A. Burcheri, B. Le Conte de Poly, and A. C. Boccara, Large Field High Resolution Full Field Optical Coherence Tomography: A Pre-clinical study of human breast tissue and cancer assessment, Tech. Canc. Res. Treat.1(1), 21–34 (2013).

A. Latrive and A. C. Boccara, Full-field optical coherence tomography with a rigid endoscopic probe, Biomed. Opt. Express2(10), 2897–2904 (2011).
[CrossRef]

K. Grieve, G. Moneron, A. Dubois, J.-F. Le Gargasson, and A. C. Boccara, Ultrahigh resolution ex vivo ocular imaging using ultrashort acquisition time en face optical coherence tomography, J. Opt. A-Pure Appl. Op.7(8), 368373 (2005).
[CrossRef]

A. Dubois, K. Grieve, G. Moneron, R. Lecaque, L. Vabre, and A. C. Boccara, Ultrahigh-resolution full-field optical coherence tomography, Appl. Opt.43(14), 2874–2883 (2004).
[CrossRef] [PubMed]

A. Latrive, A. Nahas, and A. C. Boccara, Multimodal endoscopic Full-Field OCT imaging and elasticity mapping with a needle-like probe, SPIE photonics WEST BIOS conference, paper 8571-25 of conference 8571 (2013).

Boppart, S. A.

X. Liang, V. Crecea, and S. A. Boppart, Dynamic Optical Coherence Elastography: a Review, J. Innov. Opt. Health Sci.3(4), 221–233 (2010).
[CrossRef] [PubMed]

Boppart, S.A.

B. F. Kennedy, X. Liang, S. G. Adie, D. K. Gerstmann, B.C. Quirk, S.A. Boppart, and D.D. Sampson, In vivo three-dimensional optical coherence elastography, Opt. Express19(7), 66236634 (2011).
[CrossRef]

Bouma, B.E.

A. S. Khalil, R. C. Chan, A. H. Chau, B.E. Bouma, and M. R. K. Mofrad, Tissue elasticity estimation with optical coherence elastography: toward mechanical characterization of in vivo soft tissue, Ann. Biomed. Eng.33(11), 1631–1639 (2005).

Bruneval, P.

W.-N. Lee, M. Pernot, M. Couade, E. Messas, P. Bruneval, A. Bel, A.-A. Hagege, M. Fink, and M. Tanter, Mapping Myocardial Fiber Orientation Using Echocardiography-Based Shear Wave Imaging, IEEE Trans. Med. Imag.31(3), 554–562 (2012).
[CrossRef]

Burcheri, A.

O. Assayag, M. Antoine, B. Sigal-Zafrani, M. Riben, F. Harms, A. Burcheri, B. Le Conte de Poly, and A. C. Boccara, Large Field High Resolution Full Field Optical Coherence Tomography: A Pre-clinical study of human breast tissue and cancer assessment, Tech. Canc. Res. Treat.1(1), 21–34 (2013).

Catheline, S.

J.-L. Gennisson, S. Catheline, S. Chaffai, and M. Fink, Transient elastography in anisotropic medium: Application to the measurement of slow and fast shear wave speeds in muscles, J. Acoust. Soc. Am.114(1), 536–541 (2003).
[CrossRef] [PubMed]

Chaffai, S.

J.-L. Gennisson, S. Catheline, S. Chaffai, and M. Fink, Transient elastography in anisotropic medium: Application to the measurement of slow and fast shear wave speeds in muscles, J. Acoust. Soc. Am.114(1), 536–541 (2003).
[CrossRef] [PubMed]

Chan, R. C.

A. S. Khalil, R. C. Chan, A. H. Chau, B.E. Bouma, and M. R. K. Mofrad, Tissue elasticity estimation with optical coherence elastography: toward mechanical characterization of in vivo soft tissue, Ann. Biomed. Eng.33(11), 1631–1639 (2005).

Chau, A. H.

A. S. Khalil, R. C. Chan, A. H. Chau, B.E. Bouma, and M. R. K. Mofrad, Tissue elasticity estimation with optical coherence elastography: toward mechanical characterization of in vivo soft tissue, Ann. Biomed. Eng.33(11), 1631–1639 (2005).

Cleary, J.B.

I. M. Ariel and J.B. Cleary, Breast Cancer Diagnosis and Treatment (New-York: McGraw-Hill, 1987).

Couade, M.

W.-N. Lee, M. Pernot, M. Couade, E. Messas, P. Bruneval, A. Bel, A.-A. Hagege, M. Fink, and M. Tanter, Mapping Myocardial Fiber Orientation Using Echocardiography-Based Shear Wave Imaging, IEEE Trans. Med. Imag.31(3), 554–562 (2012).
[CrossRef]

Crecea, V.

X. Liang, V. Crecea, and S. A. Boppart, Dynamic Optical Coherence Elastography: a Review, J. Innov. Opt. Health Sci.3(4), 221–233 (2010).
[CrossRef] [PubMed]

Dalton, E.

P. Wellman, R. H. Howe, E. Dalton, and K. A. Kern, Breast tissue stiffness in compression is correlated to histological diagnosis, Harvard BioRobotics Laboratory Technical Report, (1999).

Deffieux, T.

M. Tanter, J. Bercoff, A. Athanasiou, T. Deffieux, J.-L. Gennisson, G. Montaldo, M. Muller, A. Tardivon, and M. Fink, Quantitative assessment of breast lesion viscoelasticity: initial clinical results using supersonic shear imaging, Ultrasound Med. Biol.34(9), 137386 (2008).
[CrossRef]

Dubois, A.

K. Grieve, G. Moneron, A. Dubois, J.-F. Le Gargasson, and A. C. Boccara, Ultrahigh resolution ex vivo ocular imaging using ultrashort acquisition time en face optical coherence tomography, J. Opt. A-Pure Appl. Op.7(8), 368373 (2005).
[CrossRef]

A. Dubois, K. Grieve, G. Moneron, R. Lecaque, L. Vabre, and A. C. Boccara, Ultrahigh-resolution full-field optical coherence tomography, Appl. Opt.43(14), 2874–2883 (2004).
[CrossRef] [PubMed]

Ehman, R. L.

Y. K. Mariappan, K. J. Glaser, and R. L. Ehman, Magnetic resonance elastography: a review, Clin Anat.23, 497–511 (2010).
[CrossRef] [PubMed]

Fink, M.

W.-N. Lee, M. Pernot, M. Couade, E. Messas, P. Bruneval, A. Bel, A.-A. Hagege, M. Fink, and M. Tanter, Mapping Myocardial Fiber Orientation Using Echocardiography-Based Shear Wave Imaging, IEEE Trans. Med. Imag.31(3), 554–562 (2012).
[CrossRef]

M. Tanter, J. Bercoff, A. Athanasiou, T. Deffieux, J.-L. Gennisson, G. Montaldo, M. Muller, A. Tardivon, and M. Fink, Quantitative assessment of breast lesion viscoelasticity: initial clinical results using supersonic shear imaging, Ultrasound Med. Biol.34(9), 137386 (2008).
[CrossRef]

J. Bercoff, M. Tanter, and M. Fink, Supersonic Shear Imaging : A New Technique for Soft Tissue Elasticity Mapping, IEEE Trans. Ultrason., Ferroelectr., Freq. Control51(4), 396–409 (2004).
[CrossRef]

J.-L. Gennisson, S. Catheline, S. Chaffai, and M. Fink, Transient elastography in anisotropic medium: Application to the measurement of slow and fast shear wave speeds in muscles, J. Acoust. Soc. Am.114(1), 536–541 (2003).
[CrossRef] [PubMed]

Gennisson, J.-L.

M. Tanter, J. Bercoff, A. Athanasiou, T. Deffieux, J.-L. Gennisson, G. Montaldo, M. Muller, A. Tardivon, and M. Fink, Quantitative assessment of breast lesion viscoelasticity: initial clinical results using supersonic shear imaging, Ultrasound Med. Biol.34(9), 137386 (2008).
[CrossRef]

J.-L. Gennisson, S. Catheline, S. Chaffai, and M. Fink, Transient elastography in anisotropic medium: Application to the measurement of slow and fast shear wave speeds in muscles, J. Acoust. Soc. Am.114(1), 536–541 (2003).
[CrossRef] [PubMed]

Gerstmann, D. K.

B. F. Kennedy, X. Liang, S. G. Adie, D. K. Gerstmann, B.C. Quirk, S.A. Boppart, and D.D. Sampson, In vivo three-dimensional optical coherence elastography, Opt. Express19(7), 66236634 (2011).
[CrossRef]

Glaser, K. J.

Y. K. Mariappan, K. J. Glaser, and R. L. Ehman, Magnetic resonance elastography: a review, Clin Anat.23, 497–511 (2010).
[CrossRef] [PubMed]

Grieve, K.

K. Grieve, G. Moneron, A. Dubois, J.-F. Le Gargasson, and A. C. Boccara, Ultrahigh resolution ex vivo ocular imaging using ultrashort acquisition time en face optical coherence tomography, J. Opt. A-Pure Appl. Op.7(8), 368373 (2005).
[CrossRef]

A. Dubois, K. Grieve, G. Moneron, R. Lecaque, L. Vabre, and A. C. Boccara, Ultrahigh-resolution full-field optical coherence tomography, Appl. Opt.43(14), 2874–2883 (2004).
[CrossRef] [PubMed]

Hagege, A.-A.

W.-N. Lee, M. Pernot, M. Couade, E. Messas, P. Bruneval, A. Bel, A.-A. Hagege, M. Fink, and M. Tanter, Mapping Myocardial Fiber Orientation Using Echocardiography-Based Shear Wave Imaging, IEEE Trans. Med. Imag.31(3), 554–562 (2012).
[CrossRef]

Harms, F.

O. Assayag, M. Antoine, B. Sigal-Zafrani, M. Riben, F. Harms, A. Burcheri, B. Le Conte de Poly, and A. C. Boccara, Large Field High Resolution Full Field Optical Coherence Tomography: A Pre-clinical study of human breast tissue and cancer assessment, Tech. Canc. Res. Treat.1(1), 21–34 (2013).

Hild, F.

H. Leclerc, J.N. Pri, F. Hild, and S. Roux, Digital Volume Correlation: What are the limits to the spatial resolution?, Meca. Ind.13, 361–371 (2013).
[CrossRef]

S. Roux, F. Hild, P. Viot, and D. Bernard, Three dimensional image correlation from X-Ray computed tomography of solid foam, Compos. Part A-Appl. S.39, 1253–1265 (2008).
[CrossRef]

Hinds, M.

R. K. Wang, S. Kirkpatrick, and M. Hinds, Phase-sensitive optical coherence elastography for mapping tissue microstrains in real time, Appl. Phys. Lett.90(16), 164105 (2007).
[CrossRef]

Howe, R. H.

P. Wellman, R. H. Howe, E. Dalton, and K. A. Kern, Breast tissue stiffness in compression is correlated to histological diagnosis, Harvard BioRobotics Laboratory Technical Report, (1999).

Howe Koh, S.

Kennedy, B. F.

B. F. Kennedy, S. Howe Koh, R. A. McLaughlin, K. M. Kennedy, P. R. T. Munro, and D. D. Sampson, Strain estimation in phase-sensitive optical coherence elastography, Biomed. Opt. Express3(8), 1865–1879 (2012).
[CrossRef] [PubMed]

B. F. Kennedy, X. Liang, S. G. Adie, D. K. Gerstmann, B.C. Quirk, S.A. Boppart, and D.D. Sampson, In vivo three-dimensional optical coherence elastography, Opt. Express19(7), 66236634 (2011).
[CrossRef]

Kennedy, K. M.

Kern, K. A.

P. Wellman, R. H. Howe, E. Dalton, and K. A. Kern, Breast tissue stiffness in compression is correlated to histological diagnosis, Harvard BioRobotics Laboratory Technical Report, (1999).

Khalil, A. S.

A. S. Khalil, R. C. Chan, A. H. Chau, B.E. Bouma, and M. R. K. Mofrad, Tissue elasticity estimation with optical coherence elastography: toward mechanical characterization of in vivo soft tissue, Ann. Biomed. Eng.33(11), 1631–1639 (2005).

Kirkpatrick, S.

R. K. Wang, S. Kirkpatrick, and M. Hinds, Phase-sensitive optical coherence elastography for mapping tissue microstrains in real time, Appl. Phys. Lett.90(16), 164105 (2007).
[CrossRef]

Kirkpatrick, S. J.

R. K. Wang, Z. Ma, and S. J. Kirkpatrick, Tissue Doppler optical coherence elastography for real time strain rate and strain mapping of soft tissue, Appl. Phys. Lett.89(14), 144103 (2006).
[CrossRef]

Latrive, A.

A. Latrive and A. C. Boccara, Full-field optical coherence tomography with a rigid endoscopic probe, Biomed. Opt. Express2(10), 2897–2904 (2011).
[CrossRef]

A. Latrive, A. Nahas, and A. C. Boccara, Multimodal endoscopic Full-Field OCT imaging and elasticity mapping with a needle-like probe, SPIE photonics WEST BIOS conference, paper 8571-25 of conference 8571 (2013).

Le Conte de Poly, B.

O. Assayag, M. Antoine, B. Sigal-Zafrani, M. Riben, F. Harms, A. Burcheri, B. Le Conte de Poly, and A. C. Boccara, Large Field High Resolution Full Field Optical Coherence Tomography: A Pre-clinical study of human breast tissue and cancer assessment, Tech. Canc. Res. Treat.1(1), 21–34 (2013).

Le Gargasson, J.-F.

K. Grieve, G. Moneron, A. Dubois, J.-F. Le Gargasson, and A. C. Boccara, Ultrahigh resolution ex vivo ocular imaging using ultrashort acquisition time en face optical coherence tomography, J. Opt. A-Pure Appl. Op.7(8), 368373 (2005).
[CrossRef]

Lecaque, R.

Leclerc, H.

H. Leclerc, J.N. Pri, F. Hild, and S. Roux, Digital Volume Correlation: What are the limits to the spatial resolution?, Meca. Ind.13, 361–371 (2013).
[CrossRef]

Lee, W.-N.

W.-N. Lee, M. Pernot, M. Couade, E. Messas, P. Bruneval, A. Bel, A.-A. Hagege, M. Fink, and M. Tanter, Mapping Myocardial Fiber Orientation Using Echocardiography-Based Shear Wave Imaging, IEEE Trans. Med. Imag.31(3), 554–562 (2012).
[CrossRef]

Liang, X.

B. F. Kennedy, X. Liang, S. G. Adie, D. K. Gerstmann, B.C. Quirk, S.A. Boppart, and D.D. Sampson, In vivo three-dimensional optical coherence elastography, Opt. Express19(7), 66236634 (2011).
[CrossRef]

X. Liang, V. Crecea, and S. A. Boppart, Dynamic Optical Coherence Elastography: a Review, J. Innov. Opt. Health Sci.3(4), 221–233 (2010).
[CrossRef] [PubMed]

Ma, Z.

R. K. Wang, Z. Ma, and S. J. Kirkpatrick, Tissue Doppler optical coherence elastography for real time strain rate and strain mapping of soft tissue, Appl. Phys. Lett.89(14), 144103 (2006).
[CrossRef]

Mariappan, Y. K.

Y. K. Mariappan, K. J. Glaser, and R. L. Ehman, Magnetic resonance elastography: a review, Clin Anat.23, 497–511 (2010).
[CrossRef] [PubMed]

McLaughlin, R. A.

Messas, E.

W.-N. Lee, M. Pernot, M. Couade, E. Messas, P. Bruneval, A. Bel, A.-A. Hagege, M. Fink, and M. Tanter, Mapping Myocardial Fiber Orientation Using Echocardiography-Based Shear Wave Imaging, IEEE Trans. Med. Imag.31(3), 554–562 (2012).
[CrossRef]

Mofrad, M. R. K.

A. S. Khalil, R. C. Chan, A. H. Chau, B.E. Bouma, and M. R. K. Mofrad, Tissue elasticity estimation with optical coherence elastography: toward mechanical characterization of in vivo soft tissue, Ann. Biomed. Eng.33(11), 1631–1639 (2005).

Moneron, G.

K. Grieve, G. Moneron, A. Dubois, J.-F. Le Gargasson, and A. C. Boccara, Ultrahigh resolution ex vivo ocular imaging using ultrashort acquisition time en face optical coherence tomography, J. Opt. A-Pure Appl. Op.7(8), 368373 (2005).
[CrossRef]

A. Dubois, K. Grieve, G. Moneron, R. Lecaque, L. Vabre, and A. C. Boccara, Ultrahigh-resolution full-field optical coherence tomography, Appl. Opt.43(14), 2874–2883 (2004).
[CrossRef] [PubMed]

Montaldo, G.

M. Tanter, J. Bercoff, A. Athanasiou, T. Deffieux, J.-L. Gennisson, G. Montaldo, M. Muller, A. Tardivon, and M. Fink, Quantitative assessment of breast lesion viscoelasticity: initial clinical results using supersonic shear imaging, Ultrasound Med. Biol.34(9), 137386 (2008).
[CrossRef]

Muller, M.

M. Tanter, J. Bercoff, A. Athanasiou, T. Deffieux, J.-L. Gennisson, G. Montaldo, M. Muller, A. Tardivon, and M. Fink, Quantitative assessment of breast lesion viscoelasticity: initial clinical results using supersonic shear imaging, Ultrasound Med. Biol.34(9), 137386 (2008).
[CrossRef]

Munro, P. R. T.

Nahas, A.

A. Latrive, A. Nahas, and A. C. Boccara, Multimodal endoscopic Full-Field OCT imaging and elasticity mapping with a needle-like probe, SPIE photonics WEST BIOS conference, paper 8571-25 of conference 8571 (2013).

Pernot, M.

W.-N. Lee, M. Pernot, M. Couade, E. Messas, P. Bruneval, A. Bel, A.-A. Hagege, M. Fink, and M. Tanter, Mapping Myocardial Fiber Orientation Using Echocardiography-Based Shear Wave Imaging, IEEE Trans. Med. Imag.31(3), 554–562 (2012).
[CrossRef]

Pri, J.N.

H. Leclerc, J.N. Pri, F. Hild, and S. Roux, Digital Volume Correlation: What are the limits to the spatial resolution?, Meca. Ind.13, 361–371 (2013).
[CrossRef]

Quirk, B.C.

B. F. Kennedy, X. Liang, S. G. Adie, D. K. Gerstmann, B.C. Quirk, S.A. Boppart, and D.D. Sampson, In vivo three-dimensional optical coherence elastography, Opt. Express19(7), 66236634 (2011).
[CrossRef]

Riben, M.

O. Assayag, M. Antoine, B. Sigal-Zafrani, M. Riben, F. Harms, A. Burcheri, B. Le Conte de Poly, and A. C. Boccara, Large Field High Resolution Full Field Optical Coherence Tomography: A Pre-clinical study of human breast tissue and cancer assessment, Tech. Canc. Res. Treat.1(1), 21–34 (2013).

Roux, S.

H. Leclerc, J.N. Pri, F. Hild, and S. Roux, Digital Volume Correlation: What are the limits to the spatial resolution?, Meca. Ind.13, 361–371 (2013).
[CrossRef]

S. Roux, F. Hild, P. Viot, and D. Bernard, Three dimensional image correlation from X-Ray computed tomography of solid foam, Compos. Part A-Appl. S.39, 1253–1265 (2008).
[CrossRef]

Sampson, D. D.

Sampson, D.D.

B. F. Kennedy, X. Liang, S. G. Adie, D. K. Gerstmann, B.C. Quirk, S.A. Boppart, and D.D. Sampson, In vivo three-dimensional optical coherence elastography, Opt. Express19(7), 66236634 (2011).
[CrossRef]

Sarvazyan, A.

A. Sarvazyan, Shear acoustic properties of soft biological tissues in medical diagnostics, J. Acoust. Soc. Am.93(4), 2329–2330 (1993).
[CrossRef]

Schmitt, J.

J. Schmitt, OCT elastography: imaging microscopic deformation and strain of tissue, Opt. Express3(6), 199211 (1998).
[CrossRef]

Sigal-Zafrani, B.

O. Assayag, M. Antoine, B. Sigal-Zafrani, M. Riben, F. Harms, A. Burcheri, B. Le Conte de Poly, and A. C. Boccara, Large Field High Resolution Full Field Optical Coherence Tomography: A Pre-clinical study of human breast tissue and cancer assessment, Tech. Canc. Res. Treat.1(1), 21–34 (2013).

Standish, B.

C. Sun, B. Standish, and V. X. D. Yang, Optical coherence elastography: current status and future applications, J. Biomed. Optics16(4), 043001 (2011).
[CrossRef]

Sun, C.

C. Sun, B. Standish, and V. X. D. Yang, Optical coherence elastography: current status and future applications, J. Biomed. Optics16(4), 043001 (2011).
[CrossRef]

Tanter, M.

W.-N. Lee, M. Pernot, M. Couade, E. Messas, P. Bruneval, A. Bel, A.-A. Hagege, M. Fink, and M. Tanter, Mapping Myocardial Fiber Orientation Using Echocardiography-Based Shear Wave Imaging, IEEE Trans. Med. Imag.31(3), 554–562 (2012).
[CrossRef]

M. Tanter, J. Bercoff, A. Athanasiou, T. Deffieux, J.-L. Gennisson, G. Montaldo, M. Muller, A. Tardivon, and M. Fink, Quantitative assessment of breast lesion viscoelasticity: initial clinical results using supersonic shear imaging, Ultrasound Med. Biol.34(9), 137386 (2008).
[CrossRef]

J. Bercoff, M. Tanter, and M. Fink, Supersonic Shear Imaging : A New Technique for Soft Tissue Elasticity Mapping, IEEE Trans. Ultrason., Ferroelectr., Freq. Control51(4), 396–409 (2004).
[CrossRef]

Tardivon, A.

M. Tanter, J. Bercoff, A. Athanasiou, T. Deffieux, J.-L. Gennisson, G. Montaldo, M. Muller, A. Tardivon, and M. Fink, Quantitative assessment of breast lesion viscoelasticity: initial clinical results using supersonic shear imaging, Ultrasound Med. Biol.34(9), 137386 (2008).
[CrossRef]

Vabre, L.

Viot, P.

S. Roux, F. Hild, P. Viot, and D. Bernard, Three dimensional image correlation from X-Ray computed tomography of solid foam, Compos. Part A-Appl. S.39, 1253–1265 (2008).
[CrossRef]

Wang, R. K.

R. K. Wang, S. Kirkpatrick, and M. Hinds, Phase-sensitive optical coherence elastography for mapping tissue microstrains in real time, Appl. Phys. Lett.90(16), 164105 (2007).
[CrossRef]

R. K. Wang, Z. Ma, and S. J. Kirkpatrick, Tissue Doppler optical coherence elastography for real time strain rate and strain mapping of soft tissue, Appl. Phys. Lett.89(14), 144103 (2006).
[CrossRef]

Wellman, P.

P. Wellman, R. H. Howe, E. Dalton, and K. A. Kern, Breast tissue stiffness in compression is correlated to histological diagnosis, Harvard BioRobotics Laboratory Technical Report, (1999).

Yang, V. X. D.

C. Sun, B. Standish, and V. X. D. Yang, Optical coherence elastography: current status and future applications, J. Biomed. Optics16(4), 043001 (2011).
[CrossRef]

Zhixin, H Wang

H Wang Zhixin, Polydimethylsiloxane Mechanical Properties Measured by Macroscopic Compression and NanoindentationTechniques(2011). Graduate School Theses and Dissertations.

Appl. Opt.

Appl. Phys. Lett.

R. K. Wang, S. Kirkpatrick, and M. Hinds, Phase-sensitive optical coherence elastography for mapping tissue microstrains in real time, Appl. Phys. Lett.90(16), 164105 (2007).
[CrossRef]

R. K. Wang, Z. Ma, and S. J. Kirkpatrick, Tissue Doppler optical coherence elastography for real time strain rate and strain mapping of soft tissue, Appl. Phys. Lett.89(14), 144103 (2006).
[CrossRef]

Biomed. Eng.

A. S. Khalil, R. C. Chan, A. H. Chau, B.E. Bouma, and M. R. K. Mofrad, Tissue elasticity estimation with optical coherence elastography: toward mechanical characterization of in vivo soft tissue, Ann. Biomed. Eng.33(11), 1631–1639 (2005).

Biomed. Opt. Express

Clin Anat.

Y. K. Mariappan, K. J. Glaser, and R. L. Ehman, Magnetic resonance elastography: a review, Clin Anat.23, 497–511 (2010).
[CrossRef] [PubMed]

Compos. Part A-Appl. S.

S. Roux, F. Hild, P. Viot, and D. Bernard, Three dimensional image correlation from X-Ray computed tomography of solid foam, Compos. Part A-Appl. S.39, 1253–1265 (2008).
[CrossRef]

Harvard BioRobotics Laboratory Technical Report

P. Wellman, R. H. Howe, E. Dalton, and K. A. Kern, Breast tissue stiffness in compression is correlated to histological diagnosis, Harvard BioRobotics Laboratory Technical Report, (1999).

IEEE Trans. Med. Imag.

W.-N. Lee, M. Pernot, M. Couade, E. Messas, P. Bruneval, A. Bel, A.-A. Hagege, M. Fink, and M. Tanter, Mapping Myocardial Fiber Orientation Using Echocardiography-Based Shear Wave Imaging, IEEE Trans. Med. Imag.31(3), 554–562 (2012).
[CrossRef]

IEEE Trans. Ultrason., Ferroelectr., Freq. Control

J. Bercoff, M. Tanter, and M. Fink, Supersonic Shear Imaging : A New Technique for Soft Tissue Elasticity Mapping, IEEE Trans. Ultrason., Ferroelectr., Freq. Control51(4), 396–409 (2004).
[CrossRef]

J. Acoust. Soc. Am.

J.-L. Gennisson, S. Catheline, S. Chaffai, and M. Fink, Transient elastography in anisotropic medium: Application to the measurement of slow and fast shear wave speeds in muscles, J. Acoust. Soc. Am.114(1), 536–541 (2003).
[CrossRef] [PubMed]

A. Sarvazyan, Shear acoustic properties of soft biological tissues in medical diagnostics, J. Acoust. Soc. Am.93(4), 2329–2330 (1993).
[CrossRef]

J. Biomed. Optics

C. Sun, B. Standish, and V. X. D. Yang, Optical coherence elastography: current status and future applications, J. Biomed. Optics16(4), 043001 (2011).
[CrossRef]

J. Innov. Opt. Health Sci.

X. Liang, V. Crecea, and S. A. Boppart, Dynamic Optical Coherence Elastography: a Review, J. Innov. Opt. Health Sci.3(4), 221–233 (2010).
[CrossRef] [PubMed]

J. Opt. A-Pure Appl. Op.

K. Grieve, G. Moneron, A. Dubois, J.-F. Le Gargasson, and A. C. Boccara, Ultrahigh resolution ex vivo ocular imaging using ultrashort acquisition time en face optical coherence tomography, J. Opt. A-Pure Appl. Op.7(8), 368373 (2005).
[CrossRef]

Meca. Ind.

H. Leclerc, J.N. Pri, F. Hild, and S. Roux, Digital Volume Correlation: What are the limits to the spatial resolution?, Meca. Ind.13, 361–371 (2013).
[CrossRef]

Opt. Express

B. F. Kennedy, X. Liang, S. G. Adie, D. K. Gerstmann, B.C. Quirk, S.A. Boppart, and D.D. Sampson, In vivo three-dimensional optical coherence elastography, Opt. Express19(7), 66236634 (2011).
[CrossRef]

J. Schmitt, OCT elastography: imaging microscopic deformation and strain of tissue, Opt. Express3(6), 199211 (1998).
[CrossRef]

A. Latrive and A. C. Boccara, Full-field optical coherence tomography with a rigid endoscopic probe, Biomed. Opt. Express2(10), 2897–2904 (2011).
[CrossRef]

Tech. Canc. Res. Treat.

O. Assayag, M. Antoine, B. Sigal-Zafrani, M. Riben, F. Harms, A. Burcheri, B. Le Conte de Poly, and A. C. Boccara, Large Field High Resolution Full Field Optical Coherence Tomography: A Pre-clinical study of human breast tissue and cancer assessment, Tech. Canc. Res. Treat.1(1), 21–34 (2013).

Ultrasound Med. Biol.

M. Tanter, J. Bercoff, A. Athanasiou, T. Deffieux, J.-L. Gennisson, G. Montaldo, M. Muller, A. Tardivon, and M. Fink, Quantitative assessment of breast lesion viscoelasticity: initial clinical results using supersonic shear imaging, Ultrasound Med. Biol.34(9), 137386 (2008).
[CrossRef]

Other

H Wang Zhixin, Polydimethylsiloxane Mechanical Properties Measured by Macroscopic Compression and NanoindentationTechniques(2011). Graduate School Theses and Dissertations.

A. Latrive, A. Nahas, and A. C. Boccara, Multimodal endoscopic Full-Field OCT imaging and elasticity mapping with a needle-like probe, SPIE photonics WEST BIOS conference, paper 8571-25 of conference 8571 (2013).

I. M. Ariel and J.B. Cleary, Breast Cancer Diagnosis and Treatment (New-York: McGraw-Hill, 1987).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Figure 1
Figure 1

Schematic of the FF-OCT setup.

Figure 2
Figure 2

Schematic view of the custom sample holder. Small gap around the sample allows lateral expansion of the sample as it is compressed by the piston against the glass window.

Figure 3
Figure 3

a) FF-OCT cross-sectional image of a PDMS sample with zinc oxide particles (ZnO). b) Sample made of three 30 µm-thick layers of differing stiffness. c) Strain map in percent calculated with the 3D DIC method corresponding to the FF-OCT image in a). d) Plot of the strain profile averaged over y.

Figure 4
Figure 4

a) FF-OCT cross-sectional image of an ex vivo porcine cornea. The layers from top to bottom correspond respectively to the epithelium, the anterior basement membrane, the Bowmans layer and underneath the collagen sheets corresponding to the stroma. b) Strain map in percent calculated with the 3D DIC method corresponding to the FF-OCT image in a). For this estimation R = 0.8 %.

Figure 5
Figure 5

a) FF-OCT cross-sectional image of ex vivo human breast tissue. In the center of the upper image, note an adipose inclusion (big black cells) surrounded by breast tissue. b) Strain map in percent calculated with DVC corresponding to the FF-OCT image in a). For this estimation R = 1.1 %.

Figure 6
Figure 6

a) FF-OCT cross sectional image of an ex vivo rat heart. b) Angle map calculated with the 3D DIC method corresponding to the FF-OCT image in a). For this estimation R = 1.05 % and an element size of 32 voxels was chosen.

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

f ( x ) = g ( x + u ( x ) ) + β ( x )
Γ [ u ˜ ] = f ( x ) g ( x + u ˜ ( x ) ) 2
Γ 0 [ δ u ] = g ˜ ( x ) f ( x ) f ( x ) . δ u ( x ) 2
u ˜ ( x ) = k u k . Ψ k ( x )
M i j δ u j = b i
M i j = [ f ( x ) . Ψ i ( x ) ] [ f ( x ) . Ψ j ( x ) ] d x b i = [ f ( x ) . Ψ i ( x ) ] [ g ˜ ( x ) f ( x ) ] x
R = f g ˜ max ( f ) min ( f )
div ( u ( x ) ) = 0
Γ reg [ u ˜ ] = | grad ( div ( u ( x ) ) ) | 2 d x
ε i j ( x ) = 1 2 ( i u j + j u i )
ε eq ( x ) = 2 3 tr ( ε ( x ) 2 )
σ ( x ) = 2 μ ( x ) ε ( x )
div ( μ ( x ) grad ( u ( x ) ) ) = 0

Metrics