Abstract

A two-axis scanning microelectromechanical (MEMS) mirror enables an optical coherence tomography (OCT) system to perform three-dimensional endoscopic imaging due to its fast scan speed and small size. However, the radial scan from the MEMS mirror causes various distortions in OCT images, namely spherical, fan-shaped and keystone distortions. In this paper, a new method is proposed to correct all of three distortions presented in OCT systems based on two-axis MEMS scanning mirrors. The spherical distortion is corrected first by directly manipulating the original spectral interferograms in the phase domain, followed by Fourier transform and three-dimensional geometrical transformation for correcting the other two types of distortions. OCT imaging experiments on a paper with square ink printed arrays and a glass tube filled with milk have been used to validate the proposed method. Distortions in OCT images of flat or curved surfaces can all be effectively removed.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D.  Huang, E. A.  Swanson, C. P.  Lin, J. S.  Schuman, W. G.  Stinson, W.  Chang, M. R.  Hee, T.  Flotte, K.  Gregory, C. A.  Puliafito, J. G.  Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
    [CrossRef] [PubMed]
  2. A. G.  Podoleanu, G. M.  Dobre, D. A.  Jackson, “En-face coherence imaging using galvanometer scanner modulation,” Opt. Lett. 23(3), 147–149 (1998).
    [CrossRef] [PubMed]
  3. M.  Pircher, E.  Goetzinger, R.  Leitgeb, C.  Hitzenberger, “Three dimensional polarization sensitive OCT of human skin in vivo,” Opt. Express 12(14), 3236–3244 (2004).
    [CrossRef] [PubMed]
  4. P. J.  Brosens, “Dynamic mirror distortions in optical scanning,” Appl. Opt. 11(12), 2987–2989 (1972).
    [CrossRef] [PubMed]
  5. V.  Westphal, A.  Rollins, S.  Radhakrishnan, J.  Izatt, “Correction of geometric and refractive image distortions in optical coherence tomography applying Fermat’s principle,” Opt. Express 10(9), 397–404 (2002).
    [CrossRef] [PubMed]
  6. Y.  Pan, H.  Xie, G. K.  Fedder, “Endoscopic optical coherence tomography based on a microelectromechanical mirror,” Opt. Lett. 26(24), 1966–1968 (2001).
    [CrossRef] [PubMed]
  7. W.  Jung, D. T.  McCormick, J.  Zhang, L.  Wang, N. C.  Tien, Z.  Chen, “Three-Dimensional Endoscopic Optical Coherence Tomography By Use of a Two-Axis Microelectromechanical Scanning Mirror,” Appl. Phys. Lett. 88(16), 163901 (2006).
    [CrossRef]
  8. M.  Hafez, T.  Sidler, R´.-P.  Salathe, “Study of the beam path distortion profiles generated by a two-axis tilt single-mirror laser scanner,” Opt. Eng. 42(4), 1048–1057 (2003).
    [CrossRef]
  9. A.  Podoleanu, I.  Charalambous, L.  Plesea, A.  Dogariu, R.  Rosen, “Correction of distortions in optical coherence tomography imaging of the eye,” Phys. Med. Biol. 49(7), 1277–1294 (2004).
    [CrossRef] [PubMed]
  10. R. J.  Zawadzki, A. R.  Fuller, S. S.  Choi, D. F.  Wiley, B.  Hamann, J. S.  Werner, “Correction of motion artifacts and scanning beam distortions in 3D ophthalmic optical coherence tomography imaging,” Proc. SPIE 6426, 642607, 642607-11 (2007).
    [CrossRef]
  11. S.  Ortiz, D.  Siedlecki, L.  Remon, S.  Marcos, “Optical coherence tomography for quantitative surface topography,” Appl. Opt. 48(35), 6708–6715 (2009).
    [CrossRef] [PubMed]
  12. S.  Ortiz, D.  Siedlecki, I.  Grulkowski, L.  Remon, D.  Pascual, M.  Wojtkowski, S.  Marcos, “Optical distortion correction in Optical Coherence Tomography for quantitative ocular anterior segment by three-dimensional imaging,” Opt. Express 18(3), 2782–2796 (2010).
    [CrossRef] [PubMed]
  13. J. M. Hudman and J. O. Miller, “Distortion altering optics for MEMS scanning display system or the like,” WIPO Patent 2010030467(2010).
  14. S.  Samuelson, L.  Wu, J.  Sun, B.  Sorg, H.  Xie, “A 2.8-mm Imaging Probe Based On a High-Fill-Factor MEMS Mirror and Wire-Bonding-Free Packaging for Endoscopic Optical Coherence Tomography,” JMEMS 21, 1291–1302 (2012).
  15. D. L.  Wang, L. L.  Fu, X.  Wang, Z. J.  Gong, S.  Samuelson, C.  Duan, H. Z.  Jia, J. S.  Ma, H.  Xie, “Endoscopic swept-source optical coherence tomography based on a two-axis microelectromechanical system mirror,” J. Biomed. Opt. 18(8), 086005 (2013).
    [CrossRef] [PubMed]
  16. D. L.  Wang, L. L.  Fu, J.  Sun, H. Z.  Jia, H.  Xie, “Design Optimization and Implementation of a Miniature Optical Coherence Tomography Probe Based on a MEMS Mirror,” Proc. SPIE 8191, 81910M, 81910M-10 (2011).
    [CrossRef]
  17. T. S.  Lian, “Advances in the Theory of Conjugation for Reflecting Prisms in China,” J. Beijing Inst. Technol. 1, 1–12 (1992).
  18. M.  Frigo, S. G.  Johnson, “The design and implementation of FFTW3,” Proc. IEEE 93(2), 216–231 (2005).
    [CrossRef]

2013 (1)

D. L.  Wang, L. L.  Fu, X.  Wang, Z. J.  Gong, S.  Samuelson, C.  Duan, H. Z.  Jia, J. S.  Ma, H.  Xie, “Endoscopic swept-source optical coherence tomography based on a two-axis microelectromechanical system mirror,” J. Biomed. Opt. 18(8), 086005 (2013).
[CrossRef] [PubMed]

2012 (1)

S.  Samuelson, L.  Wu, J.  Sun, B.  Sorg, H.  Xie, “A 2.8-mm Imaging Probe Based On a High-Fill-Factor MEMS Mirror and Wire-Bonding-Free Packaging for Endoscopic Optical Coherence Tomography,” JMEMS 21, 1291–1302 (2012).

2011 (1)

D. L.  Wang, L. L.  Fu, J.  Sun, H. Z.  Jia, H.  Xie, “Design Optimization and Implementation of a Miniature Optical Coherence Tomography Probe Based on a MEMS Mirror,” Proc. SPIE 8191, 81910M, 81910M-10 (2011).
[CrossRef]

2010 (1)

2009 (1)

2007 (1)

R. J.  Zawadzki, A. R.  Fuller, S. S.  Choi, D. F.  Wiley, B.  Hamann, J. S.  Werner, “Correction of motion artifacts and scanning beam distortions in 3D ophthalmic optical coherence tomography imaging,” Proc. SPIE 6426, 642607, 642607-11 (2007).
[CrossRef]

2006 (1)

W.  Jung, D. T.  McCormick, J.  Zhang, L.  Wang, N. C.  Tien, Z.  Chen, “Three-Dimensional Endoscopic Optical Coherence Tomography By Use of a Two-Axis Microelectromechanical Scanning Mirror,” Appl. Phys. Lett. 88(16), 163901 (2006).
[CrossRef]

2005 (1)

M.  Frigo, S. G.  Johnson, “The design and implementation of FFTW3,” Proc. IEEE 93(2), 216–231 (2005).
[CrossRef]

2004 (2)

A.  Podoleanu, I.  Charalambous, L.  Plesea, A.  Dogariu, R.  Rosen, “Correction of distortions in optical coherence tomography imaging of the eye,” Phys. Med. Biol. 49(7), 1277–1294 (2004).
[CrossRef] [PubMed]

M.  Pircher, E.  Goetzinger, R.  Leitgeb, C.  Hitzenberger, “Three dimensional polarization sensitive OCT of human skin in vivo,” Opt. Express 12(14), 3236–3244 (2004).
[CrossRef] [PubMed]

2003 (1)

M.  Hafez, T.  Sidler, R´.-P.  Salathe, “Study of the beam path distortion profiles generated by a two-axis tilt single-mirror laser scanner,” Opt. Eng. 42(4), 1048–1057 (2003).
[CrossRef]

2002 (1)

2001 (1)

1998 (1)

1992 (1)

T. S.  Lian, “Advances in the Theory of Conjugation for Reflecting Prisms in China,” J. Beijing Inst. Technol. 1, 1–12 (1992).

1991 (1)

D.  Huang, E. A.  Swanson, C. P.  Lin, J. S.  Schuman, W. G.  Stinson, W.  Chang, M. R.  Hee, T.  Flotte, K.  Gregory, C. A.  Puliafito, J. G.  Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

1972 (1)

Brosens, P. J.

Chang, W.

D.  Huang, E. A.  Swanson, C. P.  Lin, J. S.  Schuman, W. G.  Stinson, W.  Chang, M. R.  Hee, T.  Flotte, K.  Gregory, C. A.  Puliafito, J. G.  Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Charalambous, I.

A.  Podoleanu, I.  Charalambous, L.  Plesea, A.  Dogariu, R.  Rosen, “Correction of distortions in optical coherence tomography imaging of the eye,” Phys. Med. Biol. 49(7), 1277–1294 (2004).
[CrossRef] [PubMed]

Chen, Z.

W.  Jung, D. T.  McCormick, J.  Zhang, L.  Wang, N. C.  Tien, Z.  Chen, “Three-Dimensional Endoscopic Optical Coherence Tomography By Use of a Two-Axis Microelectromechanical Scanning Mirror,” Appl. Phys. Lett. 88(16), 163901 (2006).
[CrossRef]

Choi, S. S.

R. J.  Zawadzki, A. R.  Fuller, S. S.  Choi, D. F.  Wiley, B.  Hamann, J. S.  Werner, “Correction of motion artifacts and scanning beam distortions in 3D ophthalmic optical coherence tomography imaging,” Proc. SPIE 6426, 642607, 642607-11 (2007).
[CrossRef]

Dobre, G. M.

Dogariu, A.

A.  Podoleanu, I.  Charalambous, L.  Plesea, A.  Dogariu, R.  Rosen, “Correction of distortions in optical coherence tomography imaging of the eye,” Phys. Med. Biol. 49(7), 1277–1294 (2004).
[CrossRef] [PubMed]

Duan, C.

D. L.  Wang, L. L.  Fu, X.  Wang, Z. J.  Gong, S.  Samuelson, C.  Duan, H. Z.  Jia, J. S.  Ma, H.  Xie, “Endoscopic swept-source optical coherence tomography based on a two-axis microelectromechanical system mirror,” J. Biomed. Opt. 18(8), 086005 (2013).
[CrossRef] [PubMed]

Fedder, G. K.

Flotte, T.

D.  Huang, E. A.  Swanson, C. P.  Lin, J. S.  Schuman, W. G.  Stinson, W.  Chang, M. R.  Hee, T.  Flotte, K.  Gregory, C. A.  Puliafito, J. G.  Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Frigo, M.

M.  Frigo, S. G.  Johnson, “The design and implementation of FFTW3,” Proc. IEEE 93(2), 216–231 (2005).
[CrossRef]

Fu, L. L.

D. L.  Wang, L. L.  Fu, X.  Wang, Z. J.  Gong, S.  Samuelson, C.  Duan, H. Z.  Jia, J. S.  Ma, H.  Xie, “Endoscopic swept-source optical coherence tomography based on a two-axis microelectromechanical system mirror,” J. Biomed. Opt. 18(8), 086005 (2013).
[CrossRef] [PubMed]

D. L.  Wang, L. L.  Fu, J.  Sun, H. Z.  Jia, H.  Xie, “Design Optimization and Implementation of a Miniature Optical Coherence Tomography Probe Based on a MEMS Mirror,” Proc. SPIE 8191, 81910M, 81910M-10 (2011).
[CrossRef]

Fujimoto, J. G.

D.  Huang, E. A.  Swanson, C. P.  Lin, J. S.  Schuman, W. G.  Stinson, W.  Chang, M. R.  Hee, T.  Flotte, K.  Gregory, C. A.  Puliafito, J. G.  Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Fuller, A. R.

R. J.  Zawadzki, A. R.  Fuller, S. S.  Choi, D. F.  Wiley, B.  Hamann, J. S.  Werner, “Correction of motion artifacts and scanning beam distortions in 3D ophthalmic optical coherence tomography imaging,” Proc. SPIE 6426, 642607, 642607-11 (2007).
[CrossRef]

Goetzinger, E.

Gong, Z. J.

D. L.  Wang, L. L.  Fu, X.  Wang, Z. J.  Gong, S.  Samuelson, C.  Duan, H. Z.  Jia, J. S.  Ma, H.  Xie, “Endoscopic swept-source optical coherence tomography based on a two-axis microelectromechanical system mirror,” J. Biomed. Opt. 18(8), 086005 (2013).
[CrossRef] [PubMed]

Gregory, K.

D.  Huang, E. A.  Swanson, C. P.  Lin, J. S.  Schuman, W. G.  Stinson, W.  Chang, M. R.  Hee, T.  Flotte, K.  Gregory, C. A.  Puliafito, J. G.  Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Grulkowski, I.

Hafez, M.

M.  Hafez, T.  Sidler, R´.-P.  Salathe, “Study of the beam path distortion profiles generated by a two-axis tilt single-mirror laser scanner,” Opt. Eng. 42(4), 1048–1057 (2003).
[CrossRef]

Hamann, B.

R. J.  Zawadzki, A. R.  Fuller, S. S.  Choi, D. F.  Wiley, B.  Hamann, J. S.  Werner, “Correction of motion artifacts and scanning beam distortions in 3D ophthalmic optical coherence tomography imaging,” Proc. SPIE 6426, 642607, 642607-11 (2007).
[CrossRef]

Hee, M. R.

D.  Huang, E. A.  Swanson, C. P.  Lin, J. S.  Schuman, W. G.  Stinson, W.  Chang, M. R.  Hee, T.  Flotte, K.  Gregory, C. A.  Puliafito, J. G.  Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Hitzenberger, C.

Huang, D.

D.  Huang, E. A.  Swanson, C. P.  Lin, J. S.  Schuman, W. G.  Stinson, W.  Chang, M. R.  Hee, T.  Flotte, K.  Gregory, C. A.  Puliafito, J. G.  Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Izatt, J.

Jackson, D. A.

Jia, H. Z.

D. L.  Wang, L. L.  Fu, X.  Wang, Z. J.  Gong, S.  Samuelson, C.  Duan, H. Z.  Jia, J. S.  Ma, H.  Xie, “Endoscopic swept-source optical coherence tomography based on a two-axis microelectromechanical system mirror,” J. Biomed. Opt. 18(8), 086005 (2013).
[CrossRef] [PubMed]

D. L.  Wang, L. L.  Fu, J.  Sun, H. Z.  Jia, H.  Xie, “Design Optimization and Implementation of a Miniature Optical Coherence Tomography Probe Based on a MEMS Mirror,” Proc. SPIE 8191, 81910M, 81910M-10 (2011).
[CrossRef]

Johnson, S. G.

M.  Frigo, S. G.  Johnson, “The design and implementation of FFTW3,” Proc. IEEE 93(2), 216–231 (2005).
[CrossRef]

Jung, W.

W.  Jung, D. T.  McCormick, J.  Zhang, L.  Wang, N. C.  Tien, Z.  Chen, “Three-Dimensional Endoscopic Optical Coherence Tomography By Use of a Two-Axis Microelectromechanical Scanning Mirror,” Appl. Phys. Lett. 88(16), 163901 (2006).
[CrossRef]

Leitgeb, R.

Lian, T. S.

T. S.  Lian, “Advances in the Theory of Conjugation for Reflecting Prisms in China,” J. Beijing Inst. Technol. 1, 1–12 (1992).

Lin, C. P.

D.  Huang, E. A.  Swanson, C. P.  Lin, J. S.  Schuman, W. G.  Stinson, W.  Chang, M. R.  Hee, T.  Flotte, K.  Gregory, C. A.  Puliafito, J. G.  Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Ma, J. S.

D. L.  Wang, L. L.  Fu, X.  Wang, Z. J.  Gong, S.  Samuelson, C.  Duan, H. Z.  Jia, J. S.  Ma, H.  Xie, “Endoscopic swept-source optical coherence tomography based on a two-axis microelectromechanical system mirror,” J. Biomed. Opt. 18(8), 086005 (2013).
[CrossRef] [PubMed]

Marcos, S.

McCormick, D. T.

W.  Jung, D. T.  McCormick, J.  Zhang, L.  Wang, N. C.  Tien, Z.  Chen, “Three-Dimensional Endoscopic Optical Coherence Tomography By Use of a Two-Axis Microelectromechanical Scanning Mirror,” Appl. Phys. Lett. 88(16), 163901 (2006).
[CrossRef]

Ortiz, S.

Pan, Y.

Pascual, D.

Pircher, M.

Plesea, L.

A.  Podoleanu, I.  Charalambous, L.  Plesea, A.  Dogariu, R.  Rosen, “Correction of distortions in optical coherence tomography imaging of the eye,” Phys. Med. Biol. 49(7), 1277–1294 (2004).
[CrossRef] [PubMed]

Podoleanu, A.

A.  Podoleanu, I.  Charalambous, L.  Plesea, A.  Dogariu, R.  Rosen, “Correction of distortions in optical coherence tomography imaging of the eye,” Phys. Med. Biol. 49(7), 1277–1294 (2004).
[CrossRef] [PubMed]

Podoleanu, A. G.

Puliafito, C. A.

D.  Huang, E. A.  Swanson, C. P.  Lin, J. S.  Schuman, W. G.  Stinson, W.  Chang, M. R.  Hee, T.  Flotte, K.  Gregory, C. A.  Puliafito, J. G.  Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Radhakrishnan, S.

Remon, L.

Rollins, A.

Rosen, R.

A.  Podoleanu, I.  Charalambous, L.  Plesea, A.  Dogariu, R.  Rosen, “Correction of distortions in optical coherence tomography imaging of the eye,” Phys. Med. Biol. 49(7), 1277–1294 (2004).
[CrossRef] [PubMed]

Salathe, R´.-P.

M.  Hafez, T.  Sidler, R´.-P.  Salathe, “Study of the beam path distortion profiles generated by a two-axis tilt single-mirror laser scanner,” Opt. Eng. 42(4), 1048–1057 (2003).
[CrossRef]

Samuelson, S.

D. L.  Wang, L. L.  Fu, X.  Wang, Z. J.  Gong, S.  Samuelson, C.  Duan, H. Z.  Jia, J. S.  Ma, H.  Xie, “Endoscopic swept-source optical coherence tomography based on a two-axis microelectromechanical system mirror,” J. Biomed. Opt. 18(8), 086005 (2013).
[CrossRef] [PubMed]

S.  Samuelson, L.  Wu, J.  Sun, B.  Sorg, H.  Xie, “A 2.8-mm Imaging Probe Based On a High-Fill-Factor MEMS Mirror and Wire-Bonding-Free Packaging for Endoscopic Optical Coherence Tomography,” JMEMS 21, 1291–1302 (2012).

Schuman, J. S.

D.  Huang, E. A.  Swanson, C. P.  Lin, J. S.  Schuman, W. G.  Stinson, W.  Chang, M. R.  Hee, T.  Flotte, K.  Gregory, C. A.  Puliafito, J. G.  Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Sidler, T.

M.  Hafez, T.  Sidler, R´.-P.  Salathe, “Study of the beam path distortion profiles generated by a two-axis tilt single-mirror laser scanner,” Opt. Eng. 42(4), 1048–1057 (2003).
[CrossRef]

Siedlecki, D.

Sorg, B.

S.  Samuelson, L.  Wu, J.  Sun, B.  Sorg, H.  Xie, “A 2.8-mm Imaging Probe Based On a High-Fill-Factor MEMS Mirror and Wire-Bonding-Free Packaging for Endoscopic Optical Coherence Tomography,” JMEMS 21, 1291–1302 (2012).

Stinson, W. G.

D.  Huang, E. A.  Swanson, C. P.  Lin, J. S.  Schuman, W. G.  Stinson, W.  Chang, M. R.  Hee, T.  Flotte, K.  Gregory, C. A.  Puliafito, J. G.  Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Sun, J.

S.  Samuelson, L.  Wu, J.  Sun, B.  Sorg, H.  Xie, “A 2.8-mm Imaging Probe Based On a High-Fill-Factor MEMS Mirror and Wire-Bonding-Free Packaging for Endoscopic Optical Coherence Tomography,” JMEMS 21, 1291–1302 (2012).

D. L.  Wang, L. L.  Fu, J.  Sun, H. Z.  Jia, H.  Xie, “Design Optimization and Implementation of a Miniature Optical Coherence Tomography Probe Based on a MEMS Mirror,” Proc. SPIE 8191, 81910M, 81910M-10 (2011).
[CrossRef]

Swanson, E. A.

D.  Huang, E. A.  Swanson, C. P.  Lin, J. S.  Schuman, W. G.  Stinson, W.  Chang, M. R.  Hee, T.  Flotte, K.  Gregory, C. A.  Puliafito, J. G.  Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Tien, N. C.

W.  Jung, D. T.  McCormick, J.  Zhang, L.  Wang, N. C.  Tien, Z.  Chen, “Three-Dimensional Endoscopic Optical Coherence Tomography By Use of a Two-Axis Microelectromechanical Scanning Mirror,” Appl. Phys. Lett. 88(16), 163901 (2006).
[CrossRef]

Wang, D. L.

D. L.  Wang, L. L.  Fu, X.  Wang, Z. J.  Gong, S.  Samuelson, C.  Duan, H. Z.  Jia, J. S.  Ma, H.  Xie, “Endoscopic swept-source optical coherence tomography based on a two-axis microelectromechanical system mirror,” J. Biomed. Opt. 18(8), 086005 (2013).
[CrossRef] [PubMed]

D. L.  Wang, L. L.  Fu, J.  Sun, H. Z.  Jia, H.  Xie, “Design Optimization and Implementation of a Miniature Optical Coherence Tomography Probe Based on a MEMS Mirror,” Proc. SPIE 8191, 81910M, 81910M-10 (2011).
[CrossRef]

Wang, L.

W.  Jung, D. T.  McCormick, J.  Zhang, L.  Wang, N. C.  Tien, Z.  Chen, “Three-Dimensional Endoscopic Optical Coherence Tomography By Use of a Two-Axis Microelectromechanical Scanning Mirror,” Appl. Phys. Lett. 88(16), 163901 (2006).
[CrossRef]

Wang, X.

D. L.  Wang, L. L.  Fu, X.  Wang, Z. J.  Gong, S.  Samuelson, C.  Duan, H. Z.  Jia, J. S.  Ma, H.  Xie, “Endoscopic swept-source optical coherence tomography based on a two-axis microelectromechanical system mirror,” J. Biomed. Opt. 18(8), 086005 (2013).
[CrossRef] [PubMed]

Werner, J. S.

R. J.  Zawadzki, A. R.  Fuller, S. S.  Choi, D. F.  Wiley, B.  Hamann, J. S.  Werner, “Correction of motion artifacts and scanning beam distortions in 3D ophthalmic optical coherence tomography imaging,” Proc. SPIE 6426, 642607, 642607-11 (2007).
[CrossRef]

Westphal, V.

Wiley, D. F.

R. J.  Zawadzki, A. R.  Fuller, S. S.  Choi, D. F.  Wiley, B.  Hamann, J. S.  Werner, “Correction of motion artifacts and scanning beam distortions in 3D ophthalmic optical coherence tomography imaging,” Proc. SPIE 6426, 642607, 642607-11 (2007).
[CrossRef]

Wojtkowski, M.

Wu, L.

S.  Samuelson, L.  Wu, J.  Sun, B.  Sorg, H.  Xie, “A 2.8-mm Imaging Probe Based On a High-Fill-Factor MEMS Mirror and Wire-Bonding-Free Packaging for Endoscopic Optical Coherence Tomography,” JMEMS 21, 1291–1302 (2012).

Xie, H.

D. L.  Wang, L. L.  Fu, X.  Wang, Z. J.  Gong, S.  Samuelson, C.  Duan, H. Z.  Jia, J. S.  Ma, H.  Xie, “Endoscopic swept-source optical coherence tomography based on a two-axis microelectromechanical system mirror,” J. Biomed. Opt. 18(8), 086005 (2013).
[CrossRef] [PubMed]

S.  Samuelson, L.  Wu, J.  Sun, B.  Sorg, H.  Xie, “A 2.8-mm Imaging Probe Based On a High-Fill-Factor MEMS Mirror and Wire-Bonding-Free Packaging for Endoscopic Optical Coherence Tomography,” JMEMS 21, 1291–1302 (2012).

D. L.  Wang, L. L.  Fu, J.  Sun, H. Z.  Jia, H.  Xie, “Design Optimization and Implementation of a Miniature Optical Coherence Tomography Probe Based on a MEMS Mirror,” Proc. SPIE 8191, 81910M, 81910M-10 (2011).
[CrossRef]

Y.  Pan, H.  Xie, G. K.  Fedder, “Endoscopic optical coherence tomography based on a microelectromechanical mirror,” Opt. Lett. 26(24), 1966–1968 (2001).
[CrossRef] [PubMed]

Zawadzki, R. J.

R. J.  Zawadzki, A. R.  Fuller, S. S.  Choi, D. F.  Wiley, B.  Hamann, J. S.  Werner, “Correction of motion artifacts and scanning beam distortions in 3D ophthalmic optical coherence tomography imaging,” Proc. SPIE 6426, 642607, 642607-11 (2007).
[CrossRef]

Zhang, J.

W.  Jung, D. T.  McCormick, J.  Zhang, L.  Wang, N. C.  Tien, Z.  Chen, “Three-Dimensional Endoscopic Optical Coherence Tomography By Use of a Two-Axis Microelectromechanical Scanning Mirror,” Appl. Phys. Lett. 88(16), 163901 (2006).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. Lett. (1)

W.  Jung, D. T.  McCormick, J.  Zhang, L.  Wang, N. C.  Tien, Z.  Chen, “Three-Dimensional Endoscopic Optical Coherence Tomography By Use of a Two-Axis Microelectromechanical Scanning Mirror,” Appl. Phys. Lett. 88(16), 163901 (2006).
[CrossRef]

J. Beijing Inst. Technol. (1)

T. S.  Lian, “Advances in the Theory of Conjugation for Reflecting Prisms in China,” J. Beijing Inst. Technol. 1, 1–12 (1992).

J. Biomed. Opt. (1)

D. L.  Wang, L. L.  Fu, X.  Wang, Z. J.  Gong, S.  Samuelson, C.  Duan, H. Z.  Jia, J. S.  Ma, H.  Xie, “Endoscopic swept-source optical coherence tomography based on a two-axis microelectromechanical system mirror,” J. Biomed. Opt. 18(8), 086005 (2013).
[CrossRef] [PubMed]

JMEMS (1)

S.  Samuelson, L.  Wu, J.  Sun, B.  Sorg, H.  Xie, “A 2.8-mm Imaging Probe Based On a High-Fill-Factor MEMS Mirror and Wire-Bonding-Free Packaging for Endoscopic Optical Coherence Tomography,” JMEMS 21, 1291–1302 (2012).

Opt. Eng. (1)

M.  Hafez, T.  Sidler, R´.-P.  Salathe, “Study of the beam path distortion profiles generated by a two-axis tilt single-mirror laser scanner,” Opt. Eng. 42(4), 1048–1057 (2003).
[CrossRef]

Opt. Express (3)

Opt. Lett. (2)

Phys. Med. Biol. (1)

A.  Podoleanu, I.  Charalambous, L.  Plesea, A.  Dogariu, R.  Rosen, “Correction of distortions in optical coherence tomography imaging of the eye,” Phys. Med. Biol. 49(7), 1277–1294 (2004).
[CrossRef] [PubMed]

Proc. IEEE (1)

M.  Frigo, S. G.  Johnson, “The design and implementation of FFTW3,” Proc. IEEE 93(2), 216–231 (2005).
[CrossRef]

Proc. SPIE (2)

D. L.  Wang, L. L.  Fu, J.  Sun, H. Z.  Jia, H.  Xie, “Design Optimization and Implementation of a Miniature Optical Coherence Tomography Probe Based on a MEMS Mirror,” Proc. SPIE 8191, 81910M, 81910M-10 (2011).
[CrossRef]

R. J.  Zawadzki, A. R.  Fuller, S. S.  Choi, D. F.  Wiley, B.  Hamann, J. S.  Werner, “Correction of motion artifacts and scanning beam distortions in 3D ophthalmic optical coherence tomography imaging,” Proc. SPIE 6426, 642607, 642607-11 (2007).
[CrossRef]

Science (1)

D.  Huang, E. A.  Swanson, C. P.  Lin, J. S.  Schuman, W. G.  Stinson, W.  Chang, M. R.  Hee, T.  Flotte, K.  Gregory, C. A.  Puliafito, J. G.  Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Other (1)

J. M. Hudman and J. O. Miller, “Distortion altering optics for MEMS scanning display system or the like,” WIPO Patent 2010030467(2010).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

2-axis MEMS mirror based endoscopic OCT.

Fig. 2
Fig. 2

(a) Endoscope probe; (b) MEMS mirror; (c)OCT image of buccal mucosa by the probe; (d) Different optical path lengths at different scan angles; and (e) OCT image of a multilayer glass; (f) Distortion corrected OCT image of the multilayer glass. White scale bar represents 1mm

Fig. 3
Fig. 3

Schematic of a 2-axis MEMS mirror scanner.

Fig. 4
Fig. 4

(a) Aplanatic surface of two-axis MEMS mirror scan in the space; (b) fan-shaped distortion; and (c) keystone distortion.

Fig. 5
Fig. 5

Matrix data for 3D image reconstruction.

Fig. 6
Fig. 6

Digital image process for keystone and fan-shape distortions correction. (a) Keystone distortion corrected by image rows scaling;(b) transverse scan pattern (solid lines) and original display form of OCT images (dotted rectangle).

Fig. 7
Fig. 7

(a) Solid lines present results of scaling each row to the right side followed by shifting some pixels to the left; and (b) Column by column scaling.

Fig. 8
Fig. 8

(a) square array sample; (b) cross section image with spherical distortion; (c) fan-shape distortion in transverse plane; (d) cross section image after distortion corrected; (e) transverse plane after distortion corrected. White scale bar represents 1mm.

Fig. 9
Fig. 9

Glass tube

Fig. 10
Fig. 10

OCT images of Glass tube filled with milk. (a): 3D structure of original OCT image. (b)~(d): orthographic views with scanning distortion. (e) 3D structure of compensated OCT image. (f)~(h): orthographic views with scanning distortion free. White scale bar represents 1mm.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

OT (α,β)=[ S A (β) S Y (α)]R [ S A (β) S Y (α)] 1 LO
R=[ 12 N x 2 2 N x N y 2 N x N z 2 N x N y 12 N y 2 2 N y N z 2 N x N z 2 N y N z 12 N z 2 ]
S P ( θ )=[ cosθ+2 P x 2 sin 2 θ 2 P z sinθ+2 P x P y sin 2 θ 2 P y sinθ+2 P x P z sin 2 θ 2 P z sinθ+2 P x P y sin 2 θ 2 cosθ+2 P y 2 sin 2 θ 2 P x sinθ+2 P y P z sin 2 θ 2 P y sinθ+2 P x P z sin 2 θ 2 P x sinθ+2 P y P z sin 2 θ 2 cosθ+2 P z 2 sin 2 θ 2 ]
D (l,m,n) '= D (l,m,n) exp(i k l ΔZ( α m , β n ))
S l = O T x '( α max , β n ) O T x ''( α max , β n ) × Ll L1 + l1 L1 ,l=1,2,3...,L
S n = O T x '( α max , β n )O T x '( α max , β n ) O T x '( α max , β max )O T x '( α max ,0) ,n=1,2,3...,N
P n = O T x '( α max , β max )O T x '( α max , β n ) O T x '( α max , β max )O T x '( α max ,0) ×M,n=1,2,3...,N
S m = O T y '( α m , β max ) O T y '( α max , β max ) ,m=1,2,3...,M'
M'= O T x '( α max , β max )O T x '( α max , β max ) O T x '( α max , β max )O T x '( α max ,0) ×M

Metrics