Abstract

Laser Speckle Contrast Imaging (LSCI) is an optical technique used to generate blood flow maps with high spatial and temporal resolution. It is well known that in LSCI, the speckle size must exceed the Nyquist criterion to maximize the speckle's pattern contrast. In this work, we study experimentally the effect of speckle-pixel size ratio not only in dynamic speckle contrast, but also on the calculation of the relative flow speed for temporal and spatial analysis. Our data suggest that the temporal LSCI algorithm is more accurate at assessing the relative changes in flow speed than the spatial algorithm.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. W. Goodman, Statistical Optics (New York: Wiley, 1985).
  2. F. Fercher and J. D. Briers, “Flow visualization by means of single-exposure speckle photography,” Opt. Commun.37(5), 326–330 (1981).
    [CrossRef]
  3. O. Yang, D. Cuccia, and B. Choi, “Real-time blood flow visualization using the graphics processing unit,” J. Biomed. Opt.16(1), 016009 (2011).
    [CrossRef] [PubMed]
  4. A. K. Dunn, “Laser speckle contrast imaging of cerebral blood flow,” Ann. Biomed. Eng.40(2), 367–377 (2012).
    [CrossRef] [PubMed]
  5. W. J. Moy, S. J. Patel, B. S. Lertsakdadet, R. P. Arora, K. M. Nielsen, K. M. Kelly, and B. Choi, “Preclinical in vivo evaluation of NPe6-mediated photodynamic therapy on normal vasculature,” Lasers Surg. Med.44(2), 158–162 (2012).
    [CrossRef] [PubMed]
  6. A. B. Parthasarathy, E. L. Weber, L. M. Richards, D. J. Fox, and A. K. Dunn, “Laser speckle contrast imaging of cerebral blood flow in humans during neurosurgery: a pilot clinical study,” J. Biomed. Opt.15(6), 066030 (2010).
    [CrossRef] [PubMed]
  7. A. Humeau-Heurtier, B. Buard, G. Mahe, and P. Abraham, “Laser speckle contrast imaging of the skin: interest in processing the perfusion data,” Med. Biol. Eng. Comput.50(2), 103–105 (2012).
    [CrossRef] [PubMed]
  8. S. J. Kirkpatrick, D. D. Duncan, and E. M. Wells-Gray, “Detrimental effects of speckle-pixel size matching in laser speckle contrast imaging,” Opt. Lett.33(24), 2886–2888 (2008).
    [CrossRef] [PubMed]
  9. O. Thompson, M. Andrews, and E. Hirst, “Correction for spatial averaging in laser speckle contrast analysis,” Biomed. Opt. Express2(4), 1021–1029 (2011).
    [CrossRef] [PubMed]
  10. A. Ennos, “Speckle interferometry,” in Laser Speckle and Related Phenomena J.C. Dainty (Springer-Verlag)
    [CrossRef]
  11. H. Y. Cheng, Q. M. Luo, S. Q. Zeng, S. B. Chen, J. Cen, and H. Gong, “Modified laser speckle imaging method with improved spatial resolution,” J. Biomed. Opt.8(3), 559–564 (2003).
    [CrossRef] [PubMed]
  12. A. B. Parthasarathy, W. J. Tom, A. Gopal, X. Zhang, and A. K. Dunn, “Robust flow measurement with multi-exposure speckle imaging,” Opt. Express16(3), 1975–1989 (2008).
    [CrossRef] [PubMed]
  13. D. A. Boas and A. K. Dunn, “Laser speckle contrast imaging in biomedical optics,” J. Biomed. Opt.15(1), 011109 (2010).
    [CrossRef] [PubMed]
  14. P. A. Lemieux and D. J. Durian, “Investigating non-Gaussian scattering process by using nth-order intensity correlation function,” J. Opt. Soc. Am. A16(7), 1651–1664 (1999).
    [CrossRef]
  15. Y. Atchia, H. Levy, S. Dufour, and O. Levi, “Rapid multiexposure in vivo brain imaging system using vertical cavity surface emitting lasers as a light source,” Appl. Opt.52(7), C64–C71 (2013).
    [CrossRef] [PubMed]
  16. J. C. Ramirez-San-Juan, R. Ramos-García, I. Guizar-Iturbide, G. Martínez-Niconoff, and B. Choi, “Impact of velocity distribution assumption on simplified laser speckle imaging equation,” Opt. Express16(5), 3197 (2008).
    [CrossRef]
  17. K. Basak, M. Manjunatha, and P. K. Dutta, “Review of laser speckle-based analysis in medical imaging,” Med. Biol. Eng. Comput.50(6), 547–558 (2012).
    [CrossRef] [PubMed]
  18. D. D. Duncan, S. J. Kirkpatrick, and R. K. Wang, “Statistics of local speckle contrast,” J. Opt. Soc. Am. A25(1), 9–15 (2008).
    [CrossRef] [PubMed]
  19. P. Li, S. Ni, L. Zhang, S. Zeng, and Q. Luo, “Imaging cerebral blood flow through the intact rat skull with temporal laser speckle imaging,” Opt. Lett.31(12), 1824–1826 (2006).
    [CrossRef] [PubMed]

2013 (1)

2012 (4)

A. K. Dunn, “Laser speckle contrast imaging of cerebral blood flow,” Ann. Biomed. Eng.40(2), 367–377 (2012).
[CrossRef] [PubMed]

W. J. Moy, S. J. Patel, B. S. Lertsakdadet, R. P. Arora, K. M. Nielsen, K. M. Kelly, and B. Choi, “Preclinical in vivo evaluation of NPe6-mediated photodynamic therapy on normal vasculature,” Lasers Surg. Med.44(2), 158–162 (2012).
[CrossRef] [PubMed]

A. Humeau-Heurtier, B. Buard, G. Mahe, and P. Abraham, “Laser speckle contrast imaging of the skin: interest in processing the perfusion data,” Med. Biol. Eng. Comput.50(2), 103–105 (2012).
[CrossRef] [PubMed]

K. Basak, M. Manjunatha, and P. K. Dutta, “Review of laser speckle-based analysis in medical imaging,” Med. Biol. Eng. Comput.50(6), 547–558 (2012).
[CrossRef] [PubMed]

2011 (2)

O. Yang, D. Cuccia, and B. Choi, “Real-time blood flow visualization using the graphics processing unit,” J. Biomed. Opt.16(1), 016009 (2011).
[CrossRef] [PubMed]

O. Thompson, M. Andrews, and E. Hirst, “Correction for spatial averaging in laser speckle contrast analysis,” Biomed. Opt. Express2(4), 1021–1029 (2011).
[CrossRef] [PubMed]

2010 (2)

D. A. Boas and A. K. Dunn, “Laser speckle contrast imaging in biomedical optics,” J. Biomed. Opt.15(1), 011109 (2010).
[CrossRef] [PubMed]

A. B. Parthasarathy, E. L. Weber, L. M. Richards, D. J. Fox, and A. K. Dunn, “Laser speckle contrast imaging of cerebral blood flow in humans during neurosurgery: a pilot clinical study,” J. Biomed. Opt.15(6), 066030 (2010).
[CrossRef] [PubMed]

2008 (4)

2006 (1)

2003 (1)

H. Y. Cheng, Q. M. Luo, S. Q. Zeng, S. B. Chen, J. Cen, and H. Gong, “Modified laser speckle imaging method with improved spatial resolution,” J. Biomed. Opt.8(3), 559–564 (2003).
[CrossRef] [PubMed]

1999 (1)

1981 (1)

F. Fercher and J. D. Briers, “Flow visualization by means of single-exposure speckle photography,” Opt. Commun.37(5), 326–330 (1981).
[CrossRef]

Abraham, P.

A. Humeau-Heurtier, B. Buard, G. Mahe, and P. Abraham, “Laser speckle contrast imaging of the skin: interest in processing the perfusion data,” Med. Biol. Eng. Comput.50(2), 103–105 (2012).
[CrossRef] [PubMed]

Andrews, M.

Arora, R. P.

W. J. Moy, S. J. Patel, B. S. Lertsakdadet, R. P. Arora, K. M. Nielsen, K. M. Kelly, and B. Choi, “Preclinical in vivo evaluation of NPe6-mediated photodynamic therapy on normal vasculature,” Lasers Surg. Med.44(2), 158–162 (2012).
[CrossRef] [PubMed]

Atchia, Y.

Basak, K.

K. Basak, M. Manjunatha, and P. K. Dutta, “Review of laser speckle-based analysis in medical imaging,” Med. Biol. Eng. Comput.50(6), 547–558 (2012).
[CrossRef] [PubMed]

Boas, D. A.

D. A. Boas and A. K. Dunn, “Laser speckle contrast imaging in biomedical optics,” J. Biomed. Opt.15(1), 011109 (2010).
[CrossRef] [PubMed]

Briers, J. D.

F. Fercher and J. D. Briers, “Flow visualization by means of single-exposure speckle photography,” Opt. Commun.37(5), 326–330 (1981).
[CrossRef]

Buard, B.

A. Humeau-Heurtier, B. Buard, G. Mahe, and P. Abraham, “Laser speckle contrast imaging of the skin: interest in processing the perfusion data,” Med. Biol. Eng. Comput.50(2), 103–105 (2012).
[CrossRef] [PubMed]

Cen, J.

H. Y. Cheng, Q. M. Luo, S. Q. Zeng, S. B. Chen, J. Cen, and H. Gong, “Modified laser speckle imaging method with improved spatial resolution,” J. Biomed. Opt.8(3), 559–564 (2003).
[CrossRef] [PubMed]

Chen, S. B.

H. Y. Cheng, Q. M. Luo, S. Q. Zeng, S. B. Chen, J. Cen, and H. Gong, “Modified laser speckle imaging method with improved spatial resolution,” J. Biomed. Opt.8(3), 559–564 (2003).
[CrossRef] [PubMed]

Cheng, H. Y.

H. Y. Cheng, Q. M. Luo, S. Q. Zeng, S. B. Chen, J. Cen, and H. Gong, “Modified laser speckle imaging method with improved spatial resolution,” J. Biomed. Opt.8(3), 559–564 (2003).
[CrossRef] [PubMed]

Choi, B.

W. J. Moy, S. J. Patel, B. S. Lertsakdadet, R. P. Arora, K. M. Nielsen, K. M. Kelly, and B. Choi, “Preclinical in vivo evaluation of NPe6-mediated photodynamic therapy on normal vasculature,” Lasers Surg. Med.44(2), 158–162 (2012).
[CrossRef] [PubMed]

O. Yang, D. Cuccia, and B. Choi, “Real-time blood flow visualization using the graphics processing unit,” J. Biomed. Opt.16(1), 016009 (2011).
[CrossRef] [PubMed]

J. C. Ramirez-San-Juan, R. Ramos-García, I. Guizar-Iturbide, G. Martínez-Niconoff, and B. Choi, “Impact of velocity distribution assumption on simplified laser speckle imaging equation,” Opt. Express16(5), 3197 (2008).
[CrossRef]

Cuccia, D.

O. Yang, D. Cuccia, and B. Choi, “Real-time blood flow visualization using the graphics processing unit,” J. Biomed. Opt.16(1), 016009 (2011).
[CrossRef] [PubMed]

Dufour, S.

Duncan, D. D.

Dunn, A. K.

A. K. Dunn, “Laser speckle contrast imaging of cerebral blood flow,” Ann. Biomed. Eng.40(2), 367–377 (2012).
[CrossRef] [PubMed]

A. B. Parthasarathy, E. L. Weber, L. M. Richards, D. J. Fox, and A. K. Dunn, “Laser speckle contrast imaging of cerebral blood flow in humans during neurosurgery: a pilot clinical study,” J. Biomed. Opt.15(6), 066030 (2010).
[CrossRef] [PubMed]

D. A. Boas and A. K. Dunn, “Laser speckle contrast imaging in biomedical optics,” J. Biomed. Opt.15(1), 011109 (2010).
[CrossRef] [PubMed]

A. B. Parthasarathy, W. J. Tom, A. Gopal, X. Zhang, and A. K. Dunn, “Robust flow measurement with multi-exposure speckle imaging,” Opt. Express16(3), 1975–1989 (2008).
[CrossRef] [PubMed]

Durian, D. J.

Dutta, P. K.

K. Basak, M. Manjunatha, and P. K. Dutta, “Review of laser speckle-based analysis in medical imaging,” Med. Biol. Eng. Comput.50(6), 547–558 (2012).
[CrossRef] [PubMed]

Fercher, F.

F. Fercher and J. D. Briers, “Flow visualization by means of single-exposure speckle photography,” Opt. Commun.37(5), 326–330 (1981).
[CrossRef]

Fox, D. J.

A. B. Parthasarathy, E. L. Weber, L. M. Richards, D. J. Fox, and A. K. Dunn, “Laser speckle contrast imaging of cerebral blood flow in humans during neurosurgery: a pilot clinical study,” J. Biomed. Opt.15(6), 066030 (2010).
[CrossRef] [PubMed]

Gong, H.

H. Y. Cheng, Q. M. Luo, S. Q. Zeng, S. B. Chen, J. Cen, and H. Gong, “Modified laser speckle imaging method with improved spatial resolution,” J. Biomed. Opt.8(3), 559–564 (2003).
[CrossRef] [PubMed]

Gopal, A.

Guizar-Iturbide, I.

Hirst, E.

Humeau-Heurtier, A.

A. Humeau-Heurtier, B. Buard, G. Mahe, and P. Abraham, “Laser speckle contrast imaging of the skin: interest in processing the perfusion data,” Med. Biol. Eng. Comput.50(2), 103–105 (2012).
[CrossRef] [PubMed]

Kelly, K. M.

W. J. Moy, S. J. Patel, B. S. Lertsakdadet, R. P. Arora, K. M. Nielsen, K. M. Kelly, and B. Choi, “Preclinical in vivo evaluation of NPe6-mediated photodynamic therapy on normal vasculature,” Lasers Surg. Med.44(2), 158–162 (2012).
[CrossRef] [PubMed]

Kirkpatrick, S. J.

Lemieux, P. A.

Lertsakdadet, B. S.

W. J. Moy, S. J. Patel, B. S. Lertsakdadet, R. P. Arora, K. M. Nielsen, K. M. Kelly, and B. Choi, “Preclinical in vivo evaluation of NPe6-mediated photodynamic therapy on normal vasculature,” Lasers Surg. Med.44(2), 158–162 (2012).
[CrossRef] [PubMed]

Levi, O.

Levy, H.

Li, P.

Luo, Q.

Luo, Q. M.

H. Y. Cheng, Q. M. Luo, S. Q. Zeng, S. B. Chen, J. Cen, and H. Gong, “Modified laser speckle imaging method with improved spatial resolution,” J. Biomed. Opt.8(3), 559–564 (2003).
[CrossRef] [PubMed]

Mahe, G.

A. Humeau-Heurtier, B. Buard, G. Mahe, and P. Abraham, “Laser speckle contrast imaging of the skin: interest in processing the perfusion data,” Med. Biol. Eng. Comput.50(2), 103–105 (2012).
[CrossRef] [PubMed]

Manjunatha, M.

K. Basak, M. Manjunatha, and P. K. Dutta, “Review of laser speckle-based analysis in medical imaging,” Med. Biol. Eng. Comput.50(6), 547–558 (2012).
[CrossRef] [PubMed]

Martínez-Niconoff, G.

Moy, W. J.

W. J. Moy, S. J. Patel, B. S. Lertsakdadet, R. P. Arora, K. M. Nielsen, K. M. Kelly, and B. Choi, “Preclinical in vivo evaluation of NPe6-mediated photodynamic therapy on normal vasculature,” Lasers Surg. Med.44(2), 158–162 (2012).
[CrossRef] [PubMed]

Ni, S.

Nielsen, K. M.

W. J. Moy, S. J. Patel, B. S. Lertsakdadet, R. P. Arora, K. M. Nielsen, K. M. Kelly, and B. Choi, “Preclinical in vivo evaluation of NPe6-mediated photodynamic therapy on normal vasculature,” Lasers Surg. Med.44(2), 158–162 (2012).
[CrossRef] [PubMed]

Parthasarathy, A. B.

A. B. Parthasarathy, E. L. Weber, L. M. Richards, D. J. Fox, and A. K. Dunn, “Laser speckle contrast imaging of cerebral blood flow in humans during neurosurgery: a pilot clinical study,” J. Biomed. Opt.15(6), 066030 (2010).
[CrossRef] [PubMed]

A. B. Parthasarathy, W. J. Tom, A. Gopal, X. Zhang, and A. K. Dunn, “Robust flow measurement with multi-exposure speckle imaging,” Opt. Express16(3), 1975–1989 (2008).
[CrossRef] [PubMed]

Patel, S. J.

W. J. Moy, S. J. Patel, B. S. Lertsakdadet, R. P. Arora, K. M. Nielsen, K. M. Kelly, and B. Choi, “Preclinical in vivo evaluation of NPe6-mediated photodynamic therapy on normal vasculature,” Lasers Surg. Med.44(2), 158–162 (2012).
[CrossRef] [PubMed]

Ramirez-San-Juan, J. C.

Ramos-García, R.

Richards, L. M.

A. B. Parthasarathy, E. L. Weber, L. M. Richards, D. J. Fox, and A. K. Dunn, “Laser speckle contrast imaging of cerebral blood flow in humans during neurosurgery: a pilot clinical study,” J. Biomed. Opt.15(6), 066030 (2010).
[CrossRef] [PubMed]

Thompson, O.

Tom, W. J.

Wang, R. K.

Weber, E. L.

A. B. Parthasarathy, E. L. Weber, L. M. Richards, D. J. Fox, and A. K. Dunn, “Laser speckle contrast imaging of cerebral blood flow in humans during neurosurgery: a pilot clinical study,” J. Biomed. Opt.15(6), 066030 (2010).
[CrossRef] [PubMed]

Wells-Gray, E. M.

Yang, O.

O. Yang, D. Cuccia, and B. Choi, “Real-time blood flow visualization using the graphics processing unit,” J. Biomed. Opt.16(1), 016009 (2011).
[CrossRef] [PubMed]

Zeng, S.

Zeng, S. Q.

H. Y. Cheng, Q. M. Luo, S. Q. Zeng, S. B. Chen, J. Cen, and H. Gong, “Modified laser speckle imaging method with improved spatial resolution,” J. Biomed. Opt.8(3), 559–564 (2003).
[CrossRef] [PubMed]

Zhang, L.

Zhang, X.

Ann. Biomed. Eng. (1)

A. K. Dunn, “Laser speckle contrast imaging of cerebral blood flow,” Ann. Biomed. Eng.40(2), 367–377 (2012).
[CrossRef] [PubMed]

Appl. Opt. (1)

Biomed. Opt. Express (1)

J. Biomed. Opt. (4)

O. Yang, D. Cuccia, and B. Choi, “Real-time blood flow visualization using the graphics processing unit,” J. Biomed. Opt.16(1), 016009 (2011).
[CrossRef] [PubMed]

A. B. Parthasarathy, E. L. Weber, L. M. Richards, D. J. Fox, and A. K. Dunn, “Laser speckle contrast imaging of cerebral blood flow in humans during neurosurgery: a pilot clinical study,” J. Biomed. Opt.15(6), 066030 (2010).
[CrossRef] [PubMed]

H. Y. Cheng, Q. M. Luo, S. Q. Zeng, S. B. Chen, J. Cen, and H. Gong, “Modified laser speckle imaging method with improved spatial resolution,” J. Biomed. Opt.8(3), 559–564 (2003).
[CrossRef] [PubMed]

D. A. Boas and A. K. Dunn, “Laser speckle contrast imaging in biomedical optics,” J. Biomed. Opt.15(1), 011109 (2010).
[CrossRef] [PubMed]

J. Opt. Soc. Am. A (2)

Lasers Surg. Med. (1)

W. J. Moy, S. J. Patel, B. S. Lertsakdadet, R. P. Arora, K. M. Nielsen, K. M. Kelly, and B. Choi, “Preclinical in vivo evaluation of NPe6-mediated photodynamic therapy on normal vasculature,” Lasers Surg. Med.44(2), 158–162 (2012).
[CrossRef] [PubMed]

Med. Biol. Eng. Comput. (2)

K. Basak, M. Manjunatha, and P. K. Dutta, “Review of laser speckle-based analysis in medical imaging,” Med. Biol. Eng. Comput.50(6), 547–558 (2012).
[CrossRef] [PubMed]

A. Humeau-Heurtier, B. Buard, G. Mahe, and P. Abraham, “Laser speckle contrast imaging of the skin: interest in processing the perfusion data,” Med. Biol. Eng. Comput.50(2), 103–105 (2012).
[CrossRef] [PubMed]

Opt. Commun. (1)

F. Fercher and J. D. Briers, “Flow visualization by means of single-exposure speckle photography,” Opt. Commun.37(5), 326–330 (1981).
[CrossRef]

Opt. Express (2)

Opt. Lett. (2)

Other (2)

J. W. Goodman, Statistical Optics (New York: Wiley, 1985).

A. Ennos, “Speckle interferometry,” in Laser Speckle and Related Phenomena J.C. Dainty (Springer-Verlag)
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Spatial sampling of a speckle pattern on a CCD camera.

Fig. 2
Fig. 2

(a) Skin phantom employed in this study. Intralipid was injected into the inlet. K (contrast) and SFI (Speckle Flow Index) measurements were determined at regions within channels C1, C3 and C5. (b) Representative speckle contrast image of the skin phantom during flow at 6 mm/sec. See text for details.

Fig. 3
Fig. 3

Average speckle contrast of a region within channel C1, vs. flow speed, for different ratios of spatial sampling of the speckle pattern (i.e., “pixels-per-speckle” values) for (a) temporal and (b) spatial speckle contrast analysis. The symbols represent experimental data and the solid lines are the corresponding fits to Eq. (4).

Fig. 4
Fig. 4

Speckle contrast as a function of the pixels-per-speckle ratio for (a) temporal and (b) spatial analysis. Note that the value of K increase even when the Nyquist criterion of two pixels per speckle is satisfied.

Fig. 5
Fig. 5

Relative flow speed [i.e., (SFI in C1)/(SFI in C3)] is only weakly dependent on N and actual flow speed. The dependence is noticeably weaker with the (a) temporal speckle contrast approach than with the (b) spatial speckle contrast approach.

Fig. 6
Fig. 6

RFS as a function of x (which is proportional to SFI) for three values of ρ. It is assumed that the actual RFS is two. The RFS associated with the temporal speckle-contrast algorithm is two for different values of x (continuous line), for ρ = 0.98 to 1.00. However, with spatial speckle-contrast analysis, the RFS decreases with x for all values of ρ below unity.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

d min =1.22(1+M)(f/#)λ
K(T, τ c )= [ β ρ 2 e 2x 1+2x 2 x 2 +4βρ( 1ρ ) e x 1+x x 2 + ( 1ρ ) 2 ] 1/2 + C noise
K( T, τ c )= [ β e 2x 1+2x 2 x 2 ] 1 2
K=a V 1 2
K s,C1 2 =β ρ 2 e 2x 1+2x 2 x 2 +4βρ( 1ρ ) e x 1+x x 2 + ( 1ρ ) 2
K s,C3 2 =β ρ 2 e 2( x/2 ) 1+2(x/2 ) 2 ( x/2 ) 2 +4βρ( 1ρ ) e ( x/2 ) 1+( x/2 ) ( x/2 ) 2 + ( 1ρ ) 2
K t,C1 2 =ρβ e 2x 1+2x 2 x 2
K t,C3 2 =ρβ e 2( x/2 ) 1+2( x/2 ) 2 ( x/2 ) 2
RFS= SFI_C1 SFI_C3 = K C1 2 K C3 2

Metrics