Abstract

Multispectral excitation-resolved fluorescence tomography (MEFT) uses excitation light of different wavelengths to illuminate the fluorophores and obtains the reconstruction image frame which is fluorescence yield at each corresponding wavelength. For structures containing fluorophores of different concentrations, fluorescence yields show different variation trends with the excitation spectrum. In this study, principal component analysis (PCA) is used to analyze the MEFT reconstructed image frames. By taking advantage of the different variation trends of fluorescence yields, PCA can provide a set of principal components (PCs) in which structures containing different concentrations of fluorophores are shown separately. Simulations and experiments are both performed to test the performance of the proposed algorithm. The results suggest that the location and structure of fluorophores with different concentrations can be obtained and the contrast of fluorophores can be improved further by using this algorithm.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. Ntziachristos, C. H. Tung, C. Bremer, and R. Weissleder, “Fluorescence molecular tomography resolves protease activity in vivo,” Nat. Med.8(7), 757–761 (2002).
    [CrossRef] [PubMed]
  2. V. Ntziachristos, E. A. Schellenberger, J. Ripoll, D. Yessayan, E. Graves, A. Bogdanov, L. Josephson, and R. Weissleder, “Visualization of antitumor treatment by means of fluorescence molecular tomography with an annexin V-Cy5.5 conjugate,” Proc. Natl. Acad. Sci. U.S.A.101(33), 12294–12299 (2004).
    [CrossRef] [PubMed]
  3. X. Montet, V. Ntziachristos, J. Grimm, and R. Weissleder, “Tomographic fluorescence mapping of tumor targets,” Cancer Res.65(14), 6330–6336 (2005).
    [CrossRef] [PubMed]
  4. A. Corlu, R. Choe, T. Durduran, M. A. Rosen, M. Schweiger, S. R. Arridge, M. D. Schnall, and A. G. Yodh, “Three-dimensional in vivo fluorescence diffuse optical tomography of breast cancer in humans,” Opt. Express15(11), 6696–6716 (2007).
    [CrossRef] [PubMed]
  5. R. Weissleder and V. Ntziachristos, “Shedding light onto live molecular targets,” Nat. Med.9(1), 123–128 (2003).
    [CrossRef] [PubMed]
  6. X. Michalet, F. F. Pinaud, L. A. Bentolila, J. M. Tsay, S. Doose, J. J. Li, G. Sundaresan, A. M. Wu, S. S. Gambhir, and S. Weiss, “Quantum dots for live cells, in vivo imaging, and diagnostics,” Science307(5709), 538–544 (2005).
    [CrossRef] [PubMed]
  7. G. Hu, J. Yao, and J. Bai, “Full-angle optical imaging of near-infrared fluorescent probes implanted in small animals,” Prog. Nat. Sci.18(6), 707–711 (2008).
    [CrossRef]
  8. S. V. Patwardhan, S. R. Bloch, S. A. Achilefu, and J. P. Culver, “Time-dependent whole-body fluorescence tomography of probe bio-distributions in mice,” Opt. Express13(7), 2564–2577 (2005).
    [CrossRef] [PubMed]
  9. E. E. Graves, J. Ripoll, R. Weissleder, and V. Ntziachristos, “A submillimeter resolution fluorescence molecular imaging system for small animal imaging,” Med. Phys.30(5), 901–911 (2003).
    [CrossRef] [PubMed]
  10. A. Soubret, J. Ripoll, and V. Ntziachristos, “Accuracy of fluorescent tomography in the presence of heterogeneities: study of the normalized Born ratio,” IEEE Trans. Med. Imaging24(10), 1377–1386 (2005).
    [CrossRef] [PubMed]
  11. X. Song, D. Wang, N. Chen, J. Bai, and H. Wang, “Reconstruction for free-space fluorescence tomography using a novel hybrid adaptive finite element algorithm,” Opt. Express15(26), 18300–18317 (2007).
    [CrossRef] [PubMed]
  12. A. Joshi, W. Bangerth, and E. M. Sevick-Muraca, “Adaptive finite element based tomography for fluorescence optical imaging in tissue,” Opt. Express12(22), 5402–5417 (2004).
    [CrossRef] [PubMed]
  13. A. Ale, R. B. Schulz, A. Sarantopoulos, and V. Ntziachristos, “Imaging performance of a hybrid x-ray computed tomography-fluorescence molecular tomography system using priors,” Med. Phys.37(5), 1976–1986 (2010).
    [CrossRef] [PubMed]
  14. Y. T. Lin, W. C. Barber, J. S. Iwanczyk, W. Roeck, O. Nalcioglu, and G. Gulsen, “Quantitative fluorescence tomography using a combined tri-modality FT/DOT/XCT system,” Opt. Express18(8), 7835–7850 (2010).
    [CrossRef] [PubMed]
  15. X. Liu, F. Liu, Y. Zhang, and J. Bai, “Unmixing dynamic fluorescence diffuse optical tomography images with independent component analysis,” IEEE Trans. Med. Imaging30(9), 1591–1604 (2011).
    [CrossRef] [PubMed]
  16. A. D. Klose, “Hyperspectral excitation-resolved fluorescence tomography of quantum dots,” Opt. Lett.34(16), 2477–2479 (2009).
    [CrossRef] [PubMed]
  17. A. D. Klose and T. Pöschinger, “Excitation-resolved fluorescence tomography with simplified spherical harmonics equations,” Phys. Med. Biol.56(5), 1443–1469 (2011).
    [CrossRef] [PubMed]
  18. A. J. Chaudhari, S. Ahn, R. Levenson, R. D. Badawi, S. R. Cherry, and R. M. Leahy, “Excitation spectroscopy in multispectral optical fluorescence tomography: methodology, feasibility and computer simulation studies,” Phys. Med. Biol.54(15), 4687–4704 (2009).
    [CrossRef] [PubMed]
  19. A. J. Chaudhari, F. Darvas, J. R. Bading, R. A. Moats, P. S. Conti, D. J. Smith, S. R. Cherry, and R. M. Leahy, “Hyperspectral and multispectral bioluminescence optical tomography for small animal imaging,” Phys. Med. Biol.50(23), 5421–5441 (2005).
    [CrossRef] [PubMed]
  20. H. Abdi and L. J. Williams, “Principal component analysis,” Wires. Clim. Change.2(4), 433–459 (2010).
  21. N. G. Anderson, A. P. Butler, N. J. Scott, N. J. Cook, J. S. Butzer, N. Schleich, M. Firsching, R. Grasset, N. de Ruiter, M. Campbell, and P. H. Butler, “Spectroscopic (multi-energy) CT distinguishes iodine and barium contrast material in MICE,” Eur. Radiol.20(9), 2126–2134 (2010).
    [CrossRef] [PubMed]
  22. H. Gao, J. F. Cai, Z. Shen, and H. Zhao, “Robust principal component analysis-based four-dimensional computed tomography,” Phys. Med. Biol.56(11), 3181–3198 (2011).
    [CrossRef] [PubMed]
  23. P. E. Svensson, J. Olsson, F. Engbrant, E. Bengtsson, and P. Razifar, “Characterization and Reduction of Noise in Dynamic PET Data Using Masked Volumewise Principal Component Analysis,” J. Nucl. Med. Technol.39(1), 27–34 (2011).
    [CrossRef] [PubMed]
  24. P. Razifar, H. Engler, G. Blomquist, A. Ringheim, S. Estrada, B. Långström, and M. Bergström, “Principal component analysis with pre-normalization improves the signal-to-noise ratio and image quality in positron emission tomography studies of amyloid deposits in Alzheimer’s disease,” Phys. Med. Biol.54(11), 3595–3612 (2009).
    [CrossRef] [PubMed]
  25. E. Eyal, B. N. Bloch, N. M. Rofsky, E. Furman-Haran, E. M. Genega, R. E. Lenkinski, and H. Degani, “Principal component analysis of dynamic contrast enhanced MRI in human prostate cancer,” Invest. Radiol.45(4), 174–181 (2010).
    [CrossRef] [PubMed]
  26. E. M. C. Hillman and A. Moore, “All-optical anatomical co-registration for molecular imaging of small animals using dynamic contrast,” Nat. Photonics1(9), 526–530 (2007).
    [CrossRef] [PubMed]
  27. X. Liu, D. F. Wang, F. Liu, and J. Bai, “Principal component analysis of dynamic fluorescence diffuse optical tomography images,” Opt. Express18(6), 6300–6314 (2010).
    [CrossRef] [PubMed]
  28. V. Saxena, M. Sadoqi, and J. Shao, “Polymeric nanoparticulate delivery system for Indocyanine green: biodistribution in healthy mice,” Int. J. Pharm.308(1-2), 200–204 (2006).
    [CrossRef] [PubMed]
  29. M. Choi, K. Choi, S. W. Ryu, J. Lee, and C. Choi, “Dynamic fluorescence imaging for multiparametric measurement of tumor vasculature,” J. Biomed. Opt.16(4), 046008 (2011).
    [CrossRef] [PubMed]
  30. J. J. Duderstadt and L. J. Hamilton, Nuclear Reactor Analysis(New York:Wiley,1976).
  31. N. M. Anderson and P. Sekelj, “Studies on the determination of dye concentration in nonhemolyzed blood,” J. Lab. Clin. Med.72(4), 705–713 (1968).
    [PubMed]
  32. R. Simmons and R. J. Shephard, “Does indocyanine green obey Beer’s law?” J. Appl. Physiol.30(4), 502–507 (1971).
    [PubMed]
  33. M. L. Landsman, G. Kwant, G. A. Mook, and W. G. Zijlstra, “Light-absorbing properties, stability, and spectral stabilization of indocyanine green,” J. Appl. Physiol.40(4), 575–583 (1976).
    [PubMed]
  34. F. Liu, X. Liu, D. Wang, B. Zhang, and J. Bai, “A parallel excitation based fluorescence molecular tomography system for whole-body simultaneous imaging of small animals,” Ann. Biomed. Eng.38(11), 3440–3448 (2010).
    [CrossRef] [PubMed]
  35. R. C. Benson and H. A. Kues, “Fluorescence properties of indocyanine green as related to angiography,” Phys. Med. Biol.23(1), 159–163 (1978).
    [CrossRef] [PubMed]
  36. R. Michels, F. Foschum, and A. Kienle, “Optical properties of fat emulsions,” Opt. Express16(8), 5907–5925 (2008).
    [CrossRef] [PubMed]
  37. V. Ntziachristos and R. Weissleder, “Charge-coupled-device based scanner for tomography of fluorescent near-infrared probes in turbid media,” Med. Phys.29(5), 803–809 (2002).
    [CrossRef] [PubMed]
  38. A. Kak and M. Slaney, Computerized Tomographic Imaging (New York: IEEE Press, 1987), ch. 7.
  39. B. Dogdas, D. Stout, A. F. Chatziioannou, and R. M. Leahy, “Digimouse: A 3D whole body mouse atlas from CT and cryosection data,” Phys. Med. Biol.52(3), 577–587 (2007).
    [CrossRef] [PubMed]
  40. G. Alexandrakis, F. R. Rannou, and A. F. Chatziioannou, “Tomographic bioluminescence imaging by use of a combined optical-PET (OPET) system: a computer simulation feasibility study,” Phys. Med. Biol.50(17), 4225–4241 (2005).
    [CrossRef] [PubMed]
  41. G. Alexandrakis, F. R. Rannou, and A. F. Chatziioannou, “Effect of optical property estimation accuracy on tomographic bioluminescence imaging: simulation of a combined optical-PET (OPET) system,” Phys. Med. Biol.51(8), 2045–2053 (2006).
    [CrossRef] [PubMed]
  42. X. Intes, V. Ntziachristos, J. P. Culver, A. Yodh, and B. Chance, “Projection access order in algebraic reconstruction technique for diffuse optical tomography,” Phys. Med. Biol.47(1), N1–N10 (2002).
    [CrossRef] [PubMed]
  43. S. R. Arridge, “Optical tomography in medical imaging,” Inverse Probl.15(2), R41–R93 (1999).
    [CrossRef]
  44. H. Dehghani, M. E. Eames, P. K. Yalavarthy, S. C. Davis, S. Srinivasan, C. M. Carpenter, B. W. Pogue, and K. D. Paulsen, “Near infrared optical tomography using NIRFAST: Algorithm for numerical model and image reconstruction,” Commun. Numer. Methods Eng.25(6), 711–732 (2009).
    [CrossRef] [PubMed]

2011 (5)

A. D. Klose and T. Pöschinger, “Excitation-resolved fluorescence tomography with simplified spherical harmonics equations,” Phys. Med. Biol.56(5), 1443–1469 (2011).
[CrossRef] [PubMed]

H. Gao, J. F. Cai, Z. Shen, and H. Zhao, “Robust principal component analysis-based four-dimensional computed tomography,” Phys. Med. Biol.56(11), 3181–3198 (2011).
[CrossRef] [PubMed]

P. E. Svensson, J. Olsson, F. Engbrant, E. Bengtsson, and P. Razifar, “Characterization and Reduction of Noise in Dynamic PET Data Using Masked Volumewise Principal Component Analysis,” J. Nucl. Med. Technol.39(1), 27–34 (2011).
[CrossRef] [PubMed]

M. Choi, K. Choi, S. W. Ryu, J. Lee, and C. Choi, “Dynamic fluorescence imaging for multiparametric measurement of tumor vasculature,” J. Biomed. Opt.16(4), 046008 (2011).
[CrossRef] [PubMed]

X. Liu, F. Liu, Y. Zhang, and J. Bai, “Unmixing dynamic fluorescence diffuse optical tomography images with independent component analysis,” IEEE Trans. Med. Imaging30(9), 1591–1604 (2011).
[CrossRef] [PubMed]

2010 (7)

F. Liu, X. Liu, D. Wang, B. Zhang, and J. Bai, “A parallel excitation based fluorescence molecular tomography system for whole-body simultaneous imaging of small animals,” Ann. Biomed. Eng.38(11), 3440–3448 (2010).
[CrossRef] [PubMed]

A. Ale, R. B. Schulz, A. Sarantopoulos, and V. Ntziachristos, “Imaging performance of a hybrid x-ray computed tomography-fluorescence molecular tomography system using priors,” Med. Phys.37(5), 1976–1986 (2010).
[CrossRef] [PubMed]

E. Eyal, B. N. Bloch, N. M. Rofsky, E. Furman-Haran, E. M. Genega, R. E. Lenkinski, and H. Degani, “Principal component analysis of dynamic contrast enhanced MRI in human prostate cancer,” Invest. Radiol.45(4), 174–181 (2010).
[CrossRef] [PubMed]

H. Abdi and L. J. Williams, “Principal component analysis,” Wires. Clim. Change.2(4), 433–459 (2010).

N. G. Anderson, A. P. Butler, N. J. Scott, N. J. Cook, J. S. Butzer, N. Schleich, M. Firsching, R. Grasset, N. de Ruiter, M. Campbell, and P. H. Butler, “Spectroscopic (multi-energy) CT distinguishes iodine and barium contrast material in MICE,” Eur. Radiol.20(9), 2126–2134 (2010).
[CrossRef] [PubMed]

X. Liu, D. F. Wang, F. Liu, and J. Bai, “Principal component analysis of dynamic fluorescence diffuse optical tomography images,” Opt. Express18(6), 6300–6314 (2010).
[CrossRef] [PubMed]

Y. T. Lin, W. C. Barber, J. S. Iwanczyk, W. Roeck, O. Nalcioglu, and G. Gulsen, “Quantitative fluorescence tomography using a combined tri-modality FT/DOT/XCT system,” Opt. Express18(8), 7835–7850 (2010).
[CrossRef] [PubMed]

2009 (4)

A. D. Klose, “Hyperspectral excitation-resolved fluorescence tomography of quantum dots,” Opt. Lett.34(16), 2477–2479 (2009).
[CrossRef] [PubMed]

P. Razifar, H. Engler, G. Blomquist, A. Ringheim, S. Estrada, B. Långström, and M. Bergström, “Principal component analysis with pre-normalization improves the signal-to-noise ratio and image quality in positron emission tomography studies of amyloid deposits in Alzheimer’s disease,” Phys. Med. Biol.54(11), 3595–3612 (2009).
[CrossRef] [PubMed]

A. J. Chaudhari, S. Ahn, R. Levenson, R. D. Badawi, S. R. Cherry, and R. M. Leahy, “Excitation spectroscopy in multispectral optical fluorescence tomography: methodology, feasibility and computer simulation studies,” Phys. Med. Biol.54(15), 4687–4704 (2009).
[CrossRef] [PubMed]

H. Dehghani, M. E. Eames, P. K. Yalavarthy, S. C. Davis, S. Srinivasan, C. M. Carpenter, B. W. Pogue, and K. D. Paulsen, “Near infrared optical tomography using NIRFAST: Algorithm for numerical model and image reconstruction,” Commun. Numer. Methods Eng.25(6), 711–732 (2009).
[CrossRef] [PubMed]

2008 (2)

G. Hu, J. Yao, and J. Bai, “Full-angle optical imaging of near-infrared fluorescent probes implanted in small animals,” Prog. Nat. Sci.18(6), 707–711 (2008).
[CrossRef]

R. Michels, F. Foschum, and A. Kienle, “Optical properties of fat emulsions,” Opt. Express16(8), 5907–5925 (2008).
[CrossRef] [PubMed]

2007 (4)

A. Corlu, R. Choe, T. Durduran, M. A. Rosen, M. Schweiger, S. R. Arridge, M. D. Schnall, and A. G. Yodh, “Three-dimensional in vivo fluorescence diffuse optical tomography of breast cancer in humans,” Opt. Express15(11), 6696–6716 (2007).
[CrossRef] [PubMed]

X. Song, D. Wang, N. Chen, J. Bai, and H. Wang, “Reconstruction for free-space fluorescence tomography using a novel hybrid adaptive finite element algorithm,” Opt. Express15(26), 18300–18317 (2007).
[CrossRef] [PubMed]

E. M. C. Hillman and A. Moore, “All-optical anatomical co-registration for molecular imaging of small animals using dynamic contrast,” Nat. Photonics1(9), 526–530 (2007).
[CrossRef] [PubMed]

B. Dogdas, D. Stout, A. F. Chatziioannou, and R. M. Leahy, “Digimouse: A 3D whole body mouse atlas from CT and cryosection data,” Phys. Med. Biol.52(3), 577–587 (2007).
[CrossRef] [PubMed]

2006 (2)

G. Alexandrakis, F. R. Rannou, and A. F. Chatziioannou, “Effect of optical property estimation accuracy on tomographic bioluminescence imaging: simulation of a combined optical-PET (OPET) system,” Phys. Med. Biol.51(8), 2045–2053 (2006).
[CrossRef] [PubMed]

V. Saxena, M. Sadoqi, and J. Shao, “Polymeric nanoparticulate delivery system for Indocyanine green: biodistribution in healthy mice,” Int. J. Pharm.308(1-2), 200–204 (2006).
[CrossRef] [PubMed]

2005 (6)

X. Michalet, F. F. Pinaud, L. A. Bentolila, J. M. Tsay, S. Doose, J. J. Li, G. Sundaresan, A. M. Wu, S. S. Gambhir, and S. Weiss, “Quantum dots for live cells, in vivo imaging, and diagnostics,” Science307(5709), 538–544 (2005).
[CrossRef] [PubMed]

A. J. Chaudhari, F. Darvas, J. R. Bading, R. A. Moats, P. S. Conti, D. J. Smith, S. R. Cherry, and R. M. Leahy, “Hyperspectral and multispectral bioluminescence optical tomography for small animal imaging,” Phys. Med. Biol.50(23), 5421–5441 (2005).
[CrossRef] [PubMed]

X. Montet, V. Ntziachristos, J. Grimm, and R. Weissleder, “Tomographic fluorescence mapping of tumor targets,” Cancer Res.65(14), 6330–6336 (2005).
[CrossRef] [PubMed]

G. Alexandrakis, F. R. Rannou, and A. F. Chatziioannou, “Tomographic bioluminescence imaging by use of a combined optical-PET (OPET) system: a computer simulation feasibility study,” Phys. Med. Biol.50(17), 4225–4241 (2005).
[CrossRef] [PubMed]

S. V. Patwardhan, S. R. Bloch, S. A. Achilefu, and J. P. Culver, “Time-dependent whole-body fluorescence tomography of probe bio-distributions in mice,” Opt. Express13(7), 2564–2577 (2005).
[CrossRef] [PubMed]

A. Soubret, J. Ripoll, and V. Ntziachristos, “Accuracy of fluorescent tomography in the presence of heterogeneities: study of the normalized Born ratio,” IEEE Trans. Med. Imaging24(10), 1377–1386 (2005).
[CrossRef] [PubMed]

2004 (2)

A. Joshi, W. Bangerth, and E. M. Sevick-Muraca, “Adaptive finite element based tomography for fluorescence optical imaging in tissue,” Opt. Express12(22), 5402–5417 (2004).
[CrossRef] [PubMed]

V. Ntziachristos, E. A. Schellenberger, J. Ripoll, D. Yessayan, E. Graves, A. Bogdanov, L. Josephson, and R. Weissleder, “Visualization of antitumor treatment by means of fluorescence molecular tomography with an annexin V-Cy5.5 conjugate,” Proc. Natl. Acad. Sci. U.S.A.101(33), 12294–12299 (2004).
[CrossRef] [PubMed]

2003 (2)

R. Weissleder and V. Ntziachristos, “Shedding light onto live molecular targets,” Nat. Med.9(1), 123–128 (2003).
[CrossRef] [PubMed]

E. E. Graves, J. Ripoll, R. Weissleder, and V. Ntziachristos, “A submillimeter resolution fluorescence molecular imaging system for small animal imaging,” Med. Phys.30(5), 901–911 (2003).
[CrossRef] [PubMed]

2002 (3)

V. Ntziachristos and R. Weissleder, “Charge-coupled-device based scanner for tomography of fluorescent near-infrared probes in turbid media,” Med. Phys.29(5), 803–809 (2002).
[CrossRef] [PubMed]

X. Intes, V. Ntziachristos, J. P. Culver, A. Yodh, and B. Chance, “Projection access order in algebraic reconstruction technique for diffuse optical tomography,” Phys. Med. Biol.47(1), N1–N10 (2002).
[CrossRef] [PubMed]

V. Ntziachristos, C. H. Tung, C. Bremer, and R. Weissleder, “Fluorescence molecular tomography resolves protease activity in vivo,” Nat. Med.8(7), 757–761 (2002).
[CrossRef] [PubMed]

1999 (1)

S. R. Arridge, “Optical tomography in medical imaging,” Inverse Probl.15(2), R41–R93 (1999).
[CrossRef]

1978 (1)

R. C. Benson and H. A. Kues, “Fluorescence properties of indocyanine green as related to angiography,” Phys. Med. Biol.23(1), 159–163 (1978).
[CrossRef] [PubMed]

1976 (1)

M. L. Landsman, G. Kwant, G. A. Mook, and W. G. Zijlstra, “Light-absorbing properties, stability, and spectral stabilization of indocyanine green,” J. Appl. Physiol.40(4), 575–583 (1976).
[PubMed]

1971 (1)

R. Simmons and R. J. Shephard, “Does indocyanine green obey Beer’s law?” J. Appl. Physiol.30(4), 502–507 (1971).
[PubMed]

1968 (1)

N. M. Anderson and P. Sekelj, “Studies on the determination of dye concentration in nonhemolyzed blood,” J. Lab. Clin. Med.72(4), 705–713 (1968).
[PubMed]

Abdi, H.

H. Abdi and L. J. Williams, “Principal component analysis,” Wires. Clim. Change.2(4), 433–459 (2010).

Achilefu, S. A.

Ahn, S.

A. J. Chaudhari, S. Ahn, R. Levenson, R. D. Badawi, S. R. Cherry, and R. M. Leahy, “Excitation spectroscopy in multispectral optical fluorescence tomography: methodology, feasibility and computer simulation studies,” Phys. Med. Biol.54(15), 4687–4704 (2009).
[CrossRef] [PubMed]

Ale, A.

A. Ale, R. B. Schulz, A. Sarantopoulos, and V. Ntziachristos, “Imaging performance of a hybrid x-ray computed tomography-fluorescence molecular tomography system using priors,” Med. Phys.37(5), 1976–1986 (2010).
[CrossRef] [PubMed]

Alexandrakis, G.

G. Alexandrakis, F. R. Rannou, and A. F. Chatziioannou, “Effect of optical property estimation accuracy on tomographic bioluminescence imaging: simulation of a combined optical-PET (OPET) system,” Phys. Med. Biol.51(8), 2045–2053 (2006).
[CrossRef] [PubMed]

G. Alexandrakis, F. R. Rannou, and A. F. Chatziioannou, “Tomographic bioluminescence imaging by use of a combined optical-PET (OPET) system: a computer simulation feasibility study,” Phys. Med. Biol.50(17), 4225–4241 (2005).
[CrossRef] [PubMed]

Anderson, N. G.

N. G. Anderson, A. P. Butler, N. J. Scott, N. J. Cook, J. S. Butzer, N. Schleich, M. Firsching, R. Grasset, N. de Ruiter, M. Campbell, and P. H. Butler, “Spectroscopic (multi-energy) CT distinguishes iodine and barium contrast material in MICE,” Eur. Radiol.20(9), 2126–2134 (2010).
[CrossRef] [PubMed]

Anderson, N. M.

N. M. Anderson and P. Sekelj, “Studies on the determination of dye concentration in nonhemolyzed blood,” J. Lab. Clin. Med.72(4), 705–713 (1968).
[PubMed]

Arridge, S. R.

Badawi, R. D.

A. J. Chaudhari, S. Ahn, R. Levenson, R. D. Badawi, S. R. Cherry, and R. M. Leahy, “Excitation spectroscopy in multispectral optical fluorescence tomography: methodology, feasibility and computer simulation studies,” Phys. Med. Biol.54(15), 4687–4704 (2009).
[CrossRef] [PubMed]

Bading, J. R.

A. J. Chaudhari, F. Darvas, J. R. Bading, R. A. Moats, P. S. Conti, D. J. Smith, S. R. Cherry, and R. M. Leahy, “Hyperspectral and multispectral bioluminescence optical tomography for small animal imaging,” Phys. Med. Biol.50(23), 5421–5441 (2005).
[CrossRef] [PubMed]

Bai, J.

X. Liu, F. Liu, Y. Zhang, and J. Bai, “Unmixing dynamic fluorescence diffuse optical tomography images with independent component analysis,” IEEE Trans. Med. Imaging30(9), 1591–1604 (2011).
[CrossRef] [PubMed]

F. Liu, X. Liu, D. Wang, B. Zhang, and J. Bai, “A parallel excitation based fluorescence molecular tomography system for whole-body simultaneous imaging of small animals,” Ann. Biomed. Eng.38(11), 3440–3448 (2010).
[CrossRef] [PubMed]

X. Liu, D. F. Wang, F. Liu, and J. Bai, “Principal component analysis of dynamic fluorescence diffuse optical tomography images,” Opt. Express18(6), 6300–6314 (2010).
[CrossRef] [PubMed]

G. Hu, J. Yao, and J. Bai, “Full-angle optical imaging of near-infrared fluorescent probes implanted in small animals,” Prog. Nat. Sci.18(6), 707–711 (2008).
[CrossRef]

X. Song, D. Wang, N. Chen, J. Bai, and H. Wang, “Reconstruction for free-space fluorescence tomography using a novel hybrid adaptive finite element algorithm,” Opt. Express15(26), 18300–18317 (2007).
[CrossRef] [PubMed]

Bangerth, W.

Barber, W. C.

Bengtsson, E.

P. E. Svensson, J. Olsson, F. Engbrant, E. Bengtsson, and P. Razifar, “Characterization and Reduction of Noise in Dynamic PET Data Using Masked Volumewise Principal Component Analysis,” J. Nucl. Med. Technol.39(1), 27–34 (2011).
[CrossRef] [PubMed]

Benson, R. C.

R. C. Benson and H. A. Kues, “Fluorescence properties of indocyanine green as related to angiography,” Phys. Med. Biol.23(1), 159–163 (1978).
[CrossRef] [PubMed]

Bentolila, L. A.

X. Michalet, F. F. Pinaud, L. A. Bentolila, J. M. Tsay, S. Doose, J. J. Li, G. Sundaresan, A. M. Wu, S. S. Gambhir, and S. Weiss, “Quantum dots for live cells, in vivo imaging, and diagnostics,” Science307(5709), 538–544 (2005).
[CrossRef] [PubMed]

Bergström, M.

P. Razifar, H. Engler, G. Blomquist, A. Ringheim, S. Estrada, B. Långström, and M. Bergström, “Principal component analysis with pre-normalization improves the signal-to-noise ratio and image quality in positron emission tomography studies of amyloid deposits in Alzheimer’s disease,” Phys. Med. Biol.54(11), 3595–3612 (2009).
[CrossRef] [PubMed]

Bloch, B. N.

E. Eyal, B. N. Bloch, N. M. Rofsky, E. Furman-Haran, E. M. Genega, R. E. Lenkinski, and H. Degani, “Principal component analysis of dynamic contrast enhanced MRI in human prostate cancer,” Invest. Radiol.45(4), 174–181 (2010).
[CrossRef] [PubMed]

Bloch, S. R.

Blomquist, G.

P. Razifar, H. Engler, G. Blomquist, A. Ringheim, S. Estrada, B. Långström, and M. Bergström, “Principal component analysis with pre-normalization improves the signal-to-noise ratio and image quality in positron emission tomography studies of amyloid deposits in Alzheimer’s disease,” Phys. Med. Biol.54(11), 3595–3612 (2009).
[CrossRef] [PubMed]

Bogdanov, A.

V. Ntziachristos, E. A. Schellenberger, J. Ripoll, D. Yessayan, E. Graves, A. Bogdanov, L. Josephson, and R. Weissleder, “Visualization of antitumor treatment by means of fluorescence molecular tomography with an annexin V-Cy5.5 conjugate,” Proc. Natl. Acad. Sci. U.S.A.101(33), 12294–12299 (2004).
[CrossRef] [PubMed]

Bremer, C.

V. Ntziachristos, C. H. Tung, C. Bremer, and R. Weissleder, “Fluorescence molecular tomography resolves protease activity in vivo,” Nat. Med.8(7), 757–761 (2002).
[CrossRef] [PubMed]

Butler, A. P.

N. G. Anderson, A. P. Butler, N. J. Scott, N. J. Cook, J. S. Butzer, N. Schleich, M. Firsching, R. Grasset, N. de Ruiter, M. Campbell, and P. H. Butler, “Spectroscopic (multi-energy) CT distinguishes iodine and barium contrast material in MICE,” Eur. Radiol.20(9), 2126–2134 (2010).
[CrossRef] [PubMed]

Butler, P. H.

N. G. Anderson, A. P. Butler, N. J. Scott, N. J. Cook, J. S. Butzer, N. Schleich, M. Firsching, R. Grasset, N. de Ruiter, M. Campbell, and P. H. Butler, “Spectroscopic (multi-energy) CT distinguishes iodine and barium contrast material in MICE,” Eur. Radiol.20(9), 2126–2134 (2010).
[CrossRef] [PubMed]

Butzer, J. S.

N. G. Anderson, A. P. Butler, N. J. Scott, N. J. Cook, J. S. Butzer, N. Schleich, M. Firsching, R. Grasset, N. de Ruiter, M. Campbell, and P. H. Butler, “Spectroscopic (multi-energy) CT distinguishes iodine and barium contrast material in MICE,” Eur. Radiol.20(9), 2126–2134 (2010).
[CrossRef] [PubMed]

Cai, J. F.

H. Gao, J. F. Cai, Z. Shen, and H. Zhao, “Robust principal component analysis-based four-dimensional computed tomography,” Phys. Med. Biol.56(11), 3181–3198 (2011).
[CrossRef] [PubMed]

Campbell, M.

N. G. Anderson, A. P. Butler, N. J. Scott, N. J. Cook, J. S. Butzer, N. Schleich, M. Firsching, R. Grasset, N. de Ruiter, M. Campbell, and P. H. Butler, “Spectroscopic (multi-energy) CT distinguishes iodine and barium contrast material in MICE,” Eur. Radiol.20(9), 2126–2134 (2010).
[CrossRef] [PubMed]

Carpenter, C. M.

H. Dehghani, M. E. Eames, P. K. Yalavarthy, S. C. Davis, S. Srinivasan, C. M. Carpenter, B. W. Pogue, and K. D. Paulsen, “Near infrared optical tomography using NIRFAST: Algorithm for numerical model and image reconstruction,” Commun. Numer. Methods Eng.25(6), 711–732 (2009).
[CrossRef] [PubMed]

Chance, B.

X. Intes, V. Ntziachristos, J. P. Culver, A. Yodh, and B. Chance, “Projection access order in algebraic reconstruction technique for diffuse optical tomography,” Phys. Med. Biol.47(1), N1–N10 (2002).
[CrossRef] [PubMed]

Chatziioannou, A. F.

B. Dogdas, D. Stout, A. F. Chatziioannou, and R. M. Leahy, “Digimouse: A 3D whole body mouse atlas from CT and cryosection data,” Phys. Med. Biol.52(3), 577–587 (2007).
[CrossRef] [PubMed]

G. Alexandrakis, F. R. Rannou, and A. F. Chatziioannou, “Effect of optical property estimation accuracy on tomographic bioluminescence imaging: simulation of a combined optical-PET (OPET) system,” Phys. Med. Biol.51(8), 2045–2053 (2006).
[CrossRef] [PubMed]

G. Alexandrakis, F. R. Rannou, and A. F. Chatziioannou, “Tomographic bioluminescence imaging by use of a combined optical-PET (OPET) system: a computer simulation feasibility study,” Phys. Med. Biol.50(17), 4225–4241 (2005).
[CrossRef] [PubMed]

Chaudhari, A. J.

A. J. Chaudhari, S. Ahn, R. Levenson, R. D. Badawi, S. R. Cherry, and R. M. Leahy, “Excitation spectroscopy in multispectral optical fluorescence tomography: methodology, feasibility and computer simulation studies,” Phys. Med. Biol.54(15), 4687–4704 (2009).
[CrossRef] [PubMed]

A. J. Chaudhari, F. Darvas, J. R. Bading, R. A. Moats, P. S. Conti, D. J. Smith, S. R. Cherry, and R. M. Leahy, “Hyperspectral and multispectral bioluminescence optical tomography for small animal imaging,” Phys. Med. Biol.50(23), 5421–5441 (2005).
[CrossRef] [PubMed]

Chen, N.

Cherry, S. R.

A. J. Chaudhari, S. Ahn, R. Levenson, R. D. Badawi, S. R. Cherry, and R. M. Leahy, “Excitation spectroscopy in multispectral optical fluorescence tomography: methodology, feasibility and computer simulation studies,” Phys. Med. Biol.54(15), 4687–4704 (2009).
[CrossRef] [PubMed]

A. J. Chaudhari, F. Darvas, J. R. Bading, R. A. Moats, P. S. Conti, D. J. Smith, S. R. Cherry, and R. M. Leahy, “Hyperspectral and multispectral bioluminescence optical tomography for small animal imaging,” Phys. Med. Biol.50(23), 5421–5441 (2005).
[CrossRef] [PubMed]

Choe, R.

Choi, C.

M. Choi, K. Choi, S. W. Ryu, J. Lee, and C. Choi, “Dynamic fluorescence imaging for multiparametric measurement of tumor vasculature,” J. Biomed. Opt.16(4), 046008 (2011).
[CrossRef] [PubMed]

Choi, K.

M. Choi, K. Choi, S. W. Ryu, J. Lee, and C. Choi, “Dynamic fluorescence imaging for multiparametric measurement of tumor vasculature,” J. Biomed. Opt.16(4), 046008 (2011).
[CrossRef] [PubMed]

Choi, M.

M. Choi, K. Choi, S. W. Ryu, J. Lee, and C. Choi, “Dynamic fluorescence imaging for multiparametric measurement of tumor vasculature,” J. Biomed. Opt.16(4), 046008 (2011).
[CrossRef] [PubMed]

Conti, P. S.

A. J. Chaudhari, F. Darvas, J. R. Bading, R. A. Moats, P. S. Conti, D. J. Smith, S. R. Cherry, and R. M. Leahy, “Hyperspectral and multispectral bioluminescence optical tomography for small animal imaging,” Phys. Med. Biol.50(23), 5421–5441 (2005).
[CrossRef] [PubMed]

Cook, N. J.

N. G. Anderson, A. P. Butler, N. J. Scott, N. J. Cook, J. S. Butzer, N. Schleich, M. Firsching, R. Grasset, N. de Ruiter, M. Campbell, and P. H. Butler, “Spectroscopic (multi-energy) CT distinguishes iodine and barium contrast material in MICE,” Eur. Radiol.20(9), 2126–2134 (2010).
[CrossRef] [PubMed]

Corlu, A.

Culver, J. P.

S. V. Patwardhan, S. R. Bloch, S. A. Achilefu, and J. P. Culver, “Time-dependent whole-body fluorescence tomography of probe bio-distributions in mice,” Opt. Express13(7), 2564–2577 (2005).
[CrossRef] [PubMed]

X. Intes, V. Ntziachristos, J. P. Culver, A. Yodh, and B. Chance, “Projection access order in algebraic reconstruction technique for diffuse optical tomography,” Phys. Med. Biol.47(1), N1–N10 (2002).
[CrossRef] [PubMed]

Darvas, F.

A. J. Chaudhari, F. Darvas, J. R. Bading, R. A. Moats, P. S. Conti, D. J. Smith, S. R. Cherry, and R. M. Leahy, “Hyperspectral and multispectral bioluminescence optical tomography for small animal imaging,” Phys. Med. Biol.50(23), 5421–5441 (2005).
[CrossRef] [PubMed]

Davis, S. C.

H. Dehghani, M. E. Eames, P. K. Yalavarthy, S. C. Davis, S. Srinivasan, C. M. Carpenter, B. W. Pogue, and K. D. Paulsen, “Near infrared optical tomography using NIRFAST: Algorithm for numerical model and image reconstruction,” Commun. Numer. Methods Eng.25(6), 711–732 (2009).
[CrossRef] [PubMed]

de Ruiter, N.

N. G. Anderson, A. P. Butler, N. J. Scott, N. J. Cook, J. S. Butzer, N. Schleich, M. Firsching, R. Grasset, N. de Ruiter, M. Campbell, and P. H. Butler, “Spectroscopic (multi-energy) CT distinguishes iodine and barium contrast material in MICE,” Eur. Radiol.20(9), 2126–2134 (2010).
[CrossRef] [PubMed]

Degani, H.

E. Eyal, B. N. Bloch, N. M. Rofsky, E. Furman-Haran, E. M. Genega, R. E. Lenkinski, and H. Degani, “Principal component analysis of dynamic contrast enhanced MRI in human prostate cancer,” Invest. Radiol.45(4), 174–181 (2010).
[CrossRef] [PubMed]

Dehghani, H.

H. Dehghani, M. E. Eames, P. K. Yalavarthy, S. C. Davis, S. Srinivasan, C. M. Carpenter, B. W. Pogue, and K. D. Paulsen, “Near infrared optical tomography using NIRFAST: Algorithm for numerical model and image reconstruction,” Commun. Numer. Methods Eng.25(6), 711–732 (2009).
[CrossRef] [PubMed]

Dogdas, B.

B. Dogdas, D. Stout, A. F. Chatziioannou, and R. M. Leahy, “Digimouse: A 3D whole body mouse atlas from CT and cryosection data,” Phys. Med. Biol.52(3), 577–587 (2007).
[CrossRef] [PubMed]

Doose, S.

X. Michalet, F. F. Pinaud, L. A. Bentolila, J. M. Tsay, S. Doose, J. J. Li, G. Sundaresan, A. M. Wu, S. S. Gambhir, and S. Weiss, “Quantum dots for live cells, in vivo imaging, and diagnostics,” Science307(5709), 538–544 (2005).
[CrossRef] [PubMed]

Durduran, T.

Eames, M. E.

H. Dehghani, M. E. Eames, P. K. Yalavarthy, S. C. Davis, S. Srinivasan, C. M. Carpenter, B. W. Pogue, and K. D. Paulsen, “Near infrared optical tomography using NIRFAST: Algorithm for numerical model and image reconstruction,” Commun. Numer. Methods Eng.25(6), 711–732 (2009).
[CrossRef] [PubMed]

Engbrant, F.

P. E. Svensson, J. Olsson, F. Engbrant, E. Bengtsson, and P. Razifar, “Characterization and Reduction of Noise in Dynamic PET Data Using Masked Volumewise Principal Component Analysis,” J. Nucl. Med. Technol.39(1), 27–34 (2011).
[CrossRef] [PubMed]

Engler, H.

P. Razifar, H. Engler, G. Blomquist, A. Ringheim, S. Estrada, B. Långström, and M. Bergström, “Principal component analysis with pre-normalization improves the signal-to-noise ratio and image quality in positron emission tomography studies of amyloid deposits in Alzheimer’s disease,” Phys. Med. Biol.54(11), 3595–3612 (2009).
[CrossRef] [PubMed]

Estrada, S.

P. Razifar, H. Engler, G. Blomquist, A. Ringheim, S. Estrada, B. Långström, and M. Bergström, “Principal component analysis with pre-normalization improves the signal-to-noise ratio and image quality in positron emission tomography studies of amyloid deposits in Alzheimer’s disease,” Phys. Med. Biol.54(11), 3595–3612 (2009).
[CrossRef] [PubMed]

Eyal, E.

E. Eyal, B. N. Bloch, N. M. Rofsky, E. Furman-Haran, E. M. Genega, R. E. Lenkinski, and H. Degani, “Principal component analysis of dynamic contrast enhanced MRI in human prostate cancer,” Invest. Radiol.45(4), 174–181 (2010).
[CrossRef] [PubMed]

Firsching, M.

N. G. Anderson, A. P. Butler, N. J. Scott, N. J. Cook, J. S. Butzer, N. Schleich, M. Firsching, R. Grasset, N. de Ruiter, M. Campbell, and P. H. Butler, “Spectroscopic (multi-energy) CT distinguishes iodine and barium contrast material in MICE,” Eur. Radiol.20(9), 2126–2134 (2010).
[CrossRef] [PubMed]

Foschum, F.

Furman-Haran, E.

E. Eyal, B. N. Bloch, N. M. Rofsky, E. Furman-Haran, E. M. Genega, R. E. Lenkinski, and H. Degani, “Principal component analysis of dynamic contrast enhanced MRI in human prostate cancer,” Invest. Radiol.45(4), 174–181 (2010).
[CrossRef] [PubMed]

Gambhir, S. S.

X. Michalet, F. F. Pinaud, L. A. Bentolila, J. M. Tsay, S. Doose, J. J. Li, G. Sundaresan, A. M. Wu, S. S. Gambhir, and S. Weiss, “Quantum dots for live cells, in vivo imaging, and diagnostics,” Science307(5709), 538–544 (2005).
[CrossRef] [PubMed]

Gao, H.

H. Gao, J. F. Cai, Z. Shen, and H. Zhao, “Robust principal component analysis-based four-dimensional computed tomography,” Phys. Med. Biol.56(11), 3181–3198 (2011).
[CrossRef] [PubMed]

Genega, E. M.

E. Eyal, B. N. Bloch, N. M. Rofsky, E. Furman-Haran, E. M. Genega, R. E. Lenkinski, and H. Degani, “Principal component analysis of dynamic contrast enhanced MRI in human prostate cancer,” Invest. Radiol.45(4), 174–181 (2010).
[CrossRef] [PubMed]

Grasset, R.

N. G. Anderson, A. P. Butler, N. J. Scott, N. J. Cook, J. S. Butzer, N. Schleich, M. Firsching, R. Grasset, N. de Ruiter, M. Campbell, and P. H. Butler, “Spectroscopic (multi-energy) CT distinguishes iodine and barium contrast material in MICE,” Eur. Radiol.20(9), 2126–2134 (2010).
[CrossRef] [PubMed]

Graves, E.

V. Ntziachristos, E. A. Schellenberger, J. Ripoll, D. Yessayan, E. Graves, A. Bogdanov, L. Josephson, and R. Weissleder, “Visualization of antitumor treatment by means of fluorescence molecular tomography with an annexin V-Cy5.5 conjugate,” Proc. Natl. Acad. Sci. U.S.A.101(33), 12294–12299 (2004).
[CrossRef] [PubMed]

Graves, E. E.

E. E. Graves, J. Ripoll, R. Weissleder, and V. Ntziachristos, “A submillimeter resolution fluorescence molecular imaging system for small animal imaging,” Med. Phys.30(5), 901–911 (2003).
[CrossRef] [PubMed]

Grimm, J.

X. Montet, V. Ntziachristos, J. Grimm, and R. Weissleder, “Tomographic fluorescence mapping of tumor targets,” Cancer Res.65(14), 6330–6336 (2005).
[CrossRef] [PubMed]

Gulsen, G.

Hillman, E. M. C.

E. M. C. Hillman and A. Moore, “All-optical anatomical co-registration for molecular imaging of small animals using dynamic contrast,” Nat. Photonics1(9), 526–530 (2007).
[CrossRef] [PubMed]

Hu, G.

G. Hu, J. Yao, and J. Bai, “Full-angle optical imaging of near-infrared fluorescent probes implanted in small animals,” Prog. Nat. Sci.18(6), 707–711 (2008).
[CrossRef]

Intes, X.

X. Intes, V. Ntziachristos, J. P. Culver, A. Yodh, and B. Chance, “Projection access order in algebraic reconstruction technique for diffuse optical tomography,” Phys. Med. Biol.47(1), N1–N10 (2002).
[CrossRef] [PubMed]

Iwanczyk, J. S.

Josephson, L.

V. Ntziachristos, E. A. Schellenberger, J. Ripoll, D. Yessayan, E. Graves, A. Bogdanov, L. Josephson, and R. Weissleder, “Visualization of antitumor treatment by means of fluorescence molecular tomography with an annexin V-Cy5.5 conjugate,” Proc. Natl. Acad. Sci. U.S.A.101(33), 12294–12299 (2004).
[CrossRef] [PubMed]

Joshi, A.

Kienle, A.

Klose, A. D.

A. D. Klose and T. Pöschinger, “Excitation-resolved fluorescence tomography with simplified spherical harmonics equations,” Phys. Med. Biol.56(5), 1443–1469 (2011).
[CrossRef] [PubMed]

A. D. Klose, “Hyperspectral excitation-resolved fluorescence tomography of quantum dots,” Opt. Lett.34(16), 2477–2479 (2009).
[CrossRef] [PubMed]

Kues, H. A.

R. C. Benson and H. A. Kues, “Fluorescence properties of indocyanine green as related to angiography,” Phys. Med. Biol.23(1), 159–163 (1978).
[CrossRef] [PubMed]

Kwant, G.

M. L. Landsman, G. Kwant, G. A. Mook, and W. G. Zijlstra, “Light-absorbing properties, stability, and spectral stabilization of indocyanine green,” J. Appl. Physiol.40(4), 575–583 (1976).
[PubMed]

Landsman, M. L.

M. L. Landsman, G. Kwant, G. A. Mook, and W. G. Zijlstra, “Light-absorbing properties, stability, and spectral stabilization of indocyanine green,” J. Appl. Physiol.40(4), 575–583 (1976).
[PubMed]

Långström, B.

P. Razifar, H. Engler, G. Blomquist, A. Ringheim, S. Estrada, B. Långström, and M. Bergström, “Principal component analysis with pre-normalization improves the signal-to-noise ratio and image quality in positron emission tomography studies of amyloid deposits in Alzheimer’s disease,” Phys. Med. Biol.54(11), 3595–3612 (2009).
[CrossRef] [PubMed]

Leahy, R. M.

A. J. Chaudhari, S. Ahn, R. Levenson, R. D. Badawi, S. R. Cherry, and R. M. Leahy, “Excitation spectroscopy in multispectral optical fluorescence tomography: methodology, feasibility and computer simulation studies,” Phys. Med. Biol.54(15), 4687–4704 (2009).
[CrossRef] [PubMed]

B. Dogdas, D. Stout, A. F. Chatziioannou, and R. M. Leahy, “Digimouse: A 3D whole body mouse atlas from CT and cryosection data,” Phys. Med. Biol.52(3), 577–587 (2007).
[CrossRef] [PubMed]

A. J. Chaudhari, F. Darvas, J. R. Bading, R. A. Moats, P. S. Conti, D. J. Smith, S. R. Cherry, and R. M. Leahy, “Hyperspectral and multispectral bioluminescence optical tomography for small animal imaging,” Phys. Med. Biol.50(23), 5421–5441 (2005).
[CrossRef] [PubMed]

Lee, J.

M. Choi, K. Choi, S. W. Ryu, J. Lee, and C. Choi, “Dynamic fluorescence imaging for multiparametric measurement of tumor vasculature,” J. Biomed. Opt.16(4), 046008 (2011).
[CrossRef] [PubMed]

Lenkinski, R. E.

E. Eyal, B. N. Bloch, N. M. Rofsky, E. Furman-Haran, E. M. Genega, R. E. Lenkinski, and H. Degani, “Principal component analysis of dynamic contrast enhanced MRI in human prostate cancer,” Invest. Radiol.45(4), 174–181 (2010).
[CrossRef] [PubMed]

Levenson, R.

A. J. Chaudhari, S. Ahn, R. Levenson, R. D. Badawi, S. R. Cherry, and R. M. Leahy, “Excitation spectroscopy in multispectral optical fluorescence tomography: methodology, feasibility and computer simulation studies,” Phys. Med. Biol.54(15), 4687–4704 (2009).
[CrossRef] [PubMed]

Li, J. J.

X. Michalet, F. F. Pinaud, L. A. Bentolila, J. M. Tsay, S. Doose, J. J. Li, G. Sundaresan, A. M. Wu, S. S. Gambhir, and S. Weiss, “Quantum dots for live cells, in vivo imaging, and diagnostics,” Science307(5709), 538–544 (2005).
[CrossRef] [PubMed]

Lin, Y. T.

Liu, F.

X. Liu, F. Liu, Y. Zhang, and J. Bai, “Unmixing dynamic fluorescence diffuse optical tomography images with independent component analysis,” IEEE Trans. Med. Imaging30(9), 1591–1604 (2011).
[CrossRef] [PubMed]

X. Liu, D. F. Wang, F. Liu, and J. Bai, “Principal component analysis of dynamic fluorescence diffuse optical tomography images,” Opt. Express18(6), 6300–6314 (2010).
[CrossRef] [PubMed]

F. Liu, X. Liu, D. Wang, B. Zhang, and J. Bai, “A parallel excitation based fluorescence molecular tomography system for whole-body simultaneous imaging of small animals,” Ann. Biomed. Eng.38(11), 3440–3448 (2010).
[CrossRef] [PubMed]

Liu, X.

X. Liu, F. Liu, Y. Zhang, and J. Bai, “Unmixing dynamic fluorescence diffuse optical tomography images with independent component analysis,” IEEE Trans. Med. Imaging30(9), 1591–1604 (2011).
[CrossRef] [PubMed]

F. Liu, X. Liu, D. Wang, B. Zhang, and J. Bai, “A parallel excitation based fluorescence molecular tomography system for whole-body simultaneous imaging of small animals,” Ann. Biomed. Eng.38(11), 3440–3448 (2010).
[CrossRef] [PubMed]

X. Liu, D. F. Wang, F. Liu, and J. Bai, “Principal component analysis of dynamic fluorescence diffuse optical tomography images,” Opt. Express18(6), 6300–6314 (2010).
[CrossRef] [PubMed]

Michalet, X.

X. Michalet, F. F. Pinaud, L. A. Bentolila, J. M. Tsay, S. Doose, J. J. Li, G. Sundaresan, A. M. Wu, S. S. Gambhir, and S. Weiss, “Quantum dots for live cells, in vivo imaging, and diagnostics,” Science307(5709), 538–544 (2005).
[CrossRef] [PubMed]

Michels, R.

Moats, R. A.

A. J. Chaudhari, F. Darvas, J. R. Bading, R. A. Moats, P. S. Conti, D. J. Smith, S. R. Cherry, and R. M. Leahy, “Hyperspectral and multispectral bioluminescence optical tomography for small animal imaging,” Phys. Med. Biol.50(23), 5421–5441 (2005).
[CrossRef] [PubMed]

Montet, X.

X. Montet, V. Ntziachristos, J. Grimm, and R. Weissleder, “Tomographic fluorescence mapping of tumor targets,” Cancer Res.65(14), 6330–6336 (2005).
[CrossRef] [PubMed]

Mook, G. A.

M. L. Landsman, G. Kwant, G. A. Mook, and W. G. Zijlstra, “Light-absorbing properties, stability, and spectral stabilization of indocyanine green,” J. Appl. Physiol.40(4), 575–583 (1976).
[PubMed]

Moore, A.

E. M. C. Hillman and A. Moore, “All-optical anatomical co-registration for molecular imaging of small animals using dynamic contrast,” Nat. Photonics1(9), 526–530 (2007).
[CrossRef] [PubMed]

Nalcioglu, O.

Ntziachristos, V.

A. Ale, R. B. Schulz, A. Sarantopoulos, and V. Ntziachristos, “Imaging performance of a hybrid x-ray computed tomography-fluorescence molecular tomography system using priors,” Med. Phys.37(5), 1976–1986 (2010).
[CrossRef] [PubMed]

A. Soubret, J. Ripoll, and V. Ntziachristos, “Accuracy of fluorescent tomography in the presence of heterogeneities: study of the normalized Born ratio,” IEEE Trans. Med. Imaging24(10), 1377–1386 (2005).
[CrossRef] [PubMed]

X. Montet, V. Ntziachristos, J. Grimm, and R. Weissleder, “Tomographic fluorescence mapping of tumor targets,” Cancer Res.65(14), 6330–6336 (2005).
[CrossRef] [PubMed]

V. Ntziachristos, E. A. Schellenberger, J. Ripoll, D. Yessayan, E. Graves, A. Bogdanov, L. Josephson, and R. Weissleder, “Visualization of antitumor treatment by means of fluorescence molecular tomography with an annexin V-Cy5.5 conjugate,” Proc. Natl. Acad. Sci. U.S.A.101(33), 12294–12299 (2004).
[CrossRef] [PubMed]

E. E. Graves, J. Ripoll, R. Weissleder, and V. Ntziachristos, “A submillimeter resolution fluorescence molecular imaging system for small animal imaging,” Med. Phys.30(5), 901–911 (2003).
[CrossRef] [PubMed]

R. Weissleder and V. Ntziachristos, “Shedding light onto live molecular targets,” Nat. Med.9(1), 123–128 (2003).
[CrossRef] [PubMed]

V. Ntziachristos and R. Weissleder, “Charge-coupled-device based scanner for tomography of fluorescent near-infrared probes in turbid media,” Med. Phys.29(5), 803–809 (2002).
[CrossRef] [PubMed]

V. Ntziachristos, C. H. Tung, C. Bremer, and R. Weissleder, “Fluorescence molecular tomography resolves protease activity in vivo,” Nat. Med.8(7), 757–761 (2002).
[CrossRef] [PubMed]

X. Intes, V. Ntziachristos, J. P. Culver, A. Yodh, and B. Chance, “Projection access order in algebraic reconstruction technique for diffuse optical tomography,” Phys. Med. Biol.47(1), N1–N10 (2002).
[CrossRef] [PubMed]

Olsson, J.

P. E. Svensson, J. Olsson, F. Engbrant, E. Bengtsson, and P. Razifar, “Characterization and Reduction of Noise in Dynamic PET Data Using Masked Volumewise Principal Component Analysis,” J. Nucl. Med. Technol.39(1), 27–34 (2011).
[CrossRef] [PubMed]

Patwardhan, S. V.

Paulsen, K. D.

H. Dehghani, M. E. Eames, P. K. Yalavarthy, S. C. Davis, S. Srinivasan, C. M. Carpenter, B. W. Pogue, and K. D. Paulsen, “Near infrared optical tomography using NIRFAST: Algorithm for numerical model and image reconstruction,” Commun. Numer. Methods Eng.25(6), 711–732 (2009).
[CrossRef] [PubMed]

Pinaud, F. F.

X. Michalet, F. F. Pinaud, L. A. Bentolila, J. M. Tsay, S. Doose, J. J. Li, G. Sundaresan, A. M. Wu, S. S. Gambhir, and S. Weiss, “Quantum dots for live cells, in vivo imaging, and diagnostics,” Science307(5709), 538–544 (2005).
[CrossRef] [PubMed]

Pogue, B. W.

H. Dehghani, M. E. Eames, P. K. Yalavarthy, S. C. Davis, S. Srinivasan, C. M. Carpenter, B. W. Pogue, and K. D. Paulsen, “Near infrared optical tomography using NIRFAST: Algorithm for numerical model and image reconstruction,” Commun. Numer. Methods Eng.25(6), 711–732 (2009).
[CrossRef] [PubMed]

Pöschinger, T.

A. D. Klose and T. Pöschinger, “Excitation-resolved fluorescence tomography with simplified spherical harmonics equations,” Phys. Med. Biol.56(5), 1443–1469 (2011).
[CrossRef] [PubMed]

Rannou, F. R.

G. Alexandrakis, F. R. Rannou, and A. F. Chatziioannou, “Effect of optical property estimation accuracy on tomographic bioluminescence imaging: simulation of a combined optical-PET (OPET) system,” Phys. Med. Biol.51(8), 2045–2053 (2006).
[CrossRef] [PubMed]

G. Alexandrakis, F. R. Rannou, and A. F. Chatziioannou, “Tomographic bioluminescence imaging by use of a combined optical-PET (OPET) system: a computer simulation feasibility study,” Phys. Med. Biol.50(17), 4225–4241 (2005).
[CrossRef] [PubMed]

Razifar, P.

P. E. Svensson, J. Olsson, F. Engbrant, E. Bengtsson, and P. Razifar, “Characterization and Reduction of Noise in Dynamic PET Data Using Masked Volumewise Principal Component Analysis,” J. Nucl. Med. Technol.39(1), 27–34 (2011).
[CrossRef] [PubMed]

P. Razifar, H. Engler, G. Blomquist, A. Ringheim, S. Estrada, B. Långström, and M. Bergström, “Principal component analysis with pre-normalization improves the signal-to-noise ratio and image quality in positron emission tomography studies of amyloid deposits in Alzheimer’s disease,” Phys. Med. Biol.54(11), 3595–3612 (2009).
[CrossRef] [PubMed]

Ringheim, A.

P. Razifar, H. Engler, G. Blomquist, A. Ringheim, S. Estrada, B. Långström, and M. Bergström, “Principal component analysis with pre-normalization improves the signal-to-noise ratio and image quality in positron emission tomography studies of amyloid deposits in Alzheimer’s disease,” Phys. Med. Biol.54(11), 3595–3612 (2009).
[CrossRef] [PubMed]

Ripoll, J.

A. Soubret, J. Ripoll, and V. Ntziachristos, “Accuracy of fluorescent tomography in the presence of heterogeneities: study of the normalized Born ratio,” IEEE Trans. Med. Imaging24(10), 1377–1386 (2005).
[CrossRef] [PubMed]

V. Ntziachristos, E. A. Schellenberger, J. Ripoll, D. Yessayan, E. Graves, A. Bogdanov, L. Josephson, and R. Weissleder, “Visualization of antitumor treatment by means of fluorescence molecular tomography with an annexin V-Cy5.5 conjugate,” Proc. Natl. Acad. Sci. U.S.A.101(33), 12294–12299 (2004).
[CrossRef] [PubMed]

E. E. Graves, J. Ripoll, R. Weissleder, and V. Ntziachristos, “A submillimeter resolution fluorescence molecular imaging system for small animal imaging,” Med. Phys.30(5), 901–911 (2003).
[CrossRef] [PubMed]

Roeck, W.

Rofsky, N. M.

E. Eyal, B. N. Bloch, N. M. Rofsky, E. Furman-Haran, E. M. Genega, R. E. Lenkinski, and H. Degani, “Principal component analysis of dynamic contrast enhanced MRI in human prostate cancer,” Invest. Radiol.45(4), 174–181 (2010).
[CrossRef] [PubMed]

Rosen, M. A.

Ryu, S. W.

M. Choi, K. Choi, S. W. Ryu, J. Lee, and C. Choi, “Dynamic fluorescence imaging for multiparametric measurement of tumor vasculature,” J. Biomed. Opt.16(4), 046008 (2011).
[CrossRef] [PubMed]

Sadoqi, M.

V. Saxena, M. Sadoqi, and J. Shao, “Polymeric nanoparticulate delivery system for Indocyanine green: biodistribution in healthy mice,” Int. J. Pharm.308(1-2), 200–204 (2006).
[CrossRef] [PubMed]

Sarantopoulos, A.

A. Ale, R. B. Schulz, A. Sarantopoulos, and V. Ntziachristos, “Imaging performance of a hybrid x-ray computed tomography-fluorescence molecular tomography system using priors,” Med. Phys.37(5), 1976–1986 (2010).
[CrossRef] [PubMed]

Saxena, V.

V. Saxena, M. Sadoqi, and J. Shao, “Polymeric nanoparticulate delivery system for Indocyanine green: biodistribution in healthy mice,” Int. J. Pharm.308(1-2), 200–204 (2006).
[CrossRef] [PubMed]

Schellenberger, E. A.

V. Ntziachristos, E. A. Schellenberger, J. Ripoll, D. Yessayan, E. Graves, A. Bogdanov, L. Josephson, and R. Weissleder, “Visualization of antitumor treatment by means of fluorescence molecular tomography with an annexin V-Cy5.5 conjugate,” Proc. Natl. Acad. Sci. U.S.A.101(33), 12294–12299 (2004).
[CrossRef] [PubMed]

Schleich, N.

N. G. Anderson, A. P. Butler, N. J. Scott, N. J. Cook, J. S. Butzer, N. Schleich, M. Firsching, R. Grasset, N. de Ruiter, M. Campbell, and P. H. Butler, “Spectroscopic (multi-energy) CT distinguishes iodine and barium contrast material in MICE,” Eur. Radiol.20(9), 2126–2134 (2010).
[CrossRef] [PubMed]

Schnall, M. D.

Schulz, R. B.

A. Ale, R. B. Schulz, A. Sarantopoulos, and V. Ntziachristos, “Imaging performance of a hybrid x-ray computed tomography-fluorescence molecular tomography system using priors,” Med. Phys.37(5), 1976–1986 (2010).
[CrossRef] [PubMed]

Schweiger, M.

Scott, N. J.

N. G. Anderson, A. P. Butler, N. J. Scott, N. J. Cook, J. S. Butzer, N. Schleich, M. Firsching, R. Grasset, N. de Ruiter, M. Campbell, and P. H. Butler, “Spectroscopic (multi-energy) CT distinguishes iodine and barium contrast material in MICE,” Eur. Radiol.20(9), 2126–2134 (2010).
[CrossRef] [PubMed]

Sekelj, P.

N. M. Anderson and P. Sekelj, “Studies on the determination of dye concentration in nonhemolyzed blood,” J. Lab. Clin. Med.72(4), 705–713 (1968).
[PubMed]

Sevick-Muraca, E. M.

Shao, J.

V. Saxena, M. Sadoqi, and J. Shao, “Polymeric nanoparticulate delivery system for Indocyanine green: biodistribution in healthy mice,” Int. J. Pharm.308(1-2), 200–204 (2006).
[CrossRef] [PubMed]

Shen, Z.

H. Gao, J. F. Cai, Z. Shen, and H. Zhao, “Robust principal component analysis-based four-dimensional computed tomography,” Phys. Med. Biol.56(11), 3181–3198 (2011).
[CrossRef] [PubMed]

Shephard, R. J.

R. Simmons and R. J. Shephard, “Does indocyanine green obey Beer’s law?” J. Appl. Physiol.30(4), 502–507 (1971).
[PubMed]

Simmons, R.

R. Simmons and R. J. Shephard, “Does indocyanine green obey Beer’s law?” J. Appl. Physiol.30(4), 502–507 (1971).
[PubMed]

Smith, D. J.

A. J. Chaudhari, F. Darvas, J. R. Bading, R. A. Moats, P. S. Conti, D. J. Smith, S. R. Cherry, and R. M. Leahy, “Hyperspectral and multispectral bioluminescence optical tomography for small animal imaging,” Phys. Med. Biol.50(23), 5421–5441 (2005).
[CrossRef] [PubMed]

Song, X.

Soubret, A.

A. Soubret, J. Ripoll, and V. Ntziachristos, “Accuracy of fluorescent tomography in the presence of heterogeneities: study of the normalized Born ratio,” IEEE Trans. Med. Imaging24(10), 1377–1386 (2005).
[CrossRef] [PubMed]

Srinivasan, S.

H. Dehghani, M. E. Eames, P. K. Yalavarthy, S. C. Davis, S. Srinivasan, C. M. Carpenter, B. W. Pogue, and K. D. Paulsen, “Near infrared optical tomography using NIRFAST: Algorithm for numerical model and image reconstruction,” Commun. Numer. Methods Eng.25(6), 711–732 (2009).
[CrossRef] [PubMed]

Stout, D.

B. Dogdas, D. Stout, A. F. Chatziioannou, and R. M. Leahy, “Digimouse: A 3D whole body mouse atlas from CT and cryosection data,” Phys. Med. Biol.52(3), 577–587 (2007).
[CrossRef] [PubMed]

Sundaresan, G.

X. Michalet, F. F. Pinaud, L. A. Bentolila, J. M. Tsay, S. Doose, J. J. Li, G. Sundaresan, A. M. Wu, S. S. Gambhir, and S. Weiss, “Quantum dots for live cells, in vivo imaging, and diagnostics,” Science307(5709), 538–544 (2005).
[CrossRef] [PubMed]

Svensson, P. E.

P. E. Svensson, J. Olsson, F. Engbrant, E. Bengtsson, and P. Razifar, “Characterization and Reduction of Noise in Dynamic PET Data Using Masked Volumewise Principal Component Analysis,” J. Nucl. Med. Technol.39(1), 27–34 (2011).
[CrossRef] [PubMed]

Tsay, J. M.

X. Michalet, F. F. Pinaud, L. A. Bentolila, J. M. Tsay, S. Doose, J. J. Li, G. Sundaresan, A. M. Wu, S. S. Gambhir, and S. Weiss, “Quantum dots for live cells, in vivo imaging, and diagnostics,” Science307(5709), 538–544 (2005).
[CrossRef] [PubMed]

Tung, C. H.

V. Ntziachristos, C. H. Tung, C. Bremer, and R. Weissleder, “Fluorescence molecular tomography resolves protease activity in vivo,” Nat. Med.8(7), 757–761 (2002).
[CrossRef] [PubMed]

Wang, D.

F. Liu, X. Liu, D. Wang, B. Zhang, and J. Bai, “A parallel excitation based fluorescence molecular tomography system for whole-body simultaneous imaging of small animals,” Ann. Biomed. Eng.38(11), 3440–3448 (2010).
[CrossRef] [PubMed]

X. Song, D. Wang, N. Chen, J. Bai, and H. Wang, “Reconstruction for free-space fluorescence tomography using a novel hybrid adaptive finite element algorithm,” Opt. Express15(26), 18300–18317 (2007).
[CrossRef] [PubMed]

Wang, D. F.

Wang, H.

Weiss, S.

X. Michalet, F. F. Pinaud, L. A. Bentolila, J. M. Tsay, S. Doose, J. J. Li, G. Sundaresan, A. M. Wu, S. S. Gambhir, and S. Weiss, “Quantum dots for live cells, in vivo imaging, and diagnostics,” Science307(5709), 538–544 (2005).
[CrossRef] [PubMed]

Weissleder, R.

X. Montet, V. Ntziachristos, J. Grimm, and R. Weissleder, “Tomographic fluorescence mapping of tumor targets,” Cancer Res.65(14), 6330–6336 (2005).
[CrossRef] [PubMed]

V. Ntziachristos, E. A. Schellenberger, J. Ripoll, D. Yessayan, E. Graves, A. Bogdanov, L. Josephson, and R. Weissleder, “Visualization of antitumor treatment by means of fluorescence molecular tomography with an annexin V-Cy5.5 conjugate,” Proc. Natl. Acad. Sci. U.S.A.101(33), 12294–12299 (2004).
[CrossRef] [PubMed]

E. E. Graves, J. Ripoll, R. Weissleder, and V. Ntziachristos, “A submillimeter resolution fluorescence molecular imaging system for small animal imaging,” Med. Phys.30(5), 901–911 (2003).
[CrossRef] [PubMed]

R. Weissleder and V. Ntziachristos, “Shedding light onto live molecular targets,” Nat. Med.9(1), 123–128 (2003).
[CrossRef] [PubMed]

V. Ntziachristos and R. Weissleder, “Charge-coupled-device based scanner for tomography of fluorescent near-infrared probes in turbid media,” Med. Phys.29(5), 803–809 (2002).
[CrossRef] [PubMed]

V. Ntziachristos, C. H. Tung, C. Bremer, and R. Weissleder, “Fluorescence molecular tomography resolves protease activity in vivo,” Nat. Med.8(7), 757–761 (2002).
[CrossRef] [PubMed]

Williams, L. J.

H. Abdi and L. J. Williams, “Principal component analysis,” Wires. Clim. Change.2(4), 433–459 (2010).

Wu, A. M.

X. Michalet, F. F. Pinaud, L. A. Bentolila, J. M. Tsay, S. Doose, J. J. Li, G. Sundaresan, A. M. Wu, S. S. Gambhir, and S. Weiss, “Quantum dots for live cells, in vivo imaging, and diagnostics,” Science307(5709), 538–544 (2005).
[CrossRef] [PubMed]

Yalavarthy, P. K.

H. Dehghani, M. E. Eames, P. K. Yalavarthy, S. C. Davis, S. Srinivasan, C. M. Carpenter, B. W. Pogue, and K. D. Paulsen, “Near infrared optical tomography using NIRFAST: Algorithm for numerical model and image reconstruction,” Commun. Numer. Methods Eng.25(6), 711–732 (2009).
[CrossRef] [PubMed]

Yao, J.

G. Hu, J. Yao, and J. Bai, “Full-angle optical imaging of near-infrared fluorescent probes implanted in small animals,” Prog. Nat. Sci.18(6), 707–711 (2008).
[CrossRef]

Yessayan, D.

V. Ntziachristos, E. A. Schellenberger, J. Ripoll, D. Yessayan, E. Graves, A. Bogdanov, L. Josephson, and R. Weissleder, “Visualization of antitumor treatment by means of fluorescence molecular tomography with an annexin V-Cy5.5 conjugate,” Proc. Natl. Acad. Sci. U.S.A.101(33), 12294–12299 (2004).
[CrossRef] [PubMed]

Yodh, A.

X. Intes, V. Ntziachristos, J. P. Culver, A. Yodh, and B. Chance, “Projection access order in algebraic reconstruction technique for diffuse optical tomography,” Phys. Med. Biol.47(1), N1–N10 (2002).
[CrossRef] [PubMed]

Yodh, A. G.

Zhang, B.

F. Liu, X. Liu, D. Wang, B. Zhang, and J. Bai, “A parallel excitation based fluorescence molecular tomography system for whole-body simultaneous imaging of small animals,” Ann. Biomed. Eng.38(11), 3440–3448 (2010).
[CrossRef] [PubMed]

Zhang, Y.

X. Liu, F. Liu, Y. Zhang, and J. Bai, “Unmixing dynamic fluorescence diffuse optical tomography images with independent component analysis,” IEEE Trans. Med. Imaging30(9), 1591–1604 (2011).
[CrossRef] [PubMed]

Zhao, H.

H. Gao, J. F. Cai, Z. Shen, and H. Zhao, “Robust principal component analysis-based four-dimensional computed tomography,” Phys. Med. Biol.56(11), 3181–3198 (2011).
[CrossRef] [PubMed]

Zijlstra, W. G.

M. L. Landsman, G. Kwant, G. A. Mook, and W. G. Zijlstra, “Light-absorbing properties, stability, and spectral stabilization of indocyanine green,” J. Appl. Physiol.40(4), 575–583 (1976).
[PubMed]

Ann. Biomed. Eng. (1)

F. Liu, X. Liu, D. Wang, B. Zhang, and J. Bai, “A parallel excitation based fluorescence molecular tomography system for whole-body simultaneous imaging of small animals,” Ann. Biomed. Eng.38(11), 3440–3448 (2010).
[CrossRef] [PubMed]

Cancer Res. (1)

X. Montet, V. Ntziachristos, J. Grimm, and R. Weissleder, “Tomographic fluorescence mapping of tumor targets,” Cancer Res.65(14), 6330–6336 (2005).
[CrossRef] [PubMed]

Commun. Numer. Methods Eng. (1)

H. Dehghani, M. E. Eames, P. K. Yalavarthy, S. C. Davis, S. Srinivasan, C. M. Carpenter, B. W. Pogue, and K. D. Paulsen, “Near infrared optical tomography using NIRFAST: Algorithm for numerical model and image reconstruction,” Commun. Numer. Methods Eng.25(6), 711–732 (2009).
[CrossRef] [PubMed]

Eur. Radiol. (1)

N. G. Anderson, A. P. Butler, N. J. Scott, N. J. Cook, J. S. Butzer, N. Schleich, M. Firsching, R. Grasset, N. de Ruiter, M. Campbell, and P. H. Butler, “Spectroscopic (multi-energy) CT distinguishes iodine and barium contrast material in MICE,” Eur. Radiol.20(9), 2126–2134 (2010).
[CrossRef] [PubMed]

IEEE Trans. Med. Imaging (2)

A. Soubret, J. Ripoll, and V. Ntziachristos, “Accuracy of fluorescent tomography in the presence of heterogeneities: study of the normalized Born ratio,” IEEE Trans. Med. Imaging24(10), 1377–1386 (2005).
[CrossRef] [PubMed]

X. Liu, F. Liu, Y. Zhang, and J. Bai, “Unmixing dynamic fluorescence diffuse optical tomography images with independent component analysis,” IEEE Trans. Med. Imaging30(9), 1591–1604 (2011).
[CrossRef] [PubMed]

Int. J. Pharm. (1)

V. Saxena, M. Sadoqi, and J. Shao, “Polymeric nanoparticulate delivery system for Indocyanine green: biodistribution in healthy mice,” Int. J. Pharm.308(1-2), 200–204 (2006).
[CrossRef] [PubMed]

Inverse Probl. (1)

S. R. Arridge, “Optical tomography in medical imaging,” Inverse Probl.15(2), R41–R93 (1999).
[CrossRef]

Invest. Radiol. (1)

E. Eyal, B. N. Bloch, N. M. Rofsky, E. Furman-Haran, E. M. Genega, R. E. Lenkinski, and H. Degani, “Principal component analysis of dynamic contrast enhanced MRI in human prostate cancer,” Invest. Radiol.45(4), 174–181 (2010).
[CrossRef] [PubMed]

J. Appl. Physiol. (2)

R. Simmons and R. J. Shephard, “Does indocyanine green obey Beer’s law?” J. Appl. Physiol.30(4), 502–507 (1971).
[PubMed]

M. L. Landsman, G. Kwant, G. A. Mook, and W. G. Zijlstra, “Light-absorbing properties, stability, and spectral stabilization of indocyanine green,” J. Appl. Physiol.40(4), 575–583 (1976).
[PubMed]

J. Biomed. Opt. (1)

M. Choi, K. Choi, S. W. Ryu, J. Lee, and C. Choi, “Dynamic fluorescence imaging for multiparametric measurement of tumor vasculature,” J. Biomed. Opt.16(4), 046008 (2011).
[CrossRef] [PubMed]

J. Lab. Clin. Med. (1)

N. M. Anderson and P. Sekelj, “Studies on the determination of dye concentration in nonhemolyzed blood,” J. Lab. Clin. Med.72(4), 705–713 (1968).
[PubMed]

J. Nucl. Med. Technol. (1)

P. E. Svensson, J. Olsson, F. Engbrant, E. Bengtsson, and P. Razifar, “Characterization and Reduction of Noise in Dynamic PET Data Using Masked Volumewise Principal Component Analysis,” J. Nucl. Med. Technol.39(1), 27–34 (2011).
[CrossRef] [PubMed]

Med. Phys. (3)

V. Ntziachristos and R. Weissleder, “Charge-coupled-device based scanner for tomography of fluorescent near-infrared probes in turbid media,” Med. Phys.29(5), 803–809 (2002).
[CrossRef] [PubMed]

A. Ale, R. B. Schulz, A. Sarantopoulos, and V. Ntziachristos, “Imaging performance of a hybrid x-ray computed tomography-fluorescence molecular tomography system using priors,” Med. Phys.37(5), 1976–1986 (2010).
[CrossRef] [PubMed]

E. E. Graves, J. Ripoll, R. Weissleder, and V. Ntziachristos, “A submillimeter resolution fluorescence molecular imaging system for small animal imaging,” Med. Phys.30(5), 901–911 (2003).
[CrossRef] [PubMed]

Nat. Med. (2)

R. Weissleder and V. Ntziachristos, “Shedding light onto live molecular targets,” Nat. Med.9(1), 123–128 (2003).
[CrossRef] [PubMed]

V. Ntziachristos, C. H. Tung, C. Bremer, and R. Weissleder, “Fluorescence molecular tomography resolves protease activity in vivo,” Nat. Med.8(7), 757–761 (2002).
[CrossRef] [PubMed]

Nat. Photonics (1)

E. M. C. Hillman and A. Moore, “All-optical anatomical co-registration for molecular imaging of small animals using dynamic contrast,” Nat. Photonics1(9), 526–530 (2007).
[CrossRef] [PubMed]

Opt. Express (7)

Opt. Lett. (1)

Phys. Med. Biol. (10)

P. Razifar, H. Engler, G. Blomquist, A. Ringheim, S. Estrada, B. Långström, and M. Bergström, “Principal component analysis with pre-normalization improves the signal-to-noise ratio and image quality in positron emission tomography studies of amyloid deposits in Alzheimer’s disease,” Phys. Med. Biol.54(11), 3595–3612 (2009).
[CrossRef] [PubMed]

H. Gao, J. F. Cai, Z. Shen, and H. Zhao, “Robust principal component analysis-based four-dimensional computed tomography,” Phys. Med. Biol.56(11), 3181–3198 (2011).
[CrossRef] [PubMed]

A. D. Klose and T. Pöschinger, “Excitation-resolved fluorescence tomography with simplified spherical harmonics equations,” Phys. Med. Biol.56(5), 1443–1469 (2011).
[CrossRef] [PubMed]

A. J. Chaudhari, S. Ahn, R. Levenson, R. D. Badawi, S. R. Cherry, and R. M. Leahy, “Excitation spectroscopy in multispectral optical fluorescence tomography: methodology, feasibility and computer simulation studies,” Phys. Med. Biol.54(15), 4687–4704 (2009).
[CrossRef] [PubMed]

A. J. Chaudhari, F. Darvas, J. R. Bading, R. A. Moats, P. S. Conti, D. J. Smith, S. R. Cherry, and R. M. Leahy, “Hyperspectral and multispectral bioluminescence optical tomography for small animal imaging,” Phys. Med. Biol.50(23), 5421–5441 (2005).
[CrossRef] [PubMed]

B. Dogdas, D. Stout, A. F. Chatziioannou, and R. M. Leahy, “Digimouse: A 3D whole body mouse atlas from CT and cryosection data,” Phys. Med. Biol.52(3), 577–587 (2007).
[CrossRef] [PubMed]

G. Alexandrakis, F. R. Rannou, and A. F. Chatziioannou, “Tomographic bioluminescence imaging by use of a combined optical-PET (OPET) system: a computer simulation feasibility study,” Phys. Med. Biol.50(17), 4225–4241 (2005).
[CrossRef] [PubMed]

G. Alexandrakis, F. R. Rannou, and A. F. Chatziioannou, “Effect of optical property estimation accuracy on tomographic bioluminescence imaging: simulation of a combined optical-PET (OPET) system,” Phys. Med. Biol.51(8), 2045–2053 (2006).
[CrossRef] [PubMed]

X. Intes, V. Ntziachristos, J. P. Culver, A. Yodh, and B. Chance, “Projection access order in algebraic reconstruction technique for diffuse optical tomography,” Phys. Med. Biol.47(1), N1–N10 (2002).
[CrossRef] [PubMed]

R. C. Benson and H. A. Kues, “Fluorescence properties of indocyanine green as related to angiography,” Phys. Med. Biol.23(1), 159–163 (1978).
[CrossRef] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (1)

V. Ntziachristos, E. A. Schellenberger, J. Ripoll, D. Yessayan, E. Graves, A. Bogdanov, L. Josephson, and R. Weissleder, “Visualization of antitumor treatment by means of fluorescence molecular tomography with an annexin V-Cy5.5 conjugate,” Proc. Natl. Acad. Sci. U.S.A.101(33), 12294–12299 (2004).
[CrossRef] [PubMed]

Prog. Nat. Sci. (1)

G. Hu, J. Yao, and J. Bai, “Full-angle optical imaging of near-infrared fluorescent probes implanted in small animals,” Prog. Nat. Sci.18(6), 707–711 (2008).
[CrossRef]

Science (1)

X. Michalet, F. F. Pinaud, L. A. Bentolila, J. M. Tsay, S. Doose, J. J. Li, G. Sundaresan, A. M. Wu, S. S. Gambhir, and S. Weiss, “Quantum dots for live cells, in vivo imaging, and diagnostics,” Science307(5709), 538–544 (2005).
[CrossRef] [PubMed]

Wires. Clim. Change. (1)

H. Abdi and L. J. Williams, “Principal component analysis,” Wires. Clim. Change.2(4), 433–459 (2010).

Other (2)

J. J. Duderstadt and L. J. Hamilton, Nuclear Reactor Analysis(New York:Wiley,1976).

A. Kak and M. Slaney, Computerized Tomographic Imaging (New York: IEEE Press, 1987), ch. 7.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

The flowchart of the proposed algorithm.

Fig. 2
Fig. 2

The cylinder model used in the simulations. A cylinder of 3.0 cm diameter is filled with 1% intralipid. The spheres s1 (magenta) and s2 (green) contained in the cylinder stand for the heart and lungs, respectively, and are assumed to have evenly distributed fluorophores. The two spheres are placed at the same height with an edge-to-edge distance of 0.2 cm.

Fig. 3
Fig. 3

The fluorescence yield of ICG with different concentrations under different excitation light. The horizontal axis represents the concentration of fluorophores in the unit of μM and the vertical axis represents the corresponding fluorescence yield of the excitation light wavelengths 740 nm (blue) and 780 nm (green).

Fig. 4
Fig. 4

Geometry of the mouse torso region including the main target organs, i.e., the heart (magenta) and lungs (green).

Fig. 5
Fig. 5

The reconstructed fluorescence slices (Z = 1.0 cm) at the excitation light wavelengths of 740 nm (upper row) and 780 nm (lower row) of all concentration pairs. From left to right, the according concentration pairs are shown below the lower row. All the images are displayed in the same range.

Fig. 6
Fig. 6

The 3D visualization results of reconstructed fluorescence frame of 32.5-52 μM concentration pair at the excitation light wavelength of 780 nm. (a) Volume rendering. (b) Surface rendering.

Fig. 7
Fig. 7

The PC2 images obtained from PCA applied to MEFT frames. The upper row is the positive components depicted in magenta color and the lower row is the negative components depicted in green color. The two small red circles show the true location and boundary of the spheres. The corresponding concentration pairs are shown below the lower row. All the images are displayed in the same range.

Fig. 8
Fig. 8

The obtained PC2 image frame of 32.5-52 μM concentration pair. (a) The image slice at Z = 1.0 cm. (b) The 3D surface rendering results (by extracting isosurfaces). The green sphere is sphere s1 and the magenta sphere is sphere s2.

Fig. 9
Fig. 9

The reconstructed fluorescence slice images (Z = 1.5 cm)of the digital mouse model at two excitation wavelengths (a) 740 nm and (b) 780 nm. . The boundary of mouse surface is depicted in red, the boundary of heart is depicted in yellow, and the boundary of lungs is depicted in mauve. All the images are displayed in the same range.

Fig. 10
Fig. 10

The PC2 images. (a)The positive component in PC2 is labeled in magenta color and (b) the negative component in PC2is labeled in green color. (c) The 2D merged results of the PC2 image. (d) The 3D merged results of the PC2 images. The boundary of mouse surface is depicted in red, the boundary of heart is depicted in yellow, and the boundary of lungs is depicted in mauve.

Fig. 11
Fig. 11

The reconstructed fluorescence slice (Z = 3.0 cm) images at two excitation wavelengths (a) 740 nm and (b) 780 nm. The two small red circles show the true location and boundary of two spheres. All the images are displayed in the same range.

Fig. 12
Fig. 12

The 3D visualization results of reconstructed fluorescence frame at the excitation light wavelength of 780 nm. (a) Volume rendering. (b) Surface rendering.

Fig. 13
Fig. 13

The PC2 images.(a)The positive component in PC2 is labeled in magenta color and (b) the negative component in PC2 is labeled in green color. (c) The 2-D merged results of the PC2 image. (d) The 3D merged results of the PC2 images. The magenta parts indicate the fluorophores in tube 1 and the green parts indicate the fluorophores in tube 2.

Tables (2)

Tables Icon

Table 1 The correlation coefficients of the nine concentration pairs

Tables Icon

Table 2 The eigenvalues λ ' (latent roots) and the corresponding eigenvectors

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

[D(r, λ e )Φ(r, λ e )] μ a (r, λ e )Φ(r, λ e )=S( r s )
[D(r, λ f )Φ(r, λ f )] μ a (r, λ f )Φ(r, λ f )=Φ(r, λ e )n(r, λ e )
L= 1 N1 X 0 T X 0
P= X 0 ×E
P j = X 0 × E j

Metrics