Abstract

Aqueous leaves the anterior chamber of eye by passing through the trabecular meshwork (TM), a tissue thought to be responsible for increased outflow resistance in glaucoma. Motion assessment could permit characterization of TM biomechanical properties necessary to maintain intra-ocular pressure (IOP) within a narrow homeostatic range. In this paper, we report the first in vivo identification of TM motion in humans. We use a phase-sensitive optical coherence tomography (PhS-OCT) system with sub-nanometer sensitivity to detect and image dynamic pulse-induced TM motion. To permit quantification of TM motion and relationships we develop and apply a phase compensation algorithm permitting removal of the otherwise evitable confounding effects of bulk motion. Twenty healthy human eyes from 10 subjects are imaged. The results permit visualization of pulsatile TM motion visualization by PhS-OCT; correlation with the digital/cardiac pulse is highly significant. The correlation permits assessment of the phase lag and time delay between TM motion and the cardiac pulse. In this study, we find that the digital pulse leads the pulsatile TM motion by a mean phase of 3.53 ± 0.48 rad and a mean time of 0.5 ± 0.14 s in the fundamental frequency. A significant linear relationship is present between the TM phase lag and the heart rate (p value < 0.05). The TM phase lag is also affected by age, the relationship not quite reaching significance in the current study. PhS-OCT reveals pulse-induced motion of the TM that may provide insights into the biomechanics of the tissues involved in the regulation of IOP.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. S. Wilson, D. E. Robinson, and M. J. Dadd, “Elastography--the movement begins,” Phys. Med. Biol.45(6), 1409–1421 (2000).
    [CrossRef] [PubMed]
  2. J. F. Greenleaf, M. Fatemi, and M. Insana, “Selected methods for imaging elastic properties of biological tissues,” Annu. Rev. Biomed. Eng.5(1), 57–78 (2003).
    [CrossRef] [PubMed]
  3. J. Ophir, S. Alam, B. Garra, F. Kallel, E. Konofagou, T. Krouskop, C. Merritt, R. Righetti, R. Souchon, S. Srinivasan, and T. Varghese, “Elastography: Imaging the elastic properties of soft tissues with ultrasound,” J. Med. Ultrasound29(4), 155–171 (2002).
    [CrossRef]
  4. R. J. Dickinson and C. R. Hill, “Measurement of soft tissue motion using correlation between A-scans,” Ultrasound Med. Biol.8(3), 263–271 (1982).
    [CrossRef] [PubMed]
  5. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
    [CrossRef] [PubMed]
  6. P. H. Tomlins and R. K. Wang, “Theory, developments and applications of optical coherence tomography,” J. Phys. D Appl. Phys.38(15), 2519–2535 (2005).
    [CrossRef]
  7. A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography - principles and applications,” Rep. Prog. Phys.66(2), 239–303 (2003).
    [CrossRef]
  8. J. Schmitt, “OCT elastography: imaging microscopic deformation and strain of tissue,” Opt. Express3(6), 199–211 (1998).
    [CrossRef] [PubMed]
  9. R. Chan, A. Chau, W. Karl, S. Nadkarni, A. Khalil, N. Iftimia, M. Shishkov, G. Tearney, M. Kaazempur-Mofrad, and B. Bouma, “OCT-based arterial elastography: robust estimation exploiting tissue biomechanics,” Opt. Express12(19), 4558–4572 (2004).
    [CrossRef] [PubMed]
  10. J. Rogowska, N. A. Patel, J. G. Fujimoto, and M. E. Brezinski, “Optical coherence tomographic elastography technique for measuring deformation and strain of atherosclerotic tissues,” Heart90(5), 556–562 (2004).
    [CrossRef] [PubMed]
  11. R. K. Wang, Z. Ma, and S. J. Kirkpatrick, “Tissue Doppler optical coherence elastography for real time strain rate and strain mapping of soft tissue,” Appl. Phys. Lett.89(14), 144103 (2006).
    [CrossRef]
  12. R. K. Wang, S. Kirkpatrick, and M. Hinds, “Phase-sensitive optical coherence elastography for mapping tissue microstrains in real time,” Appl. Phys. Lett.90(16), 164105 (2007).
    [CrossRef]
  13. X. Liang, A. L. Oldenburg, V. Crecea, E. J. Chaney, and S. A. Boppart, “Optical micro-scale mapping of dynamic biomechanical tissue properties,” Opt. Express16(15), 11052–11065 (2008).
    [CrossRef] [PubMed]
  14. X. Liang, S. G. Adie, R. John, and S. A. Boppart, “Dynamic spectral-domain optical coherence elastography for tissue characterization,” Opt. Express18(13), 14183–14190 (2010).
    [CrossRef] [PubMed]
  15. P. Li, A. Liu, L. Shi, X. Yin, S. Rugonyi, and R. K. Wang, “Assessment of strain and strain rate in embryonic chick heart in vivo using tissue Doppler optical coherence tomography,” Phys. Med. Biol.56(22), 7081–7092 (2011).
    [CrossRef] [PubMed]
  16. P. Li, X. Yin, L. Shi, S. Rugonyi, and R. K. Wang, “In vivo functional imaging of blood flow and wall strain rate in outflow tract of embryonic chick heart using ultrafast spectral domain optical coherence tomography,” J. Biomed. Opt.17(9), 096006 (2012).
    [CrossRef] [PubMed]
  17. R. K. Wang and A. L. Nuttall, “Phase-sensitive optical coherence tomography imaging of the tissue motion within the organ of Corti at a subnanometer scale: a preliminary study,” J. Biomed. Opt.15(5), 056005 (2010).
    [CrossRef] [PubMed]
  18. P. Li, R. Reif, Z. Zhi, E. Martin, T. T. Shen, M. Johnstone, and R. K. Wang, “Phase-sensitive optical coherence tomography characterization of pulse-induced trabecular meshwork displacement in ex vivo nonhuman primate eyes,” J. Biomed. Opt.17(7), 076026 (2012).
    [CrossRef] [PubMed]
  19. S. G. Adie, X. Liang, B. F. Kennedy, R. John, D. D. Sampson, and S. A. Boppart, “Spectroscopic optical coherence elastography,” Opt. Express18(25), 25519–25534 (2010).
    [CrossRef] [PubMed]
  20. C. Sun, B. Standish, and V. X. Yang, “Optical coherence elastography: current status and future applications,” J. Biomed. Opt.16(4), 043001 (2011).
    [CrossRef] [PubMed]
  21. Y. Zhao, Z. Chen, Z. Ding, H. Ren, and J. S. Nelson, “Real-time phase-resolved functional optical coherence tomography by use of optical Hilbert transformation,” Opt. Lett.27(2), 98–100 (2002).
    [CrossRef] [PubMed]
  22. R. K. Wang and Z. Ma, “Real-time flow imaging by removing texture pattern artifacts in spectral-domain optical Doppler tomography,” Opt. Lett.31(20), 3001–3003 (2006).
    [CrossRef] [PubMed]
  23. P. Li, L. An, G. Lan, M. Johnstone, D. Malchow, and R. K. Wang, “Extended imaging depth to 12 mm for 1050-nm spectral domain optical coherence tomography for imaging the whole anterior segment of the human eye at 120-kHz A-scan rate,” J. Biomed. Opt.18(1), 016012 (2013).
    [CrossRef] [PubMed]
  24. C. I. Phillips, S. Tsukahara, O. Hosaka, and W. Adams, “Ocular pulsation correlates with ocular tension: the choroid as piston for an aqueous pump?” Ophthalmic Res.24(6), 338–343 (1992).
    [CrossRef] [PubMed]
  25. P. L. Kaufman and C. A. Rasmussen, “Advances in glaucoma treatment and management: outflow drugs,” Invest. Ophthalmol. Vis. Sci.53(5), 2495–2500 (2012).
    [CrossRef] [PubMed]
  26. R. F. Ramos and W. D. Stamer, “Effects of cyclic intraocular pressure on conventional outflow facility,” Invest. Ophthalmol. Vis. Sci.49(1), 275–281 (2008).
    [CrossRef] [PubMed]
  27. R. F. Ramos, G. M. Sumida, and W. D. Stamer, “Cyclic mechanical stress and trabecular meshwork cell contractility,” Invest. Ophthalmol. Vis. Sci.50(8), 3826–3832 (2009).
    [CrossRef] [PubMed]
  28. S. J. Tumminia, K. P. Mitton, J. Arora, P. Zelenka, D. L. Epstein, and P. Russell, “Mechanical stretch alters the actin cytoskeletal network and signal transduction in human trabecular meshwork cells,” Invest. Ophthalmol. Vis. Sci.39(8), 1361–1371 (1998).
    [PubMed]
  29. C. Luna, G. Li, P. B. Liton, D. L. Epstein, and P. Gonzalez, “Alterations in gene expression induced by cyclic mechanical stress in trabecular meshwork cells,” Mol. Vis.15, 534–544 (2009).
    [PubMed]
  30. P. B. Liton, X. Liu, P. Challa, D. L. Epstein, and P. Gonzalez, “Induction of TGF-beta1 in the trabecular meshwork under cyclic mechanical stress,” J. Cell. Physiol.205(3), 364–371 (2005).
    [CrossRef] [PubMed]
  31. P. B. Liton, C. Luna, M. Bodman, A. Hong, D. L. Epstein, and P. Gonzalez, “Induction of IL-6 expression by mechanical stress in the trabecular meshwork,” Biochem. Biophys. Res. Commun.337(4), 1229–1236 (2005).
    [CrossRef] [PubMed]
  32. E. R. Tamm, P. Russell, D. L. Epstein, D. H. Johnson, and J. Piatigorsky, “Modulation of myocilin/TIGR expression in human trabecular meshwork,” Invest. Ophthalmol. Vis. Sci.40(11), 2577–2582 (1999).
    [PubMed]
  33. K. P. Mitton, S. J. Tumminia, J. Arora, P. Zelenka, D. L. Epstein, and P. Russell, “Transient loss of alphaB-crystallin: an early cellular response to mechanical stretch,” Biochem. Biophys. Res. Commun.235(1), 69–73 (1997).
    [CrossRef] [PubMed]
  34. B. Junglas, S. Kuespert, A. A. Seleem, T. Struller, S. Ullmann, M. Bösl, A. Bosserhoff, J. Köstler, R. Wagner, E. R. Tamm, and R. Fuchshofer, “Connective tissue growth factor causes glaucoma by modifying the actin cytoskeleton of the trabecular meshwork,” Am. J. Pathol.180(6), 2386–2403 (2012).
    [CrossRef] [PubMed]
  35. C. Luna, G. Li, J. Qiu, P. Challa, D. L. Epstein, and P. Gonzalez, “Extracellular release of ATP mediated by cyclic mechanical stress leads to mobilization of AA in trabecular meshwork cells,” Invest. Ophthalmol. Vis. Sci.50(12), 5805–5810 (2009).
    [CrossRef] [PubMed]
  36. J. M. B. Bradley, M. J. Kelley, A. Rose, and T. S. Acott, “Signaling Pathways Used in Trabecular Matrix Metalloproteinase Response to Mechanical Stretch,” Invest. Ophthalmol. Vis. Sci.44(12), 5174–5181 (2003).
    [CrossRef] [PubMed]
  37. V. Vittal, A. Rose, K. E. Gregory, M. J. Kelley, and T. S. Acott, “Changes in gene expression by trabecular meshwork cells in response to mechanical stretching,” Invest. Ophthalmol. Vis. Sci.46(8), 2857–2868 (2005).
    [CrossRef] [PubMed]
  38. T. S. Acott and M. J. Kelley, “Extracellular matrix in the trabecular meshwork,” Exp. Eye Res.86(4), 543–561 (2008).
    [CrossRef] [PubMed]
  39. K. E. Keller, M. Aga, J. M. Bradley, M. J. Kelley, and T. S. Acott, “Extracellular matrix turnover and outflow resistance,” Exp. Eye Res.88(4), 676–682 (2009).
    [CrossRef] [PubMed]
  40. W. D. Stamer and T. S. Acott, “Current understanding of conventional outflow dysfunction in glaucoma,” Curr. Opin. Ophthalmol.23(2), 135–143 (2012).
    [CrossRef] [PubMed]
  41. D. WuDunn, “The effect of mechanical strain on matrix metalloproteinase production by bovine trabecular meshwork cells,” Curr. Eye Res.22(5), 394–397 (2001).
    [CrossRef] [PubMed]
  42. J. M. Bradley, M. J. Kelley, X. Zhu, A. M. Anderssohn, J. P. Alexander, and T. S. Acott, “Effects of mechanical stretching on trabecular matrix metalloproteinases,” Invest. Ophthalmol. Vis. Sci.42(7), 1505–1513 (2001).
    [PubMed]
  43. K. E. Keller, M. J. Kelley, and T. S. Acott, “Extracellular matrix gene alternative splicing by trabecular meshwork cells in response to mechanical stretching,” Invest. Ophthalmol. Vis. Sci.48(3), 1164–1172 (2007).
    [CrossRef] [PubMed]
  44. M. A. Johnstone, “The aqueous outflow system as a mechanical pump: evidence from examination of tissue and aqueous movement in human and non-human primates,” J. Glaucoma13(5), 421–438 (2004).
    [CrossRef] [PubMed]
  45. E. H. Zhou, R. Krishnan, W. D. Stamer, K. M. Perkumas, K. Rajendran, J. F. Nabhan, Q. Lu, J. J. Fredberg, and M. Johnson, “Mechanical responsiveness of the endothelial cell of Schlemm’s canal: scope, variability and its potential role in controlling aqueous humour outflow,” J. R. Soc. Interface9(71), 1144–1155 (2012).
    [CrossRef] [PubMed]
  46. R. Clark, A. Nosie, T. Walker, J. A. Faralli, M. S. Filla, G. Barrett-Wilt, and D. M. Peters, “Comparative genomic and proteomic analysis of cytoskeletal changes in dexamethasone-treated trabecular meshwork cells,” Mol. Cell. Proteomics12(1), 194–206 (2013).
    [CrossRef] [PubMed]
  47. M. S. Filla, M. K. Schwinn, A. K. Nosie, R. W. Clark, and D. M. Peters, “Dexamethasone-associated cross-linked actin network formation in human trabecular meshwork cells involves β3 integrin signaling,” Invest. Ophthalmol. Vis. Sci.52(6), 2952–2959 (2011).
    [CrossRef] [PubMed]
  48. S. O’Reilly, N. Pollock, L. Currie, L. Paraoan, A. F. Clark, and I. Grierson, “Inducers of cross-linked actin networks in trabecular meshwork cells,” Invest. Ophthalmol. Vis. Sci.52(10), 7316–7324 (2011).
    [CrossRef] [PubMed]
  49. J. A. Last, T. Pan, Y. Ding, C. M. Reilly, K. Keller, T. S. Acott, M. P. Fautsch, C. J. Murphy, and P. Russell, “Elastic modulus determination of normal and glaucomatous human trabecular meshwork,” Invest. Ophthalmol. Vis. Sci.52(5), 2147–2152 (2011).
    [CrossRef] [PubMed]
  50. P. Russell and M. Johnson, “Elastic modulus determination of normal and glaucomatous human trabecular meshwork,” Invest. Ophthalmol. Vis. Sci.53(1), 117 (2012).
    [CrossRef]
  51. S. M. Thomasy, J. A. Wood, P. H. Kass, C. J. Murphy, and P. Russell, “Substratum stiffness and latrunculin B regulate matrix gene and protein expression in human trabecular meshwork cells,” Invest. Ophthalmol. Vis. Sci.53(2), 952–958 (2012).
    [CrossRef] [PubMed]
  52. M. Johnstone, E. Martin, and A. Jamil, “Pulsatile flow into the aqueous veins: Manifestations in normal and glaucomatous eyes,” Exp. Eye Res.92(5), 318–327 (2011).
    [CrossRef] [PubMed]
  53. M. A. Johnstone, “A New Model Describes an Aqueous Outflow Pump and Explores Causes of Pump Failure in Glaucoma,” in Glaucoma. Essentials in Ophthalmology, F. Grehn and R. Stamper, eds. (Springer Berlin Heidelberg, 2006), pp. 3–34.
  54. E. B. Suson and R. O. Schultz, “Blood in schlemm’s canal in glaucoma suspects. A study of the relationship between blood-filling pattern and outflow facility in ocular hypertension,” Arch. Ophthalmol.81(6), 808–812 (1969).
    [CrossRef] [PubMed]
  55. B. A. Francis, K. Singh, S. C. Lin, E. Hodapp, H. D. Jampel, J. R. Samples, and S. D. Smith, “Novel glaucoma procedures: a report by the American Academy of Ophthalmology,” Ophthalmology118(7), 1466–1480 (2011).
    [PubMed]
  56. H. Saheb and I. I. Ahmed, “Micro-invasive glaucoma surgery: current perspectives and future directions,” Curr. Opin. Ophthalmol.23(2), 96–104 (2012).
    [CrossRef] [PubMed]
  57. M. P. Fautsch and D. H. Johnson, “Aqueous humor outflow: what do we know? Where will it lead us?” Invest. Ophthalmol. Vis. Sci.47(10), 4181–4187 (2006).
    [CrossRef] [PubMed]
  58. R. K. Wang and Z. Ma, “A practical approach to eliminate autocorrelation artefacts for volume-rate spectral domain optical coherence tomography,” Phys. Med. Biol.51(12), 3231–3239 (2006).
    [CrossRef] [PubMed]
  59. American National Standard Institute, Safe use of lasers and safe use of optical fiber communications. New York: ANSI, Z136 committee; 2000:168.
  60. S. Makita, Y. Hong, M. Yamanari, T. Yatagai, and Y. Yasuno, “Optical coherence angiography,” Opt. Express14(17), 7821–7840 (2006).
    [CrossRef] [PubMed]
  61. L. An, T. T. Shen, and R. K. Wang, “Using ultrahigh sensitive optical microangiography to achieve comprehensive depth resolved microvasculature mapping for human retina,” J. Biomed. Opt.16(10), 106013 (2011).
    [CrossRef] [PubMed]
  62. S. Asrani, M. Sarunic, C. Santiago, and J. Izatt, “Detailed visualization of the anterior segment using fourier-domain optical coherence tomography,” Arch. Ophthalmol.126(6), 765–771 (2008).
    [CrossRef] [PubMed]
  63. C. G. Caro and D. A. McDONALD, “The relation of pulsatile pressure and flow in the pulmonary vascular bed,” J. Physiol.157, 426–453 (1961).
    [PubMed]
  64. S. Solomon, S. D. Katz, W. Stevenson-Smith, E. L. Yellin, and T. H. LeJemtel, “Determination of vascular impedance in the peripheral circulation by transcutaneous pulsed Doppler ultrasound,” Chest108(2), 515–521 (1995).
    [CrossRef] [PubMed]
  65. M. F. O’Rourke, “Pressure and flow waves in systemic arteries and the anatomical design of the arterial system,” J. Appl. Physiol.23(2), 139–149 (1967).
    [PubMed]
  66. D. A. McDonald, “The relation of pulsatile pressure to flow in arteries,” J. Physiol.127(3), 533–552 (1955).
    [PubMed]
  67. J. R. Womersley, “Method for the calculation of velocity, rate of flow and viscous drag in arteries when the pressure gradient is known,” J. Physiol.127(3), 553–563 (1955).
    [PubMed]
  68. D. J. Patel, J. C. Greenfield, W. G. Austen, A. G. Morrow, and D. L. Fry, “Pressure-flow relationships in the ascending aorta and femoral artery of man,” J. Appl. Physiol.20(3), 459–463 (1965).
    [PubMed]
  69. M. F. O'Rourke and M. G. Taylor, “Vascular Impedance of the Femoral Bed,” Circ. Res.18(2), 126–139 (1966).
    [CrossRef]
  70. M. F. O’Rourke and M. G. Taylor, “Input impedance of the systemic circulation,” Circ. Res.20(4), 365–380 (1967).
    [CrossRef] [PubMed]
  71. R. K. Wang and L. An, “Multifunctional imaging of human retina and choroid with 1050-nm spectral domain optical coherence tomography at 92-kHz line scan rate,” J. Biomed. Opt.16(5), 050503 (2011).
    [CrossRef] [PubMed]
  72. L. An, P. Li, G. Lan, D. Malchow, and R. K. Wang, “High-resolution 1050 nm spectral domain retinal optical coherence tomography at 120 kHz A-scan rate with 6.1 mm imaging depth,” Biomed. Opt. Express4(2), 245–259 (2013).
    [CrossRef] [PubMed]
  73. R. N. Weinreb and P. L. Kaufman, “Glaucoma research community and FDA look to the future, II: NEI/FDA Glaucoma Clinical Trial Design and Endpoints Symposium: measures of structural change and visual function,” Invest. Ophthalmol. Vis. Sci.52(11), 7842–7851 (2011).
    [CrossRef] [PubMed]

2013 (3)

P. Li, L. An, G. Lan, M. Johnstone, D. Malchow, and R. K. Wang, “Extended imaging depth to 12 mm for 1050-nm spectral domain optical coherence tomography for imaging the whole anterior segment of the human eye at 120-kHz A-scan rate,” J. Biomed. Opt.18(1), 016012 (2013).
[CrossRef] [PubMed]

R. Clark, A. Nosie, T. Walker, J. A. Faralli, M. S. Filla, G. Barrett-Wilt, and D. M. Peters, “Comparative genomic and proteomic analysis of cytoskeletal changes in dexamethasone-treated trabecular meshwork cells,” Mol. Cell. Proteomics12(1), 194–206 (2013).
[CrossRef] [PubMed]

L. An, P. Li, G. Lan, D. Malchow, and R. K. Wang, “High-resolution 1050 nm spectral domain retinal optical coherence tomography at 120 kHz A-scan rate with 6.1 mm imaging depth,” Biomed. Opt. Express4(2), 245–259 (2013).
[CrossRef] [PubMed]

2012 (9)

E. H. Zhou, R. Krishnan, W. D. Stamer, K. M. Perkumas, K. Rajendran, J. F. Nabhan, Q. Lu, J. J. Fredberg, and M. Johnson, “Mechanical responsiveness of the endothelial cell of Schlemm’s canal: scope, variability and its potential role in controlling aqueous humour outflow,” J. R. Soc. Interface9(71), 1144–1155 (2012).
[CrossRef] [PubMed]

P. Russell and M. Johnson, “Elastic modulus determination of normal and glaucomatous human trabecular meshwork,” Invest. Ophthalmol. Vis. Sci.53(1), 117 (2012).
[CrossRef]

S. M. Thomasy, J. A. Wood, P. H. Kass, C. J. Murphy, and P. Russell, “Substratum stiffness and latrunculin B regulate matrix gene and protein expression in human trabecular meshwork cells,” Invest. Ophthalmol. Vis. Sci.53(2), 952–958 (2012).
[CrossRef] [PubMed]

H. Saheb and I. I. Ahmed, “Micro-invasive glaucoma surgery: current perspectives and future directions,” Curr. Opin. Ophthalmol.23(2), 96–104 (2012).
[CrossRef] [PubMed]

P. L. Kaufman and C. A. Rasmussen, “Advances in glaucoma treatment and management: outflow drugs,” Invest. Ophthalmol. Vis. Sci.53(5), 2495–2500 (2012).
[CrossRef] [PubMed]

B. Junglas, S. Kuespert, A. A. Seleem, T. Struller, S. Ullmann, M. Bösl, A. Bosserhoff, J. Köstler, R. Wagner, E. R. Tamm, and R. Fuchshofer, “Connective tissue growth factor causes glaucoma by modifying the actin cytoskeleton of the trabecular meshwork,” Am. J. Pathol.180(6), 2386–2403 (2012).
[CrossRef] [PubMed]

W. D. Stamer and T. S. Acott, “Current understanding of conventional outflow dysfunction in glaucoma,” Curr. Opin. Ophthalmol.23(2), 135–143 (2012).
[CrossRef] [PubMed]

P. Li, X. Yin, L. Shi, S. Rugonyi, and R. K. Wang, “In vivo functional imaging of blood flow and wall strain rate in outflow tract of embryonic chick heart using ultrafast spectral domain optical coherence tomography,” J. Biomed. Opt.17(9), 096006 (2012).
[CrossRef] [PubMed]

P. Li, R. Reif, Z. Zhi, E. Martin, T. T. Shen, M. Johnstone, and R. K. Wang, “Phase-sensitive optical coherence tomography characterization of pulse-induced trabecular meshwork displacement in ex vivo nonhuman primate eyes,” J. Biomed. Opt.17(7), 076026 (2012).
[CrossRef] [PubMed]

2011 (10)

L. An, T. T. Shen, and R. K. Wang, “Using ultrahigh sensitive optical microangiography to achieve comprehensive depth resolved microvasculature mapping for human retina,” J. Biomed. Opt.16(10), 106013 (2011).
[CrossRef] [PubMed]

P. Li, A. Liu, L. Shi, X. Yin, S. Rugonyi, and R. K. Wang, “Assessment of strain and strain rate in embryonic chick heart in vivo using tissue Doppler optical coherence tomography,” Phys. Med. Biol.56(22), 7081–7092 (2011).
[CrossRef] [PubMed]

B. A. Francis, K. Singh, S. C. Lin, E. Hodapp, H. D. Jampel, J. R. Samples, and S. D. Smith, “Novel glaucoma procedures: a report by the American Academy of Ophthalmology,” Ophthalmology118(7), 1466–1480 (2011).
[PubMed]

R. K. Wang and L. An, “Multifunctional imaging of human retina and choroid with 1050-nm spectral domain optical coherence tomography at 92-kHz line scan rate,” J. Biomed. Opt.16(5), 050503 (2011).
[CrossRef] [PubMed]

C. Sun, B. Standish, and V. X. Yang, “Optical coherence elastography: current status and future applications,” J. Biomed. Opt.16(4), 043001 (2011).
[CrossRef] [PubMed]

R. N. Weinreb and P. L. Kaufman, “Glaucoma research community and FDA look to the future, II: NEI/FDA Glaucoma Clinical Trial Design and Endpoints Symposium: measures of structural change and visual function,” Invest. Ophthalmol. Vis. Sci.52(11), 7842–7851 (2011).
[CrossRef] [PubMed]

M. Johnstone, E. Martin, and A. Jamil, “Pulsatile flow into the aqueous veins: Manifestations in normal and glaucomatous eyes,” Exp. Eye Res.92(5), 318–327 (2011).
[CrossRef] [PubMed]

M. S. Filla, M. K. Schwinn, A. K. Nosie, R. W. Clark, and D. M. Peters, “Dexamethasone-associated cross-linked actin network formation in human trabecular meshwork cells involves β3 integrin signaling,” Invest. Ophthalmol. Vis. Sci.52(6), 2952–2959 (2011).
[CrossRef] [PubMed]

S. O’Reilly, N. Pollock, L. Currie, L. Paraoan, A. F. Clark, and I. Grierson, “Inducers of cross-linked actin networks in trabecular meshwork cells,” Invest. Ophthalmol. Vis. Sci.52(10), 7316–7324 (2011).
[CrossRef] [PubMed]

J. A. Last, T. Pan, Y. Ding, C. M. Reilly, K. Keller, T. S. Acott, M. P. Fautsch, C. J. Murphy, and P. Russell, “Elastic modulus determination of normal and glaucomatous human trabecular meshwork,” Invest. Ophthalmol. Vis. Sci.52(5), 2147–2152 (2011).
[CrossRef] [PubMed]

2010 (3)

2009 (4)

K. E. Keller, M. Aga, J. M. Bradley, M. J. Kelley, and T. S. Acott, “Extracellular matrix turnover and outflow resistance,” Exp. Eye Res.88(4), 676–682 (2009).
[CrossRef] [PubMed]

C. Luna, G. Li, J. Qiu, P. Challa, D. L. Epstein, and P. Gonzalez, “Extracellular release of ATP mediated by cyclic mechanical stress leads to mobilization of AA in trabecular meshwork cells,” Invest. Ophthalmol. Vis. Sci.50(12), 5805–5810 (2009).
[CrossRef] [PubMed]

R. F. Ramos, G. M. Sumida, and W. D. Stamer, “Cyclic mechanical stress and trabecular meshwork cell contractility,” Invest. Ophthalmol. Vis. Sci.50(8), 3826–3832 (2009).
[CrossRef] [PubMed]

C. Luna, G. Li, P. B. Liton, D. L. Epstein, and P. Gonzalez, “Alterations in gene expression induced by cyclic mechanical stress in trabecular meshwork cells,” Mol. Vis.15, 534–544 (2009).
[PubMed]

2008 (4)

R. F. Ramos and W. D. Stamer, “Effects of cyclic intraocular pressure on conventional outflow facility,” Invest. Ophthalmol. Vis. Sci.49(1), 275–281 (2008).
[CrossRef] [PubMed]

T. S. Acott and M. J. Kelley, “Extracellular matrix in the trabecular meshwork,” Exp. Eye Res.86(4), 543–561 (2008).
[CrossRef] [PubMed]

S. Asrani, M. Sarunic, C. Santiago, and J. Izatt, “Detailed visualization of the anterior segment using fourier-domain optical coherence tomography,” Arch. Ophthalmol.126(6), 765–771 (2008).
[CrossRef] [PubMed]

X. Liang, A. L. Oldenburg, V. Crecea, E. J. Chaney, and S. A. Boppart, “Optical micro-scale mapping of dynamic biomechanical tissue properties,” Opt. Express16(15), 11052–11065 (2008).
[CrossRef] [PubMed]

2007 (2)

R. K. Wang, S. Kirkpatrick, and M. Hinds, “Phase-sensitive optical coherence elastography for mapping tissue microstrains in real time,” Appl. Phys. Lett.90(16), 164105 (2007).
[CrossRef]

K. E. Keller, M. J. Kelley, and T. S. Acott, “Extracellular matrix gene alternative splicing by trabecular meshwork cells in response to mechanical stretching,” Invest. Ophthalmol. Vis. Sci.48(3), 1164–1172 (2007).
[CrossRef] [PubMed]

2006 (5)

M. P. Fautsch and D. H. Johnson, “Aqueous humor outflow: what do we know? Where will it lead us?” Invest. Ophthalmol. Vis. Sci.47(10), 4181–4187 (2006).
[CrossRef] [PubMed]

R. K. Wang and Z. Ma, “A practical approach to eliminate autocorrelation artefacts for volume-rate spectral domain optical coherence tomography,” Phys. Med. Biol.51(12), 3231–3239 (2006).
[CrossRef] [PubMed]

R. K. Wang, Z. Ma, and S. J. Kirkpatrick, “Tissue Doppler optical coherence elastography for real time strain rate and strain mapping of soft tissue,” Appl. Phys. Lett.89(14), 144103 (2006).
[CrossRef]

S. Makita, Y. Hong, M. Yamanari, T. Yatagai, and Y. Yasuno, “Optical coherence angiography,” Opt. Express14(17), 7821–7840 (2006).
[CrossRef] [PubMed]

R. K. Wang and Z. Ma, “Real-time flow imaging by removing texture pattern artifacts in spectral-domain optical Doppler tomography,” Opt. Lett.31(20), 3001–3003 (2006).
[CrossRef] [PubMed]

2005 (4)

P. H. Tomlins and R. K. Wang, “Theory, developments and applications of optical coherence tomography,” J. Phys. D Appl. Phys.38(15), 2519–2535 (2005).
[CrossRef]

V. Vittal, A. Rose, K. E. Gregory, M. J. Kelley, and T. S. Acott, “Changes in gene expression by trabecular meshwork cells in response to mechanical stretching,” Invest. Ophthalmol. Vis. Sci.46(8), 2857–2868 (2005).
[CrossRef] [PubMed]

P. B. Liton, X. Liu, P. Challa, D. L. Epstein, and P. Gonzalez, “Induction of TGF-beta1 in the trabecular meshwork under cyclic mechanical stress,” J. Cell. Physiol.205(3), 364–371 (2005).
[CrossRef] [PubMed]

P. B. Liton, C. Luna, M. Bodman, A. Hong, D. L. Epstein, and P. Gonzalez, “Induction of IL-6 expression by mechanical stress in the trabecular meshwork,” Biochem. Biophys. Res. Commun.337(4), 1229–1236 (2005).
[CrossRef] [PubMed]

2004 (3)

M. A. Johnstone, “The aqueous outflow system as a mechanical pump: evidence from examination of tissue and aqueous movement in human and non-human primates,” J. Glaucoma13(5), 421–438 (2004).
[CrossRef] [PubMed]

J. Rogowska, N. A. Patel, J. G. Fujimoto, and M. E. Brezinski, “Optical coherence tomographic elastography technique for measuring deformation and strain of atherosclerotic tissues,” Heart90(5), 556–562 (2004).
[CrossRef] [PubMed]

R. Chan, A. Chau, W. Karl, S. Nadkarni, A. Khalil, N. Iftimia, M. Shishkov, G. Tearney, M. Kaazempur-Mofrad, and B. Bouma, “OCT-based arterial elastography: robust estimation exploiting tissue biomechanics,” Opt. Express12(19), 4558–4572 (2004).
[CrossRef] [PubMed]

2003 (3)

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography - principles and applications,” Rep. Prog. Phys.66(2), 239–303 (2003).
[CrossRef]

J. F. Greenleaf, M. Fatemi, and M. Insana, “Selected methods for imaging elastic properties of biological tissues,” Annu. Rev. Biomed. Eng.5(1), 57–78 (2003).
[CrossRef] [PubMed]

J. M. B. Bradley, M. J. Kelley, A. Rose, and T. S. Acott, “Signaling Pathways Used in Trabecular Matrix Metalloproteinase Response to Mechanical Stretch,” Invest. Ophthalmol. Vis. Sci.44(12), 5174–5181 (2003).
[CrossRef] [PubMed]

2002 (2)

J. Ophir, S. Alam, B. Garra, F. Kallel, E. Konofagou, T. Krouskop, C. Merritt, R. Righetti, R. Souchon, S. Srinivasan, and T. Varghese, “Elastography: Imaging the elastic properties of soft tissues with ultrasound,” J. Med. Ultrasound29(4), 155–171 (2002).
[CrossRef]

Y. Zhao, Z. Chen, Z. Ding, H. Ren, and J. S. Nelson, “Real-time phase-resolved functional optical coherence tomography by use of optical Hilbert transformation,” Opt. Lett.27(2), 98–100 (2002).
[CrossRef] [PubMed]

2001 (2)

D. WuDunn, “The effect of mechanical strain on matrix metalloproteinase production by bovine trabecular meshwork cells,” Curr. Eye Res.22(5), 394–397 (2001).
[CrossRef] [PubMed]

J. M. Bradley, M. J. Kelley, X. Zhu, A. M. Anderssohn, J. P. Alexander, and T. S. Acott, “Effects of mechanical stretching on trabecular matrix metalloproteinases,” Invest. Ophthalmol. Vis. Sci.42(7), 1505–1513 (2001).
[PubMed]

2000 (1)

L. S. Wilson, D. E. Robinson, and M. J. Dadd, “Elastography--the movement begins,” Phys. Med. Biol.45(6), 1409–1421 (2000).
[CrossRef] [PubMed]

1999 (1)

E. R. Tamm, P. Russell, D. L. Epstein, D. H. Johnson, and J. Piatigorsky, “Modulation of myocilin/TIGR expression in human trabecular meshwork,” Invest. Ophthalmol. Vis. Sci.40(11), 2577–2582 (1999).
[PubMed]

1998 (2)

S. J. Tumminia, K. P. Mitton, J. Arora, P. Zelenka, D. L. Epstein, and P. Russell, “Mechanical stretch alters the actin cytoskeletal network and signal transduction in human trabecular meshwork cells,” Invest. Ophthalmol. Vis. Sci.39(8), 1361–1371 (1998).
[PubMed]

J. Schmitt, “OCT elastography: imaging microscopic deformation and strain of tissue,” Opt. Express3(6), 199–211 (1998).
[CrossRef] [PubMed]

1997 (1)

K. P. Mitton, S. J. Tumminia, J. Arora, P. Zelenka, D. L. Epstein, and P. Russell, “Transient loss of alphaB-crystallin: an early cellular response to mechanical stretch,” Biochem. Biophys. Res. Commun.235(1), 69–73 (1997).
[CrossRef] [PubMed]

1995 (1)

S. Solomon, S. D. Katz, W. Stevenson-Smith, E. L. Yellin, and T. H. LeJemtel, “Determination of vascular impedance in the peripheral circulation by transcutaneous pulsed Doppler ultrasound,” Chest108(2), 515–521 (1995).
[CrossRef] [PubMed]

1992 (1)

C. I. Phillips, S. Tsukahara, O. Hosaka, and W. Adams, “Ocular pulsation correlates with ocular tension: the choroid as piston for an aqueous pump?” Ophthalmic Res.24(6), 338–343 (1992).
[CrossRef] [PubMed]

1991 (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

1982 (1)

R. J. Dickinson and C. R. Hill, “Measurement of soft tissue motion using correlation between A-scans,” Ultrasound Med. Biol.8(3), 263–271 (1982).
[CrossRef] [PubMed]

1969 (1)

E. B. Suson and R. O. Schultz, “Blood in schlemm’s canal in glaucoma suspects. A study of the relationship between blood-filling pattern and outflow facility in ocular hypertension,” Arch. Ophthalmol.81(6), 808–812 (1969).
[CrossRef] [PubMed]

1967 (2)

M. F. O’Rourke, “Pressure and flow waves in systemic arteries and the anatomical design of the arterial system,” J. Appl. Physiol.23(2), 139–149 (1967).
[PubMed]

M. F. O’Rourke and M. G. Taylor, “Input impedance of the systemic circulation,” Circ. Res.20(4), 365–380 (1967).
[CrossRef] [PubMed]

1966 (1)

M. F. O'Rourke and M. G. Taylor, “Vascular Impedance of the Femoral Bed,” Circ. Res.18(2), 126–139 (1966).
[CrossRef]

1965 (1)

D. J. Patel, J. C. Greenfield, W. G. Austen, A. G. Morrow, and D. L. Fry, “Pressure-flow relationships in the ascending aorta and femoral artery of man,” J. Appl. Physiol.20(3), 459–463 (1965).
[PubMed]

1961 (1)

C. G. Caro and D. A. McDONALD, “The relation of pulsatile pressure and flow in the pulmonary vascular bed,” J. Physiol.157, 426–453 (1961).
[PubMed]

1955 (2)

D. A. McDonald, “The relation of pulsatile pressure to flow in arteries,” J. Physiol.127(3), 533–552 (1955).
[PubMed]

J. R. Womersley, “Method for the calculation of velocity, rate of flow and viscous drag in arteries when the pressure gradient is known,” J. Physiol.127(3), 553–563 (1955).
[PubMed]

Acott, T. S.

W. D. Stamer and T. S. Acott, “Current understanding of conventional outflow dysfunction in glaucoma,” Curr. Opin. Ophthalmol.23(2), 135–143 (2012).
[CrossRef] [PubMed]

J. A. Last, T. Pan, Y. Ding, C. M. Reilly, K. Keller, T. S. Acott, M. P. Fautsch, C. J. Murphy, and P. Russell, “Elastic modulus determination of normal and glaucomatous human trabecular meshwork,” Invest. Ophthalmol. Vis. Sci.52(5), 2147–2152 (2011).
[CrossRef] [PubMed]

K. E. Keller, M. Aga, J. M. Bradley, M. J. Kelley, and T. S. Acott, “Extracellular matrix turnover and outflow resistance,” Exp. Eye Res.88(4), 676–682 (2009).
[CrossRef] [PubMed]

T. S. Acott and M. J. Kelley, “Extracellular matrix in the trabecular meshwork,” Exp. Eye Res.86(4), 543–561 (2008).
[CrossRef] [PubMed]

K. E. Keller, M. J. Kelley, and T. S. Acott, “Extracellular matrix gene alternative splicing by trabecular meshwork cells in response to mechanical stretching,” Invest. Ophthalmol. Vis. Sci.48(3), 1164–1172 (2007).
[CrossRef] [PubMed]

V. Vittal, A. Rose, K. E. Gregory, M. J. Kelley, and T. S. Acott, “Changes in gene expression by trabecular meshwork cells in response to mechanical stretching,” Invest. Ophthalmol. Vis. Sci.46(8), 2857–2868 (2005).
[CrossRef] [PubMed]

J. M. B. Bradley, M. J. Kelley, A. Rose, and T. S. Acott, “Signaling Pathways Used in Trabecular Matrix Metalloproteinase Response to Mechanical Stretch,” Invest. Ophthalmol. Vis. Sci.44(12), 5174–5181 (2003).
[CrossRef] [PubMed]

J. M. Bradley, M. J. Kelley, X. Zhu, A. M. Anderssohn, J. P. Alexander, and T. S. Acott, “Effects of mechanical stretching on trabecular matrix metalloproteinases,” Invest. Ophthalmol. Vis. Sci.42(7), 1505–1513 (2001).
[PubMed]

Adams, W.

C. I. Phillips, S. Tsukahara, O. Hosaka, and W. Adams, “Ocular pulsation correlates with ocular tension: the choroid as piston for an aqueous pump?” Ophthalmic Res.24(6), 338–343 (1992).
[CrossRef] [PubMed]

Adie, S. G.

Aga, M.

K. E. Keller, M. Aga, J. M. Bradley, M. J. Kelley, and T. S. Acott, “Extracellular matrix turnover and outflow resistance,” Exp. Eye Res.88(4), 676–682 (2009).
[CrossRef] [PubMed]

Ahmed, I. I.

H. Saheb and I. I. Ahmed, “Micro-invasive glaucoma surgery: current perspectives and future directions,” Curr. Opin. Ophthalmol.23(2), 96–104 (2012).
[CrossRef] [PubMed]

Alam, S.

J. Ophir, S. Alam, B. Garra, F. Kallel, E. Konofagou, T. Krouskop, C. Merritt, R. Righetti, R. Souchon, S. Srinivasan, and T. Varghese, “Elastography: Imaging the elastic properties of soft tissues with ultrasound,” J. Med. Ultrasound29(4), 155–171 (2002).
[CrossRef]

Alexander, J. P.

J. M. Bradley, M. J. Kelley, X. Zhu, A. M. Anderssohn, J. P. Alexander, and T. S. Acott, “Effects of mechanical stretching on trabecular matrix metalloproteinases,” Invest. Ophthalmol. Vis. Sci.42(7), 1505–1513 (2001).
[PubMed]

An, L.

L. An, P. Li, G. Lan, D. Malchow, and R. K. Wang, “High-resolution 1050 nm spectral domain retinal optical coherence tomography at 120 kHz A-scan rate with 6.1 mm imaging depth,” Biomed. Opt. Express4(2), 245–259 (2013).
[CrossRef] [PubMed]

P. Li, L. An, G. Lan, M. Johnstone, D. Malchow, and R. K. Wang, “Extended imaging depth to 12 mm for 1050-nm spectral domain optical coherence tomography for imaging the whole anterior segment of the human eye at 120-kHz A-scan rate,” J. Biomed. Opt.18(1), 016012 (2013).
[CrossRef] [PubMed]

L. An, T. T. Shen, and R. K. Wang, “Using ultrahigh sensitive optical microangiography to achieve comprehensive depth resolved microvasculature mapping for human retina,” J. Biomed. Opt.16(10), 106013 (2011).
[CrossRef] [PubMed]

R. K. Wang and L. An, “Multifunctional imaging of human retina and choroid with 1050-nm spectral domain optical coherence tomography at 92-kHz line scan rate,” J. Biomed. Opt.16(5), 050503 (2011).
[CrossRef] [PubMed]

Anderssohn, A. M.

J. M. Bradley, M. J. Kelley, X. Zhu, A. M. Anderssohn, J. P. Alexander, and T. S. Acott, “Effects of mechanical stretching on trabecular matrix metalloproteinases,” Invest. Ophthalmol. Vis. Sci.42(7), 1505–1513 (2001).
[PubMed]

Arora, J.

S. J. Tumminia, K. P. Mitton, J. Arora, P. Zelenka, D. L. Epstein, and P. Russell, “Mechanical stretch alters the actin cytoskeletal network and signal transduction in human trabecular meshwork cells,” Invest. Ophthalmol. Vis. Sci.39(8), 1361–1371 (1998).
[PubMed]

K. P. Mitton, S. J. Tumminia, J. Arora, P. Zelenka, D. L. Epstein, and P. Russell, “Transient loss of alphaB-crystallin: an early cellular response to mechanical stretch,” Biochem. Biophys. Res. Commun.235(1), 69–73 (1997).
[CrossRef] [PubMed]

Asrani, S.

S. Asrani, M. Sarunic, C. Santiago, and J. Izatt, “Detailed visualization of the anterior segment using fourier-domain optical coherence tomography,” Arch. Ophthalmol.126(6), 765–771 (2008).
[CrossRef] [PubMed]

Austen, W. G.

D. J. Patel, J. C. Greenfield, W. G. Austen, A. G. Morrow, and D. L. Fry, “Pressure-flow relationships in the ascending aorta and femoral artery of man,” J. Appl. Physiol.20(3), 459–463 (1965).
[PubMed]

Barrett-Wilt, G.

R. Clark, A. Nosie, T. Walker, J. A. Faralli, M. S. Filla, G. Barrett-Wilt, and D. M. Peters, “Comparative genomic and proteomic analysis of cytoskeletal changes in dexamethasone-treated trabecular meshwork cells,” Mol. Cell. Proteomics12(1), 194–206 (2013).
[CrossRef] [PubMed]

Bodman, M.

P. B. Liton, C. Luna, M. Bodman, A. Hong, D. L. Epstein, and P. Gonzalez, “Induction of IL-6 expression by mechanical stress in the trabecular meshwork,” Biochem. Biophys. Res. Commun.337(4), 1229–1236 (2005).
[CrossRef] [PubMed]

Boppart, S. A.

Bösl, M.

B. Junglas, S. Kuespert, A. A. Seleem, T. Struller, S. Ullmann, M. Bösl, A. Bosserhoff, J. Köstler, R. Wagner, E. R. Tamm, and R. Fuchshofer, “Connective tissue growth factor causes glaucoma by modifying the actin cytoskeleton of the trabecular meshwork,” Am. J. Pathol.180(6), 2386–2403 (2012).
[CrossRef] [PubMed]

Bosserhoff, A.

B. Junglas, S. Kuespert, A. A. Seleem, T. Struller, S. Ullmann, M. Bösl, A. Bosserhoff, J. Köstler, R. Wagner, E. R. Tamm, and R. Fuchshofer, “Connective tissue growth factor causes glaucoma by modifying the actin cytoskeleton of the trabecular meshwork,” Am. J. Pathol.180(6), 2386–2403 (2012).
[CrossRef] [PubMed]

Bouma, B.

Bradley, J. M.

K. E. Keller, M. Aga, J. M. Bradley, M. J. Kelley, and T. S. Acott, “Extracellular matrix turnover and outflow resistance,” Exp. Eye Res.88(4), 676–682 (2009).
[CrossRef] [PubMed]

J. M. Bradley, M. J. Kelley, X. Zhu, A. M. Anderssohn, J. P. Alexander, and T. S. Acott, “Effects of mechanical stretching on trabecular matrix metalloproteinases,” Invest. Ophthalmol. Vis. Sci.42(7), 1505–1513 (2001).
[PubMed]

Bradley, J. M. B.

J. M. B. Bradley, M. J. Kelley, A. Rose, and T. S. Acott, “Signaling Pathways Used in Trabecular Matrix Metalloproteinase Response to Mechanical Stretch,” Invest. Ophthalmol. Vis. Sci.44(12), 5174–5181 (2003).
[CrossRef] [PubMed]

Brezinski, M. E.

J. Rogowska, N. A. Patel, J. G. Fujimoto, and M. E. Brezinski, “Optical coherence tomographic elastography technique for measuring deformation and strain of atherosclerotic tissues,” Heart90(5), 556–562 (2004).
[CrossRef] [PubMed]

Caro, C. G.

C. G. Caro and D. A. McDONALD, “The relation of pulsatile pressure and flow in the pulmonary vascular bed,” J. Physiol.157, 426–453 (1961).
[PubMed]

Challa, P.

C. Luna, G. Li, J. Qiu, P. Challa, D. L. Epstein, and P. Gonzalez, “Extracellular release of ATP mediated by cyclic mechanical stress leads to mobilization of AA in trabecular meshwork cells,” Invest. Ophthalmol. Vis. Sci.50(12), 5805–5810 (2009).
[CrossRef] [PubMed]

P. B. Liton, X. Liu, P. Challa, D. L. Epstein, and P. Gonzalez, “Induction of TGF-beta1 in the trabecular meshwork under cyclic mechanical stress,” J. Cell. Physiol.205(3), 364–371 (2005).
[CrossRef] [PubMed]

Chan, R.

Chaney, E. J.

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Chau, A.

Chen, Z.

Clark, A. F.

S. O’Reilly, N. Pollock, L. Currie, L. Paraoan, A. F. Clark, and I. Grierson, “Inducers of cross-linked actin networks in trabecular meshwork cells,” Invest. Ophthalmol. Vis. Sci.52(10), 7316–7324 (2011).
[CrossRef] [PubMed]

Clark, R.

R. Clark, A. Nosie, T. Walker, J. A. Faralli, M. S. Filla, G. Barrett-Wilt, and D. M. Peters, “Comparative genomic and proteomic analysis of cytoskeletal changes in dexamethasone-treated trabecular meshwork cells,” Mol. Cell. Proteomics12(1), 194–206 (2013).
[CrossRef] [PubMed]

Clark, R. W.

M. S. Filla, M. K. Schwinn, A. K. Nosie, R. W. Clark, and D. M. Peters, “Dexamethasone-associated cross-linked actin network formation in human trabecular meshwork cells involves β3 integrin signaling,” Invest. Ophthalmol. Vis. Sci.52(6), 2952–2959 (2011).
[CrossRef] [PubMed]

Crecea, V.

Currie, L.

S. O’Reilly, N. Pollock, L. Currie, L. Paraoan, A. F. Clark, and I. Grierson, “Inducers of cross-linked actin networks in trabecular meshwork cells,” Invest. Ophthalmol. Vis. Sci.52(10), 7316–7324 (2011).
[CrossRef] [PubMed]

Dadd, M. J.

L. S. Wilson, D. E. Robinson, and M. J. Dadd, “Elastography--the movement begins,” Phys. Med. Biol.45(6), 1409–1421 (2000).
[CrossRef] [PubMed]

Dickinson, R. J.

R. J. Dickinson and C. R. Hill, “Measurement of soft tissue motion using correlation between A-scans,” Ultrasound Med. Biol.8(3), 263–271 (1982).
[CrossRef] [PubMed]

Ding, Y.

J. A. Last, T. Pan, Y. Ding, C. M. Reilly, K. Keller, T. S. Acott, M. P. Fautsch, C. J. Murphy, and P. Russell, “Elastic modulus determination of normal and glaucomatous human trabecular meshwork,” Invest. Ophthalmol. Vis. Sci.52(5), 2147–2152 (2011).
[CrossRef] [PubMed]

Ding, Z.

Drexler, W.

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography - principles and applications,” Rep. Prog. Phys.66(2), 239–303 (2003).
[CrossRef]

Epstein, D. L.

C. Luna, G. Li, J. Qiu, P. Challa, D. L. Epstein, and P. Gonzalez, “Extracellular release of ATP mediated by cyclic mechanical stress leads to mobilization of AA in trabecular meshwork cells,” Invest. Ophthalmol. Vis. Sci.50(12), 5805–5810 (2009).
[CrossRef] [PubMed]

C. Luna, G. Li, P. B. Liton, D. L. Epstein, and P. Gonzalez, “Alterations in gene expression induced by cyclic mechanical stress in trabecular meshwork cells,” Mol. Vis.15, 534–544 (2009).
[PubMed]

P. B. Liton, C. Luna, M. Bodman, A. Hong, D. L. Epstein, and P. Gonzalez, “Induction of IL-6 expression by mechanical stress in the trabecular meshwork,” Biochem. Biophys. Res. Commun.337(4), 1229–1236 (2005).
[CrossRef] [PubMed]

P. B. Liton, X. Liu, P. Challa, D. L. Epstein, and P. Gonzalez, “Induction of TGF-beta1 in the trabecular meshwork under cyclic mechanical stress,” J. Cell. Physiol.205(3), 364–371 (2005).
[CrossRef] [PubMed]

E. R. Tamm, P. Russell, D. L. Epstein, D. H. Johnson, and J. Piatigorsky, “Modulation of myocilin/TIGR expression in human trabecular meshwork,” Invest. Ophthalmol. Vis. Sci.40(11), 2577–2582 (1999).
[PubMed]

S. J. Tumminia, K. P. Mitton, J. Arora, P. Zelenka, D. L. Epstein, and P. Russell, “Mechanical stretch alters the actin cytoskeletal network and signal transduction in human trabecular meshwork cells,” Invest. Ophthalmol. Vis. Sci.39(8), 1361–1371 (1998).
[PubMed]

K. P. Mitton, S. J. Tumminia, J. Arora, P. Zelenka, D. L. Epstein, and P. Russell, “Transient loss of alphaB-crystallin: an early cellular response to mechanical stretch,” Biochem. Biophys. Res. Commun.235(1), 69–73 (1997).
[CrossRef] [PubMed]

et,

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Faralli, J. A.

R. Clark, A. Nosie, T. Walker, J. A. Faralli, M. S. Filla, G. Barrett-Wilt, and D. M. Peters, “Comparative genomic and proteomic analysis of cytoskeletal changes in dexamethasone-treated trabecular meshwork cells,” Mol. Cell. Proteomics12(1), 194–206 (2013).
[CrossRef] [PubMed]

Fatemi, M.

J. F. Greenleaf, M. Fatemi, and M. Insana, “Selected methods for imaging elastic properties of biological tissues,” Annu. Rev. Biomed. Eng.5(1), 57–78 (2003).
[CrossRef] [PubMed]

Fautsch, M. P.

J. A. Last, T. Pan, Y. Ding, C. M. Reilly, K. Keller, T. S. Acott, M. P. Fautsch, C. J. Murphy, and P. Russell, “Elastic modulus determination of normal and glaucomatous human trabecular meshwork,” Invest. Ophthalmol. Vis. Sci.52(5), 2147–2152 (2011).
[CrossRef] [PubMed]

M. P. Fautsch and D. H. Johnson, “Aqueous humor outflow: what do we know? Where will it lead us?” Invest. Ophthalmol. Vis. Sci.47(10), 4181–4187 (2006).
[CrossRef] [PubMed]

Fercher, A. F.

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography - principles and applications,” Rep. Prog. Phys.66(2), 239–303 (2003).
[CrossRef]

Filla, M. S.

R. Clark, A. Nosie, T. Walker, J. A. Faralli, M. S. Filla, G. Barrett-Wilt, and D. M. Peters, “Comparative genomic and proteomic analysis of cytoskeletal changes in dexamethasone-treated trabecular meshwork cells,” Mol. Cell. Proteomics12(1), 194–206 (2013).
[CrossRef] [PubMed]

M. S. Filla, M. K. Schwinn, A. K. Nosie, R. W. Clark, and D. M. Peters, “Dexamethasone-associated cross-linked actin network formation in human trabecular meshwork cells involves β3 integrin signaling,” Invest. Ophthalmol. Vis. Sci.52(6), 2952–2959 (2011).
[CrossRef] [PubMed]

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Francis, B. A.

B. A. Francis, K. Singh, S. C. Lin, E. Hodapp, H. D. Jampel, J. R. Samples, and S. D. Smith, “Novel glaucoma procedures: a report by the American Academy of Ophthalmology,” Ophthalmology118(7), 1466–1480 (2011).
[PubMed]

Fredberg, J. J.

E. H. Zhou, R. Krishnan, W. D. Stamer, K. M. Perkumas, K. Rajendran, J. F. Nabhan, Q. Lu, J. J. Fredberg, and M. Johnson, “Mechanical responsiveness of the endothelial cell of Schlemm’s canal: scope, variability and its potential role in controlling aqueous humour outflow,” J. R. Soc. Interface9(71), 1144–1155 (2012).
[CrossRef] [PubMed]

Fry, D. L.

D. J. Patel, J. C. Greenfield, W. G. Austen, A. G. Morrow, and D. L. Fry, “Pressure-flow relationships in the ascending aorta and femoral artery of man,” J. Appl. Physiol.20(3), 459–463 (1965).
[PubMed]

Fuchshofer, R.

B. Junglas, S. Kuespert, A. A. Seleem, T. Struller, S. Ullmann, M. Bösl, A. Bosserhoff, J. Köstler, R. Wagner, E. R. Tamm, and R. Fuchshofer, “Connective tissue growth factor causes glaucoma by modifying the actin cytoskeleton of the trabecular meshwork,” Am. J. Pathol.180(6), 2386–2403 (2012).
[CrossRef] [PubMed]

Fujimoto, J. G.

J. Rogowska, N. A. Patel, J. G. Fujimoto, and M. E. Brezinski, “Optical coherence tomographic elastography technique for measuring deformation and strain of atherosclerotic tissues,” Heart90(5), 556–562 (2004).
[CrossRef] [PubMed]

Garra, B.

J. Ophir, S. Alam, B. Garra, F. Kallel, E. Konofagou, T. Krouskop, C. Merritt, R. Righetti, R. Souchon, S. Srinivasan, and T. Varghese, “Elastography: Imaging the elastic properties of soft tissues with ultrasound,” J. Med. Ultrasound29(4), 155–171 (2002).
[CrossRef]

Gonzalez, P.

C. Luna, G. Li, J. Qiu, P. Challa, D. L. Epstein, and P. Gonzalez, “Extracellular release of ATP mediated by cyclic mechanical stress leads to mobilization of AA in trabecular meshwork cells,” Invest. Ophthalmol. Vis. Sci.50(12), 5805–5810 (2009).
[CrossRef] [PubMed]

C. Luna, G. Li, P. B. Liton, D. L. Epstein, and P. Gonzalez, “Alterations in gene expression induced by cyclic mechanical stress in trabecular meshwork cells,” Mol. Vis.15, 534–544 (2009).
[PubMed]

P. B. Liton, C. Luna, M. Bodman, A. Hong, D. L. Epstein, and P. Gonzalez, “Induction of IL-6 expression by mechanical stress in the trabecular meshwork,” Biochem. Biophys. Res. Commun.337(4), 1229–1236 (2005).
[CrossRef] [PubMed]

P. B. Liton, X. Liu, P. Challa, D. L. Epstein, and P. Gonzalez, “Induction of TGF-beta1 in the trabecular meshwork under cyclic mechanical stress,” J. Cell. Physiol.205(3), 364–371 (2005).
[CrossRef] [PubMed]

Greenfield, J. C.

D. J. Patel, J. C. Greenfield, W. G. Austen, A. G. Morrow, and D. L. Fry, “Pressure-flow relationships in the ascending aorta and femoral artery of man,” J. Appl. Physiol.20(3), 459–463 (1965).
[PubMed]

Greenleaf, J. F.

J. F. Greenleaf, M. Fatemi, and M. Insana, “Selected methods for imaging elastic properties of biological tissues,” Annu. Rev. Biomed. Eng.5(1), 57–78 (2003).
[CrossRef] [PubMed]

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Gregory, K. E.

V. Vittal, A. Rose, K. E. Gregory, M. J. Kelley, and T. S. Acott, “Changes in gene expression by trabecular meshwork cells in response to mechanical stretching,” Invest. Ophthalmol. Vis. Sci.46(8), 2857–2868 (2005).
[CrossRef] [PubMed]

Grierson, I.

S. O’Reilly, N. Pollock, L. Currie, L. Paraoan, A. F. Clark, and I. Grierson, “Inducers of cross-linked actin networks in trabecular meshwork cells,” Invest. Ophthalmol. Vis. Sci.52(10), 7316–7324 (2011).
[CrossRef] [PubMed]

Hee, M. R.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Hill, C. R.

R. J. Dickinson and C. R. Hill, “Measurement of soft tissue motion using correlation between A-scans,” Ultrasound Med. Biol.8(3), 263–271 (1982).
[CrossRef] [PubMed]

Hinds, M.

R. K. Wang, S. Kirkpatrick, and M. Hinds, “Phase-sensitive optical coherence elastography for mapping tissue microstrains in real time,” Appl. Phys. Lett.90(16), 164105 (2007).
[CrossRef]

Hitzenberger, C. K.

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography - principles and applications,” Rep. Prog. Phys.66(2), 239–303 (2003).
[CrossRef]

Hodapp, E.

B. A. Francis, K. Singh, S. C. Lin, E. Hodapp, H. D. Jampel, J. R. Samples, and S. D. Smith, “Novel glaucoma procedures: a report by the American Academy of Ophthalmology,” Ophthalmology118(7), 1466–1480 (2011).
[PubMed]

Hong, A.

P. B. Liton, C. Luna, M. Bodman, A. Hong, D. L. Epstein, and P. Gonzalez, “Induction of IL-6 expression by mechanical stress in the trabecular meshwork,” Biochem. Biophys. Res. Commun.337(4), 1229–1236 (2005).
[CrossRef] [PubMed]

Hong, Y.

Hosaka, O.

C. I. Phillips, S. Tsukahara, O. Hosaka, and W. Adams, “Ocular pulsation correlates with ocular tension: the choroid as piston for an aqueous pump?” Ophthalmic Res.24(6), 338–343 (1992).
[CrossRef] [PubMed]

Huang, D.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Iftimia, N.

Insana, M.

J. F. Greenleaf, M. Fatemi, and M. Insana, “Selected methods for imaging elastic properties of biological tissues,” Annu. Rev. Biomed. Eng.5(1), 57–78 (2003).
[CrossRef] [PubMed]

Izatt, J.

S. Asrani, M. Sarunic, C. Santiago, and J. Izatt, “Detailed visualization of the anterior segment using fourier-domain optical coherence tomography,” Arch. Ophthalmol.126(6), 765–771 (2008).
[CrossRef] [PubMed]

Jamil, A.

M. Johnstone, E. Martin, and A. Jamil, “Pulsatile flow into the aqueous veins: Manifestations in normal and glaucomatous eyes,” Exp. Eye Res.92(5), 318–327 (2011).
[CrossRef] [PubMed]

Jampel, H. D.

B. A. Francis, K. Singh, S. C. Lin, E. Hodapp, H. D. Jampel, J. R. Samples, and S. D. Smith, “Novel glaucoma procedures: a report by the American Academy of Ophthalmology,” Ophthalmology118(7), 1466–1480 (2011).
[PubMed]

John, R.

Johnson, D. H.

M. P. Fautsch and D. H. Johnson, “Aqueous humor outflow: what do we know? Where will it lead us?” Invest. Ophthalmol. Vis. Sci.47(10), 4181–4187 (2006).
[CrossRef] [PubMed]

E. R. Tamm, P. Russell, D. L. Epstein, D. H. Johnson, and J. Piatigorsky, “Modulation of myocilin/TIGR expression in human trabecular meshwork,” Invest. Ophthalmol. Vis. Sci.40(11), 2577–2582 (1999).
[PubMed]

Johnson, M.

P. Russell and M. Johnson, “Elastic modulus determination of normal and glaucomatous human trabecular meshwork,” Invest. Ophthalmol. Vis. Sci.53(1), 117 (2012).
[CrossRef]

E. H. Zhou, R. Krishnan, W. D. Stamer, K. M. Perkumas, K. Rajendran, J. F. Nabhan, Q. Lu, J. J. Fredberg, and M. Johnson, “Mechanical responsiveness of the endothelial cell of Schlemm’s canal: scope, variability and its potential role in controlling aqueous humour outflow,” J. R. Soc. Interface9(71), 1144–1155 (2012).
[CrossRef] [PubMed]

Johnstone, M.

P. Li, L. An, G. Lan, M. Johnstone, D. Malchow, and R. K. Wang, “Extended imaging depth to 12 mm for 1050-nm spectral domain optical coherence tomography for imaging the whole anterior segment of the human eye at 120-kHz A-scan rate,” J. Biomed. Opt.18(1), 016012 (2013).
[CrossRef] [PubMed]

P. Li, R. Reif, Z. Zhi, E. Martin, T. T. Shen, M. Johnstone, and R. K. Wang, “Phase-sensitive optical coherence tomography characterization of pulse-induced trabecular meshwork displacement in ex vivo nonhuman primate eyes,” J. Biomed. Opt.17(7), 076026 (2012).
[CrossRef] [PubMed]

M. Johnstone, E. Martin, and A. Jamil, “Pulsatile flow into the aqueous veins: Manifestations in normal and glaucomatous eyes,” Exp. Eye Res.92(5), 318–327 (2011).
[CrossRef] [PubMed]

Johnstone, M. A.

M. A. Johnstone, “The aqueous outflow system as a mechanical pump: evidence from examination of tissue and aqueous movement in human and non-human primates,” J. Glaucoma13(5), 421–438 (2004).
[CrossRef] [PubMed]

Junglas, B.

B. Junglas, S. Kuespert, A. A. Seleem, T. Struller, S. Ullmann, M. Bösl, A. Bosserhoff, J. Köstler, R. Wagner, E. R. Tamm, and R. Fuchshofer, “Connective tissue growth factor causes glaucoma by modifying the actin cytoskeleton of the trabecular meshwork,” Am. J. Pathol.180(6), 2386–2403 (2012).
[CrossRef] [PubMed]

Kaazempur-Mofrad, M.

Kallel, F.

J. Ophir, S. Alam, B. Garra, F. Kallel, E. Konofagou, T. Krouskop, C. Merritt, R. Righetti, R. Souchon, S. Srinivasan, and T. Varghese, “Elastography: Imaging the elastic properties of soft tissues with ultrasound,” J. Med. Ultrasound29(4), 155–171 (2002).
[CrossRef]

Karl, W.

Kass, P. H.

S. M. Thomasy, J. A. Wood, P. H. Kass, C. J. Murphy, and P. Russell, “Substratum stiffness and latrunculin B regulate matrix gene and protein expression in human trabecular meshwork cells,” Invest. Ophthalmol. Vis. Sci.53(2), 952–958 (2012).
[CrossRef] [PubMed]

Katz, S. D.

S. Solomon, S. D. Katz, W. Stevenson-Smith, E. L. Yellin, and T. H. LeJemtel, “Determination of vascular impedance in the peripheral circulation by transcutaneous pulsed Doppler ultrasound,” Chest108(2), 515–521 (1995).
[CrossRef] [PubMed]

Kaufman, P. L.

P. L. Kaufman and C. A. Rasmussen, “Advances in glaucoma treatment and management: outflow drugs,” Invest. Ophthalmol. Vis. Sci.53(5), 2495–2500 (2012).
[CrossRef] [PubMed]

R. N. Weinreb and P. L. Kaufman, “Glaucoma research community and FDA look to the future, II: NEI/FDA Glaucoma Clinical Trial Design and Endpoints Symposium: measures of structural change and visual function,” Invest. Ophthalmol. Vis. Sci.52(11), 7842–7851 (2011).
[CrossRef] [PubMed]

Keller, K.

J. A. Last, T. Pan, Y. Ding, C. M. Reilly, K. Keller, T. S. Acott, M. P. Fautsch, C. J. Murphy, and P. Russell, “Elastic modulus determination of normal and glaucomatous human trabecular meshwork,” Invest. Ophthalmol. Vis. Sci.52(5), 2147–2152 (2011).
[CrossRef] [PubMed]

Keller, K. E.

K. E. Keller, M. Aga, J. M. Bradley, M. J. Kelley, and T. S. Acott, “Extracellular matrix turnover and outflow resistance,” Exp. Eye Res.88(4), 676–682 (2009).
[CrossRef] [PubMed]

K. E. Keller, M. J. Kelley, and T. S. Acott, “Extracellular matrix gene alternative splicing by trabecular meshwork cells in response to mechanical stretching,” Invest. Ophthalmol. Vis. Sci.48(3), 1164–1172 (2007).
[CrossRef] [PubMed]

Kelley, M. J.

K. E. Keller, M. Aga, J. M. Bradley, M. J. Kelley, and T. S. Acott, “Extracellular matrix turnover and outflow resistance,” Exp. Eye Res.88(4), 676–682 (2009).
[CrossRef] [PubMed]

T. S. Acott and M. J. Kelley, “Extracellular matrix in the trabecular meshwork,” Exp. Eye Res.86(4), 543–561 (2008).
[CrossRef] [PubMed]

K. E. Keller, M. J. Kelley, and T. S. Acott, “Extracellular matrix gene alternative splicing by trabecular meshwork cells in response to mechanical stretching,” Invest. Ophthalmol. Vis. Sci.48(3), 1164–1172 (2007).
[CrossRef] [PubMed]

V. Vittal, A. Rose, K. E. Gregory, M. J. Kelley, and T. S. Acott, “Changes in gene expression by trabecular meshwork cells in response to mechanical stretching,” Invest. Ophthalmol. Vis. Sci.46(8), 2857–2868 (2005).
[CrossRef] [PubMed]

J. M. B. Bradley, M. J. Kelley, A. Rose, and T. S. Acott, “Signaling Pathways Used in Trabecular Matrix Metalloproteinase Response to Mechanical Stretch,” Invest. Ophthalmol. Vis. Sci.44(12), 5174–5181 (2003).
[CrossRef] [PubMed]

J. M. Bradley, M. J. Kelley, X. Zhu, A. M. Anderssohn, J. P. Alexander, and T. S. Acott, “Effects of mechanical stretching on trabecular matrix metalloproteinases,” Invest. Ophthalmol. Vis. Sci.42(7), 1505–1513 (2001).
[PubMed]

Kennedy, B. F.

Khalil, A.

Kirkpatrick, S.

R. K. Wang, S. Kirkpatrick, and M. Hinds, “Phase-sensitive optical coherence elastography for mapping tissue microstrains in real time,” Appl. Phys. Lett.90(16), 164105 (2007).
[CrossRef]

Kirkpatrick, S. J.

R. K. Wang, Z. Ma, and S. J. Kirkpatrick, “Tissue Doppler optical coherence elastography for real time strain rate and strain mapping of soft tissue,” Appl. Phys. Lett.89(14), 144103 (2006).
[CrossRef]

Konofagou, E.

J. Ophir, S. Alam, B. Garra, F. Kallel, E. Konofagou, T. Krouskop, C. Merritt, R. Righetti, R. Souchon, S. Srinivasan, and T. Varghese, “Elastography: Imaging the elastic properties of soft tissues with ultrasound,” J. Med. Ultrasound29(4), 155–171 (2002).
[CrossRef]

Köstler, J.

B. Junglas, S. Kuespert, A. A. Seleem, T. Struller, S. Ullmann, M. Bösl, A. Bosserhoff, J. Köstler, R. Wagner, E. R. Tamm, and R. Fuchshofer, “Connective tissue growth factor causes glaucoma by modifying the actin cytoskeleton of the trabecular meshwork,” Am. J. Pathol.180(6), 2386–2403 (2012).
[CrossRef] [PubMed]

Krishnan, R.

E. H. Zhou, R. Krishnan, W. D. Stamer, K. M. Perkumas, K. Rajendran, J. F. Nabhan, Q. Lu, J. J. Fredberg, and M. Johnson, “Mechanical responsiveness of the endothelial cell of Schlemm’s canal: scope, variability and its potential role in controlling aqueous humour outflow,” J. R. Soc. Interface9(71), 1144–1155 (2012).
[CrossRef] [PubMed]

Krouskop, T.

J. Ophir, S. Alam, B. Garra, F. Kallel, E. Konofagou, T. Krouskop, C. Merritt, R. Righetti, R. Souchon, S. Srinivasan, and T. Varghese, “Elastography: Imaging the elastic properties of soft tissues with ultrasound,” J. Med. Ultrasound29(4), 155–171 (2002).
[CrossRef]

Kuespert, S.

B. Junglas, S. Kuespert, A. A. Seleem, T. Struller, S. Ullmann, M. Bösl, A. Bosserhoff, J. Köstler, R. Wagner, E. R. Tamm, and R. Fuchshofer, “Connective tissue growth factor causes glaucoma by modifying the actin cytoskeleton of the trabecular meshwork,” Am. J. Pathol.180(6), 2386–2403 (2012).
[CrossRef] [PubMed]

Lan, G.

P. Li, L. An, G. Lan, M. Johnstone, D. Malchow, and R. K. Wang, “Extended imaging depth to 12 mm for 1050-nm spectral domain optical coherence tomography for imaging the whole anterior segment of the human eye at 120-kHz A-scan rate,” J. Biomed. Opt.18(1), 016012 (2013).
[CrossRef] [PubMed]

L. An, P. Li, G. Lan, D. Malchow, and R. K. Wang, “High-resolution 1050 nm spectral domain retinal optical coherence tomography at 120 kHz A-scan rate with 6.1 mm imaging depth,” Biomed. Opt. Express4(2), 245–259 (2013).
[CrossRef] [PubMed]

Lasser, T.

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography - principles and applications,” Rep. Prog. Phys.66(2), 239–303 (2003).
[CrossRef]

Last, J. A.

J. A. Last, T. Pan, Y. Ding, C. M. Reilly, K. Keller, T. S. Acott, M. P. Fautsch, C. J. Murphy, and P. Russell, “Elastic modulus determination of normal and glaucomatous human trabecular meshwork,” Invest. Ophthalmol. Vis. Sci.52(5), 2147–2152 (2011).
[CrossRef] [PubMed]

LeJemtel, T. H.

S. Solomon, S. D. Katz, W. Stevenson-Smith, E. L. Yellin, and T. H. LeJemtel, “Determination of vascular impedance in the peripheral circulation by transcutaneous pulsed Doppler ultrasound,” Chest108(2), 515–521 (1995).
[CrossRef] [PubMed]

Li, G.

C. Luna, G. Li, J. Qiu, P. Challa, D. L. Epstein, and P. Gonzalez, “Extracellular release of ATP mediated by cyclic mechanical stress leads to mobilization of AA in trabecular meshwork cells,” Invest. Ophthalmol. Vis. Sci.50(12), 5805–5810 (2009).
[CrossRef] [PubMed]

C. Luna, G. Li, P. B. Liton, D. L. Epstein, and P. Gonzalez, “Alterations in gene expression induced by cyclic mechanical stress in trabecular meshwork cells,” Mol. Vis.15, 534–544 (2009).
[PubMed]

Li, P.

L. An, P. Li, G. Lan, D. Malchow, and R. K. Wang, “High-resolution 1050 nm spectral domain retinal optical coherence tomography at 120 kHz A-scan rate with 6.1 mm imaging depth,” Biomed. Opt. Express4(2), 245–259 (2013).
[CrossRef] [PubMed]

P. Li, L. An, G. Lan, M. Johnstone, D. Malchow, and R. K. Wang, “Extended imaging depth to 12 mm for 1050-nm spectral domain optical coherence tomography for imaging the whole anterior segment of the human eye at 120-kHz A-scan rate,” J. Biomed. Opt.18(1), 016012 (2013).
[CrossRef] [PubMed]

P. Li, X. Yin, L. Shi, S. Rugonyi, and R. K. Wang, “In vivo functional imaging of blood flow and wall strain rate in outflow tract of embryonic chick heart using ultrafast spectral domain optical coherence tomography,” J. Biomed. Opt.17(9), 096006 (2012).
[CrossRef] [PubMed]

P. Li, R. Reif, Z. Zhi, E. Martin, T. T. Shen, M. Johnstone, and R. K. Wang, “Phase-sensitive optical coherence tomography characterization of pulse-induced trabecular meshwork displacement in ex vivo nonhuman primate eyes,” J. Biomed. Opt.17(7), 076026 (2012).
[CrossRef] [PubMed]

P. Li, A. Liu, L. Shi, X. Yin, S. Rugonyi, and R. K. Wang, “Assessment of strain and strain rate in embryonic chick heart in vivo using tissue Doppler optical coherence tomography,” Phys. Med. Biol.56(22), 7081–7092 (2011).
[CrossRef] [PubMed]

Liang, X.

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Lin, S. C.

B. A. Francis, K. Singh, S. C. Lin, E. Hodapp, H. D. Jampel, J. R. Samples, and S. D. Smith, “Novel glaucoma procedures: a report by the American Academy of Ophthalmology,” Ophthalmology118(7), 1466–1480 (2011).
[PubMed]

Liton, P. B.

C. Luna, G. Li, P. B. Liton, D. L. Epstein, and P. Gonzalez, “Alterations in gene expression induced by cyclic mechanical stress in trabecular meshwork cells,” Mol. Vis.15, 534–544 (2009).
[PubMed]

P. B. Liton, C. Luna, M. Bodman, A. Hong, D. L. Epstein, and P. Gonzalez, “Induction of IL-6 expression by mechanical stress in the trabecular meshwork,” Biochem. Biophys. Res. Commun.337(4), 1229–1236 (2005).
[CrossRef] [PubMed]

P. B. Liton, X. Liu, P. Challa, D. L. Epstein, and P. Gonzalez, “Induction of TGF-beta1 in the trabecular meshwork under cyclic mechanical stress,” J. Cell. Physiol.205(3), 364–371 (2005).
[CrossRef] [PubMed]

Liu, A.

P. Li, A. Liu, L. Shi, X. Yin, S. Rugonyi, and R. K. Wang, “Assessment of strain and strain rate in embryonic chick heart in vivo using tissue Doppler optical coherence tomography,” Phys. Med. Biol.56(22), 7081–7092 (2011).
[CrossRef] [PubMed]

Liu, X.

P. B. Liton, X. Liu, P. Challa, D. L. Epstein, and P. Gonzalez, “Induction of TGF-beta1 in the trabecular meshwork under cyclic mechanical stress,” J. Cell. Physiol.205(3), 364–371 (2005).
[CrossRef] [PubMed]

Lu, Q.

E. H. Zhou, R. Krishnan, W. D. Stamer, K. M. Perkumas, K. Rajendran, J. F. Nabhan, Q. Lu, J. J. Fredberg, and M. Johnson, “Mechanical responsiveness of the endothelial cell of Schlemm’s canal: scope, variability and its potential role in controlling aqueous humour outflow,” J. R. Soc. Interface9(71), 1144–1155 (2012).
[CrossRef] [PubMed]

Luna, C.

C. Luna, G. Li, J. Qiu, P. Challa, D. L. Epstein, and P. Gonzalez, “Extracellular release of ATP mediated by cyclic mechanical stress leads to mobilization of AA in trabecular meshwork cells,” Invest. Ophthalmol. Vis. Sci.50(12), 5805–5810 (2009).
[CrossRef] [PubMed]

C. Luna, G. Li, P. B. Liton, D. L. Epstein, and P. Gonzalez, “Alterations in gene expression induced by cyclic mechanical stress in trabecular meshwork cells,” Mol. Vis.15, 534–544 (2009).
[PubMed]

P. B. Liton, C. Luna, M. Bodman, A. Hong, D. L. Epstein, and P. Gonzalez, “Induction of IL-6 expression by mechanical stress in the trabecular meshwork,” Biochem. Biophys. Res. Commun.337(4), 1229–1236 (2005).
[CrossRef] [PubMed]

Ma, Z.

R. K. Wang and Z. Ma, “Real-time flow imaging by removing texture pattern artifacts in spectral-domain optical Doppler tomography,” Opt. Lett.31(20), 3001–3003 (2006).
[CrossRef] [PubMed]

R. K. Wang, Z. Ma, and S. J. Kirkpatrick, “Tissue Doppler optical coherence elastography for real time strain rate and strain mapping of soft tissue,” Appl. Phys. Lett.89(14), 144103 (2006).
[CrossRef]

R. K. Wang and Z. Ma, “A practical approach to eliminate autocorrelation artefacts for volume-rate spectral domain optical coherence tomography,” Phys. Med. Biol.51(12), 3231–3239 (2006).
[CrossRef] [PubMed]

Makita, S.

Malchow, D.

L. An, P. Li, G. Lan, D. Malchow, and R. K. Wang, “High-resolution 1050 nm spectral domain retinal optical coherence tomography at 120 kHz A-scan rate with 6.1 mm imaging depth,” Biomed. Opt. Express4(2), 245–259 (2013).
[CrossRef] [PubMed]

P. Li, L. An, G. Lan, M. Johnstone, D. Malchow, and R. K. Wang, “Extended imaging depth to 12 mm for 1050-nm spectral domain optical coherence tomography for imaging the whole anterior segment of the human eye at 120-kHz A-scan rate,” J. Biomed. Opt.18(1), 016012 (2013).
[CrossRef] [PubMed]

Martin, E.

P. Li, R. Reif, Z. Zhi, E. Martin, T. T. Shen, M. Johnstone, and R. K. Wang, “Phase-sensitive optical coherence tomography characterization of pulse-induced trabecular meshwork displacement in ex vivo nonhuman primate eyes,” J. Biomed. Opt.17(7), 076026 (2012).
[CrossRef] [PubMed]

M. Johnstone, E. Martin, and A. Jamil, “Pulsatile flow into the aqueous veins: Manifestations in normal and glaucomatous eyes,” Exp. Eye Res.92(5), 318–327 (2011).
[CrossRef] [PubMed]

McDONALD, D. A.

C. G. Caro and D. A. McDONALD, “The relation of pulsatile pressure and flow in the pulmonary vascular bed,” J. Physiol.157, 426–453 (1961).
[PubMed]

D. A. McDonald, “The relation of pulsatile pressure to flow in arteries,” J. Physiol.127(3), 533–552 (1955).
[PubMed]

Merritt, C.

J. Ophir, S. Alam, B. Garra, F. Kallel, E. Konofagou, T. Krouskop, C. Merritt, R. Righetti, R. Souchon, S. Srinivasan, and T. Varghese, “Elastography: Imaging the elastic properties of soft tissues with ultrasound,” J. Med. Ultrasound29(4), 155–171 (2002).
[CrossRef]

Mitton, K. P.

S. J. Tumminia, K. P. Mitton, J. Arora, P. Zelenka, D. L. Epstein, and P. Russell, “Mechanical stretch alters the actin cytoskeletal network and signal transduction in human trabecular meshwork cells,” Invest. Ophthalmol. Vis. Sci.39(8), 1361–1371 (1998).
[PubMed]

K. P. Mitton, S. J. Tumminia, J. Arora, P. Zelenka, D. L. Epstein, and P. Russell, “Transient loss of alphaB-crystallin: an early cellular response to mechanical stretch,” Biochem. Biophys. Res. Commun.235(1), 69–73 (1997).
[CrossRef] [PubMed]

Morrow, A. G.

D. J. Patel, J. C. Greenfield, W. G. Austen, A. G. Morrow, and D. L. Fry, “Pressure-flow relationships in the ascending aorta and femoral artery of man,” J. Appl. Physiol.20(3), 459–463 (1965).
[PubMed]

Murphy, C. J.

S. M. Thomasy, J. A. Wood, P. H. Kass, C. J. Murphy, and P. Russell, “Substratum stiffness and latrunculin B regulate matrix gene and protein expression in human trabecular meshwork cells,” Invest. Ophthalmol. Vis. Sci.53(2), 952–958 (2012).
[CrossRef] [PubMed]

J. A. Last, T. Pan, Y. Ding, C. M. Reilly, K. Keller, T. S. Acott, M. P. Fautsch, C. J. Murphy, and P. Russell, “Elastic modulus determination of normal and glaucomatous human trabecular meshwork,” Invest. Ophthalmol. Vis. Sci.52(5), 2147–2152 (2011).
[CrossRef] [PubMed]

Nabhan, J. F.

E. H. Zhou, R. Krishnan, W. D. Stamer, K. M. Perkumas, K. Rajendran, J. F. Nabhan, Q. Lu, J. J. Fredberg, and M. Johnson, “Mechanical responsiveness of the endothelial cell of Schlemm’s canal: scope, variability and its potential role in controlling aqueous humour outflow,” J. R. Soc. Interface9(71), 1144–1155 (2012).
[CrossRef] [PubMed]

Nadkarni, S.

Nelson, J. S.

Nosie, A.

R. Clark, A. Nosie, T. Walker, J. A. Faralli, M. S. Filla, G. Barrett-Wilt, and D. M. Peters, “Comparative genomic and proteomic analysis of cytoskeletal changes in dexamethasone-treated trabecular meshwork cells,” Mol. Cell. Proteomics12(1), 194–206 (2013).
[CrossRef] [PubMed]

Nosie, A. K.

M. S. Filla, M. K. Schwinn, A. K. Nosie, R. W. Clark, and D. M. Peters, “Dexamethasone-associated cross-linked actin network formation in human trabecular meshwork cells involves β3 integrin signaling,” Invest. Ophthalmol. Vis. Sci.52(6), 2952–2959 (2011).
[CrossRef] [PubMed]

Nuttall, A. L.

R. K. Wang and A. L. Nuttall, “Phase-sensitive optical coherence tomography imaging of the tissue motion within the organ of Corti at a subnanometer scale: a preliminary study,” J. Biomed. Opt.15(5), 056005 (2010).
[CrossRef] [PubMed]

O’Reilly, S.

S. O’Reilly, N. Pollock, L. Currie, L. Paraoan, A. F. Clark, and I. Grierson, “Inducers of cross-linked actin networks in trabecular meshwork cells,” Invest. Ophthalmol. Vis. Sci.52(10), 7316–7324 (2011).
[CrossRef] [PubMed]

O’Rourke, M. F.

M. F. O’Rourke, “Pressure and flow waves in systemic arteries and the anatomical design of the arterial system,” J. Appl. Physiol.23(2), 139–149 (1967).
[PubMed]

M. F. O’Rourke and M. G. Taylor, “Input impedance of the systemic circulation,” Circ. Res.20(4), 365–380 (1967).
[CrossRef] [PubMed]

Oldenburg, A. L.

Ophir, J.

J. Ophir, S. Alam, B. Garra, F. Kallel, E. Konofagou, T. Krouskop, C. Merritt, R. Righetti, R. Souchon, S. Srinivasan, and T. Varghese, “Elastography: Imaging the elastic properties of soft tissues with ultrasound,” J. Med. Ultrasound29(4), 155–171 (2002).
[CrossRef]

O'Rourke, M. F.

M. F. O'Rourke and M. G. Taylor, “Vascular Impedance of the Femoral Bed,” Circ. Res.18(2), 126–139 (1966).
[CrossRef]

Pan, T.

J. A. Last, T. Pan, Y. Ding, C. M. Reilly, K. Keller, T. S. Acott, M. P. Fautsch, C. J. Murphy, and P. Russell, “Elastic modulus determination of normal and glaucomatous human trabecular meshwork,” Invest. Ophthalmol. Vis. Sci.52(5), 2147–2152 (2011).
[CrossRef] [PubMed]

Paraoan, L.

S. O’Reilly, N. Pollock, L. Currie, L. Paraoan, A. F. Clark, and I. Grierson, “Inducers of cross-linked actin networks in trabecular meshwork cells,” Invest. Ophthalmol. Vis. Sci.52(10), 7316–7324 (2011).
[CrossRef] [PubMed]

Patel, D. J.

D. J. Patel, J. C. Greenfield, W. G. Austen, A. G. Morrow, and D. L. Fry, “Pressure-flow relationships in the ascending aorta and femoral artery of man,” J. Appl. Physiol.20(3), 459–463 (1965).
[PubMed]

Patel, N. A.

J. Rogowska, N. A. Patel, J. G. Fujimoto, and M. E. Brezinski, “Optical coherence tomographic elastography technique for measuring deformation and strain of atherosclerotic tissues,” Heart90(5), 556–562 (2004).
[CrossRef] [PubMed]

Perkumas, K. M.

E. H. Zhou, R. Krishnan, W. D. Stamer, K. M. Perkumas, K. Rajendran, J. F. Nabhan, Q. Lu, J. J. Fredberg, and M. Johnson, “Mechanical responsiveness of the endothelial cell of Schlemm’s canal: scope, variability and its potential role in controlling aqueous humour outflow,” J. R. Soc. Interface9(71), 1144–1155 (2012).
[CrossRef] [PubMed]

Peters, D. M.

R. Clark, A. Nosie, T. Walker, J. A. Faralli, M. S. Filla, G. Barrett-Wilt, and D. M. Peters, “Comparative genomic and proteomic analysis of cytoskeletal changes in dexamethasone-treated trabecular meshwork cells,” Mol. Cell. Proteomics12(1), 194–206 (2013).
[CrossRef] [PubMed]

M. S. Filla, M. K. Schwinn, A. K. Nosie, R. W. Clark, and D. M. Peters, “Dexamethasone-associated cross-linked actin network formation in human trabecular meshwork cells involves β3 integrin signaling,” Invest. Ophthalmol. Vis. Sci.52(6), 2952–2959 (2011).
[CrossRef] [PubMed]

Phillips, C. I.

C. I. Phillips, S. Tsukahara, O. Hosaka, and W. Adams, “Ocular pulsation correlates with ocular tension: the choroid as piston for an aqueous pump?” Ophthalmic Res.24(6), 338–343 (1992).
[CrossRef] [PubMed]

Piatigorsky, J.

E. R. Tamm, P. Russell, D. L. Epstein, D. H. Johnson, and J. Piatigorsky, “Modulation of myocilin/TIGR expression in human trabecular meshwork,” Invest. Ophthalmol. Vis. Sci.40(11), 2577–2582 (1999).
[PubMed]

Pollock, N.

S. O’Reilly, N. Pollock, L. Currie, L. Paraoan, A. F. Clark, and I. Grierson, “Inducers of cross-linked actin networks in trabecular meshwork cells,” Invest. Ophthalmol. Vis. Sci.52(10), 7316–7324 (2011).
[CrossRef] [PubMed]

Puliafito, C. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Qiu, J.

C. Luna, G. Li, J. Qiu, P. Challa, D. L. Epstein, and P. Gonzalez, “Extracellular release of ATP mediated by cyclic mechanical stress leads to mobilization of AA in trabecular meshwork cells,” Invest. Ophthalmol. Vis. Sci.50(12), 5805–5810 (2009).
[CrossRef] [PubMed]

Rajendran, K.

E. H. Zhou, R. Krishnan, W. D. Stamer, K. M. Perkumas, K. Rajendran, J. F. Nabhan, Q. Lu, J. J. Fredberg, and M. Johnson, “Mechanical responsiveness of the endothelial cell of Schlemm’s canal: scope, variability and its potential role in controlling aqueous humour outflow,” J. R. Soc. Interface9(71), 1144–1155 (2012).
[CrossRef] [PubMed]

Ramos, R. F.

R. F. Ramos, G. M. Sumida, and W. D. Stamer, “Cyclic mechanical stress and trabecular meshwork cell contractility,” Invest. Ophthalmol. Vis. Sci.50(8), 3826–3832 (2009).
[CrossRef] [PubMed]

R. F. Ramos and W. D. Stamer, “Effects of cyclic intraocular pressure on conventional outflow facility,” Invest. Ophthalmol. Vis. Sci.49(1), 275–281 (2008).
[CrossRef] [PubMed]

Rasmussen, C. A.

P. L. Kaufman and C. A. Rasmussen, “Advances in glaucoma treatment and management: outflow drugs,” Invest. Ophthalmol. Vis. Sci.53(5), 2495–2500 (2012).
[CrossRef] [PubMed]

Reif, R.

P. Li, R. Reif, Z. Zhi, E. Martin, T. T. Shen, M. Johnstone, and R. K. Wang, “Phase-sensitive optical coherence tomography characterization of pulse-induced trabecular meshwork displacement in ex vivo nonhuman primate eyes,” J. Biomed. Opt.17(7), 076026 (2012).
[CrossRef] [PubMed]

Reilly, C. M.

J. A. Last, T. Pan, Y. Ding, C. M. Reilly, K. Keller, T. S. Acott, M. P. Fautsch, C. J. Murphy, and P. Russell, “Elastic modulus determination of normal and glaucomatous human trabecular meshwork,” Invest. Ophthalmol. Vis. Sci.52(5), 2147–2152 (2011).
[CrossRef] [PubMed]

Ren, H.

Righetti, R.

J. Ophir, S. Alam, B. Garra, F. Kallel, E. Konofagou, T. Krouskop, C. Merritt, R. Righetti, R. Souchon, S. Srinivasan, and T. Varghese, “Elastography: Imaging the elastic properties of soft tissues with ultrasound,” J. Med. Ultrasound29(4), 155–171 (2002).
[CrossRef]

Robinson, D. E.

L. S. Wilson, D. E. Robinson, and M. J. Dadd, “Elastography--the movement begins,” Phys. Med. Biol.45(6), 1409–1421 (2000).
[CrossRef] [PubMed]

Rogowska, J.

J. Rogowska, N. A. Patel, J. G. Fujimoto, and M. E. Brezinski, “Optical coherence tomographic elastography technique for measuring deformation and strain of atherosclerotic tissues,” Heart90(5), 556–562 (2004).
[CrossRef] [PubMed]

Rose, A.

V. Vittal, A. Rose, K. E. Gregory, M. J. Kelley, and T. S. Acott, “Changes in gene expression by trabecular meshwork cells in response to mechanical stretching,” Invest. Ophthalmol. Vis. Sci.46(8), 2857–2868 (2005).
[CrossRef] [PubMed]

J. M. B. Bradley, M. J. Kelley, A. Rose, and T. S. Acott, “Signaling Pathways Used in Trabecular Matrix Metalloproteinase Response to Mechanical Stretch,” Invest. Ophthalmol. Vis. Sci.44(12), 5174–5181 (2003).
[CrossRef] [PubMed]

Rugonyi, S.

P. Li, X. Yin, L. Shi, S. Rugonyi, and R. K. Wang, “In vivo functional imaging of blood flow and wall strain rate in outflow tract of embryonic chick heart using ultrafast spectral domain optical coherence tomography,” J. Biomed. Opt.17(9), 096006 (2012).
[CrossRef] [PubMed]

P. Li, A. Liu, L. Shi, X. Yin, S. Rugonyi, and R. K. Wang, “Assessment of strain and strain rate in embryonic chick heart in vivo using tissue Doppler optical coherence tomography,” Phys. Med. Biol.56(22), 7081–7092 (2011).
[CrossRef] [PubMed]

Russell, P.

P. Russell and M. Johnson, “Elastic modulus determination of normal and glaucomatous human trabecular meshwork,” Invest. Ophthalmol. Vis. Sci.53(1), 117 (2012).
[CrossRef]

S. M. Thomasy, J. A. Wood, P. H. Kass, C. J. Murphy, and P. Russell, “Substratum stiffness and latrunculin B regulate matrix gene and protein expression in human trabecular meshwork cells,” Invest. Ophthalmol. Vis. Sci.53(2), 952–958 (2012).
[CrossRef] [PubMed]

J. A. Last, T. Pan, Y. Ding, C. M. Reilly, K. Keller, T. S. Acott, M. P. Fautsch, C. J. Murphy, and P. Russell, “Elastic modulus determination of normal and glaucomatous human trabecular meshwork,” Invest. Ophthalmol. Vis. Sci.52(5), 2147–2152 (2011).
[CrossRef] [PubMed]

E. R. Tamm, P. Russell, D. L. Epstein, D. H. Johnson, and J. Piatigorsky, “Modulation of myocilin/TIGR expression in human trabecular meshwork,” Invest. Ophthalmol. Vis. Sci.40(11), 2577–2582 (1999).
[PubMed]

S. J. Tumminia, K. P. Mitton, J. Arora, P. Zelenka, D. L. Epstein, and P. Russell, “Mechanical stretch alters the actin cytoskeletal network and signal transduction in human trabecular meshwork cells,” Invest. Ophthalmol. Vis. Sci.39(8), 1361–1371 (1998).
[PubMed]

K. P. Mitton, S. J. Tumminia, J. Arora, P. Zelenka, D. L. Epstein, and P. Russell, “Transient loss of alphaB-crystallin: an early cellular response to mechanical stretch,” Biochem. Biophys. Res. Commun.235(1), 69–73 (1997).
[CrossRef] [PubMed]

Saheb, H.

H. Saheb and I. I. Ahmed, “Micro-invasive glaucoma surgery: current perspectives and future directions,” Curr. Opin. Ophthalmol.23(2), 96–104 (2012).
[CrossRef] [PubMed]

Samples, J. R.

B. A. Francis, K. Singh, S. C. Lin, E. Hodapp, H. D. Jampel, J. R. Samples, and S. D. Smith, “Novel glaucoma procedures: a report by the American Academy of Ophthalmology,” Ophthalmology118(7), 1466–1480 (2011).
[PubMed]

Sampson, D. D.

Santiago, C.

S. Asrani, M. Sarunic, C. Santiago, and J. Izatt, “Detailed visualization of the anterior segment using fourier-domain optical coherence tomography,” Arch. Ophthalmol.126(6), 765–771 (2008).
[CrossRef] [PubMed]

Sarunic, M.

S. Asrani, M. Sarunic, C. Santiago, and J. Izatt, “Detailed visualization of the anterior segment using fourier-domain optical coherence tomography,” Arch. Ophthalmol.126(6), 765–771 (2008).
[CrossRef] [PubMed]

Schmitt, J.

Schultz, R. O.

E. B. Suson and R. O. Schultz, “Blood in schlemm’s canal in glaucoma suspects. A study of the relationship between blood-filling pattern and outflow facility in ocular hypertension,” Arch. Ophthalmol.81(6), 808–812 (1969).
[CrossRef] [PubMed]

Schuman, J. S.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Schwinn, M. K.

M. S. Filla, M. K. Schwinn, A. K. Nosie, R. W. Clark, and D. M. Peters, “Dexamethasone-associated cross-linked actin network formation in human trabecular meshwork cells involves β3 integrin signaling,” Invest. Ophthalmol. Vis. Sci.52(6), 2952–2959 (2011).
[CrossRef] [PubMed]

Seleem, A. A.

B. Junglas, S. Kuespert, A. A. Seleem, T. Struller, S. Ullmann, M. Bösl, A. Bosserhoff, J. Köstler, R. Wagner, E. R. Tamm, and R. Fuchshofer, “Connective tissue growth factor causes glaucoma by modifying the actin cytoskeleton of the trabecular meshwork,” Am. J. Pathol.180(6), 2386–2403 (2012).
[CrossRef] [PubMed]

Shen, T. T.

P. Li, R. Reif, Z. Zhi, E. Martin, T. T. Shen, M. Johnstone, and R. K. Wang, “Phase-sensitive optical coherence tomography characterization of pulse-induced trabecular meshwork displacement in ex vivo nonhuman primate eyes,” J. Biomed. Opt.17(7), 076026 (2012).
[CrossRef] [PubMed]

L. An, T. T. Shen, and R. K. Wang, “Using ultrahigh sensitive optical microangiography to achieve comprehensive depth resolved microvasculature mapping for human retina,” J. Biomed. Opt.16(10), 106013 (2011).
[CrossRef] [PubMed]

Shi, L.

P. Li, X. Yin, L. Shi, S. Rugonyi, and R. K. Wang, “In vivo functional imaging of blood flow and wall strain rate in outflow tract of embryonic chick heart using ultrafast spectral domain optical coherence tomography,” J. Biomed. Opt.17(9), 096006 (2012).
[CrossRef] [PubMed]

P. Li, A. Liu, L. Shi, X. Yin, S. Rugonyi, and R. K. Wang, “Assessment of strain and strain rate in embryonic chick heart in vivo using tissue Doppler optical coherence tomography,” Phys. Med. Biol.56(22), 7081–7092 (2011).
[CrossRef] [PubMed]

Shishkov, M.

Singh, K.

B. A. Francis, K. Singh, S. C. Lin, E. Hodapp, H. D. Jampel, J. R. Samples, and S. D. Smith, “Novel glaucoma procedures: a report by the American Academy of Ophthalmology,” Ophthalmology118(7), 1466–1480 (2011).
[PubMed]

Smith, S. D.

B. A. Francis, K. Singh, S. C. Lin, E. Hodapp, H. D. Jampel, J. R. Samples, and S. D. Smith, “Novel glaucoma procedures: a report by the American Academy of Ophthalmology,” Ophthalmology118(7), 1466–1480 (2011).
[PubMed]

Solomon, S.

S. Solomon, S. D. Katz, W. Stevenson-Smith, E. L. Yellin, and T. H. LeJemtel, “Determination of vascular impedance in the peripheral circulation by transcutaneous pulsed Doppler ultrasound,” Chest108(2), 515–521 (1995).
[CrossRef] [PubMed]

Souchon, R.

J. Ophir, S. Alam, B. Garra, F. Kallel, E. Konofagou, T. Krouskop, C. Merritt, R. Righetti, R. Souchon, S. Srinivasan, and T. Varghese, “Elastography: Imaging the elastic properties of soft tissues with ultrasound,” J. Med. Ultrasound29(4), 155–171 (2002).
[CrossRef]

Srinivasan, S.

J. Ophir, S. Alam, B. Garra, F. Kallel, E. Konofagou, T. Krouskop, C. Merritt, R. Righetti, R. Souchon, S. Srinivasan, and T. Varghese, “Elastography: Imaging the elastic properties of soft tissues with ultrasound,” J. Med. Ultrasound29(4), 155–171 (2002).
[CrossRef]

Stamer, W. D.

E. H. Zhou, R. Krishnan, W. D. Stamer, K. M. Perkumas, K. Rajendran, J. F. Nabhan, Q. Lu, J. J. Fredberg, and M. Johnson, “Mechanical responsiveness of the endothelial cell of Schlemm’s canal: scope, variability and its potential role in controlling aqueous humour outflow,” J. R. Soc. Interface9(71), 1144–1155 (2012).
[CrossRef] [PubMed]

W. D. Stamer and T. S. Acott, “Current understanding of conventional outflow dysfunction in glaucoma,” Curr. Opin. Ophthalmol.23(2), 135–143 (2012).
[CrossRef] [PubMed]

R. F. Ramos, G. M. Sumida, and W. D. Stamer, “Cyclic mechanical stress and trabecular meshwork cell contractility,” Invest. Ophthalmol. Vis. Sci.50(8), 3826–3832 (2009).
[CrossRef] [PubMed]

R. F. Ramos and W. D. Stamer, “Effects of cyclic intraocular pressure on conventional outflow facility,” Invest. Ophthalmol. Vis. Sci.49(1), 275–281 (2008).
[CrossRef] [PubMed]

Standish, B.

C. Sun, B. Standish, and V. X. Yang, “Optical coherence elastography: current status and future applications,” J. Biomed. Opt.16(4), 043001 (2011).
[CrossRef] [PubMed]

Stevenson-Smith, W.

S. Solomon, S. D. Katz, W. Stevenson-Smith, E. L. Yellin, and T. H. LeJemtel, “Determination of vascular impedance in the peripheral circulation by transcutaneous pulsed Doppler ultrasound,” Chest108(2), 515–521 (1995).
[CrossRef] [PubMed]

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Struller, T.

B. Junglas, S. Kuespert, A. A. Seleem, T. Struller, S. Ullmann, M. Bösl, A. Bosserhoff, J. Köstler, R. Wagner, E. R. Tamm, and R. Fuchshofer, “Connective tissue growth factor causes glaucoma by modifying the actin cytoskeleton of the trabecular meshwork,” Am. J. Pathol.180(6), 2386–2403 (2012).
[CrossRef] [PubMed]

Sumida, G. M.

R. F. Ramos, G. M. Sumida, and W. D. Stamer, “Cyclic mechanical stress and trabecular meshwork cell contractility,” Invest. Ophthalmol. Vis. Sci.50(8), 3826–3832 (2009).
[CrossRef] [PubMed]

Sun, C.

C. Sun, B. Standish, and V. X. Yang, “Optical coherence elastography: current status and future applications,” J. Biomed. Opt.16(4), 043001 (2011).
[CrossRef] [PubMed]

Suson, E. B.

E. B. Suson and R. O. Schultz, “Blood in schlemm’s canal in glaucoma suspects. A study of the relationship between blood-filling pattern and outflow facility in ocular hypertension,” Arch. Ophthalmol.81(6), 808–812 (1969).
[CrossRef] [PubMed]

Swanson, E. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Tamm, E. R.

B. Junglas, S. Kuespert, A. A. Seleem, T. Struller, S. Ullmann, M. Bösl, A. Bosserhoff, J. Köstler, R. Wagner, E. R. Tamm, and R. Fuchshofer, “Connective tissue growth factor causes glaucoma by modifying the actin cytoskeleton of the trabecular meshwork,” Am. J. Pathol.180(6), 2386–2403 (2012).
[CrossRef] [PubMed]

E. R. Tamm, P. Russell, D. L. Epstein, D. H. Johnson, and J. Piatigorsky, “Modulation of myocilin/TIGR expression in human trabecular meshwork,” Invest. Ophthalmol. Vis. Sci.40(11), 2577–2582 (1999).
[PubMed]

Taylor, M. G.

M. F. O’Rourke and M. G. Taylor, “Input impedance of the systemic circulation,” Circ. Res.20(4), 365–380 (1967).
[CrossRef] [PubMed]

M. F. O'Rourke and M. G. Taylor, “Vascular Impedance of the Femoral Bed,” Circ. Res.18(2), 126–139 (1966).
[CrossRef]

Tearney, G.

Thomasy, S. M.

S. M. Thomasy, J. A. Wood, P. H. Kass, C. J. Murphy, and P. Russell, “Substratum stiffness and latrunculin B regulate matrix gene and protein expression in human trabecular meshwork cells,” Invest. Ophthalmol. Vis. Sci.53(2), 952–958 (2012).
[CrossRef] [PubMed]

Tomlins, P. H.

P. H. Tomlins and R. K. Wang, “Theory, developments and applications of optical coherence tomography,” J. Phys. D Appl. Phys.38(15), 2519–2535 (2005).
[CrossRef]

Tsukahara, S.

C. I. Phillips, S. Tsukahara, O. Hosaka, and W. Adams, “Ocular pulsation correlates with ocular tension: the choroid as piston for an aqueous pump?” Ophthalmic Res.24(6), 338–343 (1992).
[CrossRef] [PubMed]

Tumminia, S. J.

S. J. Tumminia, K. P. Mitton, J. Arora, P. Zelenka, D. L. Epstein, and P. Russell, “Mechanical stretch alters the actin cytoskeletal network and signal transduction in human trabecular meshwork cells,” Invest. Ophthalmol. Vis. Sci.39(8), 1361–1371 (1998).
[PubMed]

K. P. Mitton, S. J. Tumminia, J. Arora, P. Zelenka, D. L. Epstein, and P. Russell, “Transient loss of alphaB-crystallin: an early cellular response to mechanical stretch,” Biochem. Biophys. Res. Commun.235(1), 69–73 (1997).
[CrossRef] [PubMed]

Ullmann, S.

B. Junglas, S. Kuespert, A. A. Seleem, T. Struller, S. Ullmann, M. Bösl, A. Bosserhoff, J. Köstler, R. Wagner, E. R. Tamm, and R. Fuchshofer, “Connective tissue growth factor causes glaucoma by modifying the actin cytoskeleton of the trabecular meshwork,” Am. J. Pathol.180(6), 2386–2403 (2012).
[CrossRef] [PubMed]

Varghese, T.

J. Ophir, S. Alam, B. Garra, F. Kallel, E. Konofagou, T. Krouskop, C. Merritt, R. Righetti, R. Souchon, S. Srinivasan, and T. Varghese, “Elastography: Imaging the elastic properties of soft tissues with ultrasound,” J. Med. Ultrasound29(4), 155–171 (2002).
[CrossRef]

Vittal, V.

V. Vittal, A. Rose, K. E. Gregory, M. J. Kelley, and T. S. Acott, “Changes in gene expression by trabecular meshwork cells in response to mechanical stretching,” Invest. Ophthalmol. Vis. Sci.46(8), 2857–2868 (2005).
[CrossRef] [PubMed]

Wagner, R.

B. Junglas, S. Kuespert, A. A. Seleem, T. Struller, S. Ullmann, M. Bösl, A. Bosserhoff, J. Köstler, R. Wagner, E. R. Tamm, and R. Fuchshofer, “Connective tissue growth factor causes glaucoma by modifying the actin cytoskeleton of the trabecular meshwork,” Am. J. Pathol.180(6), 2386–2403 (2012).
[CrossRef] [PubMed]

Walker, T.

R. Clark, A. Nosie, T. Walker, J. A. Faralli, M. S. Filla, G. Barrett-Wilt, and D. M. Peters, “Comparative genomic and proteomic analysis of cytoskeletal changes in dexamethasone-treated trabecular meshwork cells,” Mol. Cell. Proteomics12(1), 194–206 (2013).
[CrossRef] [PubMed]

Wang, R. K.

P. Li, L. An, G. Lan, M. Johnstone, D. Malchow, and R. K. Wang, “Extended imaging depth to 12 mm for 1050-nm spectral domain optical coherence tomography for imaging the whole anterior segment of the human eye at 120-kHz A-scan rate,” J. Biomed. Opt.18(1), 016012 (2013).
[CrossRef] [PubMed]

L. An, P. Li, G. Lan, D. Malchow, and R. K. Wang, “High-resolution 1050 nm spectral domain retinal optical coherence tomography at 120 kHz A-scan rate with 6.1 mm imaging depth,” Biomed. Opt. Express4(2), 245–259 (2013).
[CrossRef] [PubMed]

P. Li, X. Yin, L. Shi, S. Rugonyi, and R. K. Wang, “In vivo functional imaging of blood flow and wall strain rate in outflow tract of embryonic chick heart using ultrafast spectral domain optical coherence tomography,” J. Biomed. Opt.17(9), 096006 (2012).
[CrossRef] [PubMed]

P. Li, R. Reif, Z. Zhi, E. Martin, T. T. Shen, M. Johnstone, and R. K. Wang, “Phase-sensitive optical coherence tomography characterization of pulse-induced trabecular meshwork displacement in ex vivo nonhuman primate eyes,” J. Biomed. Opt.17(7), 076026 (2012).
[CrossRef] [PubMed]

R. K. Wang and L. An, “Multifunctional imaging of human retina and choroid with 1050-nm spectral domain optical coherence tomography at 92-kHz line scan rate,” J. Biomed. Opt.16(5), 050503 (2011).
[CrossRef] [PubMed]

P. Li, A. Liu, L. Shi, X. Yin, S. Rugonyi, and R. K. Wang, “Assessment of strain and strain rate in embryonic chick heart in vivo using tissue Doppler optical coherence tomography,” Phys. Med. Biol.56(22), 7081–7092 (2011).
[CrossRef] [PubMed]

L. An, T. T. Shen, and R. K. Wang, “Using ultrahigh sensitive optical microangiography to achieve comprehensive depth resolved microvasculature mapping for human retina,” J. Biomed. Opt.16(10), 106013 (2011).
[CrossRef] [PubMed]

R. K. Wang and A. L. Nuttall, “Phase-sensitive optical coherence tomography imaging of the tissue motion within the organ of Corti at a subnanometer scale: a preliminary study,” J. Biomed. Opt.15(5), 056005 (2010).
[CrossRef] [PubMed]

R. K. Wang, S. Kirkpatrick, and M. Hinds, “Phase-sensitive optical coherence elastography for mapping tissue microstrains in real time,” Appl. Phys. Lett.90(16), 164105 (2007).
[CrossRef]

R. K. Wang and Z. Ma, “Real-time flow imaging by removing texture pattern artifacts in spectral-domain optical Doppler tomography,” Opt. Lett.31(20), 3001–3003 (2006).
[CrossRef] [PubMed]

R. K. Wang, Z. Ma, and S. J. Kirkpatrick, “Tissue Doppler optical coherence elastography for real time strain rate and strain mapping of soft tissue,” Appl. Phys. Lett.89(14), 144103 (2006).
[CrossRef]

R. K. Wang and Z. Ma, “A practical approach to eliminate autocorrelation artefacts for volume-rate spectral domain optical coherence tomography,” Phys. Med. Biol.51(12), 3231–3239 (2006).
[CrossRef] [PubMed]

P. H. Tomlins and R. K. Wang, “Theory, developments and applications of optical coherence tomography,” J. Phys. D Appl. Phys.38(15), 2519–2535 (2005).
[CrossRef]

Weinreb, R. N.

R. N. Weinreb and P. L. Kaufman, “Glaucoma research community and FDA look to the future, II: NEI/FDA Glaucoma Clinical Trial Design and Endpoints Symposium: measures of structural change and visual function,” Invest. Ophthalmol. Vis. Sci.52(11), 7842–7851 (2011).
[CrossRef] [PubMed]

Wilson, L. S.

L. S. Wilson, D. E. Robinson, and M. J. Dadd, “Elastography--the movement begins,” Phys. Med. Biol.45(6), 1409–1421 (2000).
[CrossRef] [PubMed]

Womersley, J. R.

J. R. Womersley, “Method for the calculation of velocity, rate of flow and viscous drag in arteries when the pressure gradient is known,” J. Physiol.127(3), 553–563 (1955).
[PubMed]

Wood, J. A.

S. M. Thomasy, J. A. Wood, P. H. Kass, C. J. Murphy, and P. Russell, “Substratum stiffness and latrunculin B regulate matrix gene and protein expression in human trabecular meshwork cells,” Invest. Ophthalmol. Vis. Sci.53(2), 952–958 (2012).
[CrossRef] [PubMed]

WuDunn, D.

D. WuDunn, “The effect of mechanical strain on matrix metalloproteinase production by bovine trabecular meshwork cells,” Curr. Eye Res.22(5), 394–397 (2001).
[CrossRef] [PubMed]

Yamanari, M.

Yang, V. X.

C. Sun, B. Standish, and V. X. Yang, “Optical coherence elastography: current status and future applications,” J. Biomed. Opt.16(4), 043001 (2011).
[CrossRef] [PubMed]

Yasuno, Y.

Yatagai, T.

Yellin, E. L.

S. Solomon, S. D. Katz, W. Stevenson-Smith, E. L. Yellin, and T. H. LeJemtel, “Determination of vascular impedance in the peripheral circulation by transcutaneous pulsed Doppler ultrasound,” Chest108(2), 515–521 (1995).
[CrossRef] [PubMed]

Yin, X.

P. Li, X. Yin, L. Shi, S. Rugonyi, and R. K. Wang, “In vivo functional imaging of blood flow and wall strain rate in outflow tract of embryonic chick heart using ultrafast spectral domain optical coherence tomography,” J. Biomed. Opt.17(9), 096006 (2012).
[CrossRef] [PubMed]

P. Li, A. Liu, L. Shi, X. Yin, S. Rugonyi, and R. K. Wang, “Assessment of strain and strain rate in embryonic chick heart in vivo using tissue Doppler optical coherence tomography,” Phys. Med. Biol.56(22), 7081–7092 (2011).
[CrossRef] [PubMed]

Zelenka, P.

S. J. Tumminia, K. P. Mitton, J. Arora, P. Zelenka, D. L. Epstein, and P. Russell, “Mechanical stretch alters the actin cytoskeletal network and signal transduction in human trabecular meshwork cells,” Invest. Ophthalmol. Vis. Sci.39(8), 1361–1371 (1998).
[PubMed]

K. P. Mitton, S. J. Tumminia, J. Arora, P. Zelenka, D. L. Epstein, and P. Russell, “Transient loss of alphaB-crystallin: an early cellular response to mechanical stretch,” Biochem. Biophys. Res. Commun.235(1), 69–73 (1997).
[CrossRef] [PubMed]

Zhao, Y.

Zhi, Z.

P. Li, R. Reif, Z. Zhi, E. Martin, T. T. Shen, M. Johnstone, and R. K. Wang, “Phase-sensitive optical coherence tomography characterization of pulse-induced trabecular meshwork displacement in ex vivo nonhuman primate eyes,” J. Biomed. Opt.17(7), 076026 (2012).
[CrossRef] [PubMed]

Zhou, E. H.

E. H. Zhou, R. Krishnan, W. D. Stamer, K. M. Perkumas, K. Rajendran, J. F. Nabhan, Q. Lu, J. J. Fredberg, and M. Johnson, “Mechanical responsiveness of the endothelial cell of Schlemm’s canal: scope, variability and its potential role in controlling aqueous humour outflow,” J. R. Soc. Interface9(71), 1144–1155 (2012).
[CrossRef] [PubMed]

Zhu, X.

J. M. Bradley, M. J. Kelley, X. Zhu, A. M. Anderssohn, J. P. Alexander, and T. S. Acott, “Effects of mechanical stretching on trabecular matrix metalloproteinases,” Invest. Ophthalmol. Vis. Sci.42(7), 1505–1513 (2001).
[PubMed]

Am. J. Pathol. (1)

B. Junglas, S. Kuespert, A. A. Seleem, T. Struller, S. Ullmann, M. Bösl, A. Bosserhoff, J. Köstler, R. Wagner, E. R. Tamm, and R. Fuchshofer, “Connective tissue growth factor causes glaucoma by modifying the actin cytoskeleton of the trabecular meshwork,” Am. J. Pathol.180(6), 2386–2403 (2012).
[CrossRef] [PubMed]

Annu. Rev. Biomed. Eng. (1)

J. F. Greenleaf, M. Fatemi, and M. Insana, “Selected methods for imaging elastic properties of biological tissues,” Annu. Rev. Biomed. Eng.5(1), 57–78 (2003).
[CrossRef] [PubMed]

Appl. Phys. Lett. (2)

R. K. Wang, Z. Ma, and S. J. Kirkpatrick, “Tissue Doppler optical coherence elastography for real time strain rate and strain mapping of soft tissue,” Appl. Phys. Lett.89(14), 144103 (2006).
[CrossRef]

R. K. Wang, S. Kirkpatrick, and M. Hinds, “Phase-sensitive optical coherence elastography for mapping tissue microstrains in real time,” Appl. Phys. Lett.90(16), 164105 (2007).
[CrossRef]

Arch. Ophthalmol. (2)

S. Asrani, M. Sarunic, C. Santiago, and J. Izatt, “Detailed visualization of the anterior segment using fourier-domain optical coherence tomography,” Arch. Ophthalmol.126(6), 765–771 (2008).
[CrossRef] [PubMed]

E. B. Suson and R. O. Schultz, “Blood in schlemm’s canal in glaucoma suspects. A study of the relationship between blood-filling pattern and outflow facility in ocular hypertension,” Arch. Ophthalmol.81(6), 808–812 (1969).
[CrossRef] [PubMed]

Biochem. Biophys. Res. Commun. (2)

K. P. Mitton, S. J. Tumminia, J. Arora, P. Zelenka, D. L. Epstein, and P. Russell, “Transient loss of alphaB-crystallin: an early cellular response to mechanical stretch,” Biochem. Biophys. Res. Commun.235(1), 69–73 (1997).
[CrossRef] [PubMed]

P. B. Liton, C. Luna, M. Bodman, A. Hong, D. L. Epstein, and P. Gonzalez, “Induction of IL-6 expression by mechanical stress in the trabecular meshwork,” Biochem. Biophys. Res. Commun.337(4), 1229–1236 (2005).
[CrossRef] [PubMed]

Biomed. Opt. Express (1)

Chest (1)

S. Solomon, S. D. Katz, W. Stevenson-Smith, E. L. Yellin, and T. H. LeJemtel, “Determination of vascular impedance in the peripheral circulation by transcutaneous pulsed Doppler ultrasound,” Chest108(2), 515–521 (1995).
[CrossRef] [PubMed]

Circ. Res. (2)

M. F. O'Rourke and M. G. Taylor, “Vascular Impedance of the Femoral Bed,” Circ. Res.18(2), 126–139 (1966).
[CrossRef]

M. F. O’Rourke and M. G. Taylor, “Input impedance of the systemic circulation,” Circ. Res.20(4), 365–380 (1967).
[CrossRef] [PubMed]

Curr. Eye Res. (1)

D. WuDunn, “The effect of mechanical strain on matrix metalloproteinase production by bovine trabecular meshwork cells,” Curr. Eye Res.22(5), 394–397 (2001).
[CrossRef] [PubMed]

Curr. Opin. Ophthalmol. (2)

H. Saheb and I. I. Ahmed, “Micro-invasive glaucoma surgery: current perspectives and future directions,” Curr. Opin. Ophthalmol.23(2), 96–104 (2012).
[CrossRef] [PubMed]

W. D. Stamer and T. S. Acott, “Current understanding of conventional outflow dysfunction in glaucoma,” Curr. Opin. Ophthalmol.23(2), 135–143 (2012).
[CrossRef] [PubMed]

Exp. Eye Res. (3)

M. Johnstone, E. Martin, and A. Jamil, “Pulsatile flow into the aqueous veins: Manifestations in normal and glaucomatous eyes,” Exp. Eye Res.92(5), 318–327 (2011).
[CrossRef] [PubMed]

T. S. Acott and M. J. Kelley, “Extracellular matrix in the trabecular meshwork,” Exp. Eye Res.86(4), 543–561 (2008).
[CrossRef] [PubMed]

K. E. Keller, M. Aga, J. M. Bradley, M. J. Kelley, and T. S. Acott, “Extracellular matrix turnover and outflow resistance,” Exp. Eye Res.88(4), 676–682 (2009).
[CrossRef] [PubMed]

Heart (1)

J. Rogowska, N. A. Patel, J. G. Fujimoto, and M. E. Brezinski, “Optical coherence tomographic elastography technique for measuring deformation and strain of atherosclerotic tissues,” Heart90(5), 556–562 (2004).
[CrossRef] [PubMed]

Invest. Ophthalmol. Vis. Sci. (17)

R. N. Weinreb and P. L. Kaufman, “Glaucoma research community and FDA look to the future, II: NEI/FDA Glaucoma Clinical Trial Design and Endpoints Symposium: measures of structural change and visual function,” Invest. Ophthalmol. Vis. Sci.52(11), 7842–7851 (2011).
[CrossRef] [PubMed]

C. Luna, G. Li, J. Qiu, P. Challa, D. L. Epstein, and P. Gonzalez, “Extracellular release of ATP mediated by cyclic mechanical stress leads to mobilization of AA in trabecular meshwork cells,” Invest. Ophthalmol. Vis. Sci.50(12), 5805–5810 (2009).
[CrossRef] [PubMed]

J. M. B. Bradley, M. J. Kelley, A. Rose, and T. S. Acott, “Signaling Pathways Used in Trabecular Matrix Metalloproteinase Response to Mechanical Stretch,” Invest. Ophthalmol. Vis. Sci.44(12), 5174–5181 (2003).
[CrossRef] [PubMed]

V. Vittal, A. Rose, K. E. Gregory, M. J. Kelley, and T. S. Acott, “Changes in gene expression by trabecular meshwork cells in response to mechanical stretching,” Invest. Ophthalmol. Vis. Sci.46(8), 2857–2868 (2005).
[CrossRef] [PubMed]

E. R. Tamm, P. Russell, D. L. Epstein, D. H. Johnson, and J. Piatigorsky, “Modulation of myocilin/TIGR expression in human trabecular meshwork,” Invest. Ophthalmol. Vis. Sci.40(11), 2577–2582 (1999).
[PubMed]

P. L. Kaufman and C. A. Rasmussen, “Advances in glaucoma treatment and management: outflow drugs,” Invest. Ophthalmol. Vis. Sci.53(5), 2495–2500 (2012).
[CrossRef] [PubMed]

R. F. Ramos and W. D. Stamer, “Effects of cyclic intraocular pressure on conventional outflow facility,” Invest. Ophthalmol. Vis. Sci.49(1), 275–281 (2008).
[CrossRef] [PubMed]

R. F. Ramos, G. M. Sumida, and W. D. Stamer, “Cyclic mechanical stress and trabecular meshwork cell contractility,” Invest. Ophthalmol. Vis. Sci.50(8), 3826–3832 (2009).
[CrossRef] [PubMed]

S. J. Tumminia, K. P. Mitton, J. Arora, P. Zelenka, D. L. Epstein, and P. Russell, “Mechanical stretch alters the actin cytoskeletal network and signal transduction in human trabecular meshwork cells,” Invest. Ophthalmol. Vis. Sci.39(8), 1361–1371 (1998).
[PubMed]

M. P. Fautsch and D. H. Johnson, “Aqueous humor outflow: what do we know? Where will it lead us?” Invest. Ophthalmol. Vis. Sci.47(10), 4181–4187 (2006).
[CrossRef] [PubMed]

J. M. Bradley, M. J. Kelley, X. Zhu, A. M. Anderssohn, J. P. Alexander, and T. S. Acott, “Effects of mechanical stretching on trabecular matrix metalloproteinases,” Invest. Ophthalmol. Vis. Sci.42(7), 1505–1513 (2001).
[PubMed]

K. E. Keller, M. J. Kelley, and T. S. Acott, “Extracellular matrix gene alternative splicing by trabecular meshwork cells in response to mechanical stretching,” Invest. Ophthalmol. Vis. Sci.48(3), 1164–1172 (2007).
[CrossRef] [PubMed]

M. S. Filla, M. K. Schwinn, A. K. Nosie, R. W. Clark, and D. M. Peters, “Dexamethasone-associated cross-linked actin network formation in human trabecular meshwork cells involves β3 integrin signaling,” Invest. Ophthalmol. Vis. Sci.52(6), 2952–2959 (2011).
[CrossRef] [PubMed]

S. O’Reilly, N. Pollock, L. Currie, L. Paraoan, A. F. Clark, and I. Grierson, “Inducers of cross-linked actin networks in trabecular meshwork cells,” Invest. Ophthalmol. Vis. Sci.52(10), 7316–7324 (2011).
[CrossRef] [PubMed]

J. A. Last, T. Pan, Y. Ding, C. M. Reilly, K. Keller, T. S. Acott, M. P. Fautsch, C. J. Murphy, and P. Russell, “Elastic modulus determination of normal and glaucomatous human trabecular meshwork,” Invest. Ophthalmol. Vis. Sci.52(5), 2147–2152 (2011).
[CrossRef] [PubMed]

P. Russell and M. Johnson, “Elastic modulus determination of normal and glaucomatous human trabecular meshwork,” Invest. Ophthalmol. Vis. Sci.53(1), 117 (2012).
[CrossRef]

S. M. Thomasy, J. A. Wood, P. H. Kass, C. J. Murphy, and P. Russell, “Substratum stiffness and latrunculin B regulate matrix gene and protein expression in human trabecular meshwork cells,” Invest. Ophthalmol. Vis. Sci.53(2), 952–958 (2012).
[CrossRef] [PubMed]

J. Appl. Physiol. (2)

D. J. Patel, J. C. Greenfield, W. G. Austen, A. G. Morrow, and D. L. Fry, “Pressure-flow relationships in the ascending aorta and femoral artery of man,” J. Appl. Physiol.20(3), 459–463 (1965).
[PubMed]

M. F. O’Rourke, “Pressure and flow waves in systemic arteries and the anatomical design of the arterial system,” J. Appl. Physiol.23(2), 139–149 (1967).
[PubMed]

J. Biomed. Opt. (7)

R. K. Wang and L. An, “Multifunctional imaging of human retina and choroid with 1050-nm spectral domain optical coherence tomography at 92-kHz line scan rate,” J. Biomed. Opt.16(5), 050503 (2011).
[CrossRef] [PubMed]

C. Sun, B. Standish, and V. X. Yang, “Optical coherence elastography: current status and future applications,” J. Biomed. Opt.16(4), 043001 (2011).
[CrossRef] [PubMed]

P. Li, X. Yin, L. Shi, S. Rugonyi, and R. K. Wang, “In vivo functional imaging of blood flow and wall strain rate in outflow tract of embryonic chick heart using ultrafast spectral domain optical coherence tomography,” J. Biomed. Opt.17(9), 096006 (2012).
[CrossRef] [PubMed]

R. K. Wang and A. L. Nuttall, “Phase-sensitive optical coherence tomography imaging of the tissue motion within the organ of Corti at a subnanometer scale: a preliminary study,” J. Biomed. Opt.15(5), 056005 (2010).
[CrossRef] [PubMed]

P. Li, R. Reif, Z. Zhi, E. Martin, T. T. Shen, M. Johnstone, and R. K. Wang, “Phase-sensitive optical coherence tomography characterization of pulse-induced trabecular meshwork displacement in ex vivo nonhuman primate eyes,” J. Biomed. Opt.17(7), 076026 (2012).
[CrossRef] [PubMed]

L. An, T. T. Shen, and R. K. Wang, “Using ultrahigh sensitive optical microangiography to achieve comprehensive depth resolved microvasculature mapping for human retina,” J. Biomed. Opt.16(10), 106013 (2011).
[CrossRef] [PubMed]

P. Li, L. An, G. Lan, M. Johnstone, D. Malchow, and R. K. Wang, “Extended imaging depth to 12 mm for 1050-nm spectral domain optical coherence tomography for imaging the whole anterior segment of the human eye at 120-kHz A-scan rate,” J. Biomed. Opt.18(1), 016012 (2013).
[CrossRef] [PubMed]

J. Cell. Physiol. (1)

P. B. Liton, X. Liu, P. Challa, D. L. Epstein, and P. Gonzalez, “Induction of TGF-beta1 in the trabecular meshwork under cyclic mechanical stress,” J. Cell. Physiol.205(3), 364–371 (2005).
[CrossRef] [PubMed]

J. Glaucoma (1)

M. A. Johnstone, “The aqueous outflow system as a mechanical pump: evidence from examination of tissue and aqueous movement in human and non-human primates,” J. Glaucoma13(5), 421–438 (2004).
[CrossRef] [PubMed]

J. Med. Ultrasound (1)

J. Ophir, S. Alam, B. Garra, F. Kallel, E. Konofagou, T. Krouskop, C. Merritt, R. Righetti, R. Souchon, S. Srinivasan, and T. Varghese, “Elastography: Imaging the elastic properties of soft tissues with ultrasound,” J. Med. Ultrasound29(4), 155–171 (2002).
[CrossRef]

J. Phys. D Appl. Phys. (1)

P. H. Tomlins and R. K. Wang, “Theory, developments and applications of optical coherence tomography,” J. Phys. D Appl. Phys.38(15), 2519–2535 (2005).
[CrossRef]

J. Physiol. (3)

C. G. Caro and D. A. McDONALD, “The relation of pulsatile pressure and flow in the pulmonary vascular bed,” J. Physiol.157, 426–453 (1961).
[PubMed]

D. A. McDonald, “The relation of pulsatile pressure to flow in arteries,” J. Physiol.127(3), 533–552 (1955).
[PubMed]

J. R. Womersley, “Method for the calculation of velocity, rate of flow and viscous drag in arteries when the pressure gradient is known,” J. Physiol.127(3), 553–563 (1955).
[PubMed]

J. R. Soc. Interface (1)

E. H. Zhou, R. Krishnan, W. D. Stamer, K. M. Perkumas, K. Rajendran, J. F. Nabhan, Q. Lu, J. J. Fredberg, and M. Johnson, “Mechanical responsiveness of the endothelial cell of Schlemm’s canal: scope, variability and its potential role in controlling aqueous humour outflow,” J. R. Soc. Interface9(71), 1144–1155 (2012).
[CrossRef] [PubMed]

Mol. Cell. Proteomics (1)

R. Clark, A. Nosie, T. Walker, J. A. Faralli, M. S. Filla, G. Barrett-Wilt, and D. M. Peters, “Comparative genomic and proteomic analysis of cytoskeletal changes in dexamethasone-treated trabecular meshwork cells,” Mol. Cell. Proteomics12(1), 194–206 (2013).
[CrossRef] [PubMed]

Mol. Vis. (1)

C. Luna, G. Li, P. B. Liton, D. L. Epstein, and P. Gonzalez, “Alterations in gene expression induced by cyclic mechanical stress in trabecular meshwork cells,” Mol. Vis.15, 534–544 (2009).
[PubMed]

Ophthalmic Res. (1)

C. I. Phillips, S. Tsukahara, O. Hosaka, and W. Adams, “Ocular pulsation correlates with ocular tension: the choroid as piston for an aqueous pump?” Ophthalmic Res.24(6), 338–343 (1992).
[CrossRef] [PubMed]

Ophthalmology (1)

B. A. Francis, K. Singh, S. C. Lin, E. Hodapp, H. D. Jampel, J. R. Samples, and S. D. Smith, “Novel glaucoma procedures: a report by the American Academy of Ophthalmology,” Ophthalmology118(7), 1466–1480 (2011).
[PubMed]

Opt. Express (6)

Opt. Lett. (2)

Phys. Med. Biol. (3)

P. Li, A. Liu, L. Shi, X. Yin, S. Rugonyi, and R. K. Wang, “Assessment of strain and strain rate in embryonic chick heart in vivo using tissue Doppler optical coherence tomography,” Phys. Med. Biol.56(22), 7081–7092 (2011).
[CrossRef] [PubMed]

L. S. Wilson, D. E. Robinson, and M. J. Dadd, “Elastography--the movement begins,” Phys. Med. Biol.45(6), 1409–1421 (2000).
[CrossRef] [PubMed]

R. K. Wang and Z. Ma, “A practical approach to eliminate autocorrelation artefacts for volume-rate spectral domain optical coherence tomography,” Phys. Med. Biol.51(12), 3231–3239 (2006).
[CrossRef] [PubMed]

Rep. Prog. Phys. (1)

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography - principles and applications,” Rep. Prog. Phys.66(2), 239–303 (2003).
[CrossRef]

Science (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Ultrasound Med. Biol. (1)

R. J. Dickinson and C. R. Hill, “Measurement of soft tissue motion using correlation between A-scans,” Ultrasound Med. Biol.8(3), 263–271 (1982).
[CrossRef] [PubMed]

Other (2)

American National Standard Institute, Safe use of lasers and safe use of optical fiber communications. New York: ANSI, Z136 committee; 2000:168.

M. A. Johnstone, “A New Model Describes an Aqueous Outflow Pump and Explores Causes of Pump Failure in Glaucoma,” in Glaucoma. Essentials in Ophthalmology, F. Grehn and R. Stamper, eds. (Springer Berlin Heidelberg, 2006), pp. 3–34.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic diagram of the experimental setup for imaging the anterior segment with PhS-OCT while using a pulsimeter to simultaneously measure the digital pulse signal. Trig.1 triggers PhS-OCT for imaging the TM tissue motion; Trig.2 triggers the digital pulsimeter for recording the digital pulse signal. ROI indicates the OCT imaging area within the corneo-scleral limbus. CIR: circulator; OC: optical coupler; CL: collimating lens; M: mirror; OL: objective lens; DG: diffraction grating; FL: focusing lens; C: Cornea; I: iris; L: lens; AF: aqueous flow.

Fig. 2
Fig. 2

Flow chart of PhS-OCT signal processing. In (D), (E) and (K), solid blue curve represents TM velocity wave Vt(t) and dashed red curve represents digital pulse wave Pd(t).

Fig. 3
Fig. 3

Temporal and frequency characterization of TM motion. (A) Representative OCT microstructural cross-section of the corneo-scleral limbus, insert is an enlarged view of TM and SC region as marked by the dashed red square in (A); (B) Corresponding representative velocity image with bulk motion corrected; insert is an enlarged view of TM and SC region as marked by the dashed red square in (B); (C) Instantaneous tissue velocity wave captured from a 3x3 pixel square on the cornea as marked by the black thin arrow in (A) and (B) together with the simultaneous digital pulse wave Pd(t); (D) Instantaneous tissue velocity wave Vt(t) captured from a 3x pixel square over the TM as marked by the red bold arrow in (A) and (B) together with the simultaneous digital pulse wave Pd(t) (E) Power spectrum of the TM velocity wave Vt(t) and the simultaneous digital pulse wave Pd(t) reported in (D); (F) Linear correlation between the TM f-time and the digital p-time; (G) Linear correlation of the frequency components of the TM velocity wave and the digital pulse wave. CC: collector channel, SC: Schlemm’s canal, TM: trabecular meshwork, CB: ciliary body, Digital p-time: instantaneous time of digital pulse peak, TM f-time: instantaneous time of the TM velocity pulse minimum.

Fig. 4
Fig. 4

Spatial characterization of TM motion. (A) Normalized strength mapping of the ocular tissue motion around the corneo-scleral limbus; (B) isolated TM strength mapping superimposed on the corresponding structural cross-section, enlarged view of the area marked by the dashed red square in (B); (C) and (D) isolated TM velocity cross-sections superimposed on the structural cross-section, respectively corresponding to the downward velocity toward the AC and the upward velocity toward SC external wall.

Fig. 5
Fig. 5

Decomposition of TM motion. (A) Magnitude Mti of the TM velocity wave versus the first 9 harmonic frequencies; (B-E) first 4 harmonic components of the TM velocity wave (blue curve) and the digital pulse wave (red curve).

Fig. 6
Fig. 6

Scatter plot of phase lag Δθi (i = 1,2,3,4) versus heart rate (A) and age (B). Red trend lines describe the generally negative statistical relationships.

Fig. 7
Fig. 7

Velocity pulse wave of CRA measured by the 1050nm SDOCT system. (A) a typical OCT image crossing the optic nerve head; (B) enlarged field-of-view of the area marked by the red square in (A) and (C) the corresponding Doppler velocity color map, from which the Doppler velocity of the CRA is calculated in the M-B scans. (D) Instantaneous Doppler velocity of the pulsatile blood flow in the CRA over ~5sec duration and the corresponding digital pulse wave concurrently recorded; (E) the 1st harmonic wave of the CRA pulse and the simultaneous digital pulse evaluated from the signals in (D).

Tables (3)

Tables Icon

Table 1 Demographic and statistical data of the cohort

Tables Icon

Table 2 Mean phase lag Δθi (i = 1,2,3,4).

Tables Icon

Table 3 Mean time delay Δti (i = 1,2,3,4).

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

φ(x,z,t)=arg( r(x,z,tτ) r (x,z,t)exp[Δ φ bulk (x,z,t)] )
V t (x,z,t)= λ 0 4πnτ φ(x,z,t)
γ(Δx,Δz,t)= | x,z [ r (x,z, t 0 )r(x+Δx,z+Δz,t) ] | x,z | r(x,z, t 0 ) | 2 x,z | r(x+Δx,z+Δz,t) | 2
V t (t)= l=1 1 m=1 1 V t ( x 0 +l, z 0 +m,t) 9
P d (t)= P d0 + i=1 n P di (t) P di (t)= a di cos(2iπft)+ b di sin(2iπft)
V t ( t )= V t0 + i=1 n V ti V ti ( t )= a ti cos(i2πft)+ b ti sin(i2πft)
a ti = T 2 T/2 T/2 V t (t)cos(2πift)dt b ti = T 2 T/2 T/2 V t (t)sin(2πift)dt
M ti = a ti 2 + b ti 2
S t =( M t1 + M t2 + M t3 )
Δ θ i = θ di θ ti
θ di = tan 1 ( b di a di ) θ ti = tan 1 ( b ti a ti )
Δ t i = Δ θ i 2πif

Metrics