T. Mitcham, K. Homan, W. Frey, Y.-S. Chen, S. Emelianov, J. Hazle, and R. Bouchard, “Modulation of photoacoustic signal generation from metallic surfaces,” J. Biomed. Opt. 18, 056008 (2013).

M. A. Lediju Bell, R. Goswami, J. A. Kisslo, J. J. Dahl, and G. E. Trahey, “Short-lag spatial coherence imaging of cardiac ultrasound data: Initial clinical results,” Ultrasound Med. Biol., 39(10), 1861–1874 (2013) (DOI:).

[Crossref]

M. Jakovljevic, G. E. Trahey, R. C. Nelson, and J. J. Dahl, “In Vivo application of short-lag spatial coherence imaging in human liver,” Ultrasound Med. Biol. 39, 534–542 (2013).

B. Pourebrahimi, S. Yoon, D. Dopsa, and M. C. Kolios, “Improving the quality of photoacoustic images using the short-lag spatial coherence imaging technique,” Proc. SPIE85813Y (2013)

N. Kuo, H. J. Kang, D. Y. Song, J. U. Kang, and E. M. Boctor, “Real-time photoacoustic imaging of prostate brachytherapy seeds using a clinical ultrasound system,” J. Biomed. Opt. 17, 0660051–0660057 (2012).

T. Harrison and R. J. Zemp, “Coregistered photoacoustic-ultrasound imaging applied to brachytherapy,” J. Biomed. Opt. 16, 080502–080502 (2011).

J. L. Su, R. R. Bouchard, A. B. Karpiouk, J. D. Hazle, and S. Y. Emelianov, “Photoacoustic imaging of prostate brachytherapy seeds,” Biomed. Opt. Express 2, 2243 (2011).

M. A. Lediju, G. E. Trahey, B. C. Byram, and J. J. Dahl, “Short-lag spatial coherence of backscattered echoes: Imaging characteristics,” IEEE Trans. Ultrason. Ferr. Freq. Contr. 58, 1337 (2011).

J. J. Dahl, D. Hyun, M. A. Lediju, and G. E. Trahey, “Lesion detectability in diagnostic ultrasound with short-lag spatial coherence imaging.” Ultrasonic Imaging 33, 119 (2011).

N. Kuo, H. J. Kang, T. DeJournett, J. Spicer, and E. Boctor, “Photoacoustic imaging of prostate brachytherapy seeds in ex vivo prostate,” Proc. SPIE796409 (2011).

B. E. Treeby and B. T. Cox, “k-Wave: MATLAB toolbox for the simulation and reconstruction of photoacoustic wave fields,” J. Biomed. Opt. 15, 021314 (2010).

M. Jaeger, S. Schüpbach, A. Gertsch, M. Kitz, and M. Frenz, “Fourier reconstruction in optoacoustic imaging using truncated regularized inverse k-space interpolation,” Inverse Probl. 23, S51 (2007).

M. Xu and L. V. Wang, “Photoacoustic imaging in biomedicine,” Rev. Sci. Instrum. 77, 041101–041101 (2006).

R. J. Fedewa, K. D. Wallace, M. R. Holland, J. R. Jago, G. C. Ng, M. R. Rielly, B. S. Robinson, and J. G. Miller, “Spatial coherence of the nonlinearly generated second harmonic portion of backscatter for a clinical imaging system,” IEEE Trans. Ultrason. Ferr. Freq. Contr. 50, 1010–1022 (2003).

S. Langley and R. Laing, “Prostate brachytherapy has come of age: a review of the technique and results,” Brit. J. Urol. 89, 241–249 (2002).

W. H. Nau, R. J. Roselli, and D. F. Milam, “Measurement of thermal effects on the optical properties of prostate tissue at wavelengths of 1,064 and 633 nm,” Laser. Surg. Med. 24, 38–47 (1999).

C. G. Roehrborn, C. J. Girman, T. Rhodes, K. A. Hanson, G. N. Collins, S. M. Sech, S. J. Jacobsen, W. M. Garraway, and M. M. Lieber, “Correlation between prostate size estimated by digital rectal examination and measured by transrectal ultrasound,” Urology 49, 548–557 (1997).

R. Mallart and M. Fink, “The van Cittert–Zernike theorem in pulse echo measurements,” J. Acoust. Soc. Am. 90, 2718 (1991).

W.-F. Cheong, S. A. Prahl, and A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Elect. 26, 2166–2185 (1990).

J. L. Karagiannes, Z. Zhang, B. Grossweiner, and L. I. Grossweiner, “Applications of the 1-D diffusion approximation to the optics of tissues and tissue phantoms,” Appl. Optics 28, 2311–2317 (1989).

A. G. Bell, “On the production and reproduction of sound by light”, Am. J. Sci. 118, 305–324 (1880).

L. Pan, A. Baghani, R. Rohling, P. Abolmaesumi, S. Salcudean, and S. Tang, “Improving photoacoustic imaging contrast of brachytherapy seeds,” Proc. SPIE85814B (2013).

L. Pan, A. Baghani, R. Rohling, P. Abolmaesumi, S. Salcudean, and S. Tang, “Improving photoacoustic imaging contrast of brachytherapy seeds,” Proc. SPIE85814B (2013).

A. G. Bell, “On the production and reproduction of sound by light”, Am. J. Sci. 118, 305–324 (1880).

N. Kuo, H. J. Kang, T. DeJournett, J. Spicer, and E. Boctor, “Photoacoustic imaging of prostate brachytherapy seeds in ex vivo prostate,” Proc. SPIE796409 (2011).

N. Kuo, H. J. Kang, D. Y. Song, J. U. Kang, and E. M. Boctor, “Real-time photoacoustic imaging of prostate brachytherapy seeds using a clinical ultrasound system,” J. Biomed. Opt. 17, 0660051–0660057 (2012).

E. M. Boctor, “Prostate brachytherapy seed localization using combined photoacoustic and ultrasound imaging,” presented at SPIE Ultrasonic Imaging, Tomography and Therapy, San Diego, California, 14 Feb. 2010.

T. Mitcham, K. Homan, W. Frey, Y.-S. Chen, S. Emelianov, J. Hazle, and R. Bouchard, “Modulation of photoacoustic signal generation from metallic surfaces,” J. Biomed. Opt. 18, 056008 (2013).

M. A. Lediju, G. E. Trahey, B. C. Byram, and J. J. Dahl, “Short-lag spatial coherence of backscattered echoes: Imaging characteristics,” IEEE Trans. Ultrason. Ferr. Freq. Contr. 58, 1337 (2011).

T. Mitcham, K. Homan, W. Frey, Y.-S. Chen, S. Emelianov, J. Hazle, and R. Bouchard, “Modulation of photoacoustic signal generation from metallic surfaces,” J. Biomed. Opt. 18, 056008 (2013).

W.-F. Cheong, S. A. Prahl, and A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Elect. 26, 2166–2185 (1990).

C. G. Roehrborn, C. J. Girman, T. Rhodes, K. A. Hanson, G. N. Collins, S. M. Sech, S. J. Jacobsen, W. M. Garraway, and M. M. Lieber, “Correlation between prostate size estimated by digital rectal examination and measured by transrectal ultrasound,” Urology 49, 548–557 (1997).

B. E. Treeby and B. T. Cox, “k-Wave: MATLAB toolbox for the simulation and reconstruction of photoacoustic wave fields,” J. Biomed. Opt. 15, 021314 (2010).

M. A. Lediju Bell, R. Goswami, J. A. Kisslo, J. J. Dahl, and G. E. Trahey, “Short-lag spatial coherence imaging of cardiac ultrasound data: Initial clinical results,” Ultrasound Med. Biol., 39(10), 1861–1874 (2013) (DOI:).

[Crossref]

M. Jakovljevic, G. E. Trahey, R. C. Nelson, and J. J. Dahl, “In Vivo application of short-lag spatial coherence imaging in human liver,” Ultrasound Med. Biol. 39, 534–542 (2013).

M. A. Lediju, G. E. Trahey, B. C. Byram, and J. J. Dahl, “Short-lag spatial coherence of backscattered echoes: Imaging characteristics,” IEEE Trans. Ultrason. Ferr. Freq. Contr. 58, 1337 (2011).

J. J. Dahl, D. Hyun, M. A. Lediju, and G. E. Trahey, “Lesion detectability in diagnostic ultrasound with short-lag spatial coherence imaging.” Ultrasonic Imaging 33, 119 (2011).

M. A. Lediju Bell, R. Goswami, J. J. Dahl, and G. E. Trahey, “Improved visualization of endocardial borders with short-lag spatial coherence imaging of fundamental and harmonic ultrasound data,” in Proceedings of IEEE International Ultrasonics Symposium (IEEE, 2012), pp. 2129–2132.

N. Kuo, H. J. Kang, T. DeJournett, J. Spicer, and E. Boctor, “Photoacoustic imaging of prostate brachytherapy seeds in ex vivo prostate,” Proc. SPIE796409 (2011).

B. Pourebrahimi, S. Yoon, D. Dopsa, and M. C. Kolios, “Improving the quality of photoacoustic images using the short-lag spatial coherence imaging technique,” Proc. SPIE85813Y (2013)

T. Mitcham, K. Homan, W. Frey, Y.-S. Chen, S. Emelianov, J. Hazle, and R. Bouchard, “Modulation of photoacoustic signal generation from metallic surfaces,” J. Biomed. Opt. 18, 056008 (2013).

J. L. Su, R. R. Bouchard, A. B. Karpiouk, J. D. Hazle, and S. Y. Emelianov, “Photoacoustic imaging of prostate brachytherapy seeds,” Biomed. Opt. Express 2, 2243 (2011).

S. Park, A. B. Karpiouk, S. R. Aglyamov, and S. Y. Emelianov, “Adaptive beamforming for photoacoustic imaging,” Opt. Lett. 33, 1291–1293 (2008).

R. J. Fedewa, K. D. Wallace, M. R. Holland, J. R. Jago, G. C. Ng, M. R. Rielly, B. S. Robinson, and J. G. Miller, “Spatial coherence of the nonlinearly generated second harmonic portion of backscatter for a clinical imaging system,” IEEE Trans. Ultrason. Ferr. Freq. Contr. 50, 1010–1022 (2003).

R. Mallart and M. Fink, “The van Cittert–Zernike theorem in pulse echo measurements,” J. Acoust. Soc. Am. 90, 2718 (1991).

M. Jaeger, S. Schüpbach, A. Gertsch, M. Kitz, and M. Frenz, “Fourier reconstruction in optoacoustic imaging using truncated regularized inverse k-space interpolation,” Inverse Probl. 23, S51 (2007).

T. Mitcham, K. Homan, W. Frey, Y.-S. Chen, S. Emelianov, J. Hazle, and R. Bouchard, “Modulation of photoacoustic signal generation from metallic surfaces,” J. Biomed. Opt. 18, 056008 (2013).

C. G. Roehrborn, C. J. Girman, T. Rhodes, K. A. Hanson, G. N. Collins, S. M. Sech, S. J. Jacobsen, W. M. Garraway, and M. M. Lieber, “Correlation between prostate size estimated by digital rectal examination and measured by transrectal ultrasound,” Urology 49, 548–557 (1997).

M. Jaeger, S. Schüpbach, A. Gertsch, M. Kitz, and M. Frenz, “Fourier reconstruction in optoacoustic imaging using truncated regularized inverse k-space interpolation,” Inverse Probl. 23, S51 (2007).

C. G. Roehrborn, C. J. Girman, T. Rhodes, K. A. Hanson, G. N. Collins, S. M. Sech, S. J. Jacobsen, W. M. Garraway, and M. M. Lieber, “Correlation between prostate size estimated by digital rectal examination and measured by transrectal ultrasound,” Urology 49, 548–557 (1997).

M. A. Lediju Bell, R. Goswami, J. A. Kisslo, J. J. Dahl, and G. E. Trahey, “Short-lag spatial coherence imaging of cardiac ultrasound data: Initial clinical results,” Ultrasound Med. Biol., 39(10), 1861–1874 (2013) (DOI:).

[Crossref]

M. A. Lediju Bell, R. Goswami, and G. E. Trahey, “Clutter reduction in echocardiography with short-lag spatial coherence (SLSC) imaging,” in Proceedings of IEEE International Symposium on Biomedical Imaging(IEEE, 2012), pp. 1116–1119.

M. A. Lediju Bell, R. Goswami, J. J. Dahl, and G. E. Trahey, “Improved visualization of endocardial borders with short-lag spatial coherence imaging of fundamental and harmonic ultrasound data,” in Proceedings of IEEE International Ultrasonics Symposium (IEEE, 2012), pp. 2129–2132.

J. L. Karagiannes, Z. Zhang, B. Grossweiner, and L. I. Grossweiner, “Applications of the 1-D diffusion approximation to the optics of tissues and tissue phantoms,” Appl. Optics 28, 2311–2317 (1989).

J. L. Karagiannes, Z. Zhang, B. Grossweiner, and L. I. Grossweiner, “Applications of the 1-D diffusion approximation to the optics of tissues and tissue phantoms,” Appl. Optics 28, 2311–2317 (1989).

C. G. Roehrborn, C. J. Girman, T. Rhodes, K. A. Hanson, G. N. Collins, S. M. Sech, S. J. Jacobsen, W. M. Garraway, and M. M. Lieber, “Correlation between prostate size estimated by digital rectal examination and measured by transrectal ultrasound,” Urology 49, 548–557 (1997).

T. Harrison and R. J. Zemp, “Coregistered photoacoustic-ultrasound imaging applied to brachytherapy,” J. Biomed. Opt. 16, 080502–080502 (2011).

T. Mitcham, K. Homan, W. Frey, Y.-S. Chen, S. Emelianov, J. Hazle, and R. Bouchard, “Modulation of photoacoustic signal generation from metallic surfaces,” J. Biomed. Opt. 18, 056008 (2013).

R. J. Fedewa, K. D. Wallace, M. R. Holland, J. R. Jago, G. C. Ng, M. R. Rielly, B. S. Robinson, and J. G. Miller, “Spatial coherence of the nonlinearly generated second harmonic portion of backscatter for a clinical imaging system,” IEEE Trans. Ultrason. Ferr. Freq. Contr. 50, 1010–1022 (2003).

T. Mitcham, K. Homan, W. Frey, Y.-S. Chen, S. Emelianov, J. Hazle, and R. Bouchard, “Modulation of photoacoustic signal generation from metallic surfaces,” J. Biomed. Opt. 18, 056008 (2013).

J. J. Dahl, D. Hyun, M. A. Lediju, and G. E. Trahey, “Lesion detectability in diagnostic ultrasound with short-lag spatial coherence imaging.” Ultrasonic Imaging 33, 119 (2011).

C. G. Roehrborn, C. J. Girman, T. Rhodes, K. A. Hanson, G. N. Collins, S. M. Sech, S. J. Jacobsen, W. M. Garraway, and M. M. Lieber, “Correlation between prostate size estimated by digital rectal examination and measured by transrectal ultrasound,” Urology 49, 548–557 (1997).

M. Jaeger, S. Schüpbach, A. Gertsch, M. Kitz, and M. Frenz, “Fourier reconstruction in optoacoustic imaging using truncated regularized inverse k-space interpolation,” Inverse Probl. 23, S51 (2007).

R. J. Fedewa, K. D. Wallace, M. R. Holland, J. R. Jago, G. C. Ng, M. R. Rielly, B. S. Robinson, and J. G. Miller, “Spatial coherence of the nonlinearly generated second harmonic portion of backscatter for a clinical imaging system,” IEEE Trans. Ultrason. Ferr. Freq. Contr. 50, 1010–1022 (2003).

M. Jakovljevic, G. E. Trahey, R. C. Nelson, and J. J. Dahl, “In Vivo application of short-lag spatial coherence imaging in human liver,” Ultrasound Med. Biol. 39, 534–542 (2013).

N. Kuo, H. J. Kang, D. Y. Song, J. U. Kang, and E. M. Boctor, “Real-time photoacoustic imaging of prostate brachytherapy seeds using a clinical ultrasound system,” J. Biomed. Opt. 17, 0660051–0660057 (2012).

N. Kuo, H. J. Kang, T. DeJournett, J. Spicer, and E. Boctor, “Photoacoustic imaging of prostate brachytherapy seeds in ex vivo prostate,” Proc. SPIE796409 (2011).

N. Kuo, H. J. Kang, D. Y. Song, J. U. Kang, and E. M. Boctor, “Real-time photoacoustic imaging of prostate brachytherapy seeds using a clinical ultrasound system,” J. Biomed. Opt. 17, 0660051–0660057 (2012).

J. L. Karagiannes, Z. Zhang, B. Grossweiner, and L. I. Grossweiner, “Applications of the 1-D diffusion approximation to the optics of tissues and tissue phantoms,” Appl. Optics 28, 2311–2317 (1989).

J. L. Su, R. R. Bouchard, A. B. Karpiouk, J. D. Hazle, and S. Y. Emelianov, “Photoacoustic imaging of prostate brachytherapy seeds,” Biomed. Opt. Express 2, 2243 (2011).

S. Park, A. B. Karpiouk, S. R. Aglyamov, and S. Y. Emelianov, “Adaptive beamforming for photoacoustic imaging,” Opt. Lett. 33, 1291–1293 (2008).

M. A. Lediju Bell, R. Goswami, J. A. Kisslo, J. J. Dahl, and G. E. Trahey, “Short-lag spatial coherence imaging of cardiac ultrasound data: Initial clinical results,” Ultrasound Med. Biol., 39(10), 1861–1874 (2013) (DOI:).

[Crossref]

M. Jaeger, S. Schüpbach, A. Gertsch, M. Kitz, and M. Frenz, “Fourier reconstruction in optoacoustic imaging using truncated regularized inverse k-space interpolation,” Inverse Probl. 23, S51 (2007).

B. Pourebrahimi, S. Yoon, D. Dopsa, and M. C. Kolios, “Improving the quality of photoacoustic images using the short-lag spatial coherence imaging technique,” Proc. SPIE85813Y (2013)

N. Kuo, H. J. Kang, D. Y. Song, J. U. Kang, and E. M. Boctor, “Real-time photoacoustic imaging of prostate brachytherapy seeds using a clinical ultrasound system,” J. Biomed. Opt. 17, 0660051–0660057 (2012).

N. Kuo, H. J. Kang, T. DeJournett, J. Spicer, and E. Boctor, “Photoacoustic imaging of prostate brachytherapy seeds in ex vivo prostate,” Proc. SPIE796409 (2011).

S. Langley and R. Laing, “Prostate brachytherapy has come of age: a review of the technique and results,” Brit. J. Urol. 89, 241–249 (2002).

S. Langley and R. Laing, “Prostate brachytherapy has come of age: a review of the technique and results,” Brit. J. Urol. 89, 241–249 (2002).

J. J. Dahl, D. Hyun, M. A. Lediju, and G. E. Trahey, “Lesion detectability in diagnostic ultrasound with short-lag spatial coherence imaging.” Ultrasonic Imaging 33, 119 (2011).

M. A. Lediju, G. E. Trahey, B. C. Byram, and J. J. Dahl, “Short-lag spatial coherence of backscattered echoes: Imaging characteristics,” IEEE Trans. Ultrason. Ferr. Freq. Contr. 58, 1337 (2011).

M. A. Lediju Bell, R. Goswami, J. A. Kisslo, J. J. Dahl, and G. E. Trahey, “Short-lag spatial coherence imaging of cardiac ultrasound data: Initial clinical results,” Ultrasound Med. Biol., 39(10), 1861–1874 (2013) (DOI:).

[Crossref]

M. A. Lediju Bell, R. Goswami, J. J. Dahl, and G. E. Trahey, “Improved visualization of endocardial borders with short-lag spatial coherence imaging of fundamental and harmonic ultrasound data,” in Proceedings of IEEE International Ultrasonics Symposium (IEEE, 2012), pp. 2129–2132.

M. A. Lediju Bell, R. Goswami, and G. E. Trahey, “Clutter reduction in echocardiography with short-lag spatial coherence (SLSC) imaging,” in Proceedings of IEEE International Symposium on Biomedical Imaging(IEEE, 2012), pp. 1116–1119.

C. G. Roehrborn, C. J. Girman, T. Rhodes, K. A. Hanson, G. N. Collins, S. M. Sech, S. J. Jacobsen, W. M. Garraway, and M. M. Lieber, “Correlation between prostate size estimated by digital rectal examination and measured by transrectal ultrasound,” Urology 49, 548–557 (1997).

R. Mallart and M. Fink, “The van Cittert–Zernike theorem in pulse echo measurements,” J. Acoust. Soc. Am. 90, 2718 (1991).

W. H. Nau, R. J. Roselli, and D. F. Milam, “Measurement of thermal effects on the optical properties of prostate tissue at wavelengths of 1,064 and 633 nm,” Laser. Surg. Med. 24, 38–47 (1999).

R. J. Fedewa, K. D. Wallace, M. R. Holland, J. R. Jago, G. C. Ng, M. R. Rielly, B. S. Robinson, and J. G. Miller, “Spatial coherence of the nonlinearly generated second harmonic portion of backscatter for a clinical imaging system,” IEEE Trans. Ultrason. Ferr. Freq. Contr. 50, 1010–1022 (2003).

T. Mitcham, K. Homan, W. Frey, Y.-S. Chen, S. Emelianov, J. Hazle, and R. Bouchard, “Modulation of photoacoustic signal generation from metallic surfaces,” J. Biomed. Opt. 18, 056008 (2013).

W. H. Nau, R. J. Roselli, and D. F. Milam, “Measurement of thermal effects on the optical properties of prostate tissue at wavelengths of 1,064 and 633 nm,” Laser. Surg. Med. 24, 38–47 (1999).

M. Jakovljevic, G. E. Trahey, R. C. Nelson, and J. J. Dahl, “In Vivo application of short-lag spatial coherence imaging in human liver,” Ultrasound Med. Biol. 39, 534–542 (2013).

R. J. Fedewa, K. D. Wallace, M. R. Holland, J. R. Jago, G. C. Ng, M. R. Rielly, B. S. Robinson, and J. G. Miller, “Spatial coherence of the nonlinearly generated second harmonic portion of backscatter for a clinical imaging system,” IEEE Trans. Ultrason. Ferr. Freq. Contr. 50, 1010–1022 (2003).

L. Pan, A. Baghani, R. Rohling, P. Abolmaesumi, S. Salcudean, and S. Tang, “Improving photoacoustic imaging contrast of brachytherapy seeds,” Proc. SPIE85814B (2013).

B. Pourebrahimi, S. Yoon, D. Dopsa, and M. C. Kolios, “Improving the quality of photoacoustic images using the short-lag spatial coherence imaging technique,” Proc. SPIE85813Y (2013)

W.-F. Cheong, S. A. Prahl, and A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Elect. 26, 2166–2185 (1990).

C. G. Roehrborn, C. J. Girman, T. Rhodes, K. A. Hanson, G. N. Collins, S. M. Sech, S. J. Jacobsen, W. M. Garraway, and M. M. Lieber, “Correlation between prostate size estimated by digital rectal examination and measured by transrectal ultrasound,” Urology 49, 548–557 (1997).

R. J. Fedewa, K. D. Wallace, M. R. Holland, J. R. Jago, G. C. Ng, M. R. Rielly, B. S. Robinson, and J. G. Miller, “Spatial coherence of the nonlinearly generated second harmonic portion of backscatter for a clinical imaging system,” IEEE Trans. Ultrason. Ferr. Freq. Contr. 50, 1010–1022 (2003).

R. J. Fedewa, K. D. Wallace, M. R. Holland, J. R. Jago, G. C. Ng, M. R. Rielly, B. S. Robinson, and J. G. Miller, “Spatial coherence of the nonlinearly generated second harmonic portion of backscatter for a clinical imaging system,” IEEE Trans. Ultrason. Ferr. Freq. Contr. 50, 1010–1022 (2003).

C. G. Roehrborn, C. J. Girman, T. Rhodes, K. A. Hanson, G. N. Collins, S. M. Sech, S. J. Jacobsen, W. M. Garraway, and M. M. Lieber, “Correlation between prostate size estimated by digital rectal examination and measured by transrectal ultrasound,” Urology 49, 548–557 (1997).

L. Pan, A. Baghani, R. Rohling, P. Abolmaesumi, S. Salcudean, and S. Tang, “Improving photoacoustic imaging contrast of brachytherapy seeds,” Proc. SPIE85814B (2013).

W. H. Nau, R. J. Roselli, and D. F. Milam, “Measurement of thermal effects on the optical properties of prostate tissue at wavelengths of 1,064 and 633 nm,” Laser. Surg. Med. 24, 38–47 (1999).

L. Pan, A. Baghani, R. Rohling, P. Abolmaesumi, S. Salcudean, and S. Tang, “Improving photoacoustic imaging contrast of brachytherapy seeds,” Proc. SPIE85814B (2013).

M. Jaeger, S. Schüpbach, A. Gertsch, M. Kitz, and M. Frenz, “Fourier reconstruction in optoacoustic imaging using truncated regularized inverse k-space interpolation,” Inverse Probl. 23, S51 (2007).

C. G. Roehrborn, C. J. Girman, T. Rhodes, K. A. Hanson, G. N. Collins, S. M. Sech, S. J. Jacobsen, W. M. Garraway, and M. M. Lieber, “Correlation between prostate size estimated by digital rectal examination and measured by transrectal ultrasound,” Urology 49, 548–557 (1997).

N. Kuo, H. J. Kang, D. Y. Song, J. U. Kang, and E. M. Boctor, “Real-time photoacoustic imaging of prostate brachytherapy seeds using a clinical ultrasound system,” J. Biomed. Opt. 17, 0660051–0660057 (2012).

N. Kuo, H. J. Kang, T. DeJournett, J. Spicer, and E. Boctor, “Photoacoustic imaging of prostate brachytherapy seeds in ex vivo prostate,” Proc. SPIE796409 (2011).

A. Standard, “Z136. 1. American national standard for the safe use of lasers. American National Standards Institute,” Inc., New York (1993).

L. Pan, A. Baghani, R. Rohling, P. Abolmaesumi, S. Salcudean, and S. Tang, “Improving photoacoustic imaging contrast of brachytherapy seeds,” Proc. SPIE85814B (2013).

M. Jakovljevic, G. E. Trahey, R. C. Nelson, and J. J. Dahl, “In Vivo application of short-lag spatial coherence imaging in human liver,” Ultrasound Med. Biol. 39, 534–542 (2013).

M. A. Lediju Bell, R. Goswami, J. A. Kisslo, J. J. Dahl, and G. E. Trahey, “Short-lag spatial coherence imaging of cardiac ultrasound data: Initial clinical results,” Ultrasound Med. Biol., 39(10), 1861–1874 (2013) (DOI:).

[Crossref]

M. A. Lediju, G. E. Trahey, B. C. Byram, and J. J. Dahl, “Short-lag spatial coherence of backscattered echoes: Imaging characteristics,” IEEE Trans. Ultrason. Ferr. Freq. Contr. 58, 1337 (2011).

J. J. Dahl, D. Hyun, M. A. Lediju, and G. E. Trahey, “Lesion detectability in diagnostic ultrasound with short-lag spatial coherence imaging.” Ultrasonic Imaging 33, 119 (2011).

M. A. Lediju Bell, R. Goswami, and G. E. Trahey, “Clutter reduction in echocardiography with short-lag spatial coherence (SLSC) imaging,” in Proceedings of IEEE International Symposium on Biomedical Imaging(IEEE, 2012), pp. 1116–1119.

M. A. Lediju Bell, R. Goswami, J. J. Dahl, and G. E. Trahey, “Improved visualization of endocardial borders with short-lag spatial coherence imaging of fundamental and harmonic ultrasound data,” in Proceedings of IEEE International Ultrasonics Symposium (IEEE, 2012), pp. 2129–2132.

B. E. Treeby and B. T. Cox, “k-Wave: MATLAB toolbox for the simulation and reconstruction of photoacoustic wave fields,” J. Biomed. Opt. 15, 021314 (2010).

R. J. Fedewa, K. D. Wallace, M. R. Holland, J. R. Jago, G. C. Ng, M. R. Rielly, B. S. Robinson, and J. G. Miller, “Spatial coherence of the nonlinearly generated second harmonic portion of backscatter for a clinical imaging system,” IEEE Trans. Ultrason. Ferr. Freq. Contr. 50, 1010–1022 (2003).

M. Xu and L. V. Wang, “Photoacoustic imaging in biomedicine,” Rev. Sci. Instrum. 77, 041101–041101 (2006).

W.-F. Cheong, S. A. Prahl, and A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Elect. 26, 2166–2185 (1990).

M. Xu and L. V. Wang, “Photoacoustic imaging in biomedicine,” Rev. Sci. Instrum. 77, 041101–041101 (2006).

B. Pourebrahimi, S. Yoon, D. Dopsa, and M. C. Kolios, “Improving the quality of photoacoustic images using the short-lag spatial coherence imaging technique,” Proc. SPIE85813Y (2013)

T. Harrison and R. J. Zemp, “Coregistered photoacoustic-ultrasound imaging applied to brachytherapy,” J. Biomed. Opt. 16, 080502–080502 (2011).

J. L. Karagiannes, Z. Zhang, B. Grossweiner, and L. I. Grossweiner, “Applications of the 1-D diffusion approximation to the optics of tissues and tissue phantoms,” Appl. Optics 28, 2311–2317 (1989).

A. G. Bell, “On the production and reproduction of sound by light”, Am. J. Sci. 118, 305–324 (1880).

J. L. Karagiannes, Z. Zhang, B. Grossweiner, and L. I. Grossweiner, “Applications of the 1-D diffusion approximation to the optics of tissues and tissue phantoms,” Appl. Optics 28, 2311–2317 (1989).

S. Langley and R. Laing, “Prostate brachytherapy has come of age: a review of the technique and results,” Brit. J. Urol. 89, 241–249 (2002).

W.-F. Cheong, S. A. Prahl, and A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Elect. 26, 2166–2185 (1990).

R. J. Fedewa, K. D. Wallace, M. R. Holland, J. R. Jago, G. C. Ng, M. R. Rielly, B. S. Robinson, and J. G. Miller, “Spatial coherence of the nonlinearly generated second harmonic portion of backscatter for a clinical imaging system,” IEEE Trans. Ultrason. Ferr. Freq. Contr. 50, 1010–1022 (2003).

M. A. Lediju, G. E. Trahey, B. C. Byram, and J. J. Dahl, “Short-lag spatial coherence of backscattered echoes: Imaging characteristics,” IEEE Trans. Ultrason. Ferr. Freq. Contr. 58, 1337 (2011).

M. Jaeger, S. Schüpbach, A. Gertsch, M. Kitz, and M. Frenz, “Fourier reconstruction in optoacoustic imaging using truncated regularized inverse k-space interpolation,” Inverse Probl. 23, S51 (2007).

R. Mallart and M. Fink, “The van Cittert–Zernike theorem in pulse echo measurements,” J. Acoust. Soc. Am. 90, 2718 (1991).

B. E. Treeby and B. T. Cox, “k-Wave: MATLAB toolbox for the simulation and reconstruction of photoacoustic wave fields,” J. Biomed. Opt. 15, 021314 (2010).

N. Kuo, H. J. Kang, D. Y. Song, J. U. Kang, and E. M. Boctor, “Real-time photoacoustic imaging of prostate brachytherapy seeds using a clinical ultrasound system,” J. Biomed. Opt. 17, 0660051–0660057 (2012).

T. Harrison and R. J. Zemp, “Coregistered photoacoustic-ultrasound imaging applied to brachytherapy,” J. Biomed. Opt. 16, 080502–080502 (2011).

T. Mitcham, K. Homan, W. Frey, Y.-S. Chen, S. Emelianov, J. Hazle, and R. Bouchard, “Modulation of photoacoustic signal generation from metallic surfaces,” J. Biomed. Opt. 18, 056008 (2013).

W. H. Nau, R. J. Roselli, and D. F. Milam, “Measurement of thermal effects on the optical properties of prostate tissue at wavelengths of 1,064 and 633 nm,” Laser. Surg. Med. 24, 38–47 (1999).

B. Pourebrahimi, S. Yoon, D. Dopsa, and M. C. Kolios, “Improving the quality of photoacoustic images using the short-lag spatial coherence imaging technique,” Proc. SPIE85813Y (2013)

N. Kuo, H. J. Kang, T. DeJournett, J. Spicer, and E. Boctor, “Photoacoustic imaging of prostate brachytherapy seeds in ex vivo prostate,” Proc. SPIE796409 (2011).

M. Xu and L. V. Wang, “Photoacoustic imaging in biomedicine,” Rev. Sci. Instrum. 77, 041101–041101 (2006).

J. J. Dahl, D. Hyun, M. A. Lediju, and G. E. Trahey, “Lesion detectability in diagnostic ultrasound with short-lag spatial coherence imaging.” Ultrasonic Imaging 33, 119 (2011).

M. A. Lediju Bell, R. Goswami, J. A. Kisslo, J. J. Dahl, and G. E. Trahey, “Short-lag spatial coherence imaging of cardiac ultrasound data: Initial clinical results,” Ultrasound Med. Biol., 39(10), 1861–1874 (2013) (DOI:).

[Crossref]

M. Jakovljevic, G. E. Trahey, R. C. Nelson, and J. J. Dahl, “In Vivo application of short-lag spatial coherence imaging in human liver,” Ultrasound Med. Biol. 39, 534–542 (2013).

C. G. Roehrborn, C. J. Girman, T. Rhodes, K. A. Hanson, G. N. Collins, S. M. Sech, S. J. Jacobsen, W. M. Garraway, and M. M. Lieber, “Correlation between prostate size estimated by digital rectal examination and measured by transrectal ultrasound,” Urology 49, 548–557 (1997).

A. Standard, “Z136. 1. American national standard for the safe use of lasers. American National Standards Institute,” Inc., New York (1993).

M. A. Lediju Bell, R. Goswami, J. J. Dahl, and G. E. Trahey, “Improved visualization of endocardial borders with short-lag spatial coherence imaging of fundamental and harmonic ultrasound data,” in Proceedings of IEEE International Ultrasonics Symposium (IEEE, 2012), pp. 2129–2132.

M. A. Lediju Bell, R. Goswami, and G. E. Trahey, “Clutter reduction in echocardiography with short-lag spatial coherence (SLSC) imaging,” in Proceedings of IEEE International Symposium on Biomedical Imaging(IEEE, 2012), pp. 1116–1119.

E. M. Boctor, “Prostate brachytherapy seed localization using combined photoacoustic and ultrasound imaging,” presented at SPIE Ultrasonic Imaging, Tomography and Therapy, San Diego, California, 14 Feb. 2010.

L. Pan, A. Baghani, R. Rohling, P. Abolmaesumi, S. Salcudean, and S. Tang, “Improving photoacoustic imaging contrast of brachytherapy seeds,” Proc. SPIE85814B (2013).