Abstract

A spatial overlap modulation (SPOM) technique is a nonlinear optical microscopy technique which enhances the three-dimensional spatial resolution and rejects the out-of-focus background limiting the imaging depth inside a highly scattering sample. Here, we report on the implementation of SPOM in which beam pointing modulation is achieved by an electro-optic deflector. The modulation and demodulation frequencies are enhanced to 200 kHz and 400 kHz, respectively, resulting in a 200-fold enhancement compared with the previously reported system. The resolution enhancement and suppression of the out-of-focus background are demonstrated by sum-frequency-generation imaging of pounded granulated sugar and deep imaging of fluorescent beads in a tissue-like phantom, respectively.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science248(4951), 73–76 (1990).
    [CrossRef] [PubMed]
  2. K. König, “Multiphoton microscopy in life sciences,” J. Microsc.200(2), 83–104 (2000).
    [CrossRef] [PubMed]
  3. W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol.21(11), 1369–1377 (2003).
    [CrossRef] [PubMed]
  4. P. J. Campagnola and L. M. Loew, “Second-harmonic imaging microscopy for visualizing biomolecular arrays in cells, tissues and organisms,” Nat. Biotechnol.21(11), 1356–1360 (2003).
    [CrossRef] [PubMed]
  5. J. Squier and M. Müller, “High resolution nonlinear microscopy: A review of sources and methods for achieving optimal imaging,” Rev. Sci. Instrum.72(7), 2855–2867 (2001).
    [CrossRef]
  6. Y. Barad, H. Eisenberg, M. Horowitz, and Y. Silberberg, “Nonlinear scanning laser microscopy by third harmonic generation,” Appl. Phys. Lett.70(8), 922–924 (1997).
    [CrossRef]
  7. M. D. Duncan, J. Reintjes, and T. J. Manuccia, “Scanning coherent anti-Stokes Raman microscope,” Opt. Lett.7(8), 350–352 (1982).
    [CrossRef] [PubMed]
  8. A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering,” Phys. Rev. Lett.82(20), 4142–4145 (1999).
    [CrossRef]
  9. K. Isobe, S. Kataoka, R. Murase, W. Watanabe, T. Higashi, S. Kawakami, S. Matsunaga, K. Fukui, and K. Itoh, “Stimulated parametric emission microscopy,” Opt. Express14(2), 786–793 (2006).
    [CrossRef] [PubMed]
  10. K. Isobe, T. Kawasumi, T. Tamaki, S. Kataoka, Y. Ozeki, and K. Itoh, “Three-dimensional profiling of refractive index distribution inside transparent materials by use of nonresonant four-wave mixing microscopy,” Appl. Phys. Express1, 022006 (2008).
    [CrossRef]
  11. D. Fu, T. Ye, T. E. Matthews, G. Yurtsever, and W. S. Warren, “Two-color, two-photon, and excited-state absorption microscopy,” J. Biomed. Opt.12(5), 054004 (2007).
    [CrossRef] [PubMed]
  12. D. Fu, T. Ye, T. E. Matthews, B. J. Chen, G. Yurtserver, and W. S. Warren, “High-resolution in vivo imaging of blood vessels without labeling,” Opt. Lett.32(18), 2641–2643 (2007).
    [CrossRef] [PubMed]
  13. C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science322(5909), 1857–1861 (2008).
    [CrossRef] [PubMed]
  14. P. Nandakumar, A. Kovalev, and A. Volkmer, “Vibrational imaging based on stimulated Raman scattering microscopy,” New J. Phys.11(3), 033026 (2009).
    [CrossRef]
  15. Y. Ozeki, F. Dake, S. Kajiyama, K. Fukui, and K. Itoh, “Analysis and experimental assessment of the sensitivity of stimulated Raman scattering microscopy,” Opt. Express17(5), 3651–3658 (2009).
    [CrossRef] [PubMed]
  16. P. Samineni, B. Li, J. W. Wilson, W. S. Warren, and M. C. Fischer, “Cross-phase modulation imaging,” Opt. Lett.37(5), 800–802 (2012).
    [CrossRef] [PubMed]
  17. J. W. Wilson, P. Samineni, W. S. Warren, and M. C. Fischer, “Cross-phase modulation spectral shifting: nonlinear phase contrast in a pump-probe microscope,” Biomed. Opt. Express3(5), 854–862 (2012).
    [CrossRef] [PubMed]
  18. P. Theer, M. T. Hasan, and W. Denk, “Two-photon imaging to a depth of 1000 μm in living brains by use of a Ti:Al2O3 regenerative amplifier,” Opt. Lett.28(12), 1022–1024 (2003).
    [CrossRef] [PubMed]
  19. P. Theer and W. Denk, “On the fundamental imaging-depth limit in two-photon microscopy,” J. Opt. Soc. Am. A23(12), 3139–3149 (2006).
    [CrossRef] [PubMed]
  20. D. Kobat, M. E. Durst, N. Nishimura, A. W. Wong, C. B. Schaffer, and C. Xu, “Deep tissue multiphoton microscopy using longer wavelength excitation,” Opt. Express17(16), 13354–13364 (2009).
    [CrossRef] [PubMed]
  21. D. Kobat, N. G. Horton, and C. Xu, “In vivo two-photon microscopy to 1.6-mm depth in mouse cortex,” J. Biomed. Opt.16(10), 106014 (2011).
    [CrossRef] [PubMed]
  22. N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer, and C. Xu, “In vivo three-photon microscopy of subcortical structures within an intact mouse brain,” Nat. Photonics7(3), 205–209 (2013).
    [CrossRef]
  23. G. Zhu, J. van Howe, M. Durst, W. Zipfel, and C. Xu, “Simultaneous spatial and temporal focusing of femtosecond pulses,” Opt. Express13(6), 2153–2159 (2005).
    [CrossRef] [PubMed]
  24. D. Oron, E. Tal, and Y. Silberberg, “Scanningless depth-resolved microscopy,” Opt. Express13(5), 1468–1476 (2005).
    [CrossRef] [PubMed]
  25. M. A. A. Neil, R. Juskaitis, and T. Wilson, “Method of obtaining optical sectioning by using structured light in a conventional microscope,” Opt. Lett.22(24), 1905–1907 (1997).
    [CrossRef] [PubMed]
  26. N. Chen, C.-H. Wong, and C. J. R. Sheppard, “Focal modulation microscopy,” Opt. Express16(23), 18764–18769 (2008).
    [CrossRef] [PubMed]
  27. A. Leray and J. Mertz, “Rejection of two-photon fluorescence background in thick tissue by differential aberration imaging,” Opt. Express14(22), 10565–10573 (2006).
    [CrossRef] [PubMed]
  28. N. Ji, D. E. Milkie, and E. Betzig, “Adaptive optics via pupil segmentation for high-resolution imaging in biological tissues,” Nat. Methods7(2), 141–147 (2010).
    [CrossRef] [PubMed]
  29. Z. Chen, L. Wei, X. Zhu, and W. Min, “Extending the fundamental imaging-depth limit of multi-photon microscopy by imaging with photo-activatable fluorophores,” Opt. Express20(17), 18525–18536 (2012).
    [CrossRef] [PubMed]
  30. K. Isobe, A. Suda, H. Hashimoto, F. Kannari, H. Kawano, H. Mizuno, A. Miyawaki, and K. Midorikawa, “High-resolution fluorescence microscopy based on a cyclic sequential multiphoton process,” Biomed. Opt. Express1(3), 791–797 (2010).
    [CrossRef] [PubMed]
  31. K. Isobe, H. Kawano, T. Takeda, A. Suda, A. Kumagai, H. Mizuno, A. Miyawaki, and K. Midorikawa, “Background-free deep imaging by spatial overlap modulation nonlinear optical microscopy,” Biomed. Opt. Express3(7), 1594–1608 (2012).K. Isobe, H. Kawano, T. Takeda, A. Suda, A. Kumagai, H. Mizuno, A. Miyawaki, and K. Midorikawa, “Spatial overlap modulation nonlinear optical microscopy,” in Conference on Lasers and Electro-Optics 2012, OSA Technical Digest (online) (Optical Society of America, 2012), paper JW3G.4.
    [CrossRef] [PubMed]
  32. J. Miyazu, T. Imai, S. Toyoda, M. Sasaura, S. Yagi, K. Kato, Y. Sasaki, and K. Fujiura, “New beam scanning model for high-speed operation using KTa1-xNbxO3 Crystals,” Appl. Phys. Express4(11), 111501 (2011).
    [CrossRef]
  33. S. Yagi, K. Naganuma, T. Imai, Y. Shibata, S. Ishibashi, Y. Sasaki, M. Sasaura, K. Fujiura, and K. Kato, “A mechanical-free 150-kHz repetition swept light source incorporated a KTN electro-optic deflector,” Proc. SPIE7889, 78891J, 78891J-6 (2011).
    [CrossRef]

2013 (1)

N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer, and C. Xu, “In vivo three-photon microscopy of subcortical structures within an intact mouse brain,” Nat. Photonics7(3), 205–209 (2013).
[CrossRef]

2012 (4)

2011 (3)

J. Miyazu, T. Imai, S. Toyoda, M. Sasaura, S. Yagi, K. Kato, Y. Sasaki, and K. Fujiura, “New beam scanning model for high-speed operation using KTa1-xNbxO3 Crystals,” Appl. Phys. Express4(11), 111501 (2011).
[CrossRef]

S. Yagi, K. Naganuma, T. Imai, Y. Shibata, S. Ishibashi, Y. Sasaki, M. Sasaura, K. Fujiura, and K. Kato, “A mechanical-free 150-kHz repetition swept light source incorporated a KTN electro-optic deflector,” Proc. SPIE7889, 78891J, 78891J-6 (2011).
[CrossRef]

D. Kobat, N. G. Horton, and C. Xu, “In vivo two-photon microscopy to 1.6-mm depth in mouse cortex,” J. Biomed. Opt.16(10), 106014 (2011).
[CrossRef] [PubMed]

2010 (2)

2009 (3)

2008 (3)

K. Isobe, T. Kawasumi, T. Tamaki, S. Kataoka, Y. Ozeki, and K. Itoh, “Three-dimensional profiling of refractive index distribution inside transparent materials by use of nonresonant four-wave mixing microscopy,” Appl. Phys. Express1, 022006 (2008).
[CrossRef]

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science322(5909), 1857–1861 (2008).
[CrossRef] [PubMed]

N. Chen, C.-H. Wong, and C. J. R. Sheppard, “Focal modulation microscopy,” Opt. Express16(23), 18764–18769 (2008).
[CrossRef] [PubMed]

2007 (2)

D. Fu, T. Ye, T. E. Matthews, G. Yurtsever, and W. S. Warren, “Two-color, two-photon, and excited-state absorption microscopy,” J. Biomed. Opt.12(5), 054004 (2007).
[CrossRef] [PubMed]

D. Fu, T. Ye, T. E. Matthews, B. J. Chen, G. Yurtserver, and W. S. Warren, “High-resolution in vivo imaging of blood vessels without labeling,” Opt. Lett.32(18), 2641–2643 (2007).
[CrossRef] [PubMed]

2006 (3)

2005 (2)

2003 (3)

W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol.21(11), 1369–1377 (2003).
[CrossRef] [PubMed]

P. J. Campagnola and L. M. Loew, “Second-harmonic imaging microscopy for visualizing biomolecular arrays in cells, tissues and organisms,” Nat. Biotechnol.21(11), 1356–1360 (2003).
[CrossRef] [PubMed]

P. Theer, M. T. Hasan, and W. Denk, “Two-photon imaging to a depth of 1000 μm in living brains by use of a Ti:Al2O3 regenerative amplifier,” Opt. Lett.28(12), 1022–1024 (2003).
[CrossRef] [PubMed]

2001 (1)

J. Squier and M. Müller, “High resolution nonlinear microscopy: A review of sources and methods for achieving optimal imaging,” Rev. Sci. Instrum.72(7), 2855–2867 (2001).
[CrossRef]

2000 (1)

K. König, “Multiphoton microscopy in life sciences,” J. Microsc.200(2), 83–104 (2000).
[CrossRef] [PubMed]

1999 (1)

A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering,” Phys. Rev. Lett.82(20), 4142–4145 (1999).
[CrossRef]

1997 (2)

Y. Barad, H. Eisenberg, M. Horowitz, and Y. Silberberg, “Nonlinear scanning laser microscopy by third harmonic generation,” Appl. Phys. Lett.70(8), 922–924 (1997).
[CrossRef]

M. A. A. Neil, R. Juskaitis, and T. Wilson, “Method of obtaining optical sectioning by using structured light in a conventional microscope,” Opt. Lett.22(24), 1905–1907 (1997).
[CrossRef] [PubMed]

1990 (1)

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science248(4951), 73–76 (1990).
[CrossRef] [PubMed]

1982 (1)

Barad, Y.

Y. Barad, H. Eisenberg, M. Horowitz, and Y. Silberberg, “Nonlinear scanning laser microscopy by third harmonic generation,” Appl. Phys. Lett.70(8), 922–924 (1997).
[CrossRef]

Betzig, E.

N. Ji, D. E. Milkie, and E. Betzig, “Adaptive optics via pupil segmentation for high-resolution imaging in biological tissues,” Nat. Methods7(2), 141–147 (2010).
[CrossRef] [PubMed]

Campagnola, P. J.

P. J. Campagnola and L. M. Loew, “Second-harmonic imaging microscopy for visualizing biomolecular arrays in cells, tissues and organisms,” Nat. Biotechnol.21(11), 1356–1360 (2003).
[CrossRef] [PubMed]

Chen, B. J.

Chen, N.

Chen, Z.

Clark, C. G.

N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer, and C. Xu, “In vivo three-photon microscopy of subcortical structures within an intact mouse brain,” Nat. Photonics7(3), 205–209 (2013).
[CrossRef]

Dake, F.

Denk, W.

Duncan, M. D.

Durst, M.

Durst, M. E.

Eisenberg, H.

Y. Barad, H. Eisenberg, M. Horowitz, and Y. Silberberg, “Nonlinear scanning laser microscopy by third harmonic generation,” Appl. Phys. Lett.70(8), 922–924 (1997).
[CrossRef]

Fischer, M. C.

Freudiger, C. W.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science322(5909), 1857–1861 (2008).
[CrossRef] [PubMed]

Fu, D.

D. Fu, T. Ye, T. E. Matthews, G. Yurtsever, and W. S. Warren, “Two-color, two-photon, and excited-state absorption microscopy,” J. Biomed. Opt.12(5), 054004 (2007).
[CrossRef] [PubMed]

D. Fu, T. Ye, T. E. Matthews, B. J. Chen, G. Yurtserver, and W. S. Warren, “High-resolution in vivo imaging of blood vessels without labeling,” Opt. Lett.32(18), 2641–2643 (2007).
[CrossRef] [PubMed]

Fujiura, K.

J. Miyazu, T. Imai, S. Toyoda, M. Sasaura, S. Yagi, K. Kato, Y. Sasaki, and K. Fujiura, “New beam scanning model for high-speed operation using KTa1-xNbxO3 Crystals,” Appl. Phys. Express4(11), 111501 (2011).
[CrossRef]

S. Yagi, K. Naganuma, T. Imai, Y. Shibata, S. Ishibashi, Y. Sasaki, M. Sasaura, K. Fujiura, and K. Kato, “A mechanical-free 150-kHz repetition swept light source incorporated a KTN electro-optic deflector,” Proc. SPIE7889, 78891J, 78891J-6 (2011).
[CrossRef]

Fukui, K.

Hasan, M. T.

Hashimoto, H.

He, C.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science322(5909), 1857–1861 (2008).
[CrossRef] [PubMed]

Higashi, T.

Holtom, G. R.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science322(5909), 1857–1861 (2008).
[CrossRef] [PubMed]

A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering,” Phys. Rev. Lett.82(20), 4142–4145 (1999).
[CrossRef]

Horowitz, M.

Y. Barad, H. Eisenberg, M. Horowitz, and Y. Silberberg, “Nonlinear scanning laser microscopy by third harmonic generation,” Appl. Phys. Lett.70(8), 922–924 (1997).
[CrossRef]

Horton, N. G.

N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer, and C. Xu, “In vivo three-photon microscopy of subcortical structures within an intact mouse brain,” Nat. Photonics7(3), 205–209 (2013).
[CrossRef]

D. Kobat, N. G. Horton, and C. Xu, “In vivo two-photon microscopy to 1.6-mm depth in mouse cortex,” J. Biomed. Opt.16(10), 106014 (2011).
[CrossRef] [PubMed]

Imai, T.

J. Miyazu, T. Imai, S. Toyoda, M. Sasaura, S. Yagi, K. Kato, Y. Sasaki, and K. Fujiura, “New beam scanning model for high-speed operation using KTa1-xNbxO3 Crystals,” Appl. Phys. Express4(11), 111501 (2011).
[CrossRef]

S. Yagi, K. Naganuma, T. Imai, Y. Shibata, S. Ishibashi, Y. Sasaki, M. Sasaura, K. Fujiura, and K. Kato, “A mechanical-free 150-kHz repetition swept light source incorporated a KTN electro-optic deflector,” Proc. SPIE7889, 78891J, 78891J-6 (2011).
[CrossRef]

Ishibashi, S.

S. Yagi, K. Naganuma, T. Imai, Y. Shibata, S. Ishibashi, Y. Sasaki, M. Sasaura, K. Fujiura, and K. Kato, “A mechanical-free 150-kHz repetition swept light source incorporated a KTN electro-optic deflector,” Proc. SPIE7889, 78891J, 78891J-6 (2011).
[CrossRef]

Isobe, K.

Itoh, K.

Ji, N.

N. Ji, D. E. Milkie, and E. Betzig, “Adaptive optics via pupil segmentation for high-resolution imaging in biological tissues,” Nat. Methods7(2), 141–147 (2010).
[CrossRef] [PubMed]

Juskaitis, R.

Kajiyama, S.

Kang, J. X.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science322(5909), 1857–1861 (2008).
[CrossRef] [PubMed]

Kannari, F.

Kataoka, S.

K. Isobe, T. Kawasumi, T. Tamaki, S. Kataoka, Y. Ozeki, and K. Itoh, “Three-dimensional profiling of refractive index distribution inside transparent materials by use of nonresonant four-wave mixing microscopy,” Appl. Phys. Express1, 022006 (2008).
[CrossRef]

K. Isobe, S. Kataoka, R. Murase, W. Watanabe, T. Higashi, S. Kawakami, S. Matsunaga, K. Fukui, and K. Itoh, “Stimulated parametric emission microscopy,” Opt. Express14(2), 786–793 (2006).
[CrossRef] [PubMed]

Kato, K.

S. Yagi, K. Naganuma, T. Imai, Y. Shibata, S. Ishibashi, Y. Sasaki, M. Sasaura, K. Fujiura, and K. Kato, “A mechanical-free 150-kHz repetition swept light source incorporated a KTN electro-optic deflector,” Proc. SPIE7889, 78891J, 78891J-6 (2011).
[CrossRef]

J. Miyazu, T. Imai, S. Toyoda, M. Sasaura, S. Yagi, K. Kato, Y. Sasaki, and K. Fujiura, “New beam scanning model for high-speed operation using KTa1-xNbxO3 Crystals,” Appl. Phys. Express4(11), 111501 (2011).
[CrossRef]

Kawakami, S.

Kawano, H.

Kawasumi, T.

K. Isobe, T. Kawasumi, T. Tamaki, S. Kataoka, Y. Ozeki, and K. Itoh, “Three-dimensional profiling of refractive index distribution inside transparent materials by use of nonresonant four-wave mixing microscopy,” Appl. Phys. Express1, 022006 (2008).
[CrossRef]

Kobat, D.

N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer, and C. Xu, “In vivo three-photon microscopy of subcortical structures within an intact mouse brain,” Nat. Photonics7(3), 205–209 (2013).
[CrossRef]

D. Kobat, N. G. Horton, and C. Xu, “In vivo two-photon microscopy to 1.6-mm depth in mouse cortex,” J. Biomed. Opt.16(10), 106014 (2011).
[CrossRef] [PubMed]

D. Kobat, M. E. Durst, N. Nishimura, A. W. Wong, C. B. Schaffer, and C. Xu, “Deep tissue multiphoton microscopy using longer wavelength excitation,” Opt. Express17(16), 13354–13364 (2009).
[CrossRef] [PubMed]

König, K.

K. König, “Multiphoton microscopy in life sciences,” J. Microsc.200(2), 83–104 (2000).
[CrossRef] [PubMed]

Kovalev, A.

P. Nandakumar, A. Kovalev, and A. Volkmer, “Vibrational imaging based on stimulated Raman scattering microscopy,” New J. Phys.11(3), 033026 (2009).
[CrossRef]

Kumagai, A.

Leray, A.

Li, B.

Loew, L. M.

P. J. Campagnola and L. M. Loew, “Second-harmonic imaging microscopy for visualizing biomolecular arrays in cells, tissues and organisms,” Nat. Biotechnol.21(11), 1356–1360 (2003).
[CrossRef] [PubMed]

Lu, S.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science322(5909), 1857–1861 (2008).
[CrossRef] [PubMed]

Manuccia, T. J.

Matsunaga, S.

Matthews, T. E.

D. Fu, T. Ye, T. E. Matthews, B. J. Chen, G. Yurtserver, and W. S. Warren, “High-resolution in vivo imaging of blood vessels without labeling,” Opt. Lett.32(18), 2641–2643 (2007).
[CrossRef] [PubMed]

D. Fu, T. Ye, T. E. Matthews, G. Yurtsever, and W. S. Warren, “Two-color, two-photon, and excited-state absorption microscopy,” J. Biomed. Opt.12(5), 054004 (2007).
[CrossRef] [PubMed]

Mertz, J.

Midorikawa, K.

Milkie, D. E.

N. Ji, D. E. Milkie, and E. Betzig, “Adaptive optics via pupil segmentation for high-resolution imaging in biological tissues,” Nat. Methods7(2), 141–147 (2010).
[CrossRef] [PubMed]

Min, W.

Z. Chen, L. Wei, X. Zhu, and W. Min, “Extending the fundamental imaging-depth limit of multi-photon microscopy by imaging with photo-activatable fluorophores,” Opt. Express20(17), 18525–18536 (2012).
[CrossRef] [PubMed]

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science322(5909), 1857–1861 (2008).
[CrossRef] [PubMed]

Miyawaki, A.

Miyazu, J.

J. Miyazu, T. Imai, S. Toyoda, M. Sasaura, S. Yagi, K. Kato, Y. Sasaki, and K. Fujiura, “New beam scanning model for high-speed operation using KTa1-xNbxO3 Crystals,” Appl. Phys. Express4(11), 111501 (2011).
[CrossRef]

Mizuno, H.

Müller, M.

J. Squier and M. Müller, “High resolution nonlinear microscopy: A review of sources and methods for achieving optimal imaging,” Rev. Sci. Instrum.72(7), 2855–2867 (2001).
[CrossRef]

Murase, R.

Naganuma, K.

S. Yagi, K. Naganuma, T. Imai, Y. Shibata, S. Ishibashi, Y. Sasaki, M. Sasaura, K. Fujiura, and K. Kato, “A mechanical-free 150-kHz repetition swept light source incorporated a KTN electro-optic deflector,” Proc. SPIE7889, 78891J, 78891J-6 (2011).
[CrossRef]

Nandakumar, P.

P. Nandakumar, A. Kovalev, and A. Volkmer, “Vibrational imaging based on stimulated Raman scattering microscopy,” New J. Phys.11(3), 033026 (2009).
[CrossRef]

Neil, M. A. A.

Nishimura, N.

Oron, D.

Ozeki, Y.

Y. Ozeki, F. Dake, S. Kajiyama, K. Fukui, and K. Itoh, “Analysis and experimental assessment of the sensitivity of stimulated Raman scattering microscopy,” Opt. Express17(5), 3651–3658 (2009).
[CrossRef] [PubMed]

K. Isobe, T. Kawasumi, T. Tamaki, S. Kataoka, Y. Ozeki, and K. Itoh, “Three-dimensional profiling of refractive index distribution inside transparent materials by use of nonresonant four-wave mixing microscopy,” Appl. Phys. Express1, 022006 (2008).
[CrossRef]

Reintjes, J.

Saar, B. G.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science322(5909), 1857–1861 (2008).
[CrossRef] [PubMed]

Samineni, P.

Sasaki, Y.

J. Miyazu, T. Imai, S. Toyoda, M. Sasaura, S. Yagi, K. Kato, Y. Sasaki, and K. Fujiura, “New beam scanning model for high-speed operation using KTa1-xNbxO3 Crystals,” Appl. Phys. Express4(11), 111501 (2011).
[CrossRef]

S. Yagi, K. Naganuma, T. Imai, Y. Shibata, S. Ishibashi, Y. Sasaki, M. Sasaura, K. Fujiura, and K. Kato, “A mechanical-free 150-kHz repetition swept light source incorporated a KTN electro-optic deflector,” Proc. SPIE7889, 78891J, 78891J-6 (2011).
[CrossRef]

Sasaura, M.

S. Yagi, K. Naganuma, T. Imai, Y. Shibata, S. Ishibashi, Y. Sasaki, M. Sasaura, K. Fujiura, and K. Kato, “A mechanical-free 150-kHz repetition swept light source incorporated a KTN electro-optic deflector,” Proc. SPIE7889, 78891J, 78891J-6 (2011).
[CrossRef]

J. Miyazu, T. Imai, S. Toyoda, M. Sasaura, S. Yagi, K. Kato, Y. Sasaki, and K. Fujiura, “New beam scanning model for high-speed operation using KTa1-xNbxO3 Crystals,” Appl. Phys. Express4(11), 111501 (2011).
[CrossRef]

Schaffer, C. B.

N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer, and C. Xu, “In vivo three-photon microscopy of subcortical structures within an intact mouse brain,” Nat. Photonics7(3), 205–209 (2013).
[CrossRef]

D. Kobat, M. E. Durst, N. Nishimura, A. W. Wong, C. B. Schaffer, and C. Xu, “Deep tissue multiphoton microscopy using longer wavelength excitation,” Opt. Express17(16), 13354–13364 (2009).
[CrossRef] [PubMed]

Sheppard, C. J. R.

Shibata, Y.

S. Yagi, K. Naganuma, T. Imai, Y. Shibata, S. Ishibashi, Y. Sasaki, M. Sasaura, K. Fujiura, and K. Kato, “A mechanical-free 150-kHz repetition swept light source incorporated a KTN electro-optic deflector,” Proc. SPIE7889, 78891J, 78891J-6 (2011).
[CrossRef]

Silberberg, Y.

D. Oron, E. Tal, and Y. Silberberg, “Scanningless depth-resolved microscopy,” Opt. Express13(5), 1468–1476 (2005).
[CrossRef] [PubMed]

Y. Barad, H. Eisenberg, M. Horowitz, and Y. Silberberg, “Nonlinear scanning laser microscopy by third harmonic generation,” Appl. Phys. Lett.70(8), 922–924 (1997).
[CrossRef]

Squier, J.

J. Squier and M. Müller, “High resolution nonlinear microscopy: A review of sources and methods for achieving optimal imaging,” Rev. Sci. Instrum.72(7), 2855–2867 (2001).
[CrossRef]

Strickler, J. H.

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science248(4951), 73–76 (1990).
[CrossRef] [PubMed]

Suda, A.

Takeda, T.

Tal, E.

Tamaki, T.

K. Isobe, T. Kawasumi, T. Tamaki, S. Kataoka, Y. Ozeki, and K. Itoh, “Three-dimensional profiling of refractive index distribution inside transparent materials by use of nonresonant four-wave mixing microscopy,” Appl. Phys. Express1, 022006 (2008).
[CrossRef]

Theer, P.

Toyoda, S.

J. Miyazu, T. Imai, S. Toyoda, M. Sasaura, S. Yagi, K. Kato, Y. Sasaki, and K. Fujiura, “New beam scanning model for high-speed operation using KTa1-xNbxO3 Crystals,” Appl. Phys. Express4(11), 111501 (2011).
[CrossRef]

Tsai, J. C.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science322(5909), 1857–1861 (2008).
[CrossRef] [PubMed]

van Howe, J.

Volkmer, A.

P. Nandakumar, A. Kovalev, and A. Volkmer, “Vibrational imaging based on stimulated Raman scattering microscopy,” New J. Phys.11(3), 033026 (2009).
[CrossRef]

Wang, K.

N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer, and C. Xu, “In vivo three-photon microscopy of subcortical structures within an intact mouse brain,” Nat. Photonics7(3), 205–209 (2013).
[CrossRef]

Warren, W. S.

Watanabe, W.

Webb, W. W.

W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol.21(11), 1369–1377 (2003).
[CrossRef] [PubMed]

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science248(4951), 73–76 (1990).
[CrossRef] [PubMed]

Wei, L.

Williams, R. M.

W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol.21(11), 1369–1377 (2003).
[CrossRef] [PubMed]

Wilson, J. W.

Wilson, T.

Wise, F. W.

N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer, and C. Xu, “In vivo three-photon microscopy of subcortical structures within an intact mouse brain,” Nat. Photonics7(3), 205–209 (2013).
[CrossRef]

Wong, A. W.

Wong, C.-H.

Xie, X. S.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science322(5909), 1857–1861 (2008).
[CrossRef] [PubMed]

A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering,” Phys. Rev. Lett.82(20), 4142–4145 (1999).
[CrossRef]

Xu, C.

N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer, and C. Xu, “In vivo three-photon microscopy of subcortical structures within an intact mouse brain,” Nat. Photonics7(3), 205–209 (2013).
[CrossRef]

D. Kobat, N. G. Horton, and C. Xu, “In vivo two-photon microscopy to 1.6-mm depth in mouse cortex,” J. Biomed. Opt.16(10), 106014 (2011).
[CrossRef] [PubMed]

D. Kobat, M. E. Durst, N. Nishimura, A. W. Wong, C. B. Schaffer, and C. Xu, “Deep tissue multiphoton microscopy using longer wavelength excitation,” Opt. Express17(16), 13354–13364 (2009).
[CrossRef] [PubMed]

G. Zhu, J. van Howe, M. Durst, W. Zipfel, and C. Xu, “Simultaneous spatial and temporal focusing of femtosecond pulses,” Opt. Express13(6), 2153–2159 (2005).
[CrossRef] [PubMed]

Yagi, S.

J. Miyazu, T. Imai, S. Toyoda, M. Sasaura, S. Yagi, K. Kato, Y. Sasaki, and K. Fujiura, “New beam scanning model for high-speed operation using KTa1-xNbxO3 Crystals,” Appl. Phys. Express4(11), 111501 (2011).
[CrossRef]

S. Yagi, K. Naganuma, T. Imai, Y. Shibata, S. Ishibashi, Y. Sasaki, M. Sasaura, K. Fujiura, and K. Kato, “A mechanical-free 150-kHz repetition swept light source incorporated a KTN electro-optic deflector,” Proc. SPIE7889, 78891J, 78891J-6 (2011).
[CrossRef]

Ye, T.

D. Fu, T. Ye, T. E. Matthews, B. J. Chen, G. Yurtserver, and W. S. Warren, “High-resolution in vivo imaging of blood vessels without labeling,” Opt. Lett.32(18), 2641–2643 (2007).
[CrossRef] [PubMed]

D. Fu, T. Ye, T. E. Matthews, G. Yurtsever, and W. S. Warren, “Two-color, two-photon, and excited-state absorption microscopy,” J. Biomed. Opt.12(5), 054004 (2007).
[CrossRef] [PubMed]

Yurtserver, G.

Yurtsever, G.

D. Fu, T. Ye, T. E. Matthews, G. Yurtsever, and W. S. Warren, “Two-color, two-photon, and excited-state absorption microscopy,” J. Biomed. Opt.12(5), 054004 (2007).
[CrossRef] [PubMed]

Zhu, G.

Zhu, X.

Zipfel, W.

Zipfel, W. R.

W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol.21(11), 1369–1377 (2003).
[CrossRef] [PubMed]

Zumbusch, A.

A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering,” Phys. Rev. Lett.82(20), 4142–4145 (1999).
[CrossRef]

Appl. Phys. Express (2)

K. Isobe, T. Kawasumi, T. Tamaki, S. Kataoka, Y. Ozeki, and K. Itoh, “Three-dimensional profiling of refractive index distribution inside transparent materials by use of nonresonant four-wave mixing microscopy,” Appl. Phys. Express1, 022006 (2008).
[CrossRef]

J. Miyazu, T. Imai, S. Toyoda, M. Sasaura, S. Yagi, K. Kato, Y. Sasaki, and K. Fujiura, “New beam scanning model for high-speed operation using KTa1-xNbxO3 Crystals,” Appl. Phys. Express4(11), 111501 (2011).
[CrossRef]

Appl. Phys. Lett. (1)

Y. Barad, H. Eisenberg, M. Horowitz, and Y. Silberberg, “Nonlinear scanning laser microscopy by third harmonic generation,” Appl. Phys. Lett.70(8), 922–924 (1997).
[CrossRef]

Biomed. Opt. Express (3)

J. Biomed. Opt. (2)

D. Kobat, N. G. Horton, and C. Xu, “In vivo two-photon microscopy to 1.6-mm depth in mouse cortex,” J. Biomed. Opt.16(10), 106014 (2011).
[CrossRef] [PubMed]

D. Fu, T. Ye, T. E. Matthews, G. Yurtsever, and W. S. Warren, “Two-color, two-photon, and excited-state absorption microscopy,” J. Biomed. Opt.12(5), 054004 (2007).
[CrossRef] [PubMed]

J. Microsc. (1)

K. König, “Multiphoton microscopy in life sciences,” J. Microsc.200(2), 83–104 (2000).
[CrossRef] [PubMed]

J. Opt. Soc. Am. A (1)

Nat. Biotechnol. (2)

W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol.21(11), 1369–1377 (2003).
[CrossRef] [PubMed]

P. J. Campagnola and L. M. Loew, “Second-harmonic imaging microscopy for visualizing biomolecular arrays in cells, tissues and organisms,” Nat. Biotechnol.21(11), 1356–1360 (2003).
[CrossRef] [PubMed]

Nat. Methods (1)

N. Ji, D. E. Milkie, and E. Betzig, “Adaptive optics via pupil segmentation for high-resolution imaging in biological tissues,” Nat. Methods7(2), 141–147 (2010).
[CrossRef] [PubMed]

Nat. Photonics (1)

N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer, and C. Xu, “In vivo three-photon microscopy of subcortical structures within an intact mouse brain,” Nat. Photonics7(3), 205–209 (2013).
[CrossRef]

New J. Phys. (1)

P. Nandakumar, A. Kovalev, and A. Volkmer, “Vibrational imaging based on stimulated Raman scattering microscopy,” New J. Phys.11(3), 033026 (2009).
[CrossRef]

Opt. Express (8)

Y. Ozeki, F. Dake, S. Kajiyama, K. Fukui, and K. Itoh, “Analysis and experimental assessment of the sensitivity of stimulated Raman scattering microscopy,” Opt. Express17(5), 3651–3658 (2009).
[CrossRef] [PubMed]

K. Isobe, S. Kataoka, R. Murase, W. Watanabe, T. Higashi, S. Kawakami, S. Matsunaga, K. Fukui, and K. Itoh, “Stimulated parametric emission microscopy,” Opt. Express14(2), 786–793 (2006).
[CrossRef] [PubMed]

G. Zhu, J. van Howe, M. Durst, W. Zipfel, and C. Xu, “Simultaneous spatial and temporal focusing of femtosecond pulses,” Opt. Express13(6), 2153–2159 (2005).
[CrossRef] [PubMed]

D. Oron, E. Tal, and Y. Silberberg, “Scanningless depth-resolved microscopy,” Opt. Express13(5), 1468–1476 (2005).
[CrossRef] [PubMed]

D. Kobat, M. E. Durst, N. Nishimura, A. W. Wong, C. B. Schaffer, and C. Xu, “Deep tissue multiphoton microscopy using longer wavelength excitation,” Opt. Express17(16), 13354–13364 (2009).
[CrossRef] [PubMed]

N. Chen, C.-H. Wong, and C. J. R. Sheppard, “Focal modulation microscopy,” Opt. Express16(23), 18764–18769 (2008).
[CrossRef] [PubMed]

A. Leray and J. Mertz, “Rejection of two-photon fluorescence background in thick tissue by differential aberration imaging,” Opt. Express14(22), 10565–10573 (2006).
[CrossRef] [PubMed]

Z. Chen, L. Wei, X. Zhu, and W. Min, “Extending the fundamental imaging-depth limit of multi-photon microscopy by imaging with photo-activatable fluorophores,” Opt. Express20(17), 18525–18536 (2012).
[CrossRef] [PubMed]

Opt. Lett. (5)

Phys. Rev. Lett. (1)

A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering,” Phys. Rev. Lett.82(20), 4142–4145 (1999).
[CrossRef]

Proc. SPIE (1)

S. Yagi, K. Naganuma, T. Imai, Y. Shibata, S. Ishibashi, Y. Sasaki, M. Sasaura, K. Fujiura, and K. Kato, “A mechanical-free 150-kHz repetition swept light source incorporated a KTN electro-optic deflector,” Proc. SPIE7889, 78891J, 78891J-6 (2011).
[CrossRef]

Rev. Sci. Instrum. (1)

J. Squier and M. Müller, “High resolution nonlinear microscopy: A review of sources and methods for achieving optimal imaging,” Rev. Sci. Instrum.72(7), 2855–2867 (2001).
[CrossRef]

Science (2)

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science248(4951), 73–76 (1990).
[CrossRef] [PubMed]

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science322(5909), 1857–1861 (2008).
[CrossRef] [PubMed]

Supplementary Material (1)

» Media 1: AVI (17307 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

SPOM-NOM setup. PBS: polarizing beamsplitter, OPO: optical parametric oscillator, PC: prechirper, EOD: electro-optic deflector, DM: dichroic mirror, OB: objective lens, SPF: shortpass filter, BPF: band-pass filter, PMT: photomultiplier tube.

Fig. 2
Fig. 2

SNRs at demodulation frequencies of (red square) 400 kHz and (black circk) 2 kHz.

Fig. 3
Fig. 3

TPEF images of tissue-like phantom obtained by (a) conventional TPEF microscopy and (b) SPOM-NOM.

Fig. 4
Fig. 4

(a, b) TPEF intensity of fluorescent beads in the focal plane (signal, red squares), background TPEF intensity (black circles) and input power from the Ti:sapphire oscillator and the OPO (solid blue line) as a function of penetration depth in a tissue-like phantom. (c) Contrast ratio between TPEF intensity of fluorescent beads in the focal plane and background TPEF intensity for conventional TPEF microscopy (black circles) and SPOM-NOM (red squares) as a function of penetration depth in a tissue-like phantom. The solid lines represent best fits to the data.

Fig. 5
Fig. 5

Enhancement of the spatial resolution in SFG imaging by SPOM-NOM. (a, b) SFG images of granulated sugar pounded in a mortar obtained by (a) conventional microscopy and (b) SPOM-NOM. (c-e) Normalized signal profiles along the lateral and axial directions indicated by (c) blue, (d) green, (e) red, (f) yellow, (g) pink arrows in (a) and (b).

Metrics