Abstract

Combining imaging and control of multiple micron-scaled objects in three dimensions opens up new experimental possibilities such as the fabrication of colloidal-based photonic devices, as well as high-throughput studies of single cell dynamics. Here we utilize the dual-objectives approach to combine 3D holographic optical tweezers with a spinning-disk confocal microscope. Our setup is capable of trapping multiple different objects in three dimensions with lateral and axial accuracy of 8 nm and 20 nm, and precision of 20 nm and 200 nm respectively, while imaging them in four different fluorescence channels. We demonstrate fabrication of ordered two-component and three dimensional colloidal arrays, as well as trapping of yeast cell arrays. We study the kinetics of the division of yeast cells within optical traps, and find that the timescale for division is not affected by trapping.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Visscher and G. J. Brakenhoff, “Single beam optical trapping integrated in a confocal microscope for biological applications,” Cytometry12(6), 486–491 (1991).
    [CrossRef] [PubMed]
  2. Y. Roichman and D. G. Grier, “Holographic assembly of quasicrystalline photonic heterostructures,” Opt. Express13(14), 5434–5439 (2005).
    [CrossRef] [PubMed]
  3. K. Visscher, G. J. Brakenhoff, and J. J. Krol, “Micromanipulation by “multiple” optical traps created by a single fast scanning trap integrated with the bilateral confocal scanning laser microscope,” Cytometry14(2), 105–114 (1993).
    [CrossRef] [PubMed]
  4. D. L. J. Vossen, A. van der Horst, M. Dogterom, and A. van Blaaderen, “Optical tweezers and confocal microscopy for simultaneous three-dimensional manipulation and imaging in concentrated colloidal dispersions,” Rev. Sci. Instrum.75(9), 2960 (2004).
    [CrossRef]
  5. D. G. Grier, “A revolution in optical manipulation,” Nature424(6950), 810–816 (2003).
    [CrossRef] [PubMed]
  6. M. Polin, K. Ladavac, S. H. Lee, Y. Roichman, and D. G. Grier, “Optimized holographic optical traps,” Opt. Express13(15), 5831–5845 (2005).
    [CrossRef] [PubMed]
  7. F. Peng, B. Yao, S. Yan, W. Zhao, and M. Lei, “Trapping of low-refractive-index particles with azimuthally polarized beam,” J. Opt. Soc. Am. B26(12), 2242 (2009).
    [CrossRef]
  8. M. P. MacDonald, L. Paterson, W. Sibbett, K. Dholakia, and P. E. Bryant, “Trapping and manipulation of low-index particles in a two-dimensional interferometric optical trap,” Opt. Lett.26(12), 863–865 (2001).
    [CrossRef] [PubMed]
  9. A. Ashkin, J. M. Dziedzic, and T. Yamane, “Optical trapping and manipulation of single cells using infrared laser beams,” Nature330(6150), 769–771 (1987).
    [CrossRef] [PubMed]
  10. D. McGloin, G. C. Spalding, H. Melville, W. Sibbett, and K. Dholakia, “Three-dimensional arrays of optical bottle beams,” Opt. Commun.225(4-6), 215–222 (2003).
    [CrossRef]
  11. N. B. Simpson, L. Allen, and M. J. Padgett, “Optical tweezers and optical spanners with Laguerre-Gaussian modes,” J. Mod. Opt.43(12), 2485–2491 (1996).
    [CrossRef]
  12. Y. Roichman, A. Waldron, E. Gardel, and D. G. Grier, “Optical traps with geometric aberrations,” Appl. Opt.45(15), 3425–3429 (2006).
    [CrossRef] [PubMed]
  13. R. W. Bowman, A. J. Wright, and M. J. Padgett, “An SLM-based Shack–Hartmann wavefront sensor for aberration correction in optical tweezers,” J. Opt.12(12), 124004 (2010).
    [CrossRef]
  14. J. C. Crocker and D. G. Grier, “Methods of digital video microscopy for colloidal studies,” J. Colloid Interface Sci.179(1), 298–310 (1996).
    [CrossRef]
  15. Y. Gao and M. L. Kilfoil, “Accurate detection and complete tracking of large populations of features in three dimensions,” Opt. Express17(6), 4685–4704 (2009).
    [CrossRef] [PubMed]
  16. G. M. Gibson, J. Leach, S. Keen, A. J. Wright, and M. J. Padgett, “Measuring the accuracy of particle position and force in optical tweezers using high-speed video microscopy,” Opt. Express16(19), 14561–14570 (2008).
    [CrossRef] [PubMed]
  17. Y. Roichman, I. Cholis, and D. G. Grier, “Volumetric imaging of holographic optical traps.,” Opt. Express14(22), 10907–10912 (2006).
    [CrossRef] [PubMed]
  18. J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, 1996).
  19. P. G. Lord and A. E. Wheals, “Rate of cell cycle initiation of yeast cells when cell size is not a rate-determining factor,” J. Cell Sci.59, 183–201 (1983).
    [PubMed]

2010 (1)

R. W. Bowman, A. J. Wright, and M. J. Padgett, “An SLM-based Shack–Hartmann wavefront sensor for aberration correction in optical tweezers,” J. Opt.12(12), 124004 (2010).
[CrossRef]

2009 (2)

2008 (1)

2006 (2)

2005 (2)

2004 (1)

D. L. J. Vossen, A. van der Horst, M. Dogterom, and A. van Blaaderen, “Optical tweezers and confocal microscopy for simultaneous three-dimensional manipulation and imaging in concentrated colloidal dispersions,” Rev. Sci. Instrum.75(9), 2960 (2004).
[CrossRef]

2003 (2)

D. G. Grier, “A revolution in optical manipulation,” Nature424(6950), 810–816 (2003).
[CrossRef] [PubMed]

D. McGloin, G. C. Spalding, H. Melville, W. Sibbett, and K. Dholakia, “Three-dimensional arrays of optical bottle beams,” Opt. Commun.225(4-6), 215–222 (2003).
[CrossRef]

2001 (1)

1996 (2)

N. B. Simpson, L. Allen, and M. J. Padgett, “Optical tweezers and optical spanners with Laguerre-Gaussian modes,” J. Mod. Opt.43(12), 2485–2491 (1996).
[CrossRef]

J. C. Crocker and D. G. Grier, “Methods of digital video microscopy for colloidal studies,” J. Colloid Interface Sci.179(1), 298–310 (1996).
[CrossRef]

1993 (1)

K. Visscher, G. J. Brakenhoff, and J. J. Krol, “Micromanipulation by “multiple” optical traps created by a single fast scanning trap integrated with the bilateral confocal scanning laser microscope,” Cytometry14(2), 105–114 (1993).
[CrossRef] [PubMed]

1991 (1)

K. Visscher and G. J. Brakenhoff, “Single beam optical trapping integrated in a confocal microscope for biological applications,” Cytometry12(6), 486–491 (1991).
[CrossRef] [PubMed]

1987 (1)

A. Ashkin, J. M. Dziedzic, and T. Yamane, “Optical trapping and manipulation of single cells using infrared laser beams,” Nature330(6150), 769–771 (1987).
[CrossRef] [PubMed]

1983 (1)

P. G. Lord and A. E. Wheals, “Rate of cell cycle initiation of yeast cells when cell size is not a rate-determining factor,” J. Cell Sci.59, 183–201 (1983).
[PubMed]

Allen, L.

N. B. Simpson, L. Allen, and M. J. Padgett, “Optical tweezers and optical spanners with Laguerre-Gaussian modes,” J. Mod. Opt.43(12), 2485–2491 (1996).
[CrossRef]

Ashkin, A.

A. Ashkin, J. M. Dziedzic, and T. Yamane, “Optical trapping and manipulation of single cells using infrared laser beams,” Nature330(6150), 769–771 (1987).
[CrossRef] [PubMed]

Bowman, R. W.

R. W. Bowman, A. J. Wright, and M. J. Padgett, “An SLM-based Shack–Hartmann wavefront sensor for aberration correction in optical tweezers,” J. Opt.12(12), 124004 (2010).
[CrossRef]

Brakenhoff, G. J.

K. Visscher, G. J. Brakenhoff, and J. J. Krol, “Micromanipulation by “multiple” optical traps created by a single fast scanning trap integrated with the bilateral confocal scanning laser microscope,” Cytometry14(2), 105–114 (1993).
[CrossRef] [PubMed]

K. Visscher and G. J. Brakenhoff, “Single beam optical trapping integrated in a confocal microscope for biological applications,” Cytometry12(6), 486–491 (1991).
[CrossRef] [PubMed]

Bryant, P. E.

Cholis, I.

Crocker, J. C.

J. C. Crocker and D. G. Grier, “Methods of digital video microscopy for colloidal studies,” J. Colloid Interface Sci.179(1), 298–310 (1996).
[CrossRef]

Dholakia, K.

D. McGloin, G. C. Spalding, H. Melville, W. Sibbett, and K. Dholakia, “Three-dimensional arrays of optical bottle beams,” Opt. Commun.225(4-6), 215–222 (2003).
[CrossRef]

M. P. MacDonald, L. Paterson, W. Sibbett, K. Dholakia, and P. E. Bryant, “Trapping and manipulation of low-index particles in a two-dimensional interferometric optical trap,” Opt. Lett.26(12), 863–865 (2001).
[CrossRef] [PubMed]

Dogterom, M.

D. L. J. Vossen, A. van der Horst, M. Dogterom, and A. van Blaaderen, “Optical tweezers and confocal microscopy for simultaneous three-dimensional manipulation and imaging in concentrated colloidal dispersions,” Rev. Sci. Instrum.75(9), 2960 (2004).
[CrossRef]

Dziedzic, J. M.

A. Ashkin, J. M. Dziedzic, and T. Yamane, “Optical trapping and manipulation of single cells using infrared laser beams,” Nature330(6150), 769–771 (1987).
[CrossRef] [PubMed]

Gao, Y.

Gardel, E.

Gibson, G. M.

Grier, D. G.

Keen, S.

Kilfoil, M. L.

Krol, J. J.

K. Visscher, G. J. Brakenhoff, and J. J. Krol, “Micromanipulation by “multiple” optical traps created by a single fast scanning trap integrated with the bilateral confocal scanning laser microscope,” Cytometry14(2), 105–114 (1993).
[CrossRef] [PubMed]

Ladavac, K.

Leach, J.

Lee, S. H.

Lei, M.

Lord, P. G.

P. G. Lord and A. E. Wheals, “Rate of cell cycle initiation of yeast cells when cell size is not a rate-determining factor,” J. Cell Sci.59, 183–201 (1983).
[PubMed]

MacDonald, M. P.

McGloin, D.

D. McGloin, G. C. Spalding, H. Melville, W. Sibbett, and K. Dholakia, “Three-dimensional arrays of optical bottle beams,” Opt. Commun.225(4-6), 215–222 (2003).
[CrossRef]

Melville, H.

D. McGloin, G. C. Spalding, H. Melville, W. Sibbett, and K. Dholakia, “Three-dimensional arrays of optical bottle beams,” Opt. Commun.225(4-6), 215–222 (2003).
[CrossRef]

Padgett, M. J.

R. W. Bowman, A. J. Wright, and M. J. Padgett, “An SLM-based Shack–Hartmann wavefront sensor for aberration correction in optical tweezers,” J. Opt.12(12), 124004 (2010).
[CrossRef]

G. M. Gibson, J. Leach, S. Keen, A. J. Wright, and M. J. Padgett, “Measuring the accuracy of particle position and force in optical tweezers using high-speed video microscopy,” Opt. Express16(19), 14561–14570 (2008).
[CrossRef] [PubMed]

N. B. Simpson, L. Allen, and M. J. Padgett, “Optical tweezers and optical spanners with Laguerre-Gaussian modes,” J. Mod. Opt.43(12), 2485–2491 (1996).
[CrossRef]

Paterson, L.

Peng, F.

Polin, M.

Roichman, Y.

Sibbett, W.

D. McGloin, G. C. Spalding, H. Melville, W. Sibbett, and K. Dholakia, “Three-dimensional arrays of optical bottle beams,” Opt. Commun.225(4-6), 215–222 (2003).
[CrossRef]

M. P. MacDonald, L. Paterson, W. Sibbett, K. Dholakia, and P. E. Bryant, “Trapping and manipulation of low-index particles in a two-dimensional interferometric optical trap,” Opt. Lett.26(12), 863–865 (2001).
[CrossRef] [PubMed]

Simpson, N. B.

N. B. Simpson, L. Allen, and M. J. Padgett, “Optical tweezers and optical spanners with Laguerre-Gaussian modes,” J. Mod. Opt.43(12), 2485–2491 (1996).
[CrossRef]

Spalding, G. C.

D. McGloin, G. C. Spalding, H. Melville, W. Sibbett, and K. Dholakia, “Three-dimensional arrays of optical bottle beams,” Opt. Commun.225(4-6), 215–222 (2003).
[CrossRef]

van Blaaderen, A.

D. L. J. Vossen, A. van der Horst, M. Dogterom, and A. van Blaaderen, “Optical tweezers and confocal microscopy for simultaneous three-dimensional manipulation and imaging in concentrated colloidal dispersions,” Rev. Sci. Instrum.75(9), 2960 (2004).
[CrossRef]

van der Horst, A.

D. L. J. Vossen, A. van der Horst, M. Dogterom, and A. van Blaaderen, “Optical tweezers and confocal microscopy for simultaneous three-dimensional manipulation and imaging in concentrated colloidal dispersions,” Rev. Sci. Instrum.75(9), 2960 (2004).
[CrossRef]

Visscher, K.

K. Visscher, G. J. Brakenhoff, and J. J. Krol, “Micromanipulation by “multiple” optical traps created by a single fast scanning trap integrated with the bilateral confocal scanning laser microscope,” Cytometry14(2), 105–114 (1993).
[CrossRef] [PubMed]

K. Visscher and G. J. Brakenhoff, “Single beam optical trapping integrated in a confocal microscope for biological applications,” Cytometry12(6), 486–491 (1991).
[CrossRef] [PubMed]

Vossen, D. L. J.

D. L. J. Vossen, A. van der Horst, M. Dogterom, and A. van Blaaderen, “Optical tweezers and confocal microscopy for simultaneous three-dimensional manipulation and imaging in concentrated colloidal dispersions,” Rev. Sci. Instrum.75(9), 2960 (2004).
[CrossRef]

Waldron, A.

Wheals, A. E.

P. G. Lord and A. E. Wheals, “Rate of cell cycle initiation of yeast cells when cell size is not a rate-determining factor,” J. Cell Sci.59, 183–201 (1983).
[PubMed]

Wright, A. J.

R. W. Bowman, A. J. Wright, and M. J. Padgett, “An SLM-based Shack–Hartmann wavefront sensor for aberration correction in optical tweezers,” J. Opt.12(12), 124004 (2010).
[CrossRef]

G. M. Gibson, J. Leach, S. Keen, A. J. Wright, and M. J. Padgett, “Measuring the accuracy of particle position and force in optical tweezers using high-speed video microscopy,” Opt. Express16(19), 14561–14570 (2008).
[CrossRef] [PubMed]

Yamane, T.

A. Ashkin, J. M. Dziedzic, and T. Yamane, “Optical trapping and manipulation of single cells using infrared laser beams,” Nature330(6150), 769–771 (1987).
[CrossRef] [PubMed]

Yan, S.

Yao, B.

Zhao, W.

Appl. Opt. (1)

Cytometry (2)

K. Visscher and G. J. Brakenhoff, “Single beam optical trapping integrated in a confocal microscope for biological applications,” Cytometry12(6), 486–491 (1991).
[CrossRef] [PubMed]

K. Visscher, G. J. Brakenhoff, and J. J. Krol, “Micromanipulation by “multiple” optical traps created by a single fast scanning trap integrated with the bilateral confocal scanning laser microscope,” Cytometry14(2), 105–114 (1993).
[CrossRef] [PubMed]

J. Cell Sci. (1)

P. G. Lord and A. E. Wheals, “Rate of cell cycle initiation of yeast cells when cell size is not a rate-determining factor,” J. Cell Sci.59, 183–201 (1983).
[PubMed]

J. Colloid Interface Sci. (1)

J. C. Crocker and D. G. Grier, “Methods of digital video microscopy for colloidal studies,” J. Colloid Interface Sci.179(1), 298–310 (1996).
[CrossRef]

J. Mod. Opt. (1)

N. B. Simpson, L. Allen, and M. J. Padgett, “Optical tweezers and optical spanners with Laguerre-Gaussian modes,” J. Mod. Opt.43(12), 2485–2491 (1996).
[CrossRef]

J. Opt. (1)

R. W. Bowman, A. J. Wright, and M. J. Padgett, “An SLM-based Shack–Hartmann wavefront sensor for aberration correction in optical tweezers,” J. Opt.12(12), 124004 (2010).
[CrossRef]

J. Opt. Soc. Am. B (1)

Nature (2)

D. G. Grier, “A revolution in optical manipulation,” Nature424(6950), 810–816 (2003).
[CrossRef] [PubMed]

A. Ashkin, J. M. Dziedzic, and T. Yamane, “Optical trapping and manipulation of single cells using infrared laser beams,” Nature330(6150), 769–771 (1987).
[CrossRef] [PubMed]

Opt. Commun. (1)

D. McGloin, G. C. Spalding, H. Melville, W. Sibbett, and K. Dholakia, “Three-dimensional arrays of optical bottle beams,” Opt. Commun.225(4-6), 215–222 (2003).
[CrossRef]

Opt. Express (5)

Opt. Lett. (1)

Rev. Sci. Instrum. (1)

D. L. J. Vossen, A. van der Horst, M. Dogterom, and A. van Blaaderen, “Optical tweezers and confocal microscopy for simultaneous three-dimensional manipulation and imaging in concentrated colloidal dispersions,” Rev. Sci. Instrum.75(9), 2960 (2004).
[CrossRef]

Other (1)

J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, 1996).

Supplementary Material (1)

» Media 1: AVI (17230 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

A schematic diagram of the experimental setup. Lenses L1 and L2 expand the beam diameter to overfill the SLM active area; lenses L3 and L4 reduce it to overfill the objective’s back aperture while conserving power. The inverted objective lens focuses the beam to create the optical trap array. The upright objective is used for confocal imaging.

Fig. 2
Fig. 2

Optical trapping characterization. a) Trapping accuracy: histogram of positions for a single trapped particle at 780 mW, inset shows the particle positions within the trap during the measurment. b) Trapping precision: histograms of lateral inter-particle distance for different hologram realizations and different laser powers. c) Trapping accuracy: standard deviation of particle position within a trap as function of power at the trap. d) Position calibration: Confocal measurement of relative Z position in microns verses the requested Z position in SLM pixels. Heights are measured relative to the focal plane of the undiffracted laser light. A different dependence is observed below and above the focal plane of the inverted objective lens, below the focal plane axial position changes as 12 nm/pixel and above it as 7 nm/pixel.

Fig. 3
Fig. 3

3D confocal images of trapped arrays. a) 5x3 array of Silica particles of two types: green fluorescing (in the center line), and red fluorescing (forming the outer rows). b) Volume rendering of a 2x2x2 array of trapped, green fluorescent, colloidal Silica particles, the particles are positioned within 100 nm of their desired position. c) S. Cerevisiae yeast cells trapped in a 3x3 array, the nuclei imaged in red and the cytoplasm in green. Each trapping site is comprised of two optical traps to ensure horizontal orientation of cells.

Fig. 4
Fig. 4

(a) Nuclear division kinetics of a budding yeast cell. Intensity of fluorescence from nuclei material is measured at a single confocal cross section and is normalized according to integrated intensity of an adjacent cell which remains unchanged and in focus the whole duration of the experiment. (b) Time lapse confocal imaging of a yeast cell dividing within two optical traps at 1085 nm (Media 1). Both optical traps, are anchoring the mother cell during the budding and nuclear splitting process (yellow arrows indicate trap positions). The cell remained trapped for the duration of the experiment (approximately two hours).

Metrics