Abstract

We report a novel approach to quantitatively assess gene transfection efficacy using dual-modality microendoscopy that can simultaneously monitor both laser scanning reflectance and fluorescence imaging. The system uses a 500-μm-diameter coherent fiber bundle and permits 3.5-μm lateral resolution. Both reflectance and fluorescence images obtained from two silicon avalanche photodetectors are displaying at 1 Hz and processed automatically to calculate gene transfection efficiency (the ratio of fluorescent cells among the total cells). To validate the system performance we examined the expression of cyan fluorescent protein using human cervical cancer cells (HeLa) in four commercially available reagents. The result was compared with that using a high-resolution bench-top microscope.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Schiffman, P. E. Castle, J. Jeronimo, A. C. Rodriguez, and S. Wacholder, “Human papillomavirus and cervical cancer,” Lancet370(9590), 890–907 (2007).
    [CrossRef] [PubMed]
  2. National Cancer Institute, “Cervical cancer treatment (PDQ®),” http://www.cancer.gov/cancertopics/pdq/treatment/cervical/patient/ .
  3. G. M. Rubanyi, “The future of human gene therapy,” Mol. Aspects Med.22(3), 113–142 (2001).
    [CrossRef] [PubMed]
  4. D. Cross and J. K. Burmester, “Gene therapy for cancer treatment: past, present and future,” Clin. Med. Res.4(3), 218–227 (2006).
    [CrossRef] [PubMed]
  5. D. Stone, A. David, F. Bolognani, P. R. Lowenstein, and M. G. Castro, “Viral vectors for gene delivery and gene therapy within the endocrine system,” J. Endocrinol.164(2), 103–118 (2000).
    [CrossRef] [PubMed]
  6. D. A. Balazs and W. T. Godbey, “Liposomes for use in gene delivery,” J. Drug Deliv.2011, 326497 (2011).
    [CrossRef] [PubMed]
  7. T. Misteli and D. L. Spector, “Applications of the green fluorescent protein in cell biology and biotechnology,” Nat. Biotechnol.15(10), 961–964 (1997).
    [CrossRef] [PubMed]
  8. T. D. Wang and J. Van Dam, “Optical biopsy: a new frontier in endoscopic detection and diagnosis,” Clin. Gastroenterol. Hepatol.2(9), 744–753 (2004).
    [CrossRef] [PubMed]
  9. C. Liang, M. R. Descour, K.-B. Sung, and R. Richards-Kortum, “Fiber confocal reflectance microscope (FCRM) for in-vivo imaging,” Opt. Express9(13), 821–830 (2001).
    [CrossRef] [PubMed]
  10. K. B. Sung, C. Liang, M. Descour, T. Collier, M. Follen, A. Malpica, and R. Richards-Kortum, “Near real time in vivo fibre optic confocal microscopy: sub-cellular structure resolved,” J. Microsc.207(2), 137–145 (2002).
    [CrossRef] [PubMed]
  11. P. M. Lane, S. Lam, and A. McWilliams, “J. C. IeRiche, M. W. Anderson, and C. E. MacAulay, “Confocal fluorescence microendoscopy of bronchial epithelium,” J. Biomed. Opt.14(2), 02408 (2009).
  12. H. Bertani, F. Pigò, E. Dabizzi, M. Frazzoni, V. G. Mirante, M. Manno, R. Manta, and R. Conigliaro, “Advances in endoscopic visualization of barrett's esophagus: the role of confocal laser endomicroscopy,” Gastroenterol. Res. Pract.2012, 493961 (2012).
    [CrossRef] [PubMed]
  13. F. K. Shieh, H. Drumm, M. H. Nathanson, and P. A. Jamidar, “High-definition confocal endomicroscopy of the common bile duct,” J. Clin. Gastroenterol.46(5), 401–406 (2012).
    [CrossRef] [PubMed]
  14. E. Coron, J. F. Mosnier, A. Ahluwalia, M. Le Rhun, J. P. Galmiche, A. S. Tarnawski, and T. Matysiak-Budnik, “Colonic mucosal biopsies obtained during confocal endomicroscopy are pre-stained with fluorescein in vivo and are suitable for histologic evaluation,” Endoscopy44(02), 148–153 (2012).
    [CrossRef] [PubMed]
  15. S. E. Ilyin, M. C. Flynn, and C. R. Plata-Salamán, “Fiber-optic monitoring coupled with confocal microscopy for imaging gene expression in vitro and in vivo,” J. Neurosci. Methods108(1), 91–96 (2001).
    [CrossRef] [PubMed]
  16. K. H. Al-Gubory and L.-M. Houdebine, “In vivo imaging of green fluorescent protein-expressing cells in transgenic animals using fibred confocal fluorescence microscopy,” Eur. J. Cell Biol.85(8), 837–845 (2006).
    [CrossRef] [PubMed]
  17. V. Dubaj, A. Mazzolini, A. Wood, and M. Harris, “Optic fibre bundle contact imaging probe employing a laser scanning confocal microscope,” J. Microsc.207(2), 108–117 (2002).
    [CrossRef] [PubMed]
  18. P. M. Lane, “Terminal reflections in fiber-optic image guides,” Appl. Opt.48(30), 5802–5810 (2009).
    [CrossRef] [PubMed]
  19. W. H. Dzik and P. Szuflad, “Method for counting white cells (WBCs) in WBC-reduced red cell concentrates,” Transfusion33(3), 272–273 (1993).
    [CrossRef] [PubMed]
  20. W. Göbel, J. N. D. Kerr, A. Nimmerjahn, and F. Helmchen, “Miniaturized two-photon microscope based on a flexible coherent fiber bundle and a gradient-index lens objective,” Opt. Lett.29(21), 2521–2523 (2004).
    [CrossRef] [PubMed]
  21. X. Chen, K. L. Reichenbach, and C. Xu, “Experimental and theoretical analysis of core-to-core coupling on fiber bundle imaging,” Opt. Express16(26), 21598–21607 (2008).
    [CrossRef] [PubMed]
  22. Y. Huang, K. Zhang, C. Lin, and J. U. Kang, “Motion compensated fiber-optic confocal microscope based on a common-path optical coherence tomography distance sensor,” Opt. Eng.50(8), 083201 (2011).
    [CrossRef]
  23. S. F. Elahi, Z. Liu, K. E. Luker, R. S. Kwon, G. D. Luker, and T. D. Wang, “Longitudinal molecular imaging with single cell resolution of disseminated ovarian cancer in mice with a LED-based confocal microendoscope,” Mol. Imaging Biol.13(6), 1157–1162 (2011).
    [CrossRef] [PubMed]
  24. T. J. Muldoon, N. Thekkek, D. Roblyer, D. Maru, N. Harpaz, J. Potack, S. Anandasabapathy, and R. Richards-Kortum, “Evaluation of quantitative image analysis criteria for the high-resolution microendoscopic detection of neoplasia in Barrett’s esophagus,” J. Biomed. Opt.15(2), 026027 (2010).
    [CrossRef] [PubMed]

2012 (3)

H. Bertani, F. Pigò, E. Dabizzi, M. Frazzoni, V. G. Mirante, M. Manno, R. Manta, and R. Conigliaro, “Advances in endoscopic visualization of barrett's esophagus: the role of confocal laser endomicroscopy,” Gastroenterol. Res. Pract.2012, 493961 (2012).
[CrossRef] [PubMed]

F. K. Shieh, H. Drumm, M. H. Nathanson, and P. A. Jamidar, “High-definition confocal endomicroscopy of the common bile duct,” J. Clin. Gastroenterol.46(5), 401–406 (2012).
[CrossRef] [PubMed]

E. Coron, J. F. Mosnier, A. Ahluwalia, M. Le Rhun, J. P. Galmiche, A. S. Tarnawski, and T. Matysiak-Budnik, “Colonic mucosal biopsies obtained during confocal endomicroscopy are pre-stained with fluorescein in vivo and are suitable for histologic evaluation,” Endoscopy44(02), 148–153 (2012).
[CrossRef] [PubMed]

2011 (3)

Y. Huang, K. Zhang, C. Lin, and J. U. Kang, “Motion compensated fiber-optic confocal microscope based on a common-path optical coherence tomography distance sensor,” Opt. Eng.50(8), 083201 (2011).
[CrossRef]

S. F. Elahi, Z. Liu, K. E. Luker, R. S. Kwon, G. D. Luker, and T. D. Wang, “Longitudinal molecular imaging with single cell resolution of disseminated ovarian cancer in mice with a LED-based confocal microendoscope,” Mol. Imaging Biol.13(6), 1157–1162 (2011).
[CrossRef] [PubMed]

D. A. Balazs and W. T. Godbey, “Liposomes for use in gene delivery,” J. Drug Deliv.2011, 326497 (2011).
[CrossRef] [PubMed]

2010 (1)

T. J. Muldoon, N. Thekkek, D. Roblyer, D. Maru, N. Harpaz, J. Potack, S. Anandasabapathy, and R. Richards-Kortum, “Evaluation of quantitative image analysis criteria for the high-resolution microendoscopic detection of neoplasia in Barrett’s esophagus,” J. Biomed. Opt.15(2), 026027 (2010).
[CrossRef] [PubMed]

2009 (2)

P. M. Lane, S. Lam, and A. McWilliams, “J. C. IeRiche, M. W. Anderson, and C. E. MacAulay, “Confocal fluorescence microendoscopy of bronchial epithelium,” J. Biomed. Opt.14(2), 02408 (2009).

P. M. Lane, “Terminal reflections in fiber-optic image guides,” Appl. Opt.48(30), 5802–5810 (2009).
[CrossRef] [PubMed]

2008 (1)

2007 (1)

M. Schiffman, P. E. Castle, J. Jeronimo, A. C. Rodriguez, and S. Wacholder, “Human papillomavirus and cervical cancer,” Lancet370(9590), 890–907 (2007).
[CrossRef] [PubMed]

2006 (2)

D. Cross and J. K. Burmester, “Gene therapy for cancer treatment: past, present and future,” Clin. Med. Res.4(3), 218–227 (2006).
[CrossRef] [PubMed]

K. H. Al-Gubory and L.-M. Houdebine, “In vivo imaging of green fluorescent protein-expressing cells in transgenic animals using fibred confocal fluorescence microscopy,” Eur. J. Cell Biol.85(8), 837–845 (2006).
[CrossRef] [PubMed]

2004 (2)

2002 (2)

K. B. Sung, C. Liang, M. Descour, T. Collier, M. Follen, A. Malpica, and R. Richards-Kortum, “Near real time in vivo fibre optic confocal microscopy: sub-cellular structure resolved,” J. Microsc.207(2), 137–145 (2002).
[CrossRef] [PubMed]

V. Dubaj, A. Mazzolini, A. Wood, and M. Harris, “Optic fibre bundle contact imaging probe employing a laser scanning confocal microscope,” J. Microsc.207(2), 108–117 (2002).
[CrossRef] [PubMed]

2001 (3)

G. M. Rubanyi, “The future of human gene therapy,” Mol. Aspects Med.22(3), 113–142 (2001).
[CrossRef] [PubMed]

C. Liang, M. R. Descour, K.-B. Sung, and R. Richards-Kortum, “Fiber confocal reflectance microscope (FCRM) for in-vivo imaging,” Opt. Express9(13), 821–830 (2001).
[CrossRef] [PubMed]

S. E. Ilyin, M. C. Flynn, and C. R. Plata-Salamán, “Fiber-optic monitoring coupled with confocal microscopy for imaging gene expression in vitro and in vivo,” J. Neurosci. Methods108(1), 91–96 (2001).
[CrossRef] [PubMed]

2000 (1)

D. Stone, A. David, F. Bolognani, P. R. Lowenstein, and M. G. Castro, “Viral vectors for gene delivery and gene therapy within the endocrine system,” J. Endocrinol.164(2), 103–118 (2000).
[CrossRef] [PubMed]

1997 (1)

T. Misteli and D. L. Spector, “Applications of the green fluorescent protein in cell biology and biotechnology,” Nat. Biotechnol.15(10), 961–964 (1997).
[CrossRef] [PubMed]

1993 (1)

W. H. Dzik and P. Szuflad, “Method for counting white cells (WBCs) in WBC-reduced red cell concentrates,” Transfusion33(3), 272–273 (1993).
[CrossRef] [PubMed]

Ahluwalia, A.

E. Coron, J. F. Mosnier, A. Ahluwalia, M. Le Rhun, J. P. Galmiche, A. S. Tarnawski, and T. Matysiak-Budnik, “Colonic mucosal biopsies obtained during confocal endomicroscopy are pre-stained with fluorescein in vivo and are suitable for histologic evaluation,” Endoscopy44(02), 148–153 (2012).
[CrossRef] [PubMed]

Al-Gubory, K. H.

K. H. Al-Gubory and L.-M. Houdebine, “In vivo imaging of green fluorescent protein-expressing cells in transgenic animals using fibred confocal fluorescence microscopy,” Eur. J. Cell Biol.85(8), 837–845 (2006).
[CrossRef] [PubMed]

Anandasabapathy, S.

T. J. Muldoon, N. Thekkek, D. Roblyer, D. Maru, N. Harpaz, J. Potack, S. Anandasabapathy, and R. Richards-Kortum, “Evaluation of quantitative image analysis criteria for the high-resolution microendoscopic detection of neoplasia in Barrett’s esophagus,” J. Biomed. Opt.15(2), 026027 (2010).
[CrossRef] [PubMed]

Balazs, D. A.

D. A. Balazs and W. T. Godbey, “Liposomes for use in gene delivery,” J. Drug Deliv.2011, 326497 (2011).
[CrossRef] [PubMed]

Bertani, H.

H. Bertani, F. Pigò, E. Dabizzi, M. Frazzoni, V. G. Mirante, M. Manno, R. Manta, and R. Conigliaro, “Advances in endoscopic visualization of barrett's esophagus: the role of confocal laser endomicroscopy,” Gastroenterol. Res. Pract.2012, 493961 (2012).
[CrossRef] [PubMed]

Bolognani, F.

D. Stone, A. David, F. Bolognani, P. R. Lowenstein, and M. G. Castro, “Viral vectors for gene delivery and gene therapy within the endocrine system,” J. Endocrinol.164(2), 103–118 (2000).
[CrossRef] [PubMed]

Burmester, J. K.

D. Cross and J. K. Burmester, “Gene therapy for cancer treatment: past, present and future,” Clin. Med. Res.4(3), 218–227 (2006).
[CrossRef] [PubMed]

Castle, P. E.

M. Schiffman, P. E. Castle, J. Jeronimo, A. C. Rodriguez, and S. Wacholder, “Human papillomavirus and cervical cancer,” Lancet370(9590), 890–907 (2007).
[CrossRef] [PubMed]

Castro, M. G.

D. Stone, A. David, F. Bolognani, P. R. Lowenstein, and M. G. Castro, “Viral vectors for gene delivery and gene therapy within the endocrine system,” J. Endocrinol.164(2), 103–118 (2000).
[CrossRef] [PubMed]

Chen, X.

Collier, T.

K. B. Sung, C. Liang, M. Descour, T. Collier, M. Follen, A. Malpica, and R. Richards-Kortum, “Near real time in vivo fibre optic confocal microscopy: sub-cellular structure resolved,” J. Microsc.207(2), 137–145 (2002).
[CrossRef] [PubMed]

Conigliaro, R.

H. Bertani, F. Pigò, E. Dabizzi, M. Frazzoni, V. G. Mirante, M. Manno, R. Manta, and R. Conigliaro, “Advances in endoscopic visualization of barrett's esophagus: the role of confocal laser endomicroscopy,” Gastroenterol. Res. Pract.2012, 493961 (2012).
[CrossRef] [PubMed]

Coron, E.

E. Coron, J. F. Mosnier, A. Ahluwalia, M. Le Rhun, J. P. Galmiche, A. S. Tarnawski, and T. Matysiak-Budnik, “Colonic mucosal biopsies obtained during confocal endomicroscopy are pre-stained with fluorescein in vivo and are suitable for histologic evaluation,” Endoscopy44(02), 148–153 (2012).
[CrossRef] [PubMed]

Cross, D.

D. Cross and J. K. Burmester, “Gene therapy for cancer treatment: past, present and future,” Clin. Med. Res.4(3), 218–227 (2006).
[CrossRef] [PubMed]

Dabizzi, E.

H. Bertani, F. Pigò, E. Dabizzi, M. Frazzoni, V. G. Mirante, M. Manno, R. Manta, and R. Conigliaro, “Advances in endoscopic visualization of barrett's esophagus: the role of confocal laser endomicroscopy,” Gastroenterol. Res. Pract.2012, 493961 (2012).
[CrossRef] [PubMed]

David, A.

D. Stone, A. David, F. Bolognani, P. R. Lowenstein, and M. G. Castro, “Viral vectors for gene delivery and gene therapy within the endocrine system,” J. Endocrinol.164(2), 103–118 (2000).
[CrossRef] [PubMed]

Descour, M.

K. B. Sung, C. Liang, M. Descour, T. Collier, M. Follen, A. Malpica, and R. Richards-Kortum, “Near real time in vivo fibre optic confocal microscopy: sub-cellular structure resolved,” J. Microsc.207(2), 137–145 (2002).
[CrossRef] [PubMed]

Descour, M. R.

Drumm, H.

F. K. Shieh, H. Drumm, M. H. Nathanson, and P. A. Jamidar, “High-definition confocal endomicroscopy of the common bile duct,” J. Clin. Gastroenterol.46(5), 401–406 (2012).
[CrossRef] [PubMed]

Dubaj, V.

V. Dubaj, A. Mazzolini, A. Wood, and M. Harris, “Optic fibre bundle contact imaging probe employing a laser scanning confocal microscope,” J. Microsc.207(2), 108–117 (2002).
[CrossRef] [PubMed]

Dzik, W. H.

W. H. Dzik and P. Szuflad, “Method for counting white cells (WBCs) in WBC-reduced red cell concentrates,” Transfusion33(3), 272–273 (1993).
[CrossRef] [PubMed]

Elahi, S. F.

S. F. Elahi, Z. Liu, K. E. Luker, R. S. Kwon, G. D. Luker, and T. D. Wang, “Longitudinal molecular imaging with single cell resolution of disseminated ovarian cancer in mice with a LED-based confocal microendoscope,” Mol. Imaging Biol.13(6), 1157–1162 (2011).
[CrossRef] [PubMed]

Flynn, M. C.

S. E. Ilyin, M. C. Flynn, and C. R. Plata-Salamán, “Fiber-optic monitoring coupled with confocal microscopy for imaging gene expression in vitro and in vivo,” J. Neurosci. Methods108(1), 91–96 (2001).
[CrossRef] [PubMed]

Follen, M.

K. B. Sung, C. Liang, M. Descour, T. Collier, M. Follen, A. Malpica, and R. Richards-Kortum, “Near real time in vivo fibre optic confocal microscopy: sub-cellular structure resolved,” J. Microsc.207(2), 137–145 (2002).
[CrossRef] [PubMed]

Frazzoni, M.

H. Bertani, F. Pigò, E. Dabizzi, M. Frazzoni, V. G. Mirante, M. Manno, R. Manta, and R. Conigliaro, “Advances in endoscopic visualization of barrett's esophagus: the role of confocal laser endomicroscopy,” Gastroenterol. Res. Pract.2012, 493961 (2012).
[CrossRef] [PubMed]

Galmiche, J. P.

E. Coron, J. F. Mosnier, A. Ahluwalia, M. Le Rhun, J. P. Galmiche, A. S. Tarnawski, and T. Matysiak-Budnik, “Colonic mucosal biopsies obtained during confocal endomicroscopy are pre-stained with fluorescein in vivo and are suitable for histologic evaluation,” Endoscopy44(02), 148–153 (2012).
[CrossRef] [PubMed]

Göbel, W.

Godbey, W. T.

D. A. Balazs and W. T. Godbey, “Liposomes for use in gene delivery,” J. Drug Deliv.2011, 326497 (2011).
[CrossRef] [PubMed]

Harpaz, N.

T. J. Muldoon, N. Thekkek, D. Roblyer, D. Maru, N. Harpaz, J. Potack, S. Anandasabapathy, and R. Richards-Kortum, “Evaluation of quantitative image analysis criteria for the high-resolution microendoscopic detection of neoplasia in Barrett’s esophagus,” J. Biomed. Opt.15(2), 026027 (2010).
[CrossRef] [PubMed]

Harris, M.

V. Dubaj, A. Mazzolini, A. Wood, and M. Harris, “Optic fibre bundle contact imaging probe employing a laser scanning confocal microscope,” J. Microsc.207(2), 108–117 (2002).
[CrossRef] [PubMed]

Helmchen, F.

Houdebine, L.-M.

K. H. Al-Gubory and L.-M. Houdebine, “In vivo imaging of green fluorescent protein-expressing cells in transgenic animals using fibred confocal fluorescence microscopy,” Eur. J. Cell Biol.85(8), 837–845 (2006).
[CrossRef] [PubMed]

Huang, Y.

Y. Huang, K. Zhang, C. Lin, and J. U. Kang, “Motion compensated fiber-optic confocal microscope based on a common-path optical coherence tomography distance sensor,” Opt. Eng.50(8), 083201 (2011).
[CrossRef]

Ilyin, S. E.

S. E. Ilyin, M. C. Flynn, and C. R. Plata-Salamán, “Fiber-optic monitoring coupled with confocal microscopy for imaging gene expression in vitro and in vivo,” J. Neurosci. Methods108(1), 91–96 (2001).
[CrossRef] [PubMed]

Jamidar, P. A.

F. K. Shieh, H. Drumm, M. H. Nathanson, and P. A. Jamidar, “High-definition confocal endomicroscopy of the common bile duct,” J. Clin. Gastroenterol.46(5), 401–406 (2012).
[CrossRef] [PubMed]

Jeronimo, J.

M. Schiffman, P. E. Castle, J. Jeronimo, A. C. Rodriguez, and S. Wacholder, “Human papillomavirus and cervical cancer,” Lancet370(9590), 890–907 (2007).
[CrossRef] [PubMed]

Kang, J. U.

Y. Huang, K. Zhang, C. Lin, and J. U. Kang, “Motion compensated fiber-optic confocal microscope based on a common-path optical coherence tomography distance sensor,” Opt. Eng.50(8), 083201 (2011).
[CrossRef]

Kerr, J. N. D.

Kwon, R. S.

S. F. Elahi, Z. Liu, K. E. Luker, R. S. Kwon, G. D. Luker, and T. D. Wang, “Longitudinal molecular imaging with single cell resolution of disseminated ovarian cancer in mice with a LED-based confocal microendoscope,” Mol. Imaging Biol.13(6), 1157–1162 (2011).
[CrossRef] [PubMed]

Lam, S.

P. M. Lane, S. Lam, and A. McWilliams, “J. C. IeRiche, M. W. Anderson, and C. E. MacAulay, “Confocal fluorescence microendoscopy of bronchial epithelium,” J. Biomed. Opt.14(2), 02408 (2009).

Lane, P. M.

P. M. Lane, “Terminal reflections in fiber-optic image guides,” Appl. Opt.48(30), 5802–5810 (2009).
[CrossRef] [PubMed]

P. M. Lane, S. Lam, and A. McWilliams, “J. C. IeRiche, M. W. Anderson, and C. E. MacAulay, “Confocal fluorescence microendoscopy of bronchial epithelium,” J. Biomed. Opt.14(2), 02408 (2009).

Le Rhun, M.

E. Coron, J. F. Mosnier, A. Ahluwalia, M. Le Rhun, J. P. Galmiche, A. S. Tarnawski, and T. Matysiak-Budnik, “Colonic mucosal biopsies obtained during confocal endomicroscopy are pre-stained with fluorescein in vivo and are suitable for histologic evaluation,” Endoscopy44(02), 148–153 (2012).
[CrossRef] [PubMed]

Liang, C.

K. B. Sung, C. Liang, M. Descour, T. Collier, M. Follen, A. Malpica, and R. Richards-Kortum, “Near real time in vivo fibre optic confocal microscopy: sub-cellular structure resolved,” J. Microsc.207(2), 137–145 (2002).
[CrossRef] [PubMed]

C. Liang, M. R. Descour, K.-B. Sung, and R. Richards-Kortum, “Fiber confocal reflectance microscope (FCRM) for in-vivo imaging,” Opt. Express9(13), 821–830 (2001).
[CrossRef] [PubMed]

Lin, C.

Y. Huang, K. Zhang, C. Lin, and J. U. Kang, “Motion compensated fiber-optic confocal microscope based on a common-path optical coherence tomography distance sensor,” Opt. Eng.50(8), 083201 (2011).
[CrossRef]

Liu, Z.

S. F. Elahi, Z. Liu, K. E. Luker, R. S. Kwon, G. D. Luker, and T. D. Wang, “Longitudinal molecular imaging with single cell resolution of disseminated ovarian cancer in mice with a LED-based confocal microendoscope,” Mol. Imaging Biol.13(6), 1157–1162 (2011).
[CrossRef] [PubMed]

Lowenstein, P. R.

D. Stone, A. David, F. Bolognani, P. R. Lowenstein, and M. G. Castro, “Viral vectors for gene delivery and gene therapy within the endocrine system,” J. Endocrinol.164(2), 103–118 (2000).
[CrossRef] [PubMed]

Luker, G. D.

S. F. Elahi, Z. Liu, K. E. Luker, R. S. Kwon, G. D. Luker, and T. D. Wang, “Longitudinal molecular imaging with single cell resolution of disseminated ovarian cancer in mice with a LED-based confocal microendoscope,” Mol. Imaging Biol.13(6), 1157–1162 (2011).
[CrossRef] [PubMed]

Luker, K. E.

S. F. Elahi, Z. Liu, K. E. Luker, R. S. Kwon, G. D. Luker, and T. D. Wang, “Longitudinal molecular imaging with single cell resolution of disseminated ovarian cancer in mice with a LED-based confocal microendoscope,” Mol. Imaging Biol.13(6), 1157–1162 (2011).
[CrossRef] [PubMed]

Malpica, A.

K. B. Sung, C. Liang, M. Descour, T. Collier, M. Follen, A. Malpica, and R. Richards-Kortum, “Near real time in vivo fibre optic confocal microscopy: sub-cellular structure resolved,” J. Microsc.207(2), 137–145 (2002).
[CrossRef] [PubMed]

Manno, M.

H. Bertani, F. Pigò, E. Dabizzi, M. Frazzoni, V. G. Mirante, M. Manno, R. Manta, and R. Conigliaro, “Advances in endoscopic visualization of barrett's esophagus: the role of confocal laser endomicroscopy,” Gastroenterol. Res. Pract.2012, 493961 (2012).
[CrossRef] [PubMed]

Manta, R.

H. Bertani, F. Pigò, E. Dabizzi, M. Frazzoni, V. G. Mirante, M. Manno, R. Manta, and R. Conigliaro, “Advances in endoscopic visualization of barrett's esophagus: the role of confocal laser endomicroscopy,” Gastroenterol. Res. Pract.2012, 493961 (2012).
[CrossRef] [PubMed]

Maru, D.

T. J. Muldoon, N. Thekkek, D. Roblyer, D. Maru, N. Harpaz, J. Potack, S. Anandasabapathy, and R. Richards-Kortum, “Evaluation of quantitative image analysis criteria for the high-resolution microendoscopic detection of neoplasia in Barrett’s esophagus,” J. Biomed. Opt.15(2), 026027 (2010).
[CrossRef] [PubMed]

Matysiak-Budnik, T.

E. Coron, J. F. Mosnier, A. Ahluwalia, M. Le Rhun, J. P. Galmiche, A. S. Tarnawski, and T. Matysiak-Budnik, “Colonic mucosal biopsies obtained during confocal endomicroscopy are pre-stained with fluorescein in vivo and are suitable for histologic evaluation,” Endoscopy44(02), 148–153 (2012).
[CrossRef] [PubMed]

Mazzolini, A.

V. Dubaj, A. Mazzolini, A. Wood, and M. Harris, “Optic fibre bundle contact imaging probe employing a laser scanning confocal microscope,” J. Microsc.207(2), 108–117 (2002).
[CrossRef] [PubMed]

McWilliams, A.

P. M. Lane, S. Lam, and A. McWilliams, “J. C. IeRiche, M. W. Anderson, and C. E. MacAulay, “Confocal fluorescence microendoscopy of bronchial epithelium,” J. Biomed. Opt.14(2), 02408 (2009).

Mirante, V. G.

H. Bertani, F. Pigò, E. Dabizzi, M. Frazzoni, V. G. Mirante, M. Manno, R. Manta, and R. Conigliaro, “Advances in endoscopic visualization of barrett's esophagus: the role of confocal laser endomicroscopy,” Gastroenterol. Res. Pract.2012, 493961 (2012).
[CrossRef] [PubMed]

Misteli, T.

T. Misteli and D. L. Spector, “Applications of the green fluorescent protein in cell biology and biotechnology,” Nat. Biotechnol.15(10), 961–964 (1997).
[CrossRef] [PubMed]

Mosnier, J. F.

E. Coron, J. F. Mosnier, A. Ahluwalia, M. Le Rhun, J. P. Galmiche, A. S. Tarnawski, and T. Matysiak-Budnik, “Colonic mucosal biopsies obtained during confocal endomicroscopy are pre-stained with fluorescein in vivo and are suitable for histologic evaluation,” Endoscopy44(02), 148–153 (2012).
[CrossRef] [PubMed]

Muldoon, T. J.

T. J. Muldoon, N. Thekkek, D. Roblyer, D. Maru, N. Harpaz, J. Potack, S. Anandasabapathy, and R. Richards-Kortum, “Evaluation of quantitative image analysis criteria for the high-resolution microendoscopic detection of neoplasia in Barrett’s esophagus,” J. Biomed. Opt.15(2), 026027 (2010).
[CrossRef] [PubMed]

Nathanson, M. H.

F. K. Shieh, H. Drumm, M. H. Nathanson, and P. A. Jamidar, “High-definition confocal endomicroscopy of the common bile duct,” J. Clin. Gastroenterol.46(5), 401–406 (2012).
[CrossRef] [PubMed]

Nimmerjahn, A.

Pigò, F.

H. Bertani, F. Pigò, E. Dabizzi, M. Frazzoni, V. G. Mirante, M. Manno, R. Manta, and R. Conigliaro, “Advances in endoscopic visualization of barrett's esophagus: the role of confocal laser endomicroscopy,” Gastroenterol. Res. Pract.2012, 493961 (2012).
[CrossRef] [PubMed]

Plata-Salamán, C. R.

S. E. Ilyin, M. C. Flynn, and C. R. Plata-Salamán, “Fiber-optic monitoring coupled with confocal microscopy for imaging gene expression in vitro and in vivo,” J. Neurosci. Methods108(1), 91–96 (2001).
[CrossRef] [PubMed]

Potack, J.

T. J. Muldoon, N. Thekkek, D. Roblyer, D. Maru, N. Harpaz, J. Potack, S. Anandasabapathy, and R. Richards-Kortum, “Evaluation of quantitative image analysis criteria for the high-resolution microendoscopic detection of neoplasia in Barrett’s esophagus,” J. Biomed. Opt.15(2), 026027 (2010).
[CrossRef] [PubMed]

Reichenbach, K. L.

Richards-Kortum, R.

T. J. Muldoon, N. Thekkek, D. Roblyer, D. Maru, N. Harpaz, J. Potack, S. Anandasabapathy, and R. Richards-Kortum, “Evaluation of quantitative image analysis criteria for the high-resolution microendoscopic detection of neoplasia in Barrett’s esophagus,” J. Biomed. Opt.15(2), 026027 (2010).
[CrossRef] [PubMed]

K. B. Sung, C. Liang, M. Descour, T. Collier, M. Follen, A. Malpica, and R. Richards-Kortum, “Near real time in vivo fibre optic confocal microscopy: sub-cellular structure resolved,” J. Microsc.207(2), 137–145 (2002).
[CrossRef] [PubMed]

C. Liang, M. R. Descour, K.-B. Sung, and R. Richards-Kortum, “Fiber confocal reflectance microscope (FCRM) for in-vivo imaging,” Opt. Express9(13), 821–830 (2001).
[CrossRef] [PubMed]

Roblyer, D.

T. J. Muldoon, N. Thekkek, D. Roblyer, D. Maru, N. Harpaz, J. Potack, S. Anandasabapathy, and R. Richards-Kortum, “Evaluation of quantitative image analysis criteria for the high-resolution microendoscopic detection of neoplasia in Barrett’s esophagus,” J. Biomed. Opt.15(2), 026027 (2010).
[CrossRef] [PubMed]

Rodriguez, A. C.

M. Schiffman, P. E. Castle, J. Jeronimo, A. C. Rodriguez, and S. Wacholder, “Human papillomavirus and cervical cancer,” Lancet370(9590), 890–907 (2007).
[CrossRef] [PubMed]

Rubanyi, G. M.

G. M. Rubanyi, “The future of human gene therapy,” Mol. Aspects Med.22(3), 113–142 (2001).
[CrossRef] [PubMed]

Schiffman, M.

M. Schiffman, P. E. Castle, J. Jeronimo, A. C. Rodriguez, and S. Wacholder, “Human papillomavirus and cervical cancer,” Lancet370(9590), 890–907 (2007).
[CrossRef] [PubMed]

Shieh, F. K.

F. K. Shieh, H. Drumm, M. H. Nathanson, and P. A. Jamidar, “High-definition confocal endomicroscopy of the common bile duct,” J. Clin. Gastroenterol.46(5), 401–406 (2012).
[CrossRef] [PubMed]

Spector, D. L.

T. Misteli and D. L. Spector, “Applications of the green fluorescent protein in cell biology and biotechnology,” Nat. Biotechnol.15(10), 961–964 (1997).
[CrossRef] [PubMed]

Stone, D.

D. Stone, A. David, F. Bolognani, P. R. Lowenstein, and M. G. Castro, “Viral vectors for gene delivery and gene therapy within the endocrine system,” J. Endocrinol.164(2), 103–118 (2000).
[CrossRef] [PubMed]

Sung, K. B.

K. B. Sung, C. Liang, M. Descour, T. Collier, M. Follen, A. Malpica, and R. Richards-Kortum, “Near real time in vivo fibre optic confocal microscopy: sub-cellular structure resolved,” J. Microsc.207(2), 137–145 (2002).
[CrossRef] [PubMed]

Sung, K.-B.

Szuflad, P.

W. H. Dzik and P. Szuflad, “Method for counting white cells (WBCs) in WBC-reduced red cell concentrates,” Transfusion33(3), 272–273 (1993).
[CrossRef] [PubMed]

Tarnawski, A. S.

E. Coron, J. F. Mosnier, A. Ahluwalia, M. Le Rhun, J. P. Galmiche, A. S. Tarnawski, and T. Matysiak-Budnik, “Colonic mucosal biopsies obtained during confocal endomicroscopy are pre-stained with fluorescein in vivo and are suitable for histologic evaluation,” Endoscopy44(02), 148–153 (2012).
[CrossRef] [PubMed]

Thekkek, N.

T. J. Muldoon, N. Thekkek, D. Roblyer, D. Maru, N. Harpaz, J. Potack, S. Anandasabapathy, and R. Richards-Kortum, “Evaluation of quantitative image analysis criteria for the high-resolution microendoscopic detection of neoplasia in Barrett’s esophagus,” J. Biomed. Opt.15(2), 026027 (2010).
[CrossRef] [PubMed]

Van Dam, J.

T. D. Wang and J. Van Dam, “Optical biopsy: a new frontier in endoscopic detection and diagnosis,” Clin. Gastroenterol. Hepatol.2(9), 744–753 (2004).
[CrossRef] [PubMed]

Wacholder, S.

M. Schiffman, P. E. Castle, J. Jeronimo, A. C. Rodriguez, and S. Wacholder, “Human papillomavirus and cervical cancer,” Lancet370(9590), 890–907 (2007).
[CrossRef] [PubMed]

Wang, T. D.

S. F. Elahi, Z. Liu, K. E. Luker, R. S. Kwon, G. D. Luker, and T. D. Wang, “Longitudinal molecular imaging with single cell resolution of disseminated ovarian cancer in mice with a LED-based confocal microendoscope,” Mol. Imaging Biol.13(6), 1157–1162 (2011).
[CrossRef] [PubMed]

T. D. Wang and J. Van Dam, “Optical biopsy: a new frontier in endoscopic detection and diagnosis,” Clin. Gastroenterol. Hepatol.2(9), 744–753 (2004).
[CrossRef] [PubMed]

Wood, A.

V. Dubaj, A. Mazzolini, A. Wood, and M. Harris, “Optic fibre bundle contact imaging probe employing a laser scanning confocal microscope,” J. Microsc.207(2), 108–117 (2002).
[CrossRef] [PubMed]

Xu, C.

Zhang, K.

Y. Huang, K. Zhang, C. Lin, and J. U. Kang, “Motion compensated fiber-optic confocal microscope based on a common-path optical coherence tomography distance sensor,” Opt. Eng.50(8), 083201 (2011).
[CrossRef]

Appl. Opt. (1)

Clin. Gastroenterol. Hepatol. (1)

T. D. Wang and J. Van Dam, “Optical biopsy: a new frontier in endoscopic detection and diagnosis,” Clin. Gastroenterol. Hepatol.2(9), 744–753 (2004).
[CrossRef] [PubMed]

Clin. Med. Res. (1)

D. Cross and J. K. Burmester, “Gene therapy for cancer treatment: past, present and future,” Clin. Med. Res.4(3), 218–227 (2006).
[CrossRef] [PubMed]

Endoscopy (1)

E. Coron, J. F. Mosnier, A. Ahluwalia, M. Le Rhun, J. P. Galmiche, A. S. Tarnawski, and T. Matysiak-Budnik, “Colonic mucosal biopsies obtained during confocal endomicroscopy are pre-stained with fluorescein in vivo and are suitable for histologic evaluation,” Endoscopy44(02), 148–153 (2012).
[CrossRef] [PubMed]

Eur. J. Cell Biol. (1)

K. H. Al-Gubory and L.-M. Houdebine, “In vivo imaging of green fluorescent protein-expressing cells in transgenic animals using fibred confocal fluorescence microscopy,” Eur. J. Cell Biol.85(8), 837–845 (2006).
[CrossRef] [PubMed]

Gastroenterol. Res. Pract. (1)

H. Bertani, F. Pigò, E. Dabizzi, M. Frazzoni, V. G. Mirante, M. Manno, R. Manta, and R. Conigliaro, “Advances in endoscopic visualization of barrett's esophagus: the role of confocal laser endomicroscopy,” Gastroenterol. Res. Pract.2012, 493961 (2012).
[CrossRef] [PubMed]

J. Biomed. Opt. (2)

P. M. Lane, S. Lam, and A. McWilliams, “J. C. IeRiche, M. W. Anderson, and C. E. MacAulay, “Confocal fluorescence microendoscopy of bronchial epithelium,” J. Biomed. Opt.14(2), 02408 (2009).

T. J. Muldoon, N. Thekkek, D. Roblyer, D. Maru, N. Harpaz, J. Potack, S. Anandasabapathy, and R. Richards-Kortum, “Evaluation of quantitative image analysis criteria for the high-resolution microendoscopic detection of neoplasia in Barrett’s esophagus,” J. Biomed. Opt.15(2), 026027 (2010).
[CrossRef] [PubMed]

J. Clin. Gastroenterol. (1)

F. K. Shieh, H. Drumm, M. H. Nathanson, and P. A. Jamidar, “High-definition confocal endomicroscopy of the common bile duct,” J. Clin. Gastroenterol.46(5), 401–406 (2012).
[CrossRef] [PubMed]

J. Drug Deliv. (1)

D. A. Balazs and W. T. Godbey, “Liposomes for use in gene delivery,” J. Drug Deliv.2011, 326497 (2011).
[CrossRef] [PubMed]

J. Endocrinol. (1)

D. Stone, A. David, F. Bolognani, P. R. Lowenstein, and M. G. Castro, “Viral vectors for gene delivery and gene therapy within the endocrine system,” J. Endocrinol.164(2), 103–118 (2000).
[CrossRef] [PubMed]

J. Microsc. (2)

K. B. Sung, C. Liang, M. Descour, T. Collier, M. Follen, A. Malpica, and R. Richards-Kortum, “Near real time in vivo fibre optic confocal microscopy: sub-cellular structure resolved,” J. Microsc.207(2), 137–145 (2002).
[CrossRef] [PubMed]

V. Dubaj, A. Mazzolini, A. Wood, and M. Harris, “Optic fibre bundle contact imaging probe employing a laser scanning confocal microscope,” J. Microsc.207(2), 108–117 (2002).
[CrossRef] [PubMed]

J. Neurosci. Methods (1)

S. E. Ilyin, M. C. Flynn, and C. R. Plata-Salamán, “Fiber-optic monitoring coupled with confocal microscopy for imaging gene expression in vitro and in vivo,” J. Neurosci. Methods108(1), 91–96 (2001).
[CrossRef] [PubMed]

Lancet (1)

M. Schiffman, P. E. Castle, J. Jeronimo, A. C. Rodriguez, and S. Wacholder, “Human papillomavirus and cervical cancer,” Lancet370(9590), 890–907 (2007).
[CrossRef] [PubMed]

Mol. Aspects Med. (1)

G. M. Rubanyi, “The future of human gene therapy,” Mol. Aspects Med.22(3), 113–142 (2001).
[CrossRef] [PubMed]

Mol. Imaging Biol. (1)

S. F. Elahi, Z. Liu, K. E. Luker, R. S. Kwon, G. D. Luker, and T. D. Wang, “Longitudinal molecular imaging with single cell resolution of disseminated ovarian cancer in mice with a LED-based confocal microendoscope,” Mol. Imaging Biol.13(6), 1157–1162 (2011).
[CrossRef] [PubMed]

Nat. Biotechnol. (1)

T. Misteli and D. L. Spector, “Applications of the green fluorescent protein in cell biology and biotechnology,” Nat. Biotechnol.15(10), 961–964 (1997).
[CrossRef] [PubMed]

Opt. Eng. (1)

Y. Huang, K. Zhang, C. Lin, and J. U. Kang, “Motion compensated fiber-optic confocal microscope based on a common-path optical coherence tomography distance sensor,” Opt. Eng.50(8), 083201 (2011).
[CrossRef]

Opt. Express (2)

Opt. Lett. (1)

Transfusion (1)

W. H. Dzik and P. Szuflad, “Method for counting white cells (WBCs) in WBC-reduced red cell concentrates,” Transfusion33(3), 272–273 (1993).
[CrossRef] [PubMed]

Other (1)

National Cancer Institute, “Cervical cancer treatment (PDQ®),” http://www.cancer.gov/cancertopics/pdq/treatment/cervical/patient/ .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

System configuration (DM: dichroic mirror, BS: 50:50 beam splitter, GM: galvo mirror, OL: objective lens, FL 1&2: focusing lens, LP: longpass filter, APD 1&2: avalanche photodetector, DAQ: digital-to-analog & analog-to-digital converter).

Fig. 2
Fig. 2

Photograph of the system implementation.

Fig. 3
Fig. 3

USAF target image (raw data [left], processed data [right]; group 7 element 2– resolution 3.48 µm).

Fig. 4
Fig. 4

Representative dual-modality microendoscope sample imaging results in four different reagent groups: a. reflectance image, b. total cell counting from the reflectance image, c. fluorescence image, d. fluorescent cell counting from the fluorescence image (All white bars – 100 µm, T: total cell counting number, F: fluorescent cell counting number, pseudo-color applied on the fluorescence images).

Fig. 5
Fig. 5

Representative bench-top microscope sample imaging results in four different reagent groups: a. bright-field illumination image, b. total cell counting from the bright-field illumination image, c. fluorescence image, d. fluorescent cell counting from the fluorescence image (All white bars—100 µm, T: total cell counting number, F: fluorescent cell counting number, pseudo-color applied on fluorescence images).

Fig. 6
Fig. 6

Comparison of transfection efficiency in the four reagent groups

Metrics