Abstract

A new microscope is discussed, where the scanning illumination has a numerical aperture of 2.8 with λ = 1.56 µm femtosecond fiber laser. Samples are placed or grown on a silicon substrate. Multi-photon emission is imaged in transmission on a cooled CCD. Two-photon and three-photon effects are observed from the silicon/water interface and gold nanoparticles. Images of cells, reference spheres and gold nanoparticles illustrate imaging properties of the microscope. Spectral characteristics of individual particles are achieved with a blazed transmission grating. Emission properties of differently sized gold nanoparticles are studied in detail, which indicate that their emission is a two-photon effect due continuum generation. Interestingly, spectral shape and emission power are similar for 20nm, 40nm and 60nm diameter gold nanoparticles for the cases studied.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. T. C. So, C. Y. Dong, B. R. Masters, and K. M. Berland, “Two-photon excitation fluorescence microscopy,” Annu. Rev. Biomed. Eng.2(1), 399–429 (2000).
    [CrossRef] [PubMed]
  2. D. Kobat, M. E. Durst, N. Nishimura, A. W. Wong, C. B. Schaffer, and C. Xu, “Deep tissue multiphoton microscopy using longer wavelength excitation,” Opt. Express17(16), 13354–13364 (2009).
    [CrossRef] [PubMed]
  3. J. A. Squier, M. Muller, G. J. Brakenhoff, and K. R. Wilson, “Third harmonic generation microscopy,” Opt. Express3(9), 315–324 (1998).
    [CrossRef] [PubMed]
  4. A. C. Millard, P. W. Wiseman, D. N. Fittinghoff, K. R. Wilson, J. A. Squier, and M. Müller, “Third-harmonic generation microscopy by use of a compact, femtosecond fiber laser source,” Appl. Opt.38(36), 7393–7397 (1999).
    [CrossRef] [PubMed]
  5. G. Rago, B. Bauer, F. Svedberg, L. Gunnarsson, M. B. Ericson, M. Bonn, and A. Enejder, “Uptake of gold nanoparticles in healthy and tumor cells visualized by nonlinear optical microscopy,” J. Phys. Chem. B115(17), 5008–5016 (2011).
    [CrossRef] [PubMed]
  6. X. Huang, W. Qian, I. H. El-Sayed, and M. A. El-Sayed, “The potential use of the enhanced nonlinear properties of gold nanospheres in photothermal cancer therapy,” Lasers Surg. Med.39(9), 747–753 (2007).
    [CrossRef] [PubMed]
  7. S. Hell, G. Reiner, C. Cremer, and E. H. K. Stelzer, “Aberrations in confocal fluorescence microscopy induced by mismatches in refractive index,” J. Microsc.169(3), 391–405 (1993).
    [CrossRef]
  8. A. Rohrbach and E. H. K. Stelzer, “Trapping forces, force constants, and potential depths for dielectric spheres in the presence of spherical aberrations,” Appl. Opt.41(13), 2494–2507 (2002).
    [CrossRef] [PubMed]
  9. J. Zhang, Y. Kim, Y. S. Kim, R. Valencia, T. D. Milster, and D. Dozer, “High resolution semiconductor inspection by using solid immersion lenses,” Jap J. Appl. Phys.48, 03A043 (2009).
  10. J. Zhang, Y. S. Kim, S. H. Yang, and T. D. Milster, “Illumination artifacts in hyper-NA vector imaging,” J. Opt. Soc. Am. A27(10), 2272–2284 (2010).
    [CrossRef] [PubMed]
  11. S. M. Mansfield and G. S. Kino, “Solid immersion microscope,” Appl. Phys. Lett.57(24), 2615–2616 (1990).
    [CrossRef]
  12. S. H. Yang, T. D. Milster, J. Zhang, and T. Chen, “Characteristics of evanescent polarization imaging,” J. Mod. Opt.57(9), 783–797 (2010).
    [CrossRef]
  13. T. D. Milster, J. S. Jo, and K. Hirota, “Roles of propagating and evanescent waves in solid immersion lens systems,” Appl. Opt.38(23), 5046–5057 (1999).
    [CrossRef] [PubMed]
  14. A. L. Mattheyses, S. M. Simon, and J. Z. Rappoport, “Imaging with total internal reflection fluorescence microscopy for the cell biologist,” J. Cell Sci.123(21), 3621–3628 (2010).
    [CrossRef] [PubMed]
  15. K. Kieu, R. J. Jones, and N. Peyghambarian, “Generation of few-cycle pulses from an amplified carbon nanotube mode-licked fiber laser system,” IEEE Photon. Technol. Lett.22(20), 1521–1523 (2010).
    [CrossRef]
  16. K. Kieu, S. Mehravar, R. Gowda, R. A. Norwood, and N. Peyghambarian, “Label-free multi-photon imaging using a compact Er3+-doped femtosecond fiber laser,” Submitted for Publication 2013.
  17. M. Müller, J. Squier, K. R. Wilson, and G. J. Brakenhoff, “3D microscopy of transparent objects using third-harmonic generation,” J. Microsc.191(3), 266–274 (1998).
    [CrossRef] [PubMed]
  18. M. Lippitz, M. A. van Dijk, and M. Orrit, “Third-harmonic generation from single gold nanoparticles,” Nano Lett.5(4), 799–802 (2005).
    [CrossRef] [PubMed]
  19. M. R. Beversluis, A. Bouhelier, and L. Novotny, “Continuum generation from single gold nanostructures through near-field mediated intraband transitions,” Phys. Rev. B68(11), 115433 (2003).
    [CrossRef]

2011 (1)

G. Rago, B. Bauer, F. Svedberg, L. Gunnarsson, M. B. Ericson, M. Bonn, and A. Enejder, “Uptake of gold nanoparticles in healthy and tumor cells visualized by nonlinear optical microscopy,” J. Phys. Chem. B115(17), 5008–5016 (2011).
[CrossRef] [PubMed]

2010 (4)

S. H. Yang, T. D. Milster, J. Zhang, and T. Chen, “Characteristics of evanescent polarization imaging,” J. Mod. Opt.57(9), 783–797 (2010).
[CrossRef]

A. L. Mattheyses, S. M. Simon, and J. Z. Rappoport, “Imaging with total internal reflection fluorescence microscopy for the cell biologist,” J. Cell Sci.123(21), 3621–3628 (2010).
[CrossRef] [PubMed]

K. Kieu, R. J. Jones, and N. Peyghambarian, “Generation of few-cycle pulses from an amplified carbon nanotube mode-licked fiber laser system,” IEEE Photon. Technol. Lett.22(20), 1521–1523 (2010).
[CrossRef]

J. Zhang, Y. S. Kim, S. H. Yang, and T. D. Milster, “Illumination artifacts in hyper-NA vector imaging,” J. Opt. Soc. Am. A27(10), 2272–2284 (2010).
[CrossRef] [PubMed]

2009 (2)

D. Kobat, M. E. Durst, N. Nishimura, A. W. Wong, C. B. Schaffer, and C. Xu, “Deep tissue multiphoton microscopy using longer wavelength excitation,” Opt. Express17(16), 13354–13364 (2009).
[CrossRef] [PubMed]

J. Zhang, Y. Kim, Y. S. Kim, R. Valencia, T. D. Milster, and D. Dozer, “High resolution semiconductor inspection by using solid immersion lenses,” Jap J. Appl. Phys.48, 03A043 (2009).

2007 (1)

X. Huang, W. Qian, I. H. El-Sayed, and M. A. El-Sayed, “The potential use of the enhanced nonlinear properties of gold nanospheres in photothermal cancer therapy,” Lasers Surg. Med.39(9), 747–753 (2007).
[CrossRef] [PubMed]

2005 (1)

M. Lippitz, M. A. van Dijk, and M. Orrit, “Third-harmonic generation from single gold nanoparticles,” Nano Lett.5(4), 799–802 (2005).
[CrossRef] [PubMed]

2003 (1)

M. R. Beversluis, A. Bouhelier, and L. Novotny, “Continuum generation from single gold nanostructures through near-field mediated intraband transitions,” Phys. Rev. B68(11), 115433 (2003).
[CrossRef]

2002 (1)

2000 (1)

P. T. C. So, C. Y. Dong, B. R. Masters, and K. M. Berland, “Two-photon excitation fluorescence microscopy,” Annu. Rev. Biomed. Eng.2(1), 399–429 (2000).
[CrossRef] [PubMed]

1999 (2)

1998 (2)

J. A. Squier, M. Muller, G. J. Brakenhoff, and K. R. Wilson, “Third harmonic generation microscopy,” Opt. Express3(9), 315–324 (1998).
[CrossRef] [PubMed]

M. Müller, J. Squier, K. R. Wilson, and G. J. Brakenhoff, “3D microscopy of transparent objects using third-harmonic generation,” J. Microsc.191(3), 266–274 (1998).
[CrossRef] [PubMed]

1993 (1)

S. Hell, G. Reiner, C. Cremer, and E. H. K. Stelzer, “Aberrations in confocal fluorescence microscopy induced by mismatches in refractive index,” J. Microsc.169(3), 391–405 (1993).
[CrossRef]

1990 (1)

S. M. Mansfield and G. S. Kino, “Solid immersion microscope,” Appl. Phys. Lett.57(24), 2615–2616 (1990).
[CrossRef]

Bauer, B.

G. Rago, B. Bauer, F. Svedberg, L. Gunnarsson, M. B. Ericson, M. Bonn, and A. Enejder, “Uptake of gold nanoparticles in healthy and tumor cells visualized by nonlinear optical microscopy,” J. Phys. Chem. B115(17), 5008–5016 (2011).
[CrossRef] [PubMed]

Berland, K. M.

P. T. C. So, C. Y. Dong, B. R. Masters, and K. M. Berland, “Two-photon excitation fluorescence microscopy,” Annu. Rev. Biomed. Eng.2(1), 399–429 (2000).
[CrossRef] [PubMed]

Beversluis, M. R.

M. R. Beversluis, A. Bouhelier, and L. Novotny, “Continuum generation from single gold nanostructures through near-field mediated intraband transitions,” Phys. Rev. B68(11), 115433 (2003).
[CrossRef]

Bonn, M.

G. Rago, B. Bauer, F. Svedberg, L. Gunnarsson, M. B. Ericson, M. Bonn, and A. Enejder, “Uptake of gold nanoparticles in healthy and tumor cells visualized by nonlinear optical microscopy,” J. Phys. Chem. B115(17), 5008–5016 (2011).
[CrossRef] [PubMed]

Bouhelier, A.

M. R. Beversluis, A. Bouhelier, and L. Novotny, “Continuum generation from single gold nanostructures through near-field mediated intraband transitions,” Phys. Rev. B68(11), 115433 (2003).
[CrossRef]

Brakenhoff, G. J.

J. A. Squier, M. Muller, G. J. Brakenhoff, and K. R. Wilson, “Third harmonic generation microscopy,” Opt. Express3(9), 315–324 (1998).
[CrossRef] [PubMed]

M. Müller, J. Squier, K. R. Wilson, and G. J. Brakenhoff, “3D microscopy of transparent objects using third-harmonic generation,” J. Microsc.191(3), 266–274 (1998).
[CrossRef] [PubMed]

Chen, T.

S. H. Yang, T. D. Milster, J. Zhang, and T. Chen, “Characteristics of evanescent polarization imaging,” J. Mod. Opt.57(9), 783–797 (2010).
[CrossRef]

Cremer, C.

S. Hell, G. Reiner, C. Cremer, and E. H. K. Stelzer, “Aberrations in confocal fluorescence microscopy induced by mismatches in refractive index,” J. Microsc.169(3), 391–405 (1993).
[CrossRef]

Dong, C. Y.

P. T. C. So, C. Y. Dong, B. R. Masters, and K. M. Berland, “Two-photon excitation fluorescence microscopy,” Annu. Rev. Biomed. Eng.2(1), 399–429 (2000).
[CrossRef] [PubMed]

Dozer, D.

J. Zhang, Y. Kim, Y. S. Kim, R. Valencia, T. D. Milster, and D. Dozer, “High resolution semiconductor inspection by using solid immersion lenses,” Jap J. Appl. Phys.48, 03A043 (2009).

Durst, M. E.

El-Sayed, I. H.

X. Huang, W. Qian, I. H. El-Sayed, and M. A. El-Sayed, “The potential use of the enhanced nonlinear properties of gold nanospheres in photothermal cancer therapy,” Lasers Surg. Med.39(9), 747–753 (2007).
[CrossRef] [PubMed]

El-Sayed, M. A.

X. Huang, W. Qian, I. H. El-Sayed, and M. A. El-Sayed, “The potential use of the enhanced nonlinear properties of gold nanospheres in photothermal cancer therapy,” Lasers Surg. Med.39(9), 747–753 (2007).
[CrossRef] [PubMed]

Enejder, A.

G. Rago, B. Bauer, F. Svedberg, L. Gunnarsson, M. B. Ericson, M. Bonn, and A. Enejder, “Uptake of gold nanoparticles in healthy and tumor cells visualized by nonlinear optical microscopy,” J. Phys. Chem. B115(17), 5008–5016 (2011).
[CrossRef] [PubMed]

Ericson, M. B.

G. Rago, B. Bauer, F. Svedberg, L. Gunnarsson, M. B. Ericson, M. Bonn, and A. Enejder, “Uptake of gold nanoparticles in healthy and tumor cells visualized by nonlinear optical microscopy,” J. Phys. Chem. B115(17), 5008–5016 (2011).
[CrossRef] [PubMed]

Fittinghoff, D. N.

Gunnarsson, L.

G. Rago, B. Bauer, F. Svedberg, L. Gunnarsson, M. B. Ericson, M. Bonn, and A. Enejder, “Uptake of gold nanoparticles in healthy and tumor cells visualized by nonlinear optical microscopy,” J. Phys. Chem. B115(17), 5008–5016 (2011).
[CrossRef] [PubMed]

Hell, S.

S. Hell, G. Reiner, C. Cremer, and E. H. K. Stelzer, “Aberrations in confocal fluorescence microscopy induced by mismatches in refractive index,” J. Microsc.169(3), 391–405 (1993).
[CrossRef]

Hirota, K.

Huang, X.

X. Huang, W. Qian, I. H. El-Sayed, and M. A. El-Sayed, “The potential use of the enhanced nonlinear properties of gold nanospheres in photothermal cancer therapy,” Lasers Surg. Med.39(9), 747–753 (2007).
[CrossRef] [PubMed]

Jo, J. S.

Jones, R. J.

K. Kieu, R. J. Jones, and N. Peyghambarian, “Generation of few-cycle pulses from an amplified carbon nanotube mode-licked fiber laser system,” IEEE Photon. Technol. Lett.22(20), 1521–1523 (2010).
[CrossRef]

Kieu, K.

K. Kieu, R. J. Jones, and N. Peyghambarian, “Generation of few-cycle pulses from an amplified carbon nanotube mode-licked fiber laser system,” IEEE Photon. Technol. Lett.22(20), 1521–1523 (2010).
[CrossRef]

Kim, Y.

J. Zhang, Y. Kim, Y. S. Kim, R. Valencia, T. D. Milster, and D. Dozer, “High resolution semiconductor inspection by using solid immersion lenses,” Jap J. Appl. Phys.48, 03A043 (2009).

Kim, Y. S.

J. Zhang, Y. S. Kim, S. H. Yang, and T. D. Milster, “Illumination artifacts in hyper-NA vector imaging,” J. Opt. Soc. Am. A27(10), 2272–2284 (2010).
[CrossRef] [PubMed]

J. Zhang, Y. Kim, Y. S. Kim, R. Valencia, T. D. Milster, and D. Dozer, “High resolution semiconductor inspection by using solid immersion lenses,” Jap J. Appl. Phys.48, 03A043 (2009).

Kino, G. S.

S. M. Mansfield and G. S. Kino, “Solid immersion microscope,” Appl. Phys. Lett.57(24), 2615–2616 (1990).
[CrossRef]

Kobat, D.

Lippitz, M.

M. Lippitz, M. A. van Dijk, and M. Orrit, “Third-harmonic generation from single gold nanoparticles,” Nano Lett.5(4), 799–802 (2005).
[CrossRef] [PubMed]

Mansfield, S. M.

S. M. Mansfield and G. S. Kino, “Solid immersion microscope,” Appl. Phys. Lett.57(24), 2615–2616 (1990).
[CrossRef]

Masters, B. R.

P. T. C. So, C. Y. Dong, B. R. Masters, and K. M. Berland, “Two-photon excitation fluorescence microscopy,” Annu. Rev. Biomed. Eng.2(1), 399–429 (2000).
[CrossRef] [PubMed]

Mattheyses, A. L.

A. L. Mattheyses, S. M. Simon, and J. Z. Rappoport, “Imaging with total internal reflection fluorescence microscopy for the cell biologist,” J. Cell Sci.123(21), 3621–3628 (2010).
[CrossRef] [PubMed]

Millard, A. C.

Milster, T. D.

J. Zhang, Y. S. Kim, S. H. Yang, and T. D. Milster, “Illumination artifacts in hyper-NA vector imaging,” J. Opt. Soc. Am. A27(10), 2272–2284 (2010).
[CrossRef] [PubMed]

S. H. Yang, T. D. Milster, J. Zhang, and T. Chen, “Characteristics of evanescent polarization imaging,” J. Mod. Opt.57(9), 783–797 (2010).
[CrossRef]

J. Zhang, Y. Kim, Y. S. Kim, R. Valencia, T. D. Milster, and D. Dozer, “High resolution semiconductor inspection by using solid immersion lenses,” Jap J. Appl. Phys.48, 03A043 (2009).

T. D. Milster, J. S. Jo, and K. Hirota, “Roles of propagating and evanescent waves in solid immersion lens systems,” Appl. Opt.38(23), 5046–5057 (1999).
[CrossRef] [PubMed]

Muller, M.

Müller, M.

Nishimura, N.

Novotny, L.

M. R. Beversluis, A. Bouhelier, and L. Novotny, “Continuum generation from single gold nanostructures through near-field mediated intraband transitions,” Phys. Rev. B68(11), 115433 (2003).
[CrossRef]

Orrit, M.

M. Lippitz, M. A. van Dijk, and M. Orrit, “Third-harmonic generation from single gold nanoparticles,” Nano Lett.5(4), 799–802 (2005).
[CrossRef] [PubMed]

Peyghambarian, N.

K. Kieu, R. J. Jones, and N. Peyghambarian, “Generation of few-cycle pulses from an amplified carbon nanotube mode-licked fiber laser system,” IEEE Photon. Technol. Lett.22(20), 1521–1523 (2010).
[CrossRef]

Qian, W.

X. Huang, W. Qian, I. H. El-Sayed, and M. A. El-Sayed, “The potential use of the enhanced nonlinear properties of gold nanospheres in photothermal cancer therapy,” Lasers Surg. Med.39(9), 747–753 (2007).
[CrossRef] [PubMed]

Rago, G.

G. Rago, B. Bauer, F. Svedberg, L. Gunnarsson, M. B. Ericson, M. Bonn, and A. Enejder, “Uptake of gold nanoparticles in healthy and tumor cells visualized by nonlinear optical microscopy,” J. Phys. Chem. B115(17), 5008–5016 (2011).
[CrossRef] [PubMed]

Rappoport, J. Z.

A. L. Mattheyses, S. M. Simon, and J. Z. Rappoport, “Imaging with total internal reflection fluorescence microscopy for the cell biologist,” J. Cell Sci.123(21), 3621–3628 (2010).
[CrossRef] [PubMed]

Reiner, G.

S. Hell, G. Reiner, C. Cremer, and E. H. K. Stelzer, “Aberrations in confocal fluorescence microscopy induced by mismatches in refractive index,” J. Microsc.169(3), 391–405 (1993).
[CrossRef]

Rohrbach, A.

Schaffer, C. B.

Simon, S. M.

A. L. Mattheyses, S. M. Simon, and J. Z. Rappoport, “Imaging with total internal reflection fluorescence microscopy for the cell biologist,” J. Cell Sci.123(21), 3621–3628 (2010).
[CrossRef] [PubMed]

So, P. T. C.

P. T. C. So, C. Y. Dong, B. R. Masters, and K. M. Berland, “Two-photon excitation fluorescence microscopy,” Annu. Rev. Biomed. Eng.2(1), 399–429 (2000).
[CrossRef] [PubMed]

Squier, J.

M. Müller, J. Squier, K. R. Wilson, and G. J. Brakenhoff, “3D microscopy of transparent objects using third-harmonic generation,” J. Microsc.191(3), 266–274 (1998).
[CrossRef] [PubMed]

Squier, J. A.

Stelzer, E. H. K.

A. Rohrbach and E. H. K. Stelzer, “Trapping forces, force constants, and potential depths for dielectric spheres in the presence of spherical aberrations,” Appl. Opt.41(13), 2494–2507 (2002).
[CrossRef] [PubMed]

S. Hell, G. Reiner, C. Cremer, and E. H. K. Stelzer, “Aberrations in confocal fluorescence microscopy induced by mismatches in refractive index,” J. Microsc.169(3), 391–405 (1993).
[CrossRef]

Svedberg, F.

G. Rago, B. Bauer, F. Svedberg, L. Gunnarsson, M. B. Ericson, M. Bonn, and A. Enejder, “Uptake of gold nanoparticles in healthy and tumor cells visualized by nonlinear optical microscopy,” J. Phys. Chem. B115(17), 5008–5016 (2011).
[CrossRef] [PubMed]

Valencia, R.

J. Zhang, Y. Kim, Y. S. Kim, R. Valencia, T. D. Milster, and D. Dozer, “High resolution semiconductor inspection by using solid immersion lenses,” Jap J. Appl. Phys.48, 03A043 (2009).

van Dijk, M. A.

M. Lippitz, M. A. van Dijk, and M. Orrit, “Third-harmonic generation from single gold nanoparticles,” Nano Lett.5(4), 799–802 (2005).
[CrossRef] [PubMed]

Wilson, K. R.

Wiseman, P. W.

Wong, A. W.

Xu, C.

Yang, S. H.

S. H. Yang, T. D. Milster, J. Zhang, and T. Chen, “Characteristics of evanescent polarization imaging,” J. Mod. Opt.57(9), 783–797 (2010).
[CrossRef]

J. Zhang, Y. S. Kim, S. H. Yang, and T. D. Milster, “Illumination artifacts in hyper-NA vector imaging,” J. Opt. Soc. Am. A27(10), 2272–2284 (2010).
[CrossRef] [PubMed]

Zhang, J.

J. Zhang, Y. S. Kim, S. H. Yang, and T. D. Milster, “Illumination artifacts in hyper-NA vector imaging,” J. Opt. Soc. Am. A27(10), 2272–2284 (2010).
[CrossRef] [PubMed]

S. H. Yang, T. D. Milster, J. Zhang, and T. Chen, “Characteristics of evanescent polarization imaging,” J. Mod. Opt.57(9), 783–797 (2010).
[CrossRef]

J. Zhang, Y. Kim, Y. S. Kim, R. Valencia, T. D. Milster, and D. Dozer, “High resolution semiconductor inspection by using solid immersion lenses,” Jap J. Appl. Phys.48, 03A043 (2009).

Annu. Rev. Biomed. Eng. (1)

P. T. C. So, C. Y. Dong, B. R. Masters, and K. M. Berland, “Two-photon excitation fluorescence microscopy,” Annu. Rev. Biomed. Eng.2(1), 399–429 (2000).
[CrossRef] [PubMed]

Appl. Opt. (3)

Appl. Phys. Lett. (1)

S. M. Mansfield and G. S. Kino, “Solid immersion microscope,” Appl. Phys. Lett.57(24), 2615–2616 (1990).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

K. Kieu, R. J. Jones, and N. Peyghambarian, “Generation of few-cycle pulses from an amplified carbon nanotube mode-licked fiber laser system,” IEEE Photon. Technol. Lett.22(20), 1521–1523 (2010).
[CrossRef]

J. Cell Sci. (1)

A. L. Mattheyses, S. M. Simon, and J. Z. Rappoport, “Imaging with total internal reflection fluorescence microscopy for the cell biologist,” J. Cell Sci.123(21), 3621–3628 (2010).
[CrossRef] [PubMed]

J. Microsc. (2)

M. Müller, J. Squier, K. R. Wilson, and G. J. Brakenhoff, “3D microscopy of transparent objects using third-harmonic generation,” J. Microsc.191(3), 266–274 (1998).
[CrossRef] [PubMed]

S. Hell, G. Reiner, C. Cremer, and E. H. K. Stelzer, “Aberrations in confocal fluorescence microscopy induced by mismatches in refractive index,” J. Microsc.169(3), 391–405 (1993).
[CrossRef]

J. Mod. Opt. (1)

S. H. Yang, T. D. Milster, J. Zhang, and T. Chen, “Characteristics of evanescent polarization imaging,” J. Mod. Opt.57(9), 783–797 (2010).
[CrossRef]

J. Opt. Soc. Am. A (1)

J. Phys. Chem. B (1)

G. Rago, B. Bauer, F. Svedberg, L. Gunnarsson, M. B. Ericson, M. Bonn, and A. Enejder, “Uptake of gold nanoparticles in healthy and tumor cells visualized by nonlinear optical microscopy,” J. Phys. Chem. B115(17), 5008–5016 (2011).
[CrossRef] [PubMed]

Jap J. Appl. Phys. (1)

J. Zhang, Y. Kim, Y. S. Kim, R. Valencia, T. D. Milster, and D. Dozer, “High resolution semiconductor inspection by using solid immersion lenses,” Jap J. Appl. Phys.48, 03A043 (2009).

Lasers Surg. Med. (1)

X. Huang, W. Qian, I. H. El-Sayed, and M. A. El-Sayed, “The potential use of the enhanced nonlinear properties of gold nanospheres in photothermal cancer therapy,” Lasers Surg. Med.39(9), 747–753 (2007).
[CrossRef] [PubMed]

Nano Lett. (1)

M. Lippitz, M. A. van Dijk, and M. Orrit, “Third-harmonic generation from single gold nanoparticles,” Nano Lett.5(4), 799–802 (2005).
[CrossRef] [PubMed]

Opt. Express (2)

Phys. Rev. B (1)

M. R. Beversluis, A. Bouhelier, and L. Novotny, “Continuum generation from single gold nanostructures through near-field mediated intraband transitions,” Phys. Rev. B68(11), 115433 (2003).
[CrossRef]

Other (1)

K. Kieu, S. Mehravar, R. Gowda, R. A. Norwood, and N. Peyghambarian, “Label-free multi-photon imaging using a compact Er3+-doped femtosecond fiber laser,” Submitted for Publication 2013.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Sample geometry using silicon sample substrate and object-centric silicon solid-immersion lens (SIL). The excitation wavelength at 1.56μm is focused through the SIL and onto the sample surface through a 0.8NA backing objective lens. Objects are placed/grown on the top side of the silicon substrate. The laser is scanned across the sample surface to produce an image. Excitation full-width-at-half-maximum values from the actinic 1.56μm laser and I3 at 0.52μm are 400nm and 230nm, respectively.

Fig. 2
Fig. 2

Vector electromagnetic calculations of the focused laser beam near the substrate surface. Top row: profiles of I, I2 and I3 at z = 0, 100nm and 200nm away from the substrate surface. Bottom row: Total power and peak value dependence of I, I2 and I3 as a function of depth z from the substrate surface.

Fig. 3
Fig. 3

Microscope geometry. (a) Basic vertical column construction with laser sources and galvanometer mirrors horizontal on an optical table: L1: 0.6328μm HeNe alignment laser, L2: 1.56μm fs laser, G1 and G2: galvanometer mirrors, Relay 1 and Relay 2 are afocal relays. A blazed transmission grating is inserted in the collection path to view MPE spectra. (b) Photograph of the flexure housings for precisely locating SILs on the sample relative to the objective lenses.

Fig. 4
Fig. 4

Images of 4μm diameter fused silica spheres, 250nm diameter GNPs and sparsely distributed 60nm diameter GNPs. (a) 625nm red epi illumination concurrent with 2.8NA scanning 1.56μm wavelength fs laser; and (b) 2.8NA scanning 1.56μm wavelength fs laser only.

Fig. 5
Fig. 5

Images of yeast cells, 4μm diameter fused silica spheres, 250nm diameter GNPs and 60nm diameter GNPs. (a) 625nm red epi illumination; (b) 2.8NA scanning 1.56μm wavelength fs laser only; (c) Red epi illumination with a green blocking filter in the collection optics and 2.8NA scanning 1.56μm wavelength fs laser; and (d) 2.8NA scanning 1.56μm wavelength fs laser (no epi) with the blazed grating inserted in the collection path. Longer wavelengths are dispersed to the right. Most of the transmitted light is directed into the + 1 diffraction order.

Fig. 6
Fig. 6

Spectra of three 60nm diameter GNPs on a silicon substrate: a) Signal curves normalized to their maximum values of the THG; and b) Signal curves renormalized after application of a software notch filter from 500nm to 545nm.

Fig. 7
Fig. 7

Power analysis of 60nm diameter GNP emission. Two sections of the signal curve are integrated and displayed on the log-log plot. The first section that corresponds to THG from the silicon substrate, from 500nm to 545nm, clearly shows a I3 response with slope m = 2.8. The second section that corresponds to continuum emission, from 400nm to 900nm and excluding the 500nm to 545nm notch filter, clearly displays a I2 response with slope m = 1.95.

Fig. 8
Fig. 8

Unnormalized spectral analysis of differently sized GNPs.

Metrics