Abstract

We introduce and demonstrate use of a novel, diffuse optical tomography (DOT) based breast cancer signature for monitoring progression of neoadjuvant chemotherapy. This signature, called probability of malignancy, is obtained by statistical image analysis of total hemoglobin concentration, blood oxygen saturation, and scattering coefficient distributions in the breast tomograms of a training-set population with biopsy-confirmed breast cancers. A pilot clinical investigation adapts this statistical image analysis approach for chemotherapy monitoring of three patients. Though preliminary, the study shows how to use the malignancy parameter for separating responders from partial-responders and demonstrates the potential utility of the methodology compared to traditional DOT quantification schemes.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Kaufmann, G. von Minckwitz, H. D. Bear, A. Buzdar, P. McGale, H. Bonnefoi, M. Colleoni, C. Denkert, W. Eiermann, R. Jackesz, A. Makris, W. Miller, J.-Y. Pierga, V. Semiglazov, A. Schneeweiss, R. Souchon, V. Stearns, M. Untch, and S. Loibi, “Recommendations from an international expert panel on the use of neoadjuvant (primary) systemic treatment of operable breast cancer: new perspectives 2006,” Ann. Oncol.18, 1927–34 (2007).
    [CrossRef] [PubMed]
  2. L. R. Arlinghaus, X. Li, M. Levy, D. Smith, E. B. Welch, J. C. Gore, and T. E. Yankeelov, “Current and future trends in magnetic resonance imaging assessments of the response of breast tumors to neoadjuvant chemotherapy,” J. Oncol.919620, 1–17 (2010).
    [CrossRef]
  3. L. Esserman, D. Berry, M. Cheang, C. Yau, C. Perou, L. Carey, A. DeMichele, J. Gray, K. Conway-Dorsey, M. Lenburg, and , “Chemotherapy response and recurrence-free survival in neoadjuvant breast cancer depends on biomarker profiles: results from the I-SPY 1 TRIAL (CALGB 150007/150012; ACRIN 6657),” Breast Cancer Res. Treat.30, 3242–3249 (2011).
  4. K. McGuire, J. Toro-Burguete, H. Dang, J. Young, A. Soran, M. Zuley, R. Bhargava, M. Bonaventura, R. Johnson, and G. Ahrendt, “MRI staging after neoadjuvant chemotherapy for breast cancer: Does tumor biology affect accuracy?” Ann. Surg. Oncol.18, 3149–3154 (2011).
    [CrossRef] [PubMed]
  5. O. Falou, H. Soliman, A. Sadeghi-Naini, S. Iradji, S. Lemon-Wong, J. Zubovits, J. Spayne, R. Dent, M. Trudeau, J. Boileau, and , “Diffuse optical spectroscopy evaluation of treatment response in women with locally advanced breast cancer receiving neoadjuvant chemotherapy,” Trans. Onc.5, 238–246 (2012).
  6. D. Roblyer, S. Ueda, A. Cerussi, W. Tanamai, A. Durkin, R. Mehta, D. Hsiang, J. A. Butler, C. McLaren, W.-P. Chen, and B. Tromberg, “Optical imaging of breast cancer oxyhemoglobin flare correlates with neoadjuvant chemotherapy response one day after starting treatment.” Proc. Natl. Acad. Sci.108, 14626–14631 (2011).
    [CrossRef] [PubMed]
  7. R. Choe and T. Durduran, “Diffuse optical monitoring of the neoadjuvant breast cancer therapy,” IEEE J. Sel. Top. Quantum Electron.18, 1367–1386 (2012).
    [CrossRef]
  8. L. C. Enfield, G. Cantanhede, D. Westbroek, M. Douek, A. D. Purushotham, J. C. Hebden, and A. P. Gibson, “Monitoring the response to primary medical therapy for breast cancer using three-dimensional time-resolved optical mammography.” Technol. Cancer Res. Treat.10, 533–547 (2011).
    [PubMed]
  9. H. Soliman, A. Gunasekara, M. Rycroft, J. Zubovits, R. Dent, J. Spayne, M. Yaffe, and G. Czarnota, “Functional imaging using diffuse optical spectroscopy of neoadjuvant chemotherapy response in women with locally advanced breast cancer,” Clin. Cancer Res.16, 2605–2614 (2010).
    [CrossRef] [PubMed]
  10. B. J. Tromberg, B. W. Pogue, K. D. Paulsen, A. G. Yodh, D. A. Boas, and A. E. Cerussi, “Assessing the future of diffuse optical imaging technologies for breast cancer management,” Med. Phys.35, 2443–2451 (2008).
    [CrossRef] [PubMed]
  11. D. R. Busch, W. Guo, R. Choe, T. Durduran, M. D. Feldman, C. Mies, M. A. Rosen, M. D. Schnall, B. J. Czerniecki, J. Tchou, A. DeMichele, M. E. Putt, and A. G. Yodh, “Computer aided automatic detection of malignant lesions in diffuse optical mammography,” Med. Phys.37, 1840–1849 (2010).
    [CrossRef] [PubMed]
  12. R. Choe, S. D. Konecky, A. Corlu, K. Lee, T. Durduran, D. R. Busch, B. J. Czerniecki, J. Tchou, D. L. Fraker, A. DeMichele, B. Chance, S. R. Arridge, M. Schweiger, J. P. Culver, M. D. Schnall, M. E. Putt, M. A. Rosen, and A. G. Yodh, “Differentiation of benign and malignant breast tumors by in-vivo three-dimensional parallel-plate diffuse optical tomography,” J. Biomed. Opt.14, 024020 (2009).
    [CrossRef] [PubMed]
  13. D. B. Jakubowski, A. E. Cerussi, F. Bevilacqua, N. Shah, D. Hsiang, J. Butler, and B. J. Tromberg, “Monitoring neoadjuvant chemotherapy in breast cancer using quantitative diffuse optical spectroscopy: a case study,” J. Biomed. Opt.9, 230–238 (2004).
    [CrossRef] [PubMed]
  14. M. S. Pepe, The Statistical Evaluation of Medical Tests for Classification and Prediction (Oxford University Press, New York, 2003).
  15. N. E. Breslow, N. E. Day, and W. Davis, Statistical methods in cancer research (Vol. 1) The Analysis of Case control Studies, No. 32 in IARC Scientific Publications (International Agency for Research on Cancer, 1980).
  16. H. Dehghani, M. Eames, P. Yalavarthy, S. Davis, S. Srinivasan, C. Carpenter, B. W. Pogue, and K. D. Paulsen, “Near infrared optical tomography using NIRFAST: Algorithm for numerical model and image reconstruction,” Commun. Numer. Meth. Eng.25, 711–732 (2009).
    [CrossRef]
  17. M. Jermyn, B. W. Pogue, H. Ghadyani, S. Davis, M. Mastanduno, and H. Dehghani, “A user-enabling visual workflow for near-infrared light transport modeling in tissue,” in Biomedical Optics, OSA Technical Digest (Optical Society of America, 2012), paper BW1A.7.
  18. A. Cerussi, D. Hsiang, N. Shah, R. Mehta, A. Durkin, J. Butler, and B. J. Tromberg, “Predicting response to breast cancer neoadjuvant chemotherapy using diffuse optical spectroscopy.” Proc. Natl. Acad. Sci.104, 4014–4019 (2007).
    [CrossRef] [PubMed]
  19. Q. Zhu, S. Tannenbaum, P. Hegde, M. Kane, C. Xu, and S. H. Kurtzman, “Noninvasive monitoring of breast cancer during neoadjuvant chemotherapy using optical tomography with ultrasound localization.” Neoplasia10, 1028–1040 (2008).
    [PubMed]
  20. S. Jiang, B. W. Pogue, C. M. Carpenter, S. P. Poplack, W. A. Wells, C. A. Kogel, J. A. Forero, L. S. Muffly, G. N. Schwartz, K. D. Paulsen, and P. A. Kaufman, “Evaluation of breast tumor response to neoadjuvant chemotherapy with tomographic diffuse optical spectroscopy: case studies of tumor region-of-interest changes.” Radiology252, 551–560 (2009).
    [CrossRef] [PubMed]
  21. M. G. Pakalniskis, W. A. Wells, M. C. Schwab, H. M. Froehlich, S. Jiang, Z. Li, T. D. Tosteson, S. P. Poplack, P. A. Kaufman, B. W. Pogue, and K. D. Paulsen, “Tumor angiogenesis change estimated by using diffuse optical spectroscopic tomography: demonstrated correlation in women undergoing neoadjuvant chemotherapy for invasive breast cancer?” Radiology259, 365–374 (2011).
    [CrossRef] [PubMed]
  22. A. E. Cerussi, V. W. Tanamai, D. Hsiang, J. Butler, R. S. Mehta, and B. J. Tromberg, “Diffuse optical spectroscopic imaging correlates with final pathological response in breast cancer neoadjuvant chemotherapy.” Philos. Trans. R. Soc. A369, 4512–4530 (2011).
    [CrossRef]
  23. B. J. Tromberg, A. Cerussi, N. Shah, M. Compton, A. Durkin, D. Hsiang, J. Butler, and R. Mehta, “Imaging in breast cancer: diffuse optics in breast cancer: detecting tumors in pre-menopausal women and monitoring neoadjuvant chemotherapy.” Breast Cancer Res.7, 279–285 (2005).
    [CrossRef]
  24. B. Chance, S. Nioka, J. Zhang, E. F. Conant, E. Hwang, S. Briest, S. G. Orel, M. D. Schnall, and B. J. Czerniecki, “Breast cancer detection based on incremental biochemical and physiological properties of breast cancers a six-year, two-site study,” Acad. Rad.12, 925–933 (2005).
    [CrossRef]
  25. M. K. Simick, R. Jong, B. Wilson, and L. Lilge, “Non-ionizing near-infrared radiation transillumination spectroscopy for breast tissue density and assessment of breast cancer risk.” J. Biomed. Opt.9, 794–803 (2004).
    [CrossRef] [PubMed]
  26. K. Blyschak, M. Simick, R. Jong, and L. Lilge, “Classification of breast tissue density by optical transillumination spectroscopy: optical and physiological effects governing predictive value,” Med. Phys.31, 1398–1414 (2004).
    [CrossRef] [PubMed]
  27. X. Song, B. W. Pogue, S. Jiang, M. M. Doyley, H. Dehghani, T. D. Tosteson, and K. D. Paulsen, “Automated region detection based on the contrast-to-noise ratio in near-infrared tomography,” Appl. Opt.43, 1053–1062 (2004).
    [CrossRef] [PubMed]
  28. S. Kukreti, A. Cerussi, B. Tromberg, and E. Gratton, “Intrinsic tumor biomarkers revealed by novel double-differential spectroscopic analysis of near-infrared spectra,” J. Biomed. Opt.12, 020509–020509–3(2007).
    [CrossRef] [PubMed]

2012 (2)

R. Choe and T. Durduran, “Diffuse optical monitoring of the neoadjuvant breast cancer therapy,” IEEE J. Sel. Top. Quantum Electron.18, 1367–1386 (2012).
[CrossRef]

O. Falou, H. Soliman, A. Sadeghi-Naini, S. Iradji, S. Lemon-Wong, J. Zubovits, J. Spayne, R. Dent, M. Trudeau, J. Boileau, and , “Diffuse optical spectroscopy evaluation of treatment response in women with locally advanced breast cancer receiving neoadjuvant chemotherapy,” Trans. Onc.5, 238–246 (2012).

2011 (6)

D. Roblyer, S. Ueda, A. Cerussi, W. Tanamai, A. Durkin, R. Mehta, D. Hsiang, J. A. Butler, C. McLaren, W.-P. Chen, and B. Tromberg, “Optical imaging of breast cancer oxyhemoglobin flare correlates with neoadjuvant chemotherapy response one day after starting treatment.” Proc. Natl. Acad. Sci.108, 14626–14631 (2011).
[CrossRef] [PubMed]

L. C. Enfield, G. Cantanhede, D. Westbroek, M. Douek, A. D. Purushotham, J. C. Hebden, and A. P. Gibson, “Monitoring the response to primary medical therapy for breast cancer using three-dimensional time-resolved optical mammography.” Technol. Cancer Res. Treat.10, 533–547 (2011).
[PubMed]

L. Esserman, D. Berry, M. Cheang, C. Yau, C. Perou, L. Carey, A. DeMichele, J. Gray, K. Conway-Dorsey, M. Lenburg, and , “Chemotherapy response and recurrence-free survival in neoadjuvant breast cancer depends on biomarker profiles: results from the I-SPY 1 TRIAL (CALGB 150007/150012; ACRIN 6657),” Breast Cancer Res. Treat.30, 3242–3249 (2011).

K. McGuire, J. Toro-Burguete, H. Dang, J. Young, A. Soran, M. Zuley, R. Bhargava, M. Bonaventura, R. Johnson, and G. Ahrendt, “MRI staging after neoadjuvant chemotherapy for breast cancer: Does tumor biology affect accuracy?” Ann. Surg. Oncol.18, 3149–3154 (2011).
[CrossRef] [PubMed]

M. G. Pakalniskis, W. A. Wells, M. C. Schwab, H. M. Froehlich, S. Jiang, Z. Li, T. D. Tosteson, S. P. Poplack, P. A. Kaufman, B. W. Pogue, and K. D. Paulsen, “Tumor angiogenesis change estimated by using diffuse optical spectroscopic tomography: demonstrated correlation in women undergoing neoadjuvant chemotherapy for invasive breast cancer?” Radiology259, 365–374 (2011).
[CrossRef] [PubMed]

A. E. Cerussi, V. W. Tanamai, D. Hsiang, J. Butler, R. S. Mehta, and B. J. Tromberg, “Diffuse optical spectroscopic imaging correlates with final pathological response in breast cancer neoadjuvant chemotherapy.” Philos. Trans. R. Soc. A369, 4512–4530 (2011).
[CrossRef]

2010 (3)

L. R. Arlinghaus, X. Li, M. Levy, D. Smith, E. B. Welch, J. C. Gore, and T. E. Yankeelov, “Current and future trends in magnetic resonance imaging assessments of the response of breast tumors to neoadjuvant chemotherapy,” J. Oncol.919620, 1–17 (2010).
[CrossRef]

H. Soliman, A. Gunasekara, M. Rycroft, J. Zubovits, R. Dent, J. Spayne, M. Yaffe, and G. Czarnota, “Functional imaging using diffuse optical spectroscopy of neoadjuvant chemotherapy response in women with locally advanced breast cancer,” Clin. Cancer Res.16, 2605–2614 (2010).
[CrossRef] [PubMed]

D. R. Busch, W. Guo, R. Choe, T. Durduran, M. D. Feldman, C. Mies, M. A. Rosen, M. D. Schnall, B. J. Czerniecki, J. Tchou, A. DeMichele, M. E. Putt, and A. G. Yodh, “Computer aided automatic detection of malignant lesions in diffuse optical mammography,” Med. Phys.37, 1840–1849 (2010).
[CrossRef] [PubMed]

2009 (3)

R. Choe, S. D. Konecky, A. Corlu, K. Lee, T. Durduran, D. R. Busch, B. J. Czerniecki, J. Tchou, D. L. Fraker, A. DeMichele, B. Chance, S. R. Arridge, M. Schweiger, J. P. Culver, M. D. Schnall, M. E. Putt, M. A. Rosen, and A. G. Yodh, “Differentiation of benign and malignant breast tumors by in-vivo three-dimensional parallel-plate diffuse optical tomography,” J. Biomed. Opt.14, 024020 (2009).
[CrossRef] [PubMed]

H. Dehghani, M. Eames, P. Yalavarthy, S. Davis, S. Srinivasan, C. Carpenter, B. W. Pogue, and K. D. Paulsen, “Near infrared optical tomography using NIRFAST: Algorithm for numerical model and image reconstruction,” Commun. Numer. Meth. Eng.25, 711–732 (2009).
[CrossRef]

S. Jiang, B. W. Pogue, C. M. Carpenter, S. P. Poplack, W. A. Wells, C. A. Kogel, J. A. Forero, L. S. Muffly, G. N. Schwartz, K. D. Paulsen, and P. A. Kaufman, “Evaluation of breast tumor response to neoadjuvant chemotherapy with tomographic diffuse optical spectroscopy: case studies of tumor region-of-interest changes.” Radiology252, 551–560 (2009).
[CrossRef] [PubMed]

2008 (2)

Q. Zhu, S. Tannenbaum, P. Hegde, M. Kane, C. Xu, and S. H. Kurtzman, “Noninvasive monitoring of breast cancer during neoadjuvant chemotherapy using optical tomography with ultrasound localization.” Neoplasia10, 1028–1040 (2008).
[PubMed]

B. J. Tromberg, B. W. Pogue, K. D. Paulsen, A. G. Yodh, D. A. Boas, and A. E. Cerussi, “Assessing the future of diffuse optical imaging technologies for breast cancer management,” Med. Phys.35, 2443–2451 (2008).
[CrossRef] [PubMed]

2007 (3)

M. Kaufmann, G. von Minckwitz, H. D. Bear, A. Buzdar, P. McGale, H. Bonnefoi, M. Colleoni, C. Denkert, W. Eiermann, R. Jackesz, A. Makris, W. Miller, J.-Y. Pierga, V. Semiglazov, A. Schneeweiss, R. Souchon, V. Stearns, M. Untch, and S. Loibi, “Recommendations from an international expert panel on the use of neoadjuvant (primary) systemic treatment of operable breast cancer: new perspectives 2006,” Ann. Oncol.18, 1927–34 (2007).
[CrossRef] [PubMed]

A. Cerussi, D. Hsiang, N. Shah, R. Mehta, A. Durkin, J. Butler, and B. J. Tromberg, “Predicting response to breast cancer neoadjuvant chemotherapy using diffuse optical spectroscopy.” Proc. Natl. Acad. Sci.104, 4014–4019 (2007).
[CrossRef] [PubMed]

S. Kukreti, A. Cerussi, B. Tromberg, and E. Gratton, “Intrinsic tumor biomarkers revealed by novel double-differential spectroscopic analysis of near-infrared spectra,” J. Biomed. Opt.12, 020509–020509–3(2007).
[CrossRef] [PubMed]

2005 (2)

B. J. Tromberg, A. Cerussi, N. Shah, M. Compton, A. Durkin, D. Hsiang, J. Butler, and R. Mehta, “Imaging in breast cancer: diffuse optics in breast cancer: detecting tumors in pre-menopausal women and monitoring neoadjuvant chemotherapy.” Breast Cancer Res.7, 279–285 (2005).
[CrossRef]

B. Chance, S. Nioka, J. Zhang, E. F. Conant, E. Hwang, S. Briest, S. G. Orel, M. D. Schnall, and B. J. Czerniecki, “Breast cancer detection based on incremental biochemical and physiological properties of breast cancers a six-year, two-site study,” Acad. Rad.12, 925–933 (2005).
[CrossRef]

2004 (4)

M. K. Simick, R. Jong, B. Wilson, and L. Lilge, “Non-ionizing near-infrared radiation transillumination spectroscopy for breast tissue density and assessment of breast cancer risk.” J. Biomed. Opt.9, 794–803 (2004).
[CrossRef] [PubMed]

K. Blyschak, M. Simick, R. Jong, and L. Lilge, “Classification of breast tissue density by optical transillumination spectroscopy: optical and physiological effects governing predictive value,” Med. Phys.31, 1398–1414 (2004).
[CrossRef] [PubMed]

X. Song, B. W. Pogue, S. Jiang, M. M. Doyley, H. Dehghani, T. D. Tosteson, and K. D. Paulsen, “Automated region detection based on the contrast-to-noise ratio in near-infrared tomography,” Appl. Opt.43, 1053–1062 (2004).
[CrossRef] [PubMed]

D. B. Jakubowski, A. E. Cerussi, F. Bevilacqua, N. Shah, D. Hsiang, J. Butler, and B. J. Tromberg, “Monitoring neoadjuvant chemotherapy in breast cancer using quantitative diffuse optical spectroscopy: a case study,” J. Biomed. Opt.9, 230–238 (2004).
[CrossRef] [PubMed]

Ahrendt, G.

K. McGuire, J. Toro-Burguete, H. Dang, J. Young, A. Soran, M. Zuley, R. Bhargava, M. Bonaventura, R. Johnson, and G. Ahrendt, “MRI staging after neoadjuvant chemotherapy for breast cancer: Does tumor biology affect accuracy?” Ann. Surg. Oncol.18, 3149–3154 (2011).
[CrossRef] [PubMed]

Arlinghaus, L. R.

L. R. Arlinghaus, X. Li, M. Levy, D. Smith, E. B. Welch, J. C. Gore, and T. E. Yankeelov, “Current and future trends in magnetic resonance imaging assessments of the response of breast tumors to neoadjuvant chemotherapy,” J. Oncol.919620, 1–17 (2010).
[CrossRef]

Arridge, S. R.

R. Choe, S. D. Konecky, A. Corlu, K. Lee, T. Durduran, D. R. Busch, B. J. Czerniecki, J. Tchou, D. L. Fraker, A. DeMichele, B. Chance, S. R. Arridge, M. Schweiger, J. P. Culver, M. D. Schnall, M. E. Putt, M. A. Rosen, and A. G. Yodh, “Differentiation of benign and malignant breast tumors by in-vivo three-dimensional parallel-plate diffuse optical tomography,” J. Biomed. Opt.14, 024020 (2009).
[CrossRef] [PubMed]

Bear, H. D.

M. Kaufmann, G. von Minckwitz, H. D. Bear, A. Buzdar, P. McGale, H. Bonnefoi, M. Colleoni, C. Denkert, W. Eiermann, R. Jackesz, A. Makris, W. Miller, J.-Y. Pierga, V. Semiglazov, A. Schneeweiss, R. Souchon, V. Stearns, M. Untch, and S. Loibi, “Recommendations from an international expert panel on the use of neoadjuvant (primary) systemic treatment of operable breast cancer: new perspectives 2006,” Ann. Oncol.18, 1927–34 (2007).
[CrossRef] [PubMed]

Berry, D.

L. Esserman, D. Berry, M. Cheang, C. Yau, C. Perou, L. Carey, A. DeMichele, J. Gray, K. Conway-Dorsey, M. Lenburg, and , “Chemotherapy response and recurrence-free survival in neoadjuvant breast cancer depends on biomarker profiles: results from the I-SPY 1 TRIAL (CALGB 150007/150012; ACRIN 6657),” Breast Cancer Res. Treat.30, 3242–3249 (2011).

Bevilacqua, F.

D. B. Jakubowski, A. E. Cerussi, F. Bevilacqua, N. Shah, D. Hsiang, J. Butler, and B. J. Tromberg, “Monitoring neoadjuvant chemotherapy in breast cancer using quantitative diffuse optical spectroscopy: a case study,” J. Biomed. Opt.9, 230–238 (2004).
[CrossRef] [PubMed]

Bhargava, R.

K. McGuire, J. Toro-Burguete, H. Dang, J. Young, A. Soran, M. Zuley, R. Bhargava, M. Bonaventura, R. Johnson, and G. Ahrendt, “MRI staging after neoadjuvant chemotherapy for breast cancer: Does tumor biology affect accuracy?” Ann. Surg. Oncol.18, 3149–3154 (2011).
[CrossRef] [PubMed]

Blyschak, K.

K. Blyschak, M. Simick, R. Jong, and L. Lilge, “Classification of breast tissue density by optical transillumination spectroscopy: optical and physiological effects governing predictive value,” Med. Phys.31, 1398–1414 (2004).
[CrossRef] [PubMed]

Boas, D. A.

B. J. Tromberg, B. W. Pogue, K. D. Paulsen, A. G. Yodh, D. A. Boas, and A. E. Cerussi, “Assessing the future of diffuse optical imaging technologies for breast cancer management,” Med. Phys.35, 2443–2451 (2008).
[CrossRef] [PubMed]

Boileau, J.

O. Falou, H. Soliman, A. Sadeghi-Naini, S. Iradji, S. Lemon-Wong, J. Zubovits, J. Spayne, R. Dent, M. Trudeau, J. Boileau, and , “Diffuse optical spectroscopy evaluation of treatment response in women with locally advanced breast cancer receiving neoadjuvant chemotherapy,” Trans. Onc.5, 238–246 (2012).

Bonaventura, M.

K. McGuire, J. Toro-Burguete, H. Dang, J. Young, A. Soran, M. Zuley, R. Bhargava, M. Bonaventura, R. Johnson, and G. Ahrendt, “MRI staging after neoadjuvant chemotherapy for breast cancer: Does tumor biology affect accuracy?” Ann. Surg. Oncol.18, 3149–3154 (2011).
[CrossRef] [PubMed]

Bonnefoi, H.

M. Kaufmann, G. von Minckwitz, H. D. Bear, A. Buzdar, P. McGale, H. Bonnefoi, M. Colleoni, C. Denkert, W. Eiermann, R. Jackesz, A. Makris, W. Miller, J.-Y. Pierga, V. Semiglazov, A. Schneeweiss, R. Souchon, V. Stearns, M. Untch, and S. Loibi, “Recommendations from an international expert panel on the use of neoadjuvant (primary) systemic treatment of operable breast cancer: new perspectives 2006,” Ann. Oncol.18, 1927–34 (2007).
[CrossRef] [PubMed]

Breslow, N. E.

N. E. Breslow, N. E. Day, and W. Davis, Statistical methods in cancer research (Vol. 1) The Analysis of Case control Studies, No. 32 in IARC Scientific Publications (International Agency for Research on Cancer, 1980).

Briest, S.

B. Chance, S. Nioka, J. Zhang, E. F. Conant, E. Hwang, S. Briest, S. G. Orel, M. D. Schnall, and B. J. Czerniecki, “Breast cancer detection based on incremental biochemical and physiological properties of breast cancers a six-year, two-site study,” Acad. Rad.12, 925–933 (2005).
[CrossRef]

Busch, D. R.

D. R. Busch, W. Guo, R. Choe, T. Durduran, M. D. Feldman, C. Mies, M. A. Rosen, M. D. Schnall, B. J. Czerniecki, J. Tchou, A. DeMichele, M. E. Putt, and A. G. Yodh, “Computer aided automatic detection of malignant lesions in diffuse optical mammography,” Med. Phys.37, 1840–1849 (2010).
[CrossRef] [PubMed]

R. Choe, S. D. Konecky, A. Corlu, K. Lee, T. Durduran, D. R. Busch, B. J. Czerniecki, J. Tchou, D. L. Fraker, A. DeMichele, B. Chance, S. R. Arridge, M. Schweiger, J. P. Culver, M. D. Schnall, M. E. Putt, M. A. Rosen, and A. G. Yodh, “Differentiation of benign and malignant breast tumors by in-vivo three-dimensional parallel-plate diffuse optical tomography,” J. Biomed. Opt.14, 024020 (2009).
[CrossRef] [PubMed]

Butler, J.

A. E. Cerussi, V. W. Tanamai, D. Hsiang, J. Butler, R. S. Mehta, and B. J. Tromberg, “Diffuse optical spectroscopic imaging correlates with final pathological response in breast cancer neoadjuvant chemotherapy.” Philos. Trans. R. Soc. A369, 4512–4530 (2011).
[CrossRef]

A. Cerussi, D. Hsiang, N. Shah, R. Mehta, A. Durkin, J. Butler, and B. J. Tromberg, “Predicting response to breast cancer neoadjuvant chemotherapy using diffuse optical spectroscopy.” Proc. Natl. Acad. Sci.104, 4014–4019 (2007).
[CrossRef] [PubMed]

B. J. Tromberg, A. Cerussi, N. Shah, M. Compton, A. Durkin, D. Hsiang, J. Butler, and R. Mehta, “Imaging in breast cancer: diffuse optics in breast cancer: detecting tumors in pre-menopausal women and monitoring neoadjuvant chemotherapy.” Breast Cancer Res.7, 279–285 (2005).
[CrossRef]

D. B. Jakubowski, A. E. Cerussi, F. Bevilacqua, N. Shah, D. Hsiang, J. Butler, and B. J. Tromberg, “Monitoring neoadjuvant chemotherapy in breast cancer using quantitative diffuse optical spectroscopy: a case study,” J. Biomed. Opt.9, 230–238 (2004).
[CrossRef] [PubMed]

Butler, J. A.

D. Roblyer, S. Ueda, A. Cerussi, W. Tanamai, A. Durkin, R. Mehta, D. Hsiang, J. A. Butler, C. McLaren, W.-P. Chen, and B. Tromberg, “Optical imaging of breast cancer oxyhemoglobin flare correlates with neoadjuvant chemotherapy response one day after starting treatment.” Proc. Natl. Acad. Sci.108, 14626–14631 (2011).
[CrossRef] [PubMed]

Buzdar, A.

M. Kaufmann, G. von Minckwitz, H. D. Bear, A. Buzdar, P. McGale, H. Bonnefoi, M. Colleoni, C. Denkert, W. Eiermann, R. Jackesz, A. Makris, W. Miller, J.-Y. Pierga, V. Semiglazov, A. Schneeweiss, R. Souchon, V. Stearns, M. Untch, and S. Loibi, “Recommendations from an international expert panel on the use of neoadjuvant (primary) systemic treatment of operable breast cancer: new perspectives 2006,” Ann. Oncol.18, 1927–34 (2007).
[CrossRef] [PubMed]

Cantanhede, G.

L. C. Enfield, G. Cantanhede, D. Westbroek, M. Douek, A. D. Purushotham, J. C. Hebden, and A. P. Gibson, “Monitoring the response to primary medical therapy for breast cancer using three-dimensional time-resolved optical mammography.” Technol. Cancer Res. Treat.10, 533–547 (2011).
[PubMed]

Carey, L.

L. Esserman, D. Berry, M. Cheang, C. Yau, C. Perou, L. Carey, A. DeMichele, J. Gray, K. Conway-Dorsey, M. Lenburg, and , “Chemotherapy response and recurrence-free survival in neoadjuvant breast cancer depends on biomarker profiles: results from the I-SPY 1 TRIAL (CALGB 150007/150012; ACRIN 6657),” Breast Cancer Res. Treat.30, 3242–3249 (2011).

Carpenter, C.

H. Dehghani, M. Eames, P. Yalavarthy, S. Davis, S. Srinivasan, C. Carpenter, B. W. Pogue, and K. D. Paulsen, “Near infrared optical tomography using NIRFAST: Algorithm for numerical model and image reconstruction,” Commun. Numer. Meth. Eng.25, 711–732 (2009).
[CrossRef]

Carpenter, C. M.

S. Jiang, B. W. Pogue, C. M. Carpenter, S. P. Poplack, W. A. Wells, C. A. Kogel, J. A. Forero, L. S. Muffly, G. N. Schwartz, K. D. Paulsen, and P. A. Kaufman, “Evaluation of breast tumor response to neoadjuvant chemotherapy with tomographic diffuse optical spectroscopy: case studies of tumor region-of-interest changes.” Radiology252, 551–560 (2009).
[CrossRef] [PubMed]

Cerussi, A.

D. Roblyer, S. Ueda, A. Cerussi, W. Tanamai, A. Durkin, R. Mehta, D. Hsiang, J. A. Butler, C. McLaren, W.-P. Chen, and B. Tromberg, “Optical imaging of breast cancer oxyhemoglobin flare correlates with neoadjuvant chemotherapy response one day after starting treatment.” Proc. Natl. Acad. Sci.108, 14626–14631 (2011).
[CrossRef] [PubMed]

A. Cerussi, D. Hsiang, N. Shah, R. Mehta, A. Durkin, J. Butler, and B. J. Tromberg, “Predicting response to breast cancer neoadjuvant chemotherapy using diffuse optical spectroscopy.” Proc. Natl. Acad. Sci.104, 4014–4019 (2007).
[CrossRef] [PubMed]

S. Kukreti, A. Cerussi, B. Tromberg, and E. Gratton, “Intrinsic tumor biomarkers revealed by novel double-differential spectroscopic analysis of near-infrared spectra,” J. Biomed. Opt.12, 020509–020509–3(2007).
[CrossRef] [PubMed]

B. J. Tromberg, A. Cerussi, N. Shah, M. Compton, A. Durkin, D. Hsiang, J. Butler, and R. Mehta, “Imaging in breast cancer: diffuse optics in breast cancer: detecting tumors in pre-menopausal women and monitoring neoadjuvant chemotherapy.” Breast Cancer Res.7, 279–285 (2005).
[CrossRef]

Cerussi, A. E.

A. E. Cerussi, V. W. Tanamai, D. Hsiang, J. Butler, R. S. Mehta, and B. J. Tromberg, “Diffuse optical spectroscopic imaging correlates with final pathological response in breast cancer neoadjuvant chemotherapy.” Philos. Trans. R. Soc. A369, 4512–4530 (2011).
[CrossRef]

B. J. Tromberg, B. W. Pogue, K. D. Paulsen, A. G. Yodh, D. A. Boas, and A. E. Cerussi, “Assessing the future of diffuse optical imaging technologies for breast cancer management,” Med. Phys.35, 2443–2451 (2008).
[CrossRef] [PubMed]

D. B. Jakubowski, A. E. Cerussi, F. Bevilacqua, N. Shah, D. Hsiang, J. Butler, and B. J. Tromberg, “Monitoring neoadjuvant chemotherapy in breast cancer using quantitative diffuse optical spectroscopy: a case study,” J. Biomed. Opt.9, 230–238 (2004).
[CrossRef] [PubMed]

Chance, B.

R. Choe, S. D. Konecky, A. Corlu, K. Lee, T. Durduran, D. R. Busch, B. J. Czerniecki, J. Tchou, D. L. Fraker, A. DeMichele, B. Chance, S. R. Arridge, M. Schweiger, J. P. Culver, M. D. Schnall, M. E. Putt, M. A. Rosen, and A. G. Yodh, “Differentiation of benign and malignant breast tumors by in-vivo three-dimensional parallel-plate diffuse optical tomography,” J. Biomed. Opt.14, 024020 (2009).
[CrossRef] [PubMed]

B. Chance, S. Nioka, J. Zhang, E. F. Conant, E. Hwang, S. Briest, S. G. Orel, M. D. Schnall, and B. J. Czerniecki, “Breast cancer detection based on incremental biochemical and physiological properties of breast cancers a six-year, two-site study,” Acad. Rad.12, 925–933 (2005).
[CrossRef]

Cheang, M.

L. Esserman, D. Berry, M. Cheang, C. Yau, C. Perou, L. Carey, A. DeMichele, J. Gray, K. Conway-Dorsey, M. Lenburg, and , “Chemotherapy response and recurrence-free survival in neoadjuvant breast cancer depends on biomarker profiles: results from the I-SPY 1 TRIAL (CALGB 150007/150012; ACRIN 6657),” Breast Cancer Res. Treat.30, 3242–3249 (2011).

Chen, W.-P.

D. Roblyer, S. Ueda, A. Cerussi, W. Tanamai, A. Durkin, R. Mehta, D. Hsiang, J. A. Butler, C. McLaren, W.-P. Chen, and B. Tromberg, “Optical imaging of breast cancer oxyhemoglobin flare correlates with neoadjuvant chemotherapy response one day after starting treatment.” Proc. Natl. Acad. Sci.108, 14626–14631 (2011).
[CrossRef] [PubMed]

Choe, R.

R. Choe and T. Durduran, “Diffuse optical monitoring of the neoadjuvant breast cancer therapy,” IEEE J. Sel. Top. Quantum Electron.18, 1367–1386 (2012).
[CrossRef]

D. R. Busch, W. Guo, R. Choe, T. Durduran, M. D. Feldman, C. Mies, M. A. Rosen, M. D. Schnall, B. J. Czerniecki, J. Tchou, A. DeMichele, M. E. Putt, and A. G. Yodh, “Computer aided automatic detection of malignant lesions in diffuse optical mammography,” Med. Phys.37, 1840–1849 (2010).
[CrossRef] [PubMed]

R. Choe, S. D. Konecky, A. Corlu, K. Lee, T. Durduran, D. R. Busch, B. J. Czerniecki, J. Tchou, D. L. Fraker, A. DeMichele, B. Chance, S. R. Arridge, M. Schweiger, J. P. Culver, M. D. Schnall, M. E. Putt, M. A. Rosen, and A. G. Yodh, “Differentiation of benign and malignant breast tumors by in-vivo three-dimensional parallel-plate diffuse optical tomography,” J. Biomed. Opt.14, 024020 (2009).
[CrossRef] [PubMed]

Colleoni, M.

M. Kaufmann, G. von Minckwitz, H. D. Bear, A. Buzdar, P. McGale, H. Bonnefoi, M. Colleoni, C. Denkert, W. Eiermann, R. Jackesz, A. Makris, W. Miller, J.-Y. Pierga, V. Semiglazov, A. Schneeweiss, R. Souchon, V. Stearns, M. Untch, and S. Loibi, “Recommendations from an international expert panel on the use of neoadjuvant (primary) systemic treatment of operable breast cancer: new perspectives 2006,” Ann. Oncol.18, 1927–34 (2007).
[CrossRef] [PubMed]

Compton, M.

B. J. Tromberg, A. Cerussi, N. Shah, M. Compton, A. Durkin, D. Hsiang, J. Butler, and R. Mehta, “Imaging in breast cancer: diffuse optics in breast cancer: detecting tumors in pre-menopausal women and monitoring neoadjuvant chemotherapy.” Breast Cancer Res.7, 279–285 (2005).
[CrossRef]

Conant, E. F.

B. Chance, S. Nioka, J. Zhang, E. F. Conant, E. Hwang, S. Briest, S. G. Orel, M. D. Schnall, and B. J. Czerniecki, “Breast cancer detection based on incremental biochemical and physiological properties of breast cancers a six-year, two-site study,” Acad. Rad.12, 925–933 (2005).
[CrossRef]

Conway-Dorsey, K.

L. Esserman, D. Berry, M. Cheang, C. Yau, C. Perou, L. Carey, A. DeMichele, J. Gray, K. Conway-Dorsey, M. Lenburg, and , “Chemotherapy response and recurrence-free survival in neoadjuvant breast cancer depends on biomarker profiles: results from the I-SPY 1 TRIAL (CALGB 150007/150012; ACRIN 6657),” Breast Cancer Res. Treat.30, 3242–3249 (2011).

Corlu, A.

R. Choe, S. D. Konecky, A. Corlu, K. Lee, T. Durduran, D. R. Busch, B. J. Czerniecki, J. Tchou, D. L. Fraker, A. DeMichele, B. Chance, S. R. Arridge, M. Schweiger, J. P. Culver, M. D. Schnall, M. E. Putt, M. A. Rosen, and A. G. Yodh, “Differentiation of benign and malignant breast tumors by in-vivo three-dimensional parallel-plate diffuse optical tomography,” J. Biomed. Opt.14, 024020 (2009).
[CrossRef] [PubMed]

Culver, J. P.

R. Choe, S. D. Konecky, A. Corlu, K. Lee, T. Durduran, D. R. Busch, B. J. Czerniecki, J. Tchou, D. L. Fraker, A. DeMichele, B. Chance, S. R. Arridge, M. Schweiger, J. P. Culver, M. D. Schnall, M. E. Putt, M. A. Rosen, and A. G. Yodh, “Differentiation of benign and malignant breast tumors by in-vivo three-dimensional parallel-plate diffuse optical tomography,” J. Biomed. Opt.14, 024020 (2009).
[CrossRef] [PubMed]

Czarnota, G.

H. Soliman, A. Gunasekara, M. Rycroft, J. Zubovits, R. Dent, J. Spayne, M. Yaffe, and G. Czarnota, “Functional imaging using diffuse optical spectroscopy of neoadjuvant chemotherapy response in women with locally advanced breast cancer,” Clin. Cancer Res.16, 2605–2614 (2010).
[CrossRef] [PubMed]

Czerniecki, B. J.

D. R. Busch, W. Guo, R. Choe, T. Durduran, M. D. Feldman, C. Mies, M. A. Rosen, M. D. Schnall, B. J. Czerniecki, J. Tchou, A. DeMichele, M. E. Putt, and A. G. Yodh, “Computer aided automatic detection of malignant lesions in diffuse optical mammography,” Med. Phys.37, 1840–1849 (2010).
[CrossRef] [PubMed]

R. Choe, S. D. Konecky, A. Corlu, K. Lee, T. Durduran, D. R. Busch, B. J. Czerniecki, J. Tchou, D. L. Fraker, A. DeMichele, B. Chance, S. R. Arridge, M. Schweiger, J. P. Culver, M. D. Schnall, M. E. Putt, M. A. Rosen, and A. G. Yodh, “Differentiation of benign and malignant breast tumors by in-vivo three-dimensional parallel-plate diffuse optical tomography,” J. Biomed. Opt.14, 024020 (2009).
[CrossRef] [PubMed]

B. Chance, S. Nioka, J. Zhang, E. F. Conant, E. Hwang, S. Briest, S. G. Orel, M. D. Schnall, and B. J. Czerniecki, “Breast cancer detection based on incremental biochemical and physiological properties of breast cancers a six-year, two-site study,” Acad. Rad.12, 925–933 (2005).
[CrossRef]

Dang, H.

K. McGuire, J. Toro-Burguete, H. Dang, J. Young, A. Soran, M. Zuley, R. Bhargava, M. Bonaventura, R. Johnson, and G. Ahrendt, “MRI staging after neoadjuvant chemotherapy for breast cancer: Does tumor biology affect accuracy?” Ann. Surg. Oncol.18, 3149–3154 (2011).
[CrossRef] [PubMed]

Davis, S.

H. Dehghani, M. Eames, P. Yalavarthy, S. Davis, S. Srinivasan, C. Carpenter, B. W. Pogue, and K. D. Paulsen, “Near infrared optical tomography using NIRFAST: Algorithm for numerical model and image reconstruction,” Commun. Numer. Meth. Eng.25, 711–732 (2009).
[CrossRef]

M. Jermyn, B. W. Pogue, H. Ghadyani, S. Davis, M. Mastanduno, and H. Dehghani, “A user-enabling visual workflow for near-infrared light transport modeling in tissue,” in Biomedical Optics, OSA Technical Digest (Optical Society of America, 2012), paper BW1A.7.

Davis, W.

N. E. Breslow, N. E. Day, and W. Davis, Statistical methods in cancer research (Vol. 1) The Analysis of Case control Studies, No. 32 in IARC Scientific Publications (International Agency for Research on Cancer, 1980).

Day, N. E.

N. E. Breslow, N. E. Day, and W. Davis, Statistical methods in cancer research (Vol. 1) The Analysis of Case control Studies, No. 32 in IARC Scientific Publications (International Agency for Research on Cancer, 1980).

Dehghani, H.

H. Dehghani, M. Eames, P. Yalavarthy, S. Davis, S. Srinivasan, C. Carpenter, B. W. Pogue, and K. D. Paulsen, “Near infrared optical tomography using NIRFAST: Algorithm for numerical model and image reconstruction,” Commun. Numer. Meth. Eng.25, 711–732 (2009).
[CrossRef]

X. Song, B. W. Pogue, S. Jiang, M. M. Doyley, H. Dehghani, T. D. Tosteson, and K. D. Paulsen, “Automated region detection based on the contrast-to-noise ratio in near-infrared tomography,” Appl. Opt.43, 1053–1062 (2004).
[CrossRef] [PubMed]

M. Jermyn, B. W. Pogue, H. Ghadyani, S. Davis, M. Mastanduno, and H. Dehghani, “A user-enabling visual workflow for near-infrared light transport modeling in tissue,” in Biomedical Optics, OSA Technical Digest (Optical Society of America, 2012), paper BW1A.7.

DeMichele, A.

L. Esserman, D. Berry, M. Cheang, C. Yau, C. Perou, L. Carey, A. DeMichele, J. Gray, K. Conway-Dorsey, M. Lenburg, and , “Chemotherapy response and recurrence-free survival in neoadjuvant breast cancer depends on biomarker profiles: results from the I-SPY 1 TRIAL (CALGB 150007/150012; ACRIN 6657),” Breast Cancer Res. Treat.30, 3242–3249 (2011).

D. R. Busch, W. Guo, R. Choe, T. Durduran, M. D. Feldman, C. Mies, M. A. Rosen, M. D. Schnall, B. J. Czerniecki, J. Tchou, A. DeMichele, M. E. Putt, and A. G. Yodh, “Computer aided automatic detection of malignant lesions in diffuse optical mammography,” Med. Phys.37, 1840–1849 (2010).
[CrossRef] [PubMed]

R. Choe, S. D. Konecky, A. Corlu, K. Lee, T. Durduran, D. R. Busch, B. J. Czerniecki, J. Tchou, D. L. Fraker, A. DeMichele, B. Chance, S. R. Arridge, M. Schweiger, J. P. Culver, M. D. Schnall, M. E. Putt, M. A. Rosen, and A. G. Yodh, “Differentiation of benign and malignant breast tumors by in-vivo three-dimensional parallel-plate diffuse optical tomography,” J. Biomed. Opt.14, 024020 (2009).
[CrossRef] [PubMed]

Denkert, C.

M. Kaufmann, G. von Minckwitz, H. D. Bear, A. Buzdar, P. McGale, H. Bonnefoi, M. Colleoni, C. Denkert, W. Eiermann, R. Jackesz, A. Makris, W. Miller, J.-Y. Pierga, V. Semiglazov, A. Schneeweiss, R. Souchon, V. Stearns, M. Untch, and S. Loibi, “Recommendations from an international expert panel on the use of neoadjuvant (primary) systemic treatment of operable breast cancer: new perspectives 2006,” Ann. Oncol.18, 1927–34 (2007).
[CrossRef] [PubMed]

Dent, R.

O. Falou, H. Soliman, A. Sadeghi-Naini, S. Iradji, S. Lemon-Wong, J. Zubovits, J. Spayne, R. Dent, M. Trudeau, J. Boileau, and , “Diffuse optical spectroscopy evaluation of treatment response in women with locally advanced breast cancer receiving neoadjuvant chemotherapy,” Trans. Onc.5, 238–246 (2012).

H. Soliman, A. Gunasekara, M. Rycroft, J. Zubovits, R. Dent, J. Spayne, M. Yaffe, and G. Czarnota, “Functional imaging using diffuse optical spectroscopy of neoadjuvant chemotherapy response in women with locally advanced breast cancer,” Clin. Cancer Res.16, 2605–2614 (2010).
[CrossRef] [PubMed]

Douek, M.

L. C. Enfield, G. Cantanhede, D. Westbroek, M. Douek, A. D. Purushotham, J. C. Hebden, and A. P. Gibson, “Monitoring the response to primary medical therapy for breast cancer using three-dimensional time-resolved optical mammography.” Technol. Cancer Res. Treat.10, 533–547 (2011).
[PubMed]

Doyley, M. M.

Durduran, T.

R. Choe and T. Durduran, “Diffuse optical monitoring of the neoadjuvant breast cancer therapy,” IEEE J. Sel. Top. Quantum Electron.18, 1367–1386 (2012).
[CrossRef]

D. R. Busch, W. Guo, R. Choe, T. Durduran, M. D. Feldman, C. Mies, M. A. Rosen, M. D. Schnall, B. J. Czerniecki, J. Tchou, A. DeMichele, M. E. Putt, and A. G. Yodh, “Computer aided automatic detection of malignant lesions in diffuse optical mammography,” Med. Phys.37, 1840–1849 (2010).
[CrossRef] [PubMed]

R. Choe, S. D. Konecky, A. Corlu, K. Lee, T. Durduran, D. R. Busch, B. J. Czerniecki, J. Tchou, D. L. Fraker, A. DeMichele, B. Chance, S. R. Arridge, M. Schweiger, J. P. Culver, M. D. Schnall, M. E. Putt, M. A. Rosen, and A. G. Yodh, “Differentiation of benign and malignant breast tumors by in-vivo three-dimensional parallel-plate diffuse optical tomography,” J. Biomed. Opt.14, 024020 (2009).
[CrossRef] [PubMed]

Durkin, A.

D. Roblyer, S. Ueda, A. Cerussi, W. Tanamai, A. Durkin, R. Mehta, D. Hsiang, J. A. Butler, C. McLaren, W.-P. Chen, and B. Tromberg, “Optical imaging of breast cancer oxyhemoglobin flare correlates with neoadjuvant chemotherapy response one day after starting treatment.” Proc. Natl. Acad. Sci.108, 14626–14631 (2011).
[CrossRef] [PubMed]

A. Cerussi, D. Hsiang, N. Shah, R. Mehta, A. Durkin, J. Butler, and B. J. Tromberg, “Predicting response to breast cancer neoadjuvant chemotherapy using diffuse optical spectroscopy.” Proc. Natl. Acad. Sci.104, 4014–4019 (2007).
[CrossRef] [PubMed]

B. J. Tromberg, A. Cerussi, N. Shah, M. Compton, A. Durkin, D. Hsiang, J. Butler, and R. Mehta, “Imaging in breast cancer: diffuse optics in breast cancer: detecting tumors in pre-menopausal women and monitoring neoadjuvant chemotherapy.” Breast Cancer Res.7, 279–285 (2005).
[CrossRef]

Eames, M.

H. Dehghani, M. Eames, P. Yalavarthy, S. Davis, S. Srinivasan, C. Carpenter, B. W. Pogue, and K. D. Paulsen, “Near infrared optical tomography using NIRFAST: Algorithm for numerical model and image reconstruction,” Commun. Numer. Meth. Eng.25, 711–732 (2009).
[CrossRef]

Eiermann, W.

M. Kaufmann, G. von Minckwitz, H. D. Bear, A. Buzdar, P. McGale, H. Bonnefoi, M. Colleoni, C. Denkert, W. Eiermann, R. Jackesz, A. Makris, W. Miller, J.-Y. Pierga, V. Semiglazov, A. Schneeweiss, R. Souchon, V. Stearns, M. Untch, and S. Loibi, “Recommendations from an international expert panel on the use of neoadjuvant (primary) systemic treatment of operable breast cancer: new perspectives 2006,” Ann. Oncol.18, 1927–34 (2007).
[CrossRef] [PubMed]

Enfield, L. C.

L. C. Enfield, G. Cantanhede, D. Westbroek, M. Douek, A. D. Purushotham, J. C. Hebden, and A. P. Gibson, “Monitoring the response to primary medical therapy for breast cancer using three-dimensional time-resolved optical mammography.” Technol. Cancer Res. Treat.10, 533–547 (2011).
[PubMed]

Esserman, L.

L. Esserman, D. Berry, M. Cheang, C. Yau, C. Perou, L. Carey, A. DeMichele, J. Gray, K. Conway-Dorsey, M. Lenburg, and , “Chemotherapy response and recurrence-free survival in neoadjuvant breast cancer depends on biomarker profiles: results from the I-SPY 1 TRIAL (CALGB 150007/150012; ACRIN 6657),” Breast Cancer Res. Treat.30, 3242–3249 (2011).

Falou, O.

O. Falou, H. Soliman, A. Sadeghi-Naini, S. Iradji, S. Lemon-Wong, J. Zubovits, J. Spayne, R. Dent, M. Trudeau, J. Boileau, and , “Diffuse optical spectroscopy evaluation of treatment response in women with locally advanced breast cancer receiving neoadjuvant chemotherapy,” Trans. Onc.5, 238–246 (2012).

Feldman, M. D.

D. R. Busch, W. Guo, R. Choe, T. Durduran, M. D. Feldman, C. Mies, M. A. Rosen, M. D. Schnall, B. J. Czerniecki, J. Tchou, A. DeMichele, M. E. Putt, and A. G. Yodh, “Computer aided automatic detection of malignant lesions in diffuse optical mammography,” Med. Phys.37, 1840–1849 (2010).
[CrossRef] [PubMed]

Forero, J. A.

S. Jiang, B. W. Pogue, C. M. Carpenter, S. P. Poplack, W. A. Wells, C. A. Kogel, J. A. Forero, L. S. Muffly, G. N. Schwartz, K. D. Paulsen, and P. A. Kaufman, “Evaluation of breast tumor response to neoadjuvant chemotherapy with tomographic diffuse optical spectroscopy: case studies of tumor region-of-interest changes.” Radiology252, 551–560 (2009).
[CrossRef] [PubMed]

Fraker, D. L.

R. Choe, S. D. Konecky, A. Corlu, K. Lee, T. Durduran, D. R. Busch, B. J. Czerniecki, J. Tchou, D. L. Fraker, A. DeMichele, B. Chance, S. R. Arridge, M. Schweiger, J. P. Culver, M. D. Schnall, M. E. Putt, M. A. Rosen, and A. G. Yodh, “Differentiation of benign and malignant breast tumors by in-vivo three-dimensional parallel-plate diffuse optical tomography,” J. Biomed. Opt.14, 024020 (2009).
[CrossRef] [PubMed]

Froehlich, H. M.

M. G. Pakalniskis, W. A. Wells, M. C. Schwab, H. M. Froehlich, S. Jiang, Z. Li, T. D. Tosteson, S. P. Poplack, P. A. Kaufman, B. W. Pogue, and K. D. Paulsen, “Tumor angiogenesis change estimated by using diffuse optical spectroscopic tomography: demonstrated correlation in women undergoing neoadjuvant chemotherapy for invasive breast cancer?” Radiology259, 365–374 (2011).
[CrossRef] [PubMed]

Ghadyani, H.

M. Jermyn, B. W. Pogue, H. Ghadyani, S. Davis, M. Mastanduno, and H. Dehghani, “A user-enabling visual workflow for near-infrared light transport modeling in tissue,” in Biomedical Optics, OSA Technical Digest (Optical Society of America, 2012), paper BW1A.7.

Gibson, A. P.

L. C. Enfield, G. Cantanhede, D. Westbroek, M. Douek, A. D. Purushotham, J. C. Hebden, and A. P. Gibson, “Monitoring the response to primary medical therapy for breast cancer using three-dimensional time-resolved optical mammography.” Technol. Cancer Res. Treat.10, 533–547 (2011).
[PubMed]

Gore, J. C.

L. R. Arlinghaus, X. Li, M. Levy, D. Smith, E. B. Welch, J. C. Gore, and T. E. Yankeelov, “Current and future trends in magnetic resonance imaging assessments of the response of breast tumors to neoadjuvant chemotherapy,” J. Oncol.919620, 1–17 (2010).
[CrossRef]

Gratton, E.

S. Kukreti, A. Cerussi, B. Tromberg, and E. Gratton, “Intrinsic tumor biomarkers revealed by novel double-differential spectroscopic analysis of near-infrared spectra,” J. Biomed. Opt.12, 020509–020509–3(2007).
[CrossRef] [PubMed]

Gray, J.

L. Esserman, D. Berry, M. Cheang, C. Yau, C. Perou, L. Carey, A. DeMichele, J. Gray, K. Conway-Dorsey, M. Lenburg, and , “Chemotherapy response and recurrence-free survival in neoadjuvant breast cancer depends on biomarker profiles: results from the I-SPY 1 TRIAL (CALGB 150007/150012; ACRIN 6657),” Breast Cancer Res. Treat.30, 3242–3249 (2011).

Gunasekara, A.

H. Soliman, A. Gunasekara, M. Rycroft, J. Zubovits, R. Dent, J. Spayne, M. Yaffe, and G. Czarnota, “Functional imaging using diffuse optical spectroscopy of neoadjuvant chemotherapy response in women with locally advanced breast cancer,” Clin. Cancer Res.16, 2605–2614 (2010).
[CrossRef] [PubMed]

Guo, W.

D. R. Busch, W. Guo, R. Choe, T. Durduran, M. D. Feldman, C. Mies, M. A. Rosen, M. D. Schnall, B. J. Czerniecki, J. Tchou, A. DeMichele, M. E. Putt, and A. G. Yodh, “Computer aided automatic detection of malignant lesions in diffuse optical mammography,” Med. Phys.37, 1840–1849 (2010).
[CrossRef] [PubMed]

Hebden, J. C.

L. C. Enfield, G. Cantanhede, D. Westbroek, M. Douek, A. D. Purushotham, J. C. Hebden, and A. P. Gibson, “Monitoring the response to primary medical therapy for breast cancer using three-dimensional time-resolved optical mammography.” Technol. Cancer Res. Treat.10, 533–547 (2011).
[PubMed]

Hegde, P.

Q. Zhu, S. Tannenbaum, P. Hegde, M. Kane, C. Xu, and S. H. Kurtzman, “Noninvasive monitoring of breast cancer during neoadjuvant chemotherapy using optical tomography with ultrasound localization.” Neoplasia10, 1028–1040 (2008).
[PubMed]

Hsiang, D.

A. E. Cerussi, V. W. Tanamai, D. Hsiang, J. Butler, R. S. Mehta, and B. J. Tromberg, “Diffuse optical spectroscopic imaging correlates with final pathological response in breast cancer neoadjuvant chemotherapy.” Philos. Trans. R. Soc. A369, 4512–4530 (2011).
[CrossRef]

D. Roblyer, S. Ueda, A. Cerussi, W. Tanamai, A. Durkin, R. Mehta, D. Hsiang, J. A. Butler, C. McLaren, W.-P. Chen, and B. Tromberg, “Optical imaging of breast cancer oxyhemoglobin flare correlates with neoadjuvant chemotherapy response one day after starting treatment.” Proc. Natl. Acad. Sci.108, 14626–14631 (2011).
[CrossRef] [PubMed]

A. Cerussi, D. Hsiang, N. Shah, R. Mehta, A. Durkin, J. Butler, and B. J. Tromberg, “Predicting response to breast cancer neoadjuvant chemotherapy using diffuse optical spectroscopy.” Proc. Natl. Acad. Sci.104, 4014–4019 (2007).
[CrossRef] [PubMed]

B. J. Tromberg, A. Cerussi, N. Shah, M. Compton, A. Durkin, D. Hsiang, J. Butler, and R. Mehta, “Imaging in breast cancer: diffuse optics in breast cancer: detecting tumors in pre-menopausal women and monitoring neoadjuvant chemotherapy.” Breast Cancer Res.7, 279–285 (2005).
[CrossRef]

D. B. Jakubowski, A. E. Cerussi, F. Bevilacqua, N. Shah, D. Hsiang, J. Butler, and B. J. Tromberg, “Monitoring neoadjuvant chemotherapy in breast cancer using quantitative diffuse optical spectroscopy: a case study,” J. Biomed. Opt.9, 230–238 (2004).
[CrossRef] [PubMed]

Hwang, E.

B. Chance, S. Nioka, J. Zhang, E. F. Conant, E. Hwang, S. Briest, S. G. Orel, M. D. Schnall, and B. J. Czerniecki, “Breast cancer detection based on incremental biochemical and physiological properties of breast cancers a six-year, two-site study,” Acad. Rad.12, 925–933 (2005).
[CrossRef]

Iradji, S.

O. Falou, H. Soliman, A. Sadeghi-Naini, S. Iradji, S. Lemon-Wong, J. Zubovits, J. Spayne, R. Dent, M. Trudeau, J. Boileau, and , “Diffuse optical spectroscopy evaluation of treatment response in women with locally advanced breast cancer receiving neoadjuvant chemotherapy,” Trans. Onc.5, 238–246 (2012).

Jackesz, R.

M. Kaufmann, G. von Minckwitz, H. D. Bear, A. Buzdar, P. McGale, H. Bonnefoi, M. Colleoni, C. Denkert, W. Eiermann, R. Jackesz, A. Makris, W. Miller, J.-Y. Pierga, V. Semiglazov, A. Schneeweiss, R. Souchon, V. Stearns, M. Untch, and S. Loibi, “Recommendations from an international expert panel on the use of neoadjuvant (primary) systemic treatment of operable breast cancer: new perspectives 2006,” Ann. Oncol.18, 1927–34 (2007).
[CrossRef] [PubMed]

Jakubowski, D. B.

D. B. Jakubowski, A. E. Cerussi, F. Bevilacqua, N. Shah, D. Hsiang, J. Butler, and B. J. Tromberg, “Monitoring neoadjuvant chemotherapy in breast cancer using quantitative diffuse optical spectroscopy: a case study,” J. Biomed. Opt.9, 230–238 (2004).
[CrossRef] [PubMed]

Jermyn, M.

M. Jermyn, B. W. Pogue, H. Ghadyani, S. Davis, M. Mastanduno, and H. Dehghani, “A user-enabling visual workflow for near-infrared light transport modeling in tissue,” in Biomedical Optics, OSA Technical Digest (Optical Society of America, 2012), paper BW1A.7.

Jiang, S.

M. G. Pakalniskis, W. A. Wells, M. C. Schwab, H. M. Froehlich, S. Jiang, Z. Li, T. D. Tosteson, S. P. Poplack, P. A. Kaufman, B. W. Pogue, and K. D. Paulsen, “Tumor angiogenesis change estimated by using diffuse optical spectroscopic tomography: demonstrated correlation in women undergoing neoadjuvant chemotherapy for invasive breast cancer?” Radiology259, 365–374 (2011).
[CrossRef] [PubMed]

S. Jiang, B. W. Pogue, C. M. Carpenter, S. P. Poplack, W. A. Wells, C. A. Kogel, J. A. Forero, L. S. Muffly, G. N. Schwartz, K. D. Paulsen, and P. A. Kaufman, “Evaluation of breast tumor response to neoadjuvant chemotherapy with tomographic diffuse optical spectroscopy: case studies of tumor region-of-interest changes.” Radiology252, 551–560 (2009).
[CrossRef] [PubMed]

X. Song, B. W. Pogue, S. Jiang, M. M. Doyley, H. Dehghani, T. D. Tosteson, and K. D. Paulsen, “Automated region detection based on the contrast-to-noise ratio in near-infrared tomography,” Appl. Opt.43, 1053–1062 (2004).
[CrossRef] [PubMed]

Johnson, R.

K. McGuire, J. Toro-Burguete, H. Dang, J. Young, A. Soran, M. Zuley, R. Bhargava, M. Bonaventura, R. Johnson, and G. Ahrendt, “MRI staging after neoadjuvant chemotherapy for breast cancer: Does tumor biology affect accuracy?” Ann. Surg. Oncol.18, 3149–3154 (2011).
[CrossRef] [PubMed]

Jong, R.

K. Blyschak, M. Simick, R. Jong, and L. Lilge, “Classification of breast tissue density by optical transillumination spectroscopy: optical and physiological effects governing predictive value,” Med. Phys.31, 1398–1414 (2004).
[CrossRef] [PubMed]

M. K. Simick, R. Jong, B. Wilson, and L. Lilge, “Non-ionizing near-infrared radiation transillumination spectroscopy for breast tissue density and assessment of breast cancer risk.” J. Biomed. Opt.9, 794–803 (2004).
[CrossRef] [PubMed]

Kane, M.

Q. Zhu, S. Tannenbaum, P. Hegde, M. Kane, C. Xu, and S. H. Kurtzman, “Noninvasive monitoring of breast cancer during neoadjuvant chemotherapy using optical tomography with ultrasound localization.” Neoplasia10, 1028–1040 (2008).
[PubMed]

Kaufman, P. A.

M. G. Pakalniskis, W. A. Wells, M. C. Schwab, H. M. Froehlich, S. Jiang, Z. Li, T. D. Tosteson, S. P. Poplack, P. A. Kaufman, B. W. Pogue, and K. D. Paulsen, “Tumor angiogenesis change estimated by using diffuse optical spectroscopic tomography: demonstrated correlation in women undergoing neoadjuvant chemotherapy for invasive breast cancer?” Radiology259, 365–374 (2011).
[CrossRef] [PubMed]

S. Jiang, B. W. Pogue, C. M. Carpenter, S. P. Poplack, W. A. Wells, C. A. Kogel, J. A. Forero, L. S. Muffly, G. N. Schwartz, K. D. Paulsen, and P. A. Kaufman, “Evaluation of breast tumor response to neoadjuvant chemotherapy with tomographic diffuse optical spectroscopy: case studies of tumor region-of-interest changes.” Radiology252, 551–560 (2009).
[CrossRef] [PubMed]

Kaufmann, M.

M. Kaufmann, G. von Minckwitz, H. D. Bear, A. Buzdar, P. McGale, H. Bonnefoi, M. Colleoni, C. Denkert, W. Eiermann, R. Jackesz, A. Makris, W. Miller, J.-Y. Pierga, V. Semiglazov, A. Schneeweiss, R. Souchon, V. Stearns, M. Untch, and S. Loibi, “Recommendations from an international expert panel on the use of neoadjuvant (primary) systemic treatment of operable breast cancer: new perspectives 2006,” Ann. Oncol.18, 1927–34 (2007).
[CrossRef] [PubMed]

Kogel, C. A.

S. Jiang, B. W. Pogue, C. M. Carpenter, S. P. Poplack, W. A. Wells, C. A. Kogel, J. A. Forero, L. S. Muffly, G. N. Schwartz, K. D. Paulsen, and P. A. Kaufman, “Evaluation of breast tumor response to neoadjuvant chemotherapy with tomographic diffuse optical spectroscopy: case studies of tumor region-of-interest changes.” Radiology252, 551–560 (2009).
[CrossRef] [PubMed]

Konecky, S. D.

R. Choe, S. D. Konecky, A. Corlu, K. Lee, T. Durduran, D. R. Busch, B. J. Czerniecki, J. Tchou, D. L. Fraker, A. DeMichele, B. Chance, S. R. Arridge, M. Schweiger, J. P. Culver, M. D. Schnall, M. E. Putt, M. A. Rosen, and A. G. Yodh, “Differentiation of benign and malignant breast tumors by in-vivo three-dimensional parallel-plate diffuse optical tomography,” J. Biomed. Opt.14, 024020 (2009).
[CrossRef] [PubMed]

Kukreti, S.

S. Kukreti, A. Cerussi, B. Tromberg, and E. Gratton, “Intrinsic tumor biomarkers revealed by novel double-differential spectroscopic analysis of near-infrared spectra,” J. Biomed. Opt.12, 020509–020509–3(2007).
[CrossRef] [PubMed]

Kurtzman, S. H.

Q. Zhu, S. Tannenbaum, P. Hegde, M. Kane, C. Xu, and S. H. Kurtzman, “Noninvasive monitoring of breast cancer during neoadjuvant chemotherapy using optical tomography with ultrasound localization.” Neoplasia10, 1028–1040 (2008).
[PubMed]

Lee, K.

R. Choe, S. D. Konecky, A. Corlu, K. Lee, T. Durduran, D. R. Busch, B. J. Czerniecki, J. Tchou, D. L. Fraker, A. DeMichele, B. Chance, S. R. Arridge, M. Schweiger, J. P. Culver, M. D. Schnall, M. E. Putt, M. A. Rosen, and A. G. Yodh, “Differentiation of benign and malignant breast tumors by in-vivo three-dimensional parallel-plate diffuse optical tomography,” J. Biomed. Opt.14, 024020 (2009).
[CrossRef] [PubMed]

Lemon-Wong, S.

O. Falou, H. Soliman, A. Sadeghi-Naini, S. Iradji, S. Lemon-Wong, J. Zubovits, J. Spayne, R. Dent, M. Trudeau, J. Boileau, and , “Diffuse optical spectroscopy evaluation of treatment response in women with locally advanced breast cancer receiving neoadjuvant chemotherapy,” Trans. Onc.5, 238–246 (2012).

Lenburg, M.

L. Esserman, D. Berry, M. Cheang, C. Yau, C. Perou, L. Carey, A. DeMichele, J. Gray, K. Conway-Dorsey, M. Lenburg, and , “Chemotherapy response and recurrence-free survival in neoadjuvant breast cancer depends on biomarker profiles: results from the I-SPY 1 TRIAL (CALGB 150007/150012; ACRIN 6657),” Breast Cancer Res. Treat.30, 3242–3249 (2011).

Levy, M.

L. R. Arlinghaus, X. Li, M. Levy, D. Smith, E. B. Welch, J. C. Gore, and T. E. Yankeelov, “Current and future trends in magnetic resonance imaging assessments of the response of breast tumors to neoadjuvant chemotherapy,” J. Oncol.919620, 1–17 (2010).
[CrossRef]

Li, X.

L. R. Arlinghaus, X. Li, M. Levy, D. Smith, E. B. Welch, J. C. Gore, and T. E. Yankeelov, “Current and future trends in magnetic resonance imaging assessments of the response of breast tumors to neoadjuvant chemotherapy,” J. Oncol.919620, 1–17 (2010).
[CrossRef]

Li, Z.

M. G. Pakalniskis, W. A. Wells, M. C. Schwab, H. M. Froehlich, S. Jiang, Z. Li, T. D. Tosteson, S. P. Poplack, P. A. Kaufman, B. W. Pogue, and K. D. Paulsen, “Tumor angiogenesis change estimated by using diffuse optical spectroscopic tomography: demonstrated correlation in women undergoing neoadjuvant chemotherapy for invasive breast cancer?” Radiology259, 365–374 (2011).
[CrossRef] [PubMed]

Lilge, L.

M. K. Simick, R. Jong, B. Wilson, and L. Lilge, “Non-ionizing near-infrared radiation transillumination spectroscopy for breast tissue density and assessment of breast cancer risk.” J. Biomed. Opt.9, 794–803 (2004).
[CrossRef] [PubMed]

K. Blyschak, M. Simick, R. Jong, and L. Lilge, “Classification of breast tissue density by optical transillumination spectroscopy: optical and physiological effects governing predictive value,” Med. Phys.31, 1398–1414 (2004).
[CrossRef] [PubMed]

Loibi, S.

M. Kaufmann, G. von Minckwitz, H. D. Bear, A. Buzdar, P. McGale, H. Bonnefoi, M. Colleoni, C. Denkert, W. Eiermann, R. Jackesz, A. Makris, W. Miller, J.-Y. Pierga, V. Semiglazov, A. Schneeweiss, R. Souchon, V. Stearns, M. Untch, and S. Loibi, “Recommendations from an international expert panel on the use of neoadjuvant (primary) systemic treatment of operable breast cancer: new perspectives 2006,” Ann. Oncol.18, 1927–34 (2007).
[CrossRef] [PubMed]

Makris, A.

M. Kaufmann, G. von Minckwitz, H. D. Bear, A. Buzdar, P. McGale, H. Bonnefoi, M. Colleoni, C. Denkert, W. Eiermann, R. Jackesz, A. Makris, W. Miller, J.-Y. Pierga, V. Semiglazov, A. Schneeweiss, R. Souchon, V. Stearns, M. Untch, and S. Loibi, “Recommendations from an international expert panel on the use of neoadjuvant (primary) systemic treatment of operable breast cancer: new perspectives 2006,” Ann. Oncol.18, 1927–34 (2007).
[CrossRef] [PubMed]

Mastanduno, M.

M. Jermyn, B. W. Pogue, H. Ghadyani, S. Davis, M. Mastanduno, and H. Dehghani, “A user-enabling visual workflow for near-infrared light transport modeling in tissue,” in Biomedical Optics, OSA Technical Digest (Optical Society of America, 2012), paper BW1A.7.

McGale, P.

M. Kaufmann, G. von Minckwitz, H. D. Bear, A. Buzdar, P. McGale, H. Bonnefoi, M. Colleoni, C. Denkert, W. Eiermann, R. Jackesz, A. Makris, W. Miller, J.-Y. Pierga, V. Semiglazov, A. Schneeweiss, R. Souchon, V. Stearns, M. Untch, and S. Loibi, “Recommendations from an international expert panel on the use of neoadjuvant (primary) systemic treatment of operable breast cancer: new perspectives 2006,” Ann. Oncol.18, 1927–34 (2007).
[CrossRef] [PubMed]

McGuire, K.

K. McGuire, J. Toro-Burguete, H. Dang, J. Young, A. Soran, M. Zuley, R. Bhargava, M. Bonaventura, R. Johnson, and G. Ahrendt, “MRI staging after neoadjuvant chemotherapy for breast cancer: Does tumor biology affect accuracy?” Ann. Surg. Oncol.18, 3149–3154 (2011).
[CrossRef] [PubMed]

McLaren, C.

D. Roblyer, S. Ueda, A. Cerussi, W. Tanamai, A. Durkin, R. Mehta, D. Hsiang, J. A. Butler, C. McLaren, W.-P. Chen, and B. Tromberg, “Optical imaging of breast cancer oxyhemoglobin flare correlates with neoadjuvant chemotherapy response one day after starting treatment.” Proc. Natl. Acad. Sci.108, 14626–14631 (2011).
[CrossRef] [PubMed]

Mehta, R.

D. Roblyer, S. Ueda, A. Cerussi, W. Tanamai, A. Durkin, R. Mehta, D. Hsiang, J. A. Butler, C. McLaren, W.-P. Chen, and B. Tromberg, “Optical imaging of breast cancer oxyhemoglobin flare correlates with neoadjuvant chemotherapy response one day after starting treatment.” Proc. Natl. Acad. Sci.108, 14626–14631 (2011).
[CrossRef] [PubMed]

A. Cerussi, D. Hsiang, N. Shah, R. Mehta, A. Durkin, J. Butler, and B. J. Tromberg, “Predicting response to breast cancer neoadjuvant chemotherapy using diffuse optical spectroscopy.” Proc. Natl. Acad. Sci.104, 4014–4019 (2007).
[CrossRef] [PubMed]

B. J. Tromberg, A. Cerussi, N. Shah, M. Compton, A. Durkin, D. Hsiang, J. Butler, and R. Mehta, “Imaging in breast cancer: diffuse optics in breast cancer: detecting tumors in pre-menopausal women and monitoring neoadjuvant chemotherapy.” Breast Cancer Res.7, 279–285 (2005).
[CrossRef]

Mehta, R. S.

A. E. Cerussi, V. W. Tanamai, D. Hsiang, J. Butler, R. S. Mehta, and B. J. Tromberg, “Diffuse optical spectroscopic imaging correlates with final pathological response in breast cancer neoadjuvant chemotherapy.” Philos. Trans. R. Soc. A369, 4512–4530 (2011).
[CrossRef]

Mies, C.

D. R. Busch, W. Guo, R. Choe, T. Durduran, M. D. Feldman, C. Mies, M. A. Rosen, M. D. Schnall, B. J. Czerniecki, J. Tchou, A. DeMichele, M. E. Putt, and A. G. Yodh, “Computer aided automatic detection of malignant lesions in diffuse optical mammography,” Med. Phys.37, 1840–1849 (2010).
[CrossRef] [PubMed]

Miller, W.

M. Kaufmann, G. von Minckwitz, H. D. Bear, A. Buzdar, P. McGale, H. Bonnefoi, M. Colleoni, C. Denkert, W. Eiermann, R. Jackesz, A. Makris, W. Miller, J.-Y. Pierga, V. Semiglazov, A. Schneeweiss, R. Souchon, V. Stearns, M. Untch, and S. Loibi, “Recommendations from an international expert panel on the use of neoadjuvant (primary) systemic treatment of operable breast cancer: new perspectives 2006,” Ann. Oncol.18, 1927–34 (2007).
[CrossRef] [PubMed]

Muffly, L. S.

S. Jiang, B. W. Pogue, C. M. Carpenter, S. P. Poplack, W. A. Wells, C. A. Kogel, J. A. Forero, L. S. Muffly, G. N. Schwartz, K. D. Paulsen, and P. A. Kaufman, “Evaluation of breast tumor response to neoadjuvant chemotherapy with tomographic diffuse optical spectroscopy: case studies of tumor region-of-interest changes.” Radiology252, 551–560 (2009).
[CrossRef] [PubMed]

Nioka, S.

B. Chance, S. Nioka, J. Zhang, E. F. Conant, E. Hwang, S. Briest, S. G. Orel, M. D. Schnall, and B. J. Czerniecki, “Breast cancer detection based on incremental biochemical and physiological properties of breast cancers a six-year, two-site study,” Acad. Rad.12, 925–933 (2005).
[CrossRef]

Orel, S. G.

B. Chance, S. Nioka, J. Zhang, E. F. Conant, E. Hwang, S. Briest, S. G. Orel, M. D. Schnall, and B. J. Czerniecki, “Breast cancer detection based on incremental biochemical and physiological properties of breast cancers a six-year, two-site study,” Acad. Rad.12, 925–933 (2005).
[CrossRef]

Pakalniskis, M. G.

M. G. Pakalniskis, W. A. Wells, M. C. Schwab, H. M. Froehlich, S. Jiang, Z. Li, T. D. Tosteson, S. P. Poplack, P. A. Kaufman, B. W. Pogue, and K. D. Paulsen, “Tumor angiogenesis change estimated by using diffuse optical spectroscopic tomography: demonstrated correlation in women undergoing neoadjuvant chemotherapy for invasive breast cancer?” Radiology259, 365–374 (2011).
[CrossRef] [PubMed]

Paulsen, K. D.

M. G. Pakalniskis, W. A. Wells, M. C. Schwab, H. M. Froehlich, S. Jiang, Z. Li, T. D. Tosteson, S. P. Poplack, P. A. Kaufman, B. W. Pogue, and K. D. Paulsen, “Tumor angiogenesis change estimated by using diffuse optical spectroscopic tomography: demonstrated correlation in women undergoing neoadjuvant chemotherapy for invasive breast cancer?” Radiology259, 365–374 (2011).
[CrossRef] [PubMed]

S. Jiang, B. W. Pogue, C. M. Carpenter, S. P. Poplack, W. A. Wells, C. A. Kogel, J. A. Forero, L. S. Muffly, G. N. Schwartz, K. D. Paulsen, and P. A. Kaufman, “Evaluation of breast tumor response to neoadjuvant chemotherapy with tomographic diffuse optical spectroscopy: case studies of tumor region-of-interest changes.” Radiology252, 551–560 (2009).
[CrossRef] [PubMed]

H. Dehghani, M. Eames, P. Yalavarthy, S. Davis, S. Srinivasan, C. Carpenter, B. W. Pogue, and K. D. Paulsen, “Near infrared optical tomography using NIRFAST: Algorithm for numerical model and image reconstruction,” Commun. Numer. Meth. Eng.25, 711–732 (2009).
[CrossRef]

B. J. Tromberg, B. W. Pogue, K. D. Paulsen, A. G. Yodh, D. A. Boas, and A. E. Cerussi, “Assessing the future of diffuse optical imaging technologies for breast cancer management,” Med. Phys.35, 2443–2451 (2008).
[CrossRef] [PubMed]

X. Song, B. W. Pogue, S. Jiang, M. M. Doyley, H. Dehghani, T. D. Tosteson, and K. D. Paulsen, “Automated region detection based on the contrast-to-noise ratio in near-infrared tomography,” Appl. Opt.43, 1053–1062 (2004).
[CrossRef] [PubMed]

Pepe, M. S.

M. S. Pepe, The Statistical Evaluation of Medical Tests for Classification and Prediction (Oxford University Press, New York, 2003).

Perou, C.

L. Esserman, D. Berry, M. Cheang, C. Yau, C. Perou, L. Carey, A. DeMichele, J. Gray, K. Conway-Dorsey, M. Lenburg, and , “Chemotherapy response and recurrence-free survival in neoadjuvant breast cancer depends on biomarker profiles: results from the I-SPY 1 TRIAL (CALGB 150007/150012; ACRIN 6657),” Breast Cancer Res. Treat.30, 3242–3249 (2011).

Pierga, J.-Y.

M. Kaufmann, G. von Minckwitz, H. D. Bear, A. Buzdar, P. McGale, H. Bonnefoi, M. Colleoni, C. Denkert, W. Eiermann, R. Jackesz, A. Makris, W. Miller, J.-Y. Pierga, V. Semiglazov, A. Schneeweiss, R. Souchon, V. Stearns, M. Untch, and S. Loibi, “Recommendations from an international expert panel on the use of neoadjuvant (primary) systemic treatment of operable breast cancer: new perspectives 2006,” Ann. Oncol.18, 1927–34 (2007).
[CrossRef] [PubMed]

Pogue, B. W.

M. G. Pakalniskis, W. A. Wells, M. C. Schwab, H. M. Froehlich, S. Jiang, Z. Li, T. D. Tosteson, S. P. Poplack, P. A. Kaufman, B. W. Pogue, and K. D. Paulsen, “Tumor angiogenesis change estimated by using diffuse optical spectroscopic tomography: demonstrated correlation in women undergoing neoadjuvant chemotherapy for invasive breast cancer?” Radiology259, 365–374 (2011).
[CrossRef] [PubMed]

S. Jiang, B. W. Pogue, C. M. Carpenter, S. P. Poplack, W. A. Wells, C. A. Kogel, J. A. Forero, L. S. Muffly, G. N. Schwartz, K. D. Paulsen, and P. A. Kaufman, “Evaluation of breast tumor response to neoadjuvant chemotherapy with tomographic diffuse optical spectroscopy: case studies of tumor region-of-interest changes.” Radiology252, 551–560 (2009).
[CrossRef] [PubMed]

H. Dehghani, M. Eames, P. Yalavarthy, S. Davis, S. Srinivasan, C. Carpenter, B. W. Pogue, and K. D. Paulsen, “Near infrared optical tomography using NIRFAST: Algorithm for numerical model and image reconstruction,” Commun. Numer. Meth. Eng.25, 711–732 (2009).
[CrossRef]

B. J. Tromberg, B. W. Pogue, K. D. Paulsen, A. G. Yodh, D. A. Boas, and A. E. Cerussi, “Assessing the future of diffuse optical imaging technologies for breast cancer management,” Med. Phys.35, 2443–2451 (2008).
[CrossRef] [PubMed]

X. Song, B. W. Pogue, S. Jiang, M. M. Doyley, H. Dehghani, T. D. Tosteson, and K. D. Paulsen, “Automated region detection based on the contrast-to-noise ratio in near-infrared tomography,” Appl. Opt.43, 1053–1062 (2004).
[CrossRef] [PubMed]

M. Jermyn, B. W. Pogue, H. Ghadyani, S. Davis, M. Mastanduno, and H. Dehghani, “A user-enabling visual workflow for near-infrared light transport modeling in tissue,” in Biomedical Optics, OSA Technical Digest (Optical Society of America, 2012), paper BW1A.7.

Poplack, S. P.

M. G. Pakalniskis, W. A. Wells, M. C. Schwab, H. M. Froehlich, S. Jiang, Z. Li, T. D. Tosteson, S. P. Poplack, P. A. Kaufman, B. W. Pogue, and K. D. Paulsen, “Tumor angiogenesis change estimated by using diffuse optical spectroscopic tomography: demonstrated correlation in women undergoing neoadjuvant chemotherapy for invasive breast cancer?” Radiology259, 365–374 (2011).
[CrossRef] [PubMed]

S. Jiang, B. W. Pogue, C. M. Carpenter, S. P. Poplack, W. A. Wells, C. A. Kogel, J. A. Forero, L. S. Muffly, G. N. Schwartz, K. D. Paulsen, and P. A. Kaufman, “Evaluation of breast tumor response to neoadjuvant chemotherapy with tomographic diffuse optical spectroscopy: case studies of tumor region-of-interest changes.” Radiology252, 551–560 (2009).
[CrossRef] [PubMed]

Purushotham, A. D.

L. C. Enfield, G. Cantanhede, D. Westbroek, M. Douek, A. D. Purushotham, J. C. Hebden, and A. P. Gibson, “Monitoring the response to primary medical therapy for breast cancer using three-dimensional time-resolved optical mammography.” Technol. Cancer Res. Treat.10, 533–547 (2011).
[PubMed]

Putt, M. E.

D. R. Busch, W. Guo, R. Choe, T. Durduran, M. D. Feldman, C. Mies, M. A. Rosen, M. D. Schnall, B. J. Czerniecki, J. Tchou, A. DeMichele, M. E. Putt, and A. G. Yodh, “Computer aided automatic detection of malignant lesions in diffuse optical mammography,” Med. Phys.37, 1840–1849 (2010).
[CrossRef] [PubMed]

R. Choe, S. D. Konecky, A. Corlu, K. Lee, T. Durduran, D. R. Busch, B. J. Czerniecki, J. Tchou, D. L. Fraker, A. DeMichele, B. Chance, S. R. Arridge, M. Schweiger, J. P. Culver, M. D. Schnall, M. E. Putt, M. A. Rosen, and A. G. Yodh, “Differentiation of benign and malignant breast tumors by in-vivo three-dimensional parallel-plate diffuse optical tomography,” J. Biomed. Opt.14, 024020 (2009).
[CrossRef] [PubMed]

Roblyer, D.

D. Roblyer, S. Ueda, A. Cerussi, W. Tanamai, A. Durkin, R. Mehta, D. Hsiang, J. A. Butler, C. McLaren, W.-P. Chen, and B. Tromberg, “Optical imaging of breast cancer oxyhemoglobin flare correlates with neoadjuvant chemotherapy response one day after starting treatment.” Proc. Natl. Acad. Sci.108, 14626–14631 (2011).
[CrossRef] [PubMed]

Rosen, M. A.

D. R. Busch, W. Guo, R. Choe, T. Durduran, M. D. Feldman, C. Mies, M. A. Rosen, M. D. Schnall, B. J. Czerniecki, J. Tchou, A. DeMichele, M. E. Putt, and A. G. Yodh, “Computer aided automatic detection of malignant lesions in diffuse optical mammography,” Med. Phys.37, 1840–1849 (2010).
[CrossRef] [PubMed]

R. Choe, S. D. Konecky, A. Corlu, K. Lee, T. Durduran, D. R. Busch, B. J. Czerniecki, J. Tchou, D. L. Fraker, A. DeMichele, B. Chance, S. R. Arridge, M. Schweiger, J. P. Culver, M. D. Schnall, M. E. Putt, M. A. Rosen, and A. G. Yodh, “Differentiation of benign and malignant breast tumors by in-vivo three-dimensional parallel-plate diffuse optical tomography,” J. Biomed. Opt.14, 024020 (2009).
[CrossRef] [PubMed]

Rycroft, M.

H. Soliman, A. Gunasekara, M. Rycroft, J. Zubovits, R. Dent, J. Spayne, M. Yaffe, and G. Czarnota, “Functional imaging using diffuse optical spectroscopy of neoadjuvant chemotherapy response in women with locally advanced breast cancer,” Clin. Cancer Res.16, 2605–2614 (2010).
[CrossRef] [PubMed]

Sadeghi-Naini, A.

O. Falou, H. Soliman, A. Sadeghi-Naini, S. Iradji, S. Lemon-Wong, J. Zubovits, J. Spayne, R. Dent, M. Trudeau, J. Boileau, and , “Diffuse optical spectroscopy evaluation of treatment response in women with locally advanced breast cancer receiving neoadjuvant chemotherapy,” Trans. Onc.5, 238–246 (2012).

Schnall, M. D.

D. R. Busch, W. Guo, R. Choe, T. Durduran, M. D. Feldman, C. Mies, M. A. Rosen, M. D. Schnall, B. J. Czerniecki, J. Tchou, A. DeMichele, M. E. Putt, and A. G. Yodh, “Computer aided automatic detection of malignant lesions in diffuse optical mammography,” Med. Phys.37, 1840–1849 (2010).
[CrossRef] [PubMed]

R. Choe, S. D. Konecky, A. Corlu, K. Lee, T. Durduran, D. R. Busch, B. J. Czerniecki, J. Tchou, D. L. Fraker, A. DeMichele, B. Chance, S. R. Arridge, M. Schweiger, J. P. Culver, M. D. Schnall, M. E. Putt, M. A. Rosen, and A. G. Yodh, “Differentiation of benign and malignant breast tumors by in-vivo three-dimensional parallel-plate diffuse optical tomography,” J. Biomed. Opt.14, 024020 (2009).
[CrossRef] [PubMed]

B. Chance, S. Nioka, J. Zhang, E. F. Conant, E. Hwang, S. Briest, S. G. Orel, M. D. Schnall, and B. J. Czerniecki, “Breast cancer detection based on incremental biochemical and physiological properties of breast cancers a six-year, two-site study,” Acad. Rad.12, 925–933 (2005).
[CrossRef]

Schneeweiss, A.

M. Kaufmann, G. von Minckwitz, H. D. Bear, A. Buzdar, P. McGale, H. Bonnefoi, M. Colleoni, C. Denkert, W. Eiermann, R. Jackesz, A. Makris, W. Miller, J.-Y. Pierga, V. Semiglazov, A. Schneeweiss, R. Souchon, V. Stearns, M. Untch, and S. Loibi, “Recommendations from an international expert panel on the use of neoadjuvant (primary) systemic treatment of operable breast cancer: new perspectives 2006,” Ann. Oncol.18, 1927–34 (2007).
[CrossRef] [PubMed]

Schwab, M. C.

M. G. Pakalniskis, W. A. Wells, M. C. Schwab, H. M. Froehlich, S. Jiang, Z. Li, T. D. Tosteson, S. P. Poplack, P. A. Kaufman, B. W. Pogue, and K. D. Paulsen, “Tumor angiogenesis change estimated by using diffuse optical spectroscopic tomography: demonstrated correlation in women undergoing neoadjuvant chemotherapy for invasive breast cancer?” Radiology259, 365–374 (2011).
[CrossRef] [PubMed]

Schwartz, G. N.

S. Jiang, B. W. Pogue, C. M. Carpenter, S. P. Poplack, W. A. Wells, C. A. Kogel, J. A. Forero, L. S. Muffly, G. N. Schwartz, K. D. Paulsen, and P. A. Kaufman, “Evaluation of breast tumor response to neoadjuvant chemotherapy with tomographic diffuse optical spectroscopy: case studies of tumor region-of-interest changes.” Radiology252, 551–560 (2009).
[CrossRef] [PubMed]

Schweiger, M.

R. Choe, S. D. Konecky, A. Corlu, K. Lee, T. Durduran, D. R. Busch, B. J. Czerniecki, J. Tchou, D. L. Fraker, A. DeMichele, B. Chance, S. R. Arridge, M. Schweiger, J. P. Culver, M. D. Schnall, M. E. Putt, M. A. Rosen, and A. G. Yodh, “Differentiation of benign and malignant breast tumors by in-vivo three-dimensional parallel-plate diffuse optical tomography,” J. Biomed. Opt.14, 024020 (2009).
[CrossRef] [PubMed]

Semiglazov, V.

M. Kaufmann, G. von Minckwitz, H. D. Bear, A. Buzdar, P. McGale, H. Bonnefoi, M. Colleoni, C. Denkert, W. Eiermann, R. Jackesz, A. Makris, W. Miller, J.-Y. Pierga, V. Semiglazov, A. Schneeweiss, R. Souchon, V. Stearns, M. Untch, and S. Loibi, “Recommendations from an international expert panel on the use of neoadjuvant (primary) systemic treatment of operable breast cancer: new perspectives 2006,” Ann. Oncol.18, 1927–34 (2007).
[CrossRef] [PubMed]

Shah, N.

A. Cerussi, D. Hsiang, N. Shah, R. Mehta, A. Durkin, J. Butler, and B. J. Tromberg, “Predicting response to breast cancer neoadjuvant chemotherapy using diffuse optical spectroscopy.” Proc. Natl. Acad. Sci.104, 4014–4019 (2007).
[CrossRef] [PubMed]

B. J. Tromberg, A. Cerussi, N. Shah, M. Compton, A. Durkin, D. Hsiang, J. Butler, and R. Mehta, “Imaging in breast cancer: diffuse optics in breast cancer: detecting tumors in pre-menopausal women and monitoring neoadjuvant chemotherapy.” Breast Cancer Res.7, 279–285 (2005).
[CrossRef]

D. B. Jakubowski, A. E. Cerussi, F. Bevilacqua, N. Shah, D. Hsiang, J. Butler, and B. J. Tromberg, “Monitoring neoadjuvant chemotherapy in breast cancer using quantitative diffuse optical spectroscopy: a case study,” J. Biomed. Opt.9, 230–238 (2004).
[CrossRef] [PubMed]

Simick, M.

K. Blyschak, M. Simick, R. Jong, and L. Lilge, “Classification of breast tissue density by optical transillumination spectroscopy: optical and physiological effects governing predictive value,” Med. Phys.31, 1398–1414 (2004).
[CrossRef] [PubMed]

Simick, M. K.

M. K. Simick, R. Jong, B. Wilson, and L. Lilge, “Non-ionizing near-infrared radiation transillumination spectroscopy for breast tissue density and assessment of breast cancer risk.” J. Biomed. Opt.9, 794–803 (2004).
[CrossRef] [PubMed]

Smith, D.

L. R. Arlinghaus, X. Li, M. Levy, D. Smith, E. B. Welch, J. C. Gore, and T. E. Yankeelov, “Current and future trends in magnetic resonance imaging assessments of the response of breast tumors to neoadjuvant chemotherapy,” J. Oncol.919620, 1–17 (2010).
[CrossRef]

Soliman, H.

O. Falou, H. Soliman, A. Sadeghi-Naini, S. Iradji, S. Lemon-Wong, J. Zubovits, J. Spayne, R. Dent, M. Trudeau, J. Boileau, and , “Diffuse optical spectroscopy evaluation of treatment response in women with locally advanced breast cancer receiving neoadjuvant chemotherapy,” Trans. Onc.5, 238–246 (2012).

H. Soliman, A. Gunasekara, M. Rycroft, J. Zubovits, R. Dent, J. Spayne, M. Yaffe, and G. Czarnota, “Functional imaging using diffuse optical spectroscopy of neoadjuvant chemotherapy response in women with locally advanced breast cancer,” Clin. Cancer Res.16, 2605–2614 (2010).
[CrossRef] [PubMed]

Song, X.

Soran, A.

K. McGuire, J. Toro-Burguete, H. Dang, J. Young, A. Soran, M. Zuley, R. Bhargava, M. Bonaventura, R. Johnson, and G. Ahrendt, “MRI staging after neoadjuvant chemotherapy for breast cancer: Does tumor biology affect accuracy?” Ann. Surg. Oncol.18, 3149–3154 (2011).
[CrossRef] [PubMed]

Souchon, R.

M. Kaufmann, G. von Minckwitz, H. D. Bear, A. Buzdar, P. McGale, H. Bonnefoi, M. Colleoni, C. Denkert, W. Eiermann, R. Jackesz, A. Makris, W. Miller, J.-Y. Pierga, V. Semiglazov, A. Schneeweiss, R. Souchon, V. Stearns, M. Untch, and S. Loibi, “Recommendations from an international expert panel on the use of neoadjuvant (primary) systemic treatment of operable breast cancer: new perspectives 2006,” Ann. Oncol.18, 1927–34 (2007).
[CrossRef] [PubMed]

Spayne, J.

O. Falou, H. Soliman, A. Sadeghi-Naini, S. Iradji, S. Lemon-Wong, J. Zubovits, J. Spayne, R. Dent, M. Trudeau, J. Boileau, and , “Diffuse optical spectroscopy evaluation of treatment response in women with locally advanced breast cancer receiving neoadjuvant chemotherapy,” Trans. Onc.5, 238–246 (2012).

H. Soliman, A. Gunasekara, M. Rycroft, J. Zubovits, R. Dent, J. Spayne, M. Yaffe, and G. Czarnota, “Functional imaging using diffuse optical spectroscopy of neoadjuvant chemotherapy response in women with locally advanced breast cancer,” Clin. Cancer Res.16, 2605–2614 (2010).
[CrossRef] [PubMed]

Srinivasan, S.

H. Dehghani, M. Eames, P. Yalavarthy, S. Davis, S. Srinivasan, C. Carpenter, B. W. Pogue, and K. D. Paulsen, “Near infrared optical tomography using NIRFAST: Algorithm for numerical model and image reconstruction,” Commun. Numer. Meth. Eng.25, 711–732 (2009).
[CrossRef]

Stearns, V.

M. Kaufmann, G. von Minckwitz, H. D. Bear, A. Buzdar, P. McGale, H. Bonnefoi, M. Colleoni, C. Denkert, W. Eiermann, R. Jackesz, A. Makris, W. Miller, J.-Y. Pierga, V. Semiglazov, A. Schneeweiss, R. Souchon, V. Stearns, M. Untch, and S. Loibi, “Recommendations from an international expert panel on the use of neoadjuvant (primary) systemic treatment of operable breast cancer: new perspectives 2006,” Ann. Oncol.18, 1927–34 (2007).
[CrossRef] [PubMed]

Tanamai, V. W.

A. E. Cerussi, V. W. Tanamai, D. Hsiang, J. Butler, R. S. Mehta, and B. J. Tromberg, “Diffuse optical spectroscopic imaging correlates with final pathological response in breast cancer neoadjuvant chemotherapy.” Philos. Trans. R. Soc. A369, 4512–4530 (2011).
[CrossRef]

Tanamai, W.

D. Roblyer, S. Ueda, A. Cerussi, W. Tanamai, A. Durkin, R. Mehta, D. Hsiang, J. A. Butler, C. McLaren, W.-P. Chen, and B. Tromberg, “Optical imaging of breast cancer oxyhemoglobin flare correlates with neoadjuvant chemotherapy response one day after starting treatment.” Proc. Natl. Acad. Sci.108, 14626–14631 (2011).
[CrossRef] [PubMed]

Tannenbaum, S.

Q. Zhu, S. Tannenbaum, P. Hegde, M. Kane, C. Xu, and S. H. Kurtzman, “Noninvasive monitoring of breast cancer during neoadjuvant chemotherapy using optical tomography with ultrasound localization.” Neoplasia10, 1028–1040 (2008).
[PubMed]

Tchou, J.

D. R. Busch, W. Guo, R. Choe, T. Durduran, M. D. Feldman, C. Mies, M. A. Rosen, M. D. Schnall, B. J. Czerniecki, J. Tchou, A. DeMichele, M. E. Putt, and A. G. Yodh, “Computer aided automatic detection of malignant lesions in diffuse optical mammography,” Med. Phys.37, 1840–1849 (2010).
[CrossRef] [PubMed]

R. Choe, S. D. Konecky, A. Corlu, K. Lee, T. Durduran, D. R. Busch, B. J. Czerniecki, J. Tchou, D. L. Fraker, A. DeMichele, B. Chance, S. R. Arridge, M. Schweiger, J. P. Culver, M. D. Schnall, M. E. Putt, M. A. Rosen, and A. G. Yodh, “Differentiation of benign and malignant breast tumors by in-vivo three-dimensional parallel-plate diffuse optical tomography,” J. Biomed. Opt.14, 024020 (2009).
[CrossRef] [PubMed]

Toro-Burguete, J.

K. McGuire, J. Toro-Burguete, H. Dang, J. Young, A. Soran, M. Zuley, R. Bhargava, M. Bonaventura, R. Johnson, and G. Ahrendt, “MRI staging after neoadjuvant chemotherapy for breast cancer: Does tumor biology affect accuracy?” Ann. Surg. Oncol.18, 3149–3154 (2011).
[CrossRef] [PubMed]

Tosteson, T. D.

M. G. Pakalniskis, W. A. Wells, M. C. Schwab, H. M. Froehlich, S. Jiang, Z. Li, T. D. Tosteson, S. P. Poplack, P. A. Kaufman, B. W. Pogue, and K. D. Paulsen, “Tumor angiogenesis change estimated by using diffuse optical spectroscopic tomography: demonstrated correlation in women undergoing neoadjuvant chemotherapy for invasive breast cancer?” Radiology259, 365–374 (2011).
[CrossRef] [PubMed]

X. Song, B. W. Pogue, S. Jiang, M. M. Doyley, H. Dehghani, T. D. Tosteson, and K. D. Paulsen, “Automated region detection based on the contrast-to-noise ratio in near-infrared tomography,” Appl. Opt.43, 1053–1062 (2004).
[CrossRef] [PubMed]

Tromberg, B.

D. Roblyer, S. Ueda, A. Cerussi, W. Tanamai, A. Durkin, R. Mehta, D. Hsiang, J. A. Butler, C. McLaren, W.-P. Chen, and B. Tromberg, “Optical imaging of breast cancer oxyhemoglobin flare correlates with neoadjuvant chemotherapy response one day after starting treatment.” Proc. Natl. Acad. Sci.108, 14626–14631 (2011).
[CrossRef] [PubMed]

S. Kukreti, A. Cerussi, B. Tromberg, and E. Gratton, “Intrinsic tumor biomarkers revealed by novel double-differential spectroscopic analysis of near-infrared spectra,” J. Biomed. Opt.12, 020509–020509–3(2007).
[CrossRef] [PubMed]

Tromberg, B. J.

A. E. Cerussi, V. W. Tanamai, D. Hsiang, J. Butler, R. S. Mehta, and B. J. Tromberg, “Diffuse optical spectroscopic imaging correlates with final pathological response in breast cancer neoadjuvant chemotherapy.” Philos. Trans. R. Soc. A369, 4512–4530 (2011).
[CrossRef]

B. J. Tromberg, B. W. Pogue, K. D. Paulsen, A. G. Yodh, D. A. Boas, and A. E. Cerussi, “Assessing the future of diffuse optical imaging technologies for breast cancer management,” Med. Phys.35, 2443–2451 (2008).
[CrossRef] [PubMed]

A. Cerussi, D. Hsiang, N. Shah, R. Mehta, A. Durkin, J. Butler, and B. J. Tromberg, “Predicting response to breast cancer neoadjuvant chemotherapy using diffuse optical spectroscopy.” Proc. Natl. Acad. Sci.104, 4014–4019 (2007).
[CrossRef] [PubMed]

B. J. Tromberg, A. Cerussi, N. Shah, M. Compton, A. Durkin, D. Hsiang, J. Butler, and R. Mehta, “Imaging in breast cancer: diffuse optics in breast cancer: detecting tumors in pre-menopausal women and monitoring neoadjuvant chemotherapy.” Breast Cancer Res.7, 279–285 (2005).
[CrossRef]

D. B. Jakubowski, A. E. Cerussi, F. Bevilacqua, N. Shah, D. Hsiang, J. Butler, and B. J. Tromberg, “Monitoring neoadjuvant chemotherapy in breast cancer using quantitative diffuse optical spectroscopy: a case study,” J. Biomed. Opt.9, 230–238 (2004).
[CrossRef] [PubMed]

Trudeau, M.

O. Falou, H. Soliman, A. Sadeghi-Naini, S. Iradji, S. Lemon-Wong, J. Zubovits, J. Spayne, R. Dent, M. Trudeau, J. Boileau, and , “Diffuse optical spectroscopy evaluation of treatment response in women with locally advanced breast cancer receiving neoadjuvant chemotherapy,” Trans. Onc.5, 238–246 (2012).

Ueda, S.

D. Roblyer, S. Ueda, A. Cerussi, W. Tanamai, A. Durkin, R. Mehta, D. Hsiang, J. A. Butler, C. McLaren, W.-P. Chen, and B. Tromberg, “Optical imaging of breast cancer oxyhemoglobin flare correlates with neoadjuvant chemotherapy response one day after starting treatment.” Proc. Natl. Acad. Sci.108, 14626–14631 (2011).
[CrossRef] [PubMed]

Untch, M.

M. Kaufmann, G. von Minckwitz, H. D. Bear, A. Buzdar, P. McGale, H. Bonnefoi, M. Colleoni, C. Denkert, W. Eiermann, R. Jackesz, A. Makris, W. Miller, J.-Y. Pierga, V. Semiglazov, A. Schneeweiss, R. Souchon, V. Stearns, M. Untch, and S. Loibi, “Recommendations from an international expert panel on the use of neoadjuvant (primary) systemic treatment of operable breast cancer: new perspectives 2006,” Ann. Oncol.18, 1927–34 (2007).
[CrossRef] [PubMed]

von Minckwitz, G.

M. Kaufmann, G. von Minckwitz, H. D. Bear, A. Buzdar, P. McGale, H. Bonnefoi, M. Colleoni, C. Denkert, W. Eiermann, R. Jackesz, A. Makris, W. Miller, J.-Y. Pierga, V. Semiglazov, A. Schneeweiss, R. Souchon, V. Stearns, M. Untch, and S. Loibi, “Recommendations from an international expert panel on the use of neoadjuvant (primary) systemic treatment of operable breast cancer: new perspectives 2006,” Ann. Oncol.18, 1927–34 (2007).
[CrossRef] [PubMed]

Welch, E. B.

L. R. Arlinghaus, X. Li, M. Levy, D. Smith, E. B. Welch, J. C. Gore, and T. E. Yankeelov, “Current and future trends in magnetic resonance imaging assessments of the response of breast tumors to neoadjuvant chemotherapy,” J. Oncol.919620, 1–17 (2010).
[CrossRef]

Wells, W. A.

M. G. Pakalniskis, W. A. Wells, M. C. Schwab, H. M. Froehlich, S. Jiang, Z. Li, T. D. Tosteson, S. P. Poplack, P. A. Kaufman, B. W. Pogue, and K. D. Paulsen, “Tumor angiogenesis change estimated by using diffuse optical spectroscopic tomography: demonstrated correlation in women undergoing neoadjuvant chemotherapy for invasive breast cancer?” Radiology259, 365–374 (2011).
[CrossRef] [PubMed]

S. Jiang, B. W. Pogue, C. M. Carpenter, S. P. Poplack, W. A. Wells, C. A. Kogel, J. A. Forero, L. S. Muffly, G. N. Schwartz, K. D. Paulsen, and P. A. Kaufman, “Evaluation of breast tumor response to neoadjuvant chemotherapy with tomographic diffuse optical spectroscopy: case studies of tumor region-of-interest changes.” Radiology252, 551–560 (2009).
[CrossRef] [PubMed]

Westbroek, D.

L. C. Enfield, G. Cantanhede, D. Westbroek, M. Douek, A. D. Purushotham, J. C. Hebden, and A. P. Gibson, “Monitoring the response to primary medical therapy for breast cancer using three-dimensional time-resolved optical mammography.” Technol. Cancer Res. Treat.10, 533–547 (2011).
[PubMed]

Wilson, B.

M. K. Simick, R. Jong, B. Wilson, and L. Lilge, “Non-ionizing near-infrared radiation transillumination spectroscopy for breast tissue density and assessment of breast cancer risk.” J. Biomed. Opt.9, 794–803 (2004).
[CrossRef] [PubMed]

Xu, C.

Q. Zhu, S. Tannenbaum, P. Hegde, M. Kane, C. Xu, and S. H. Kurtzman, “Noninvasive monitoring of breast cancer during neoadjuvant chemotherapy using optical tomography with ultrasound localization.” Neoplasia10, 1028–1040 (2008).
[PubMed]

Yaffe, M.

H. Soliman, A. Gunasekara, M. Rycroft, J. Zubovits, R. Dent, J. Spayne, M. Yaffe, and G. Czarnota, “Functional imaging using diffuse optical spectroscopy of neoadjuvant chemotherapy response in women with locally advanced breast cancer,” Clin. Cancer Res.16, 2605–2614 (2010).
[CrossRef] [PubMed]

Yalavarthy, P.

H. Dehghani, M. Eames, P. Yalavarthy, S. Davis, S. Srinivasan, C. Carpenter, B. W. Pogue, and K. D. Paulsen, “Near infrared optical tomography using NIRFAST: Algorithm for numerical model and image reconstruction,” Commun. Numer. Meth. Eng.25, 711–732 (2009).
[CrossRef]

Yankeelov, T. E.

L. R. Arlinghaus, X. Li, M. Levy, D. Smith, E. B. Welch, J. C. Gore, and T. E. Yankeelov, “Current and future trends in magnetic resonance imaging assessments of the response of breast tumors to neoadjuvant chemotherapy,” J. Oncol.919620, 1–17 (2010).
[CrossRef]

Yau, C.

L. Esserman, D. Berry, M. Cheang, C. Yau, C. Perou, L. Carey, A. DeMichele, J. Gray, K. Conway-Dorsey, M. Lenburg, and , “Chemotherapy response and recurrence-free survival in neoadjuvant breast cancer depends on biomarker profiles: results from the I-SPY 1 TRIAL (CALGB 150007/150012; ACRIN 6657),” Breast Cancer Res. Treat.30, 3242–3249 (2011).

Yodh, A. G.

D. R. Busch, W. Guo, R. Choe, T. Durduran, M. D. Feldman, C. Mies, M. A. Rosen, M. D. Schnall, B. J. Czerniecki, J. Tchou, A. DeMichele, M. E. Putt, and A. G. Yodh, “Computer aided automatic detection of malignant lesions in diffuse optical mammography,” Med. Phys.37, 1840–1849 (2010).
[CrossRef] [PubMed]

R. Choe, S. D. Konecky, A. Corlu, K. Lee, T. Durduran, D. R. Busch, B. J. Czerniecki, J. Tchou, D. L. Fraker, A. DeMichele, B. Chance, S. R. Arridge, M. Schweiger, J. P. Culver, M. D. Schnall, M. E. Putt, M. A. Rosen, and A. G. Yodh, “Differentiation of benign and malignant breast tumors by in-vivo three-dimensional parallel-plate diffuse optical tomography,” J. Biomed. Opt.14, 024020 (2009).
[CrossRef] [PubMed]

B. J. Tromberg, B. W. Pogue, K. D. Paulsen, A. G. Yodh, D. A. Boas, and A. E. Cerussi, “Assessing the future of diffuse optical imaging technologies for breast cancer management,” Med. Phys.35, 2443–2451 (2008).
[CrossRef] [PubMed]

Young, J.

K. McGuire, J. Toro-Burguete, H. Dang, J. Young, A. Soran, M. Zuley, R. Bhargava, M. Bonaventura, R. Johnson, and G. Ahrendt, “MRI staging after neoadjuvant chemotherapy for breast cancer: Does tumor biology affect accuracy?” Ann. Surg. Oncol.18, 3149–3154 (2011).
[CrossRef] [PubMed]

Zhang, J.

B. Chance, S. Nioka, J. Zhang, E. F. Conant, E. Hwang, S. Briest, S. G. Orel, M. D. Schnall, and B. J. Czerniecki, “Breast cancer detection based on incremental biochemical and physiological properties of breast cancers a six-year, two-site study,” Acad. Rad.12, 925–933 (2005).
[CrossRef]

Zhu, Q.

Q. Zhu, S. Tannenbaum, P. Hegde, M. Kane, C. Xu, and S. H. Kurtzman, “Noninvasive monitoring of breast cancer during neoadjuvant chemotherapy using optical tomography with ultrasound localization.” Neoplasia10, 1028–1040 (2008).
[PubMed]

Zubovits, J.

O. Falou, H. Soliman, A. Sadeghi-Naini, S. Iradji, S. Lemon-Wong, J. Zubovits, J. Spayne, R. Dent, M. Trudeau, J. Boileau, and , “Diffuse optical spectroscopy evaluation of treatment response in women with locally advanced breast cancer receiving neoadjuvant chemotherapy,” Trans. Onc.5, 238–246 (2012).

H. Soliman, A. Gunasekara, M. Rycroft, J. Zubovits, R. Dent, J. Spayne, M. Yaffe, and G. Czarnota, “Functional imaging using diffuse optical spectroscopy of neoadjuvant chemotherapy response in women with locally advanced breast cancer,” Clin. Cancer Res.16, 2605–2614 (2010).
[CrossRef] [PubMed]

Zuley, M.

K. McGuire, J. Toro-Burguete, H. Dang, J. Young, A. Soran, M. Zuley, R. Bhargava, M. Bonaventura, R. Johnson, and G. Ahrendt, “MRI staging after neoadjuvant chemotherapy for breast cancer: Does tumor biology affect accuracy?” Ann. Surg. Oncol.18, 3149–3154 (2011).
[CrossRef] [PubMed]

Acad. Rad. (1)

B. Chance, S. Nioka, J. Zhang, E. F. Conant, E. Hwang, S. Briest, S. G. Orel, M. D. Schnall, and B. J. Czerniecki, “Breast cancer detection based on incremental biochemical and physiological properties of breast cancers a six-year, two-site study,” Acad. Rad.12, 925–933 (2005).
[CrossRef]

Ann. Oncol. (1)

M. Kaufmann, G. von Minckwitz, H. D. Bear, A. Buzdar, P. McGale, H. Bonnefoi, M. Colleoni, C. Denkert, W. Eiermann, R. Jackesz, A. Makris, W. Miller, J.-Y. Pierga, V. Semiglazov, A. Schneeweiss, R. Souchon, V. Stearns, M. Untch, and S. Loibi, “Recommendations from an international expert panel on the use of neoadjuvant (primary) systemic treatment of operable breast cancer: new perspectives 2006,” Ann. Oncol.18, 1927–34 (2007).
[CrossRef] [PubMed]

Ann. Surg. Oncol. (1)

K. McGuire, J. Toro-Burguete, H. Dang, J. Young, A. Soran, M. Zuley, R. Bhargava, M. Bonaventura, R. Johnson, and G. Ahrendt, “MRI staging after neoadjuvant chemotherapy for breast cancer: Does tumor biology affect accuracy?” Ann. Surg. Oncol.18, 3149–3154 (2011).
[CrossRef] [PubMed]

Appl. Opt. (1)

Breast Cancer Res. (1)

B. J. Tromberg, A. Cerussi, N. Shah, M. Compton, A. Durkin, D. Hsiang, J. Butler, and R. Mehta, “Imaging in breast cancer: diffuse optics in breast cancer: detecting tumors in pre-menopausal women and monitoring neoadjuvant chemotherapy.” Breast Cancer Res.7, 279–285 (2005).
[CrossRef]

Breast Cancer Res. Treat. (1)

L. Esserman, D. Berry, M. Cheang, C. Yau, C. Perou, L. Carey, A. DeMichele, J. Gray, K. Conway-Dorsey, M. Lenburg, and , “Chemotherapy response and recurrence-free survival in neoadjuvant breast cancer depends on biomarker profiles: results from the I-SPY 1 TRIAL (CALGB 150007/150012; ACRIN 6657),” Breast Cancer Res. Treat.30, 3242–3249 (2011).

Clin. Cancer Res. (1)

H. Soliman, A. Gunasekara, M. Rycroft, J. Zubovits, R. Dent, J. Spayne, M. Yaffe, and G. Czarnota, “Functional imaging using diffuse optical spectroscopy of neoadjuvant chemotherapy response in women with locally advanced breast cancer,” Clin. Cancer Res.16, 2605–2614 (2010).
[CrossRef] [PubMed]

Commun. Numer. Meth. Eng. (1)

H. Dehghani, M. Eames, P. Yalavarthy, S. Davis, S. Srinivasan, C. Carpenter, B. W. Pogue, and K. D. Paulsen, “Near infrared optical tomography using NIRFAST: Algorithm for numerical model and image reconstruction,” Commun. Numer. Meth. Eng.25, 711–732 (2009).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

R. Choe and T. Durduran, “Diffuse optical monitoring of the neoadjuvant breast cancer therapy,” IEEE J. Sel. Top. Quantum Electron.18, 1367–1386 (2012).
[CrossRef]

J. Biomed. Opt. (4)

R. Choe, S. D. Konecky, A. Corlu, K. Lee, T. Durduran, D. R. Busch, B. J. Czerniecki, J. Tchou, D. L. Fraker, A. DeMichele, B. Chance, S. R. Arridge, M. Schweiger, J. P. Culver, M. D. Schnall, M. E. Putt, M. A. Rosen, and A. G. Yodh, “Differentiation of benign and malignant breast tumors by in-vivo three-dimensional parallel-plate diffuse optical tomography,” J. Biomed. Opt.14, 024020 (2009).
[CrossRef] [PubMed]

D. B. Jakubowski, A. E. Cerussi, F. Bevilacqua, N. Shah, D. Hsiang, J. Butler, and B. J. Tromberg, “Monitoring neoadjuvant chemotherapy in breast cancer using quantitative diffuse optical spectroscopy: a case study,” J. Biomed. Opt.9, 230–238 (2004).
[CrossRef] [PubMed]

S. Kukreti, A. Cerussi, B. Tromberg, and E. Gratton, “Intrinsic tumor biomarkers revealed by novel double-differential spectroscopic analysis of near-infrared spectra,” J. Biomed. Opt.12, 020509–020509–3(2007).
[CrossRef] [PubMed]

M. K. Simick, R. Jong, B. Wilson, and L. Lilge, “Non-ionizing near-infrared radiation transillumination spectroscopy for breast tissue density and assessment of breast cancer risk.” J. Biomed. Opt.9, 794–803 (2004).
[CrossRef] [PubMed]

J. Oncol. (1)

L. R. Arlinghaus, X. Li, M. Levy, D. Smith, E. B. Welch, J. C. Gore, and T. E. Yankeelov, “Current and future trends in magnetic resonance imaging assessments of the response of breast tumors to neoadjuvant chemotherapy,” J. Oncol.919620, 1–17 (2010).
[CrossRef]

Med. Phys. (3)

B. J. Tromberg, B. W. Pogue, K. D. Paulsen, A. G. Yodh, D. A. Boas, and A. E. Cerussi, “Assessing the future of diffuse optical imaging technologies for breast cancer management,” Med. Phys.35, 2443–2451 (2008).
[CrossRef] [PubMed]

D. R. Busch, W. Guo, R. Choe, T. Durduran, M. D. Feldman, C. Mies, M. A. Rosen, M. D. Schnall, B. J. Czerniecki, J. Tchou, A. DeMichele, M. E. Putt, and A. G. Yodh, “Computer aided automatic detection of malignant lesions in diffuse optical mammography,” Med. Phys.37, 1840–1849 (2010).
[CrossRef] [PubMed]

K. Blyschak, M. Simick, R. Jong, and L. Lilge, “Classification of breast tissue density by optical transillumination spectroscopy: optical and physiological effects governing predictive value,” Med. Phys.31, 1398–1414 (2004).
[CrossRef] [PubMed]

Neoplasia (1)

Q. Zhu, S. Tannenbaum, P. Hegde, M. Kane, C. Xu, and S. H. Kurtzman, “Noninvasive monitoring of breast cancer during neoadjuvant chemotherapy using optical tomography with ultrasound localization.” Neoplasia10, 1028–1040 (2008).
[PubMed]

Philos. Trans. R. Soc. A (1)

A. E. Cerussi, V. W. Tanamai, D. Hsiang, J. Butler, R. S. Mehta, and B. J. Tromberg, “Diffuse optical spectroscopic imaging correlates with final pathological response in breast cancer neoadjuvant chemotherapy.” Philos. Trans. R. Soc. A369, 4512–4530 (2011).
[CrossRef]

Proc. Natl. Acad. Sci. (2)

A. Cerussi, D. Hsiang, N. Shah, R. Mehta, A. Durkin, J. Butler, and B. J. Tromberg, “Predicting response to breast cancer neoadjuvant chemotherapy using diffuse optical spectroscopy.” Proc. Natl. Acad. Sci.104, 4014–4019 (2007).
[CrossRef] [PubMed]

D. Roblyer, S. Ueda, A. Cerussi, W. Tanamai, A. Durkin, R. Mehta, D. Hsiang, J. A. Butler, C. McLaren, W.-P. Chen, and B. Tromberg, “Optical imaging of breast cancer oxyhemoglobin flare correlates with neoadjuvant chemotherapy response one day after starting treatment.” Proc. Natl. Acad. Sci.108, 14626–14631 (2011).
[CrossRef] [PubMed]

Radiology (2)

S. Jiang, B. W. Pogue, C. M. Carpenter, S. P. Poplack, W. A. Wells, C. A. Kogel, J. A. Forero, L. S. Muffly, G. N. Schwartz, K. D. Paulsen, and P. A. Kaufman, “Evaluation of breast tumor response to neoadjuvant chemotherapy with tomographic diffuse optical spectroscopy: case studies of tumor region-of-interest changes.” Radiology252, 551–560 (2009).
[CrossRef] [PubMed]

M. G. Pakalniskis, W. A. Wells, M. C. Schwab, H. M. Froehlich, S. Jiang, Z. Li, T. D. Tosteson, S. P. Poplack, P. A. Kaufman, B. W. Pogue, and K. D. Paulsen, “Tumor angiogenesis change estimated by using diffuse optical spectroscopic tomography: demonstrated correlation in women undergoing neoadjuvant chemotherapy for invasive breast cancer?” Radiology259, 365–374 (2011).
[CrossRef] [PubMed]

Technol. Cancer Res. Treat. (1)

L. C. Enfield, G. Cantanhede, D. Westbroek, M. Douek, A. D. Purushotham, J. C. Hebden, and A. P. Gibson, “Monitoring the response to primary medical therapy for breast cancer using three-dimensional time-resolved optical mammography.” Technol. Cancer Res. Treat.10, 533–547 (2011).
[PubMed]

Trans. Onc. (1)

O. Falou, H. Soliman, A. Sadeghi-Naini, S. Iradji, S. Lemon-Wong, J. Zubovits, J. Spayne, R. Dent, M. Trudeau, J. Boileau, and , “Diffuse optical spectroscopy evaluation of treatment response in women with locally advanced breast cancer receiving neoadjuvant chemotherapy,” Trans. Onc.5, 238–246 (2012).

Other (3)

M. Jermyn, B. W. Pogue, H. Ghadyani, S. Davis, M. Mastanduno, and H. Dehghani, “A user-enabling visual workflow for near-infrared light transport modeling in tissue,” in Biomedical Optics, OSA Technical Digest (Optical Society of America, 2012), paper BW1A.7.

M. S. Pepe, The Statistical Evaluation of Medical Tests for Classification and Prediction (Oxford University Press, New York, 2003).

N. E. Breslow, N. E. Day, and W. Davis, Statistical methods in cancer research (Vol. 1) The Analysis of Case control Studies, No. 32 in IARC Scientific Publications (International Agency for Research on Cancer, 1980).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Data processing flow chart for a single subject with multiple measurements while undergoing neoadjuvant chemotherapy. The weighting vector (β, defining a ‘signature of malignancy’) is derived from a population of 30 biopsy confirmed cancers (blue boxes, Section 3.1). It essentially provides a weighting for each optical parameter per its importance for malignancy. Data is then normalized with logarithmic and Z-Score transformations for each subject across multiple time points designated by τ, red boxes, Section 3.2) using the mean (〈Ln[X(0)]〉H) and standard deviation (σ[Ln[X(0)]]H) of healthy tissue from the earliest available time-point (τ = 0) during the process. This normalized data is combined with β⃗ to produce a probability of malignancy for each patient and at each time point (purple boxes, Section 3.3).

Fig. 2
Fig. 2

Subject 2. Cranio-caudal slices through the center of a tumor located in the upper right of this image from a 3D reconstruction of Hbt and the probability of malignancy, P(ℳ), at three time points during neoadjuvant chemotherapy. Data shown was collected prior to the start of chemotherapy (top), after 4 cycles of Adriamycin + Cyclophosphamide (middle), and after an additional 3 cycles of Taxane (bottom). Gd-enhanced MRI subtraction images were collected ∼10 min. after injection. MRI images are scaled individually to improve visibility. Due to differences in equipment geometry, the optical and MR images were acquired in different planes. The tumor boundary is marked by black line contours in both the Hbt and P(ℳ) images. P(ℳ) was calculated from a training set of IDC and IDC+DCIS subjects (N=30).

Fig. 3
Fig. 3

Fractional change in Sd for healthy (d = H) and malignant (d = M) tissues. In calculating P(ℳ), data are normalized to healthy tissue at the first optical measurement using a training set of subjects with IDC or IDC+DCIS (a, N=30) or post-menopausal subjects with IDC or IDC+DCIS (b, N=14). Tumor tissue (SM (τ)) is denoted with dashed lines and healthy tissue (SH (τ)) with solid lines. Subjects 1 and 2 were complete responders by pathology. Subject 3 was a partial responder by pathology. Note, Subject 1 did not have an optical measurement prior to beginning chemotherapy, and the τ = 0 time point is defined to be 100%. In panel b, Subjects 1 and 2 have very low SM (τ) and SH (τ) in both the tumor and healthy tissue at later time points, resulting in overlapping traces.

Fig. 4
Fig. 4

Fractional change in Sd for healthy (d = H) and malignant (d = M) tissues. In calculating P(ℳ), data are normalized to healthy tissue at the each optical measurement time point using a training set of subjects with IDC or IDC+DCIS (a, N=30) or post-menopausal subjects with IDC or IDC+DCIS (b, N=14). Tumor tissue (SM (τ)) is denoted with dashed lines and healthy tissue (SH (τ)) with solid lines. The legend is the same as Fig. 3; only the normalization scheme is changed.

Fig. 5
Fig. 5

Fractional change in predicted response to chemotherapy using tumor SM (τ) (normalized to initial time point) and change in tumor volume measured by MRI relative to initial measurements. Results from DOT-CAD (SM (τ), solid lines) were calculated from a training set of IDC and IDC+DCIS subjects (N=30), normalized to the pre-/early-chemotherapy time point. Note: MRI volumes were obtained by a simple segmentation of late contrast enhanced subtraction images and do not include the overall radiological impression (dashed lines). Subject 3 was not imaged with MRI during the course of her treatment.

Fig. 6
Fig. 6

Hbt, StO2, and μs as a function of chemotherapy cycle for Subjects 1–3. Dashed (solid) lines denote the average value in malignant (healthy) tissue. The obvious trends found in this paper, utilizing the probability of malignancy approach, are not apparent in this un-normalized and un-weighted data. Masks were derived from region growing on P(ℳ) (Section 3.3, i.e., as in Fig. 2).

Fig. 9
Fig. 9

Subject 2. Cranio-caudal slices through the center of a tumor located in the upper right of this image from a 3D reconstruction of Hbt and the probability of malignancy, P(ℳ), at three time points during neoadjuvant chemotherapy. Data shown was collected prior to the start of chemotherapy (top), after 4 cycles of Adriamycin + Cyclophosphamide (middle), and after an additional 3 cycles of Taxane (bottom). MRI images are scaled individually to improve visibility. Note that the overall MRI contrast in chemotherapy cycle 4 is greatly reduced compared to baseline. Due to differences in equipment geometry, the optical and MR images were acquired in different planes. The tumor boundary is marked by black line contours in both the Hbt and P(ℳ) images. P(ℳ) was calculated from a training set of IDC and IDC+DCIS subjects (N=30).

Fig. 7
Fig. 7

Fractional change in Sd (τ) for healthy (d = H) and malignant (d = M) tissues versus chemotherapy cycle in three subjects, normalized to healthy tissue at the first optical measurement training set of subjects with IDC or IDC+DCIS (a, N=30) or post-menopausal subjects with IDC or IDC+DCIS (b, N=14). Tumor tissue (SM (τ)) is denoted with dashed lines and healthy tissue (SH (τ)) with solid lines. Subjects 1 and 2 were complete responders by pathology. Subject 3 was a partial responder by pathology. Note that Subject 1 did not have an optical measurement prior to beginning chemotherapy. The SM (τ) and SH (τ) in Subjects 1 and 2 are overlapping.

Fig. 8
Fig. 8

Fractional change in Sd (τ) for healthy (d = H) and malignant (d = M) tissues versus chemotherapy cycle in three subjects, normalized to healthy tissue at each optical measurement training set of subjects with IDC or IDC+DCIS (a, N=30) or post-menopausal subjects with IDC or IDC+DCIS (b, N=14). Tumor tissue (SM (τ)) is denoted with dashed lines and healthy tissue (SH (τ)) with solid lines. The legend is the same as Fig. 7.

Fig. 10
Fig. 10

Fractional change in Sd for healthy (d = H) and malignant (d = M) tissues. In calculating P(ℳ), data are normalized to healthy tissue measured at the first optical measurement using a mixed diagnoses training set (a, N=35, Table 5) or post-menopausal subjects with mixed diagnoses (b, N=19). Tumor tissue (SM (τ)) is denoted with dashed lines and healthy tissue (SH (τ)) with solid lines. Subjects 1 and 2 were complete responders by pathology. Subject 3 was a partial responder by pathology. Note that SM (τ) and SH (τ) in both Subjects 1 and 2 were barely distinguishable, i.e., the dashed and solid lines overlap.

Fig. 11
Fig. 11

Fractional change in Sd for healthy (d = H) and malignant (d = M) tissues. In calculating P(ℳ), data are normalized to healthy tissue measured at each each time point using a training set with mixed diagnoses (a, N=35, Table 5) or post-menopausal subjects with mixed diagnoses (b, N=19). Tumor tissue (SM (τ)) is denoted with dashed lines and healthy tissue (SH (τ)) with solid lines. The legend is the same as Fig. 10.

Tables (5)

Tables Icon

Table 1 Demographic breakdown of cancers used to derive the probability of malignancy in this study.

Tables Icon

Table 5 Demographic breakdown of cancers used to derive the probability of malignancy presented in Section A.3.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

z H b t = Ln [ H b t ] Ln [ H b t ] H σ [ Ln [ H b t ] ] H
( r ) = [ z H b t ( r ) , z S t O 2 ( r ) , z μ s ( r ) , 1 ] β
P ( ( r ) ) = 1 1 + e ( r ) ,
z H b t ( τ ) = L n [ H b t ( τ ) ] L n [ H b t ( τ = 0 ) ] H σ [ L n [ H b t ( τ = 0 ) ] ] H .
( r , τ ) = [ z H b t ( r , τ ) , z S t O 2 ( r , τ ) , z μ s ( r , τ ) , 1 ] β ,
P ( ) = P ( ( r , τ ) ) = 1 1 + e ( r , τ )
S H ( τ ) = Healthy Voxels P ( ( r , τ ) )
S M ( τ ) = Malignant Voxels P ( ( r , τ ) ) ,

Metrics