Abstract

The feasibility of detecting red blood cell (RBC) aggregation with photoacoustics (PAs) was investigated theoretically and experimentally using human and porcine RBCs. The theoretical PA signals and spectra generated from such samples were examined for several hematocrit levels and aggregates sizes. The effect of a finite transducer bandwidth on the received PA signal was also examined. The simulation results suggest that the dominant frequency of the PA signals from non-aggregated RBCs decreases towards clinical frequency ranges as the aggregate size increases. The experimentally measured mean spectral power increased by ~6 dB for the largest aggregate compared to the non-aggregated samples. Such results confirm the theoretical predictions and illustrate the potential of using PA imaging for detecting RBC aggregation.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. O. K. Baskurt, B. Neu, and H. J. Meiselman, Red Blood Cell Aggregation (CRC Press, Boca Raton, FL, 2011).
  2. M. Uyuklu, M. Canpolat, H. J. Meiselman, and O. K. Baskurt, “Wavelength selection in measuring red blood cell aggregation based on light transmittance,” J. Biomed. Opt.16(11), 117006 (2011).
    [CrossRef] [PubMed]
  3. H. J. Meiselman, “Red blood cell aggregation: 45 years being curious,” Biorheology46(1), 1–19 (2009).
    [PubMed]
  4. P. C. Johnson, J. J. Bishop, S. Popel, and M. Intaglietta, “Effects of red cell aggregation on the venous microcirculation,” Biorheology36(5-6), 457–460 (1999).
    [PubMed]
  5. O. K. Baskurt, M. R. Hardeman, M. W. Rampling, and H. J. Meiselman, Handbook of Hemorheology and Hemodynamics (IOS Press, Amsterdam, 2007).
  6. O. K. Baskurt, A. Temiz, and H. J. Meiselman, “Red blood cell aggregation in experimental sepsis,” J. Lab. Clin. Med.130(2), 183–190 (1997).
    [CrossRef] [PubMed]
  7. B. Almog, R. Gamzu, R. Almog, J. B. Lessing, I. Shapira, S. Berliner, D. Pauzner, S. Maslovitz, and I. Levin, “Enhanced erythrocyte aggregation in clinically diagnosed pelvic inflammatory disease,” Sex. Transm. Dis.32(8), 484–486 (2005).
    [CrossRef] [PubMed]
  8. P. Foresto, M. D’Arrigo, F. Filippini, R. Gallo, L. Barberena, L. Racca, J. Valverde, and R. J. Rasia, “Evaluación de alteraciones hemorreológicas en pacientes hipertensos [Hemorheological alterations in hypertensive patients],” Medicina (B. Aires)65(2), 121–125 (2005).
    [PubMed]
  9. E. Piva, M. C. Sanzari, G. Servidio, and M. Plebani, “Length of sedimentation reaction in undiluted blood (erythrocyte sedimentation rate): variations with sex and age and reference limits,” Clin. Chem. Lab. Med.39(5), 451–454 (2001).
    [CrossRef] [PubMed]
  10. O. K. Baskurt and H. J. Meiselman, “Cellular determinants of low-shear blood viscosity,” Biorheology34(3), 235–247 (1997).
    [CrossRef] [PubMed]
  11. J. G. G. Dobbe, G. J. Streekstra, J. Strackee, M. C. M. Rutten, J. M. A. Stijnen, and C. A. Grimbergen, ““Syllectometry: The effect of aggregometer geometry in the assessment of red blood cell shape recovery and aggregation,” IEEE T,” Biomed. Eng. (N.Y.)50, 97–106 (2003).
  12. A. Vayá, C. Falcó, P. Fernández, T. Contreras, M. Valls, and J. Aznar, “Erythrocyte aggregation determined with the Myrenne aggregometer at two modes (M0, M1) and at two times (5 and 10 sec),” Clin. Hemorheol. Microcirc.29(2), 119–127 (2003).
    [PubMed]
  13. K. K. Shung and G A. Thieme, “Biological tissues as ultrasonic scattering media,” in Ultrasonic Scattering in Biological Tissues, K. K. Shung and G. A. Thieme, eds. (CRC Press, Boca Raton, FL, 1993).
  14. R. S. C. Cobbold, Foundations of Biomedical Ultrasound (Oxford University Press, New York, 2007), Chap. 4.
  15. L. V. Wang and H. Wu, Biomedical Optics Principles and Imaging (Wiley, Hoboken, NJ, 2007), Chap. 12.
  16. L. V. Wang, “Prospects of photoacoustic tomography,” Med. Phys.35(12), 5758–5767 (2008).
    [CrossRef] [PubMed]
  17. X. Wang, X. Xie, G. Ku, L. V. Wang, and G. Stoica, “Noninvasive imaging of hemoglobin concentration and oxygenation in the rat brain using high-resolution photoacoustic tomography,” J. Biomed. Opt.11(2), 024015 (2006).
    [CrossRef] [PubMed]
  18. J. G. Diebold, “Photoacoustic monopole radiation: waves from objects with symmetry in one, two and three dimensions,” in Photoacoustic Imaging and Spectroscopy, L. V. Wang, ed. (CRC Press, Boca Raton, FL, 2009).
  19. R. K. Saha and M. C. Kolios, “A simulation study on photoacoustic signals from red blood cells,” J. Acoust. Soc. Am.129(5), 2935–2943 (2011).
    [CrossRef] [PubMed]
  20. R. K. Saha and M. C. Kolios, “Effects of erythrocyte oxygenation on optoacoustic signals,” J. Biomed. Opt.16(11), 115003 (2011).
    [CrossRef] [PubMed]
  21. F. T. H. Yu and G. Cloutier, “Experimental ultrasound characterization of red blood cell aggregation using the structure factor size estimator,” J. Acoust. Soc. Am.122(1), 645–656 (2007).
    [CrossRef] [PubMed]
  22. F. T. H. Yu, E. Franceschini, B. Chayer, J. K. Armstrong, H. J. Meiselman, and G. Cloutier, “Ultrasonic parametric imaging of erythrocyte aggregation using the structure factor size estimator,” Biorheology46(4), 343–363 (2009).
    [PubMed]
  23. T. J. Szabo, Diagnostic Imaging: Inside Out (Elsevier Academic, San Diego, 2004), Chap. 4.
  24. E. L. Hinrichsen, J. Feder, and T. Jossang, “Random packing of disks in two dimensions,” Phys. Rev. A41(8), 4199–4209 (1990).
    [CrossRef]
  25. A. B. Karpiouk, S. R. Aglyamov, S. Mallidi, J. Shah, W. G. Scott, J. M. Rubin, and S. Y. Emelianov, “Combined ultrasound and photoacoustic imaging to detect and stage deep vein thrombosis: phantom and ex vivo studies,” J. Biomed. Opt.13(5), 054061 (2008).
    [CrossRef] [PubMed]
  26. R. K. Saha, S. Karmakar, E. Hysi, M. Roy, and M. C. Kolios, “Validity of a theoretical model to examine blood oxygenation dependent optoacoustics,” J. Biomed. Opt.17(5), 055002 (2012).
    [CrossRef] [PubMed]
  27. E. I. Galanzha, M. Sarimollaoglu, D. A. Nedosekin, S. G. Keyrouz, J. L. Mehta, and V. P. Zharov, “In vivo flow cytometry of circulating clots using negative photothermal and photoacoustic contrasts,” Cytometry A79A(10), 814–824 (2011).
    [CrossRef] [PubMed]
  28. E. I. Galanzha and V. P. Zharov, “Photoacoustic flow cytometry,” Methods. in press.
    [PubMed]
  29. L. V. Wang and S. Hu, “Photoacoustic tomography: in vivo imaging from organelles to organs,” Science335(6075), 1458–1462 (2012).
    [CrossRef] [PubMed]
  30. F. L. Lizzi, M. Ostromogilsky, E. J. Feleppa, M. C. Rorke, and M. M. Yaremko, “Relationship of ultrasonic spectral parameters to features of tissue microstructure,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control34(3), 319–329 (1987).
    [CrossRef] [PubMed]
  31. E. Hysi, R. K. Saha, and M. C. Kolios, “Photoacoustic radiofrequency spectroscopy for assessing red blood cell aggregation and oxygenation,” J. Biomed. Opt.submitted.
  32. O. K. Baskurt, “R. A. Farley and H. J. Meiselman, “Erythrocyte aggregation tendency and cellular properties in horse, human and rat: a comparative study,” Am. J. Physiol. Heart Circ. Physiol.273, H2604–H2612 (1997).
  33. O. K. Baskurt and H. J. Meiselman, “Blood rheology and hemodynamics,” Semin. Thromb. Hemost.29(5), 435–450 (2003).
    [CrossRef] [PubMed]

2012 (2)

R. K. Saha, S. Karmakar, E. Hysi, M. Roy, and M. C. Kolios, “Validity of a theoretical model to examine blood oxygenation dependent optoacoustics,” J. Biomed. Opt.17(5), 055002 (2012).
[CrossRef] [PubMed]

L. V. Wang and S. Hu, “Photoacoustic tomography: in vivo imaging from organelles to organs,” Science335(6075), 1458–1462 (2012).
[CrossRef] [PubMed]

2011 (4)

E. I. Galanzha, M. Sarimollaoglu, D. A. Nedosekin, S. G. Keyrouz, J. L. Mehta, and V. P. Zharov, “In vivo flow cytometry of circulating clots using negative photothermal and photoacoustic contrasts,” Cytometry A79A(10), 814–824 (2011).
[CrossRef] [PubMed]

M. Uyuklu, M. Canpolat, H. J. Meiselman, and O. K. Baskurt, “Wavelength selection in measuring red blood cell aggregation based on light transmittance,” J. Biomed. Opt.16(11), 117006 (2011).
[CrossRef] [PubMed]

R. K. Saha and M. C. Kolios, “A simulation study on photoacoustic signals from red blood cells,” J. Acoust. Soc. Am.129(5), 2935–2943 (2011).
[CrossRef] [PubMed]

R. K. Saha and M. C. Kolios, “Effects of erythrocyte oxygenation on optoacoustic signals,” J. Biomed. Opt.16(11), 115003 (2011).
[CrossRef] [PubMed]

2009 (2)

F. T. H. Yu, E. Franceschini, B. Chayer, J. K. Armstrong, H. J. Meiselman, and G. Cloutier, “Ultrasonic parametric imaging of erythrocyte aggregation using the structure factor size estimator,” Biorheology46(4), 343–363 (2009).
[PubMed]

H. J. Meiselman, “Red blood cell aggregation: 45 years being curious,” Biorheology46(1), 1–19 (2009).
[PubMed]

2008 (2)

L. V. Wang, “Prospects of photoacoustic tomography,” Med. Phys.35(12), 5758–5767 (2008).
[CrossRef] [PubMed]

A. B. Karpiouk, S. R. Aglyamov, S. Mallidi, J. Shah, W. G. Scott, J. M. Rubin, and S. Y. Emelianov, “Combined ultrasound and photoacoustic imaging to detect and stage deep vein thrombosis: phantom and ex vivo studies,” J. Biomed. Opt.13(5), 054061 (2008).
[CrossRef] [PubMed]

2007 (1)

F. T. H. Yu and G. Cloutier, “Experimental ultrasound characterization of red blood cell aggregation using the structure factor size estimator,” J. Acoust. Soc. Am.122(1), 645–656 (2007).
[CrossRef] [PubMed]

2006 (1)

X. Wang, X. Xie, G. Ku, L. V. Wang, and G. Stoica, “Noninvasive imaging of hemoglobin concentration and oxygenation in the rat brain using high-resolution photoacoustic tomography,” J. Biomed. Opt.11(2), 024015 (2006).
[CrossRef] [PubMed]

2005 (2)

B. Almog, R. Gamzu, R. Almog, J. B. Lessing, I. Shapira, S. Berliner, D. Pauzner, S. Maslovitz, and I. Levin, “Enhanced erythrocyte aggregation in clinically diagnosed pelvic inflammatory disease,” Sex. Transm. Dis.32(8), 484–486 (2005).
[CrossRef] [PubMed]

P. Foresto, M. D’Arrigo, F. Filippini, R. Gallo, L. Barberena, L. Racca, J. Valverde, and R. J. Rasia, “Evaluación de alteraciones hemorreológicas en pacientes hipertensos [Hemorheological alterations in hypertensive patients],” Medicina (B. Aires)65(2), 121–125 (2005).
[PubMed]

2003 (3)

J. G. G. Dobbe, G. J. Streekstra, J. Strackee, M. C. M. Rutten, J. M. A. Stijnen, and C. A. Grimbergen, ““Syllectometry: The effect of aggregometer geometry in the assessment of red blood cell shape recovery and aggregation,” IEEE T,” Biomed. Eng. (N.Y.)50, 97–106 (2003).

A. Vayá, C. Falcó, P. Fernández, T. Contreras, M. Valls, and J. Aznar, “Erythrocyte aggregation determined with the Myrenne aggregometer at two modes (M0, M1) and at two times (5 and 10 sec),” Clin. Hemorheol. Microcirc.29(2), 119–127 (2003).
[PubMed]

O. K. Baskurt and H. J. Meiselman, “Blood rheology and hemodynamics,” Semin. Thromb. Hemost.29(5), 435–450 (2003).
[CrossRef] [PubMed]

2001 (1)

E. Piva, M. C. Sanzari, G. Servidio, and M. Plebani, “Length of sedimentation reaction in undiluted blood (erythrocyte sedimentation rate): variations with sex and age and reference limits,” Clin. Chem. Lab. Med.39(5), 451–454 (2001).
[CrossRef] [PubMed]

1999 (1)

P. C. Johnson, J. J. Bishop, S. Popel, and M. Intaglietta, “Effects of red cell aggregation on the venous microcirculation,” Biorheology36(5-6), 457–460 (1999).
[PubMed]

1997 (3)

O. K. Baskurt, A. Temiz, and H. J. Meiselman, “Red blood cell aggregation in experimental sepsis,” J. Lab. Clin. Med.130(2), 183–190 (1997).
[CrossRef] [PubMed]

O. K. Baskurt and H. J. Meiselman, “Cellular determinants of low-shear blood viscosity,” Biorheology34(3), 235–247 (1997).
[CrossRef] [PubMed]

O. K. Baskurt, “R. A. Farley and H. J. Meiselman, “Erythrocyte aggregation tendency and cellular properties in horse, human and rat: a comparative study,” Am. J. Physiol. Heart Circ. Physiol.273, H2604–H2612 (1997).

1990 (1)

E. L. Hinrichsen, J. Feder, and T. Jossang, “Random packing of disks in two dimensions,” Phys. Rev. A41(8), 4199–4209 (1990).
[CrossRef]

1987 (1)

F. L. Lizzi, M. Ostromogilsky, E. J. Feleppa, M. C. Rorke, and M. M. Yaremko, “Relationship of ultrasonic spectral parameters to features of tissue microstructure,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control34(3), 319–329 (1987).
[CrossRef] [PubMed]

Aglyamov, S. R.

A. B. Karpiouk, S. R. Aglyamov, S. Mallidi, J. Shah, W. G. Scott, J. M. Rubin, and S. Y. Emelianov, “Combined ultrasound and photoacoustic imaging to detect and stage deep vein thrombosis: phantom and ex vivo studies,” J. Biomed. Opt.13(5), 054061 (2008).
[CrossRef] [PubMed]

Almog, B.

B. Almog, R. Gamzu, R. Almog, J. B. Lessing, I. Shapira, S. Berliner, D. Pauzner, S. Maslovitz, and I. Levin, “Enhanced erythrocyte aggregation in clinically diagnosed pelvic inflammatory disease,” Sex. Transm. Dis.32(8), 484–486 (2005).
[CrossRef] [PubMed]

Almog, R.

B. Almog, R. Gamzu, R. Almog, J. B. Lessing, I. Shapira, S. Berliner, D. Pauzner, S. Maslovitz, and I. Levin, “Enhanced erythrocyte aggregation in clinically diagnosed pelvic inflammatory disease,” Sex. Transm. Dis.32(8), 484–486 (2005).
[CrossRef] [PubMed]

Armstrong, J. K.

F. T. H. Yu, E. Franceschini, B. Chayer, J. K. Armstrong, H. J. Meiselman, and G. Cloutier, “Ultrasonic parametric imaging of erythrocyte aggregation using the structure factor size estimator,” Biorheology46(4), 343–363 (2009).
[PubMed]

Aznar, J.

A. Vayá, C. Falcó, P. Fernández, T. Contreras, M. Valls, and J. Aznar, “Erythrocyte aggregation determined with the Myrenne aggregometer at two modes (M0, M1) and at two times (5 and 10 sec),” Clin. Hemorheol. Microcirc.29(2), 119–127 (2003).
[PubMed]

Barberena, L.

P. Foresto, M. D’Arrigo, F. Filippini, R. Gallo, L. Barberena, L. Racca, J. Valverde, and R. J. Rasia, “Evaluación de alteraciones hemorreológicas en pacientes hipertensos [Hemorheological alterations in hypertensive patients],” Medicina (B. Aires)65(2), 121–125 (2005).
[PubMed]

Baskurt, O. K.

M. Uyuklu, M. Canpolat, H. J. Meiselman, and O. K. Baskurt, “Wavelength selection in measuring red blood cell aggregation based on light transmittance,” J. Biomed. Opt.16(11), 117006 (2011).
[CrossRef] [PubMed]

O. K. Baskurt and H. J. Meiselman, “Blood rheology and hemodynamics,” Semin. Thromb. Hemost.29(5), 435–450 (2003).
[CrossRef] [PubMed]

O. K. Baskurt, A. Temiz, and H. J. Meiselman, “Red blood cell aggregation in experimental sepsis,” J. Lab. Clin. Med.130(2), 183–190 (1997).
[CrossRef] [PubMed]

O. K. Baskurt and H. J. Meiselman, “Cellular determinants of low-shear blood viscosity,” Biorheology34(3), 235–247 (1997).
[CrossRef] [PubMed]

O. K. Baskurt, “R. A. Farley and H. J. Meiselman, “Erythrocyte aggregation tendency and cellular properties in horse, human and rat: a comparative study,” Am. J. Physiol. Heart Circ. Physiol.273, H2604–H2612 (1997).

Berliner, S.

B. Almog, R. Gamzu, R. Almog, J. B. Lessing, I. Shapira, S. Berliner, D. Pauzner, S. Maslovitz, and I. Levin, “Enhanced erythrocyte aggregation in clinically diagnosed pelvic inflammatory disease,” Sex. Transm. Dis.32(8), 484–486 (2005).
[CrossRef] [PubMed]

Bishop, J. J.

P. C. Johnson, J. J. Bishop, S. Popel, and M. Intaglietta, “Effects of red cell aggregation on the venous microcirculation,” Biorheology36(5-6), 457–460 (1999).
[PubMed]

Canpolat, M.

M. Uyuklu, M. Canpolat, H. J. Meiselman, and O. K. Baskurt, “Wavelength selection in measuring red blood cell aggregation based on light transmittance,” J. Biomed. Opt.16(11), 117006 (2011).
[CrossRef] [PubMed]

Chayer, B.

F. T. H. Yu, E. Franceschini, B. Chayer, J. K. Armstrong, H. J. Meiselman, and G. Cloutier, “Ultrasonic parametric imaging of erythrocyte aggregation using the structure factor size estimator,” Biorheology46(4), 343–363 (2009).
[PubMed]

Cloutier, G.

F. T. H. Yu, E. Franceschini, B. Chayer, J. K. Armstrong, H. J. Meiselman, and G. Cloutier, “Ultrasonic parametric imaging of erythrocyte aggregation using the structure factor size estimator,” Biorheology46(4), 343–363 (2009).
[PubMed]

F. T. H. Yu and G. Cloutier, “Experimental ultrasound characterization of red blood cell aggregation using the structure factor size estimator,” J. Acoust. Soc. Am.122(1), 645–656 (2007).
[CrossRef] [PubMed]

Contreras, T.

A. Vayá, C. Falcó, P. Fernández, T. Contreras, M. Valls, and J. Aznar, “Erythrocyte aggregation determined with the Myrenne aggregometer at two modes (M0, M1) and at two times (5 and 10 sec),” Clin. Hemorheol. Microcirc.29(2), 119–127 (2003).
[PubMed]

D’Arrigo, M.

P. Foresto, M. D’Arrigo, F. Filippini, R. Gallo, L. Barberena, L. Racca, J. Valverde, and R. J. Rasia, “Evaluación de alteraciones hemorreológicas en pacientes hipertensos [Hemorheological alterations in hypertensive patients],” Medicina (B. Aires)65(2), 121–125 (2005).
[PubMed]

Dobbe, J. G. G.

J. G. G. Dobbe, G. J. Streekstra, J. Strackee, M. C. M. Rutten, J. M. A. Stijnen, and C. A. Grimbergen, ““Syllectometry: The effect of aggregometer geometry in the assessment of red blood cell shape recovery and aggregation,” IEEE T,” Biomed. Eng. (N.Y.)50, 97–106 (2003).

Emelianov, S. Y.

A. B. Karpiouk, S. R. Aglyamov, S. Mallidi, J. Shah, W. G. Scott, J. M. Rubin, and S. Y. Emelianov, “Combined ultrasound and photoacoustic imaging to detect and stage deep vein thrombosis: phantom and ex vivo studies,” J. Biomed. Opt.13(5), 054061 (2008).
[CrossRef] [PubMed]

Falcó, C.

A. Vayá, C. Falcó, P. Fernández, T. Contreras, M. Valls, and J. Aznar, “Erythrocyte aggregation determined with the Myrenne aggregometer at two modes (M0, M1) and at two times (5 and 10 sec),” Clin. Hemorheol. Microcirc.29(2), 119–127 (2003).
[PubMed]

Feder, J.

E. L. Hinrichsen, J. Feder, and T. Jossang, “Random packing of disks in two dimensions,” Phys. Rev. A41(8), 4199–4209 (1990).
[CrossRef]

Feleppa, E. J.

F. L. Lizzi, M. Ostromogilsky, E. J. Feleppa, M. C. Rorke, and M. M. Yaremko, “Relationship of ultrasonic spectral parameters to features of tissue microstructure,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control34(3), 319–329 (1987).
[CrossRef] [PubMed]

Fernández, P.

A. Vayá, C. Falcó, P. Fernández, T. Contreras, M. Valls, and J. Aznar, “Erythrocyte aggregation determined with the Myrenne aggregometer at two modes (M0, M1) and at two times (5 and 10 sec),” Clin. Hemorheol. Microcirc.29(2), 119–127 (2003).
[PubMed]

Filippini, F.

P. Foresto, M. D’Arrigo, F. Filippini, R. Gallo, L. Barberena, L. Racca, J. Valverde, and R. J. Rasia, “Evaluación de alteraciones hemorreológicas en pacientes hipertensos [Hemorheological alterations in hypertensive patients],” Medicina (B. Aires)65(2), 121–125 (2005).
[PubMed]

Foresto, P.

P. Foresto, M. D’Arrigo, F. Filippini, R. Gallo, L. Barberena, L. Racca, J. Valverde, and R. J. Rasia, “Evaluación de alteraciones hemorreológicas en pacientes hipertensos [Hemorheological alterations in hypertensive patients],” Medicina (B. Aires)65(2), 121–125 (2005).
[PubMed]

Franceschini, E.

F. T. H. Yu, E. Franceschini, B. Chayer, J. K. Armstrong, H. J. Meiselman, and G. Cloutier, “Ultrasonic parametric imaging of erythrocyte aggregation using the structure factor size estimator,” Biorheology46(4), 343–363 (2009).
[PubMed]

Galanzha, E. I.

E. I. Galanzha, M. Sarimollaoglu, D. A. Nedosekin, S. G. Keyrouz, J. L. Mehta, and V. P. Zharov, “In vivo flow cytometry of circulating clots using negative photothermal and photoacoustic contrasts,” Cytometry A79A(10), 814–824 (2011).
[CrossRef] [PubMed]

E. I. Galanzha and V. P. Zharov, “Photoacoustic flow cytometry,” Methods. in press.
[PubMed]

Gallo, R.

P. Foresto, M. D’Arrigo, F. Filippini, R. Gallo, L. Barberena, L. Racca, J. Valverde, and R. J. Rasia, “Evaluación de alteraciones hemorreológicas en pacientes hipertensos [Hemorheological alterations in hypertensive patients],” Medicina (B. Aires)65(2), 121–125 (2005).
[PubMed]

Gamzu, R.

B. Almog, R. Gamzu, R. Almog, J. B. Lessing, I. Shapira, S. Berliner, D. Pauzner, S. Maslovitz, and I. Levin, “Enhanced erythrocyte aggregation in clinically diagnosed pelvic inflammatory disease,” Sex. Transm. Dis.32(8), 484–486 (2005).
[CrossRef] [PubMed]

Grimbergen, C. A.

J. G. G. Dobbe, G. J. Streekstra, J. Strackee, M. C. M. Rutten, J. M. A. Stijnen, and C. A. Grimbergen, ““Syllectometry: The effect of aggregometer geometry in the assessment of red blood cell shape recovery and aggregation,” IEEE T,” Biomed. Eng. (N.Y.)50, 97–106 (2003).

Hinrichsen, E. L.

E. L. Hinrichsen, J. Feder, and T. Jossang, “Random packing of disks in two dimensions,” Phys. Rev. A41(8), 4199–4209 (1990).
[CrossRef]

Hu, S.

L. V. Wang and S. Hu, “Photoacoustic tomography: in vivo imaging from organelles to organs,” Science335(6075), 1458–1462 (2012).
[CrossRef] [PubMed]

Hysi, E.

R. K. Saha, S. Karmakar, E. Hysi, M. Roy, and M. C. Kolios, “Validity of a theoretical model to examine blood oxygenation dependent optoacoustics,” J. Biomed. Opt.17(5), 055002 (2012).
[CrossRef] [PubMed]

E. Hysi, R. K. Saha, and M. C. Kolios, “Photoacoustic radiofrequency spectroscopy for assessing red blood cell aggregation and oxygenation,” J. Biomed. Opt.submitted.

Intaglietta, M.

P. C. Johnson, J. J. Bishop, S. Popel, and M. Intaglietta, “Effects of red cell aggregation on the venous microcirculation,” Biorheology36(5-6), 457–460 (1999).
[PubMed]

Johnson, P. C.

P. C. Johnson, J. J. Bishop, S. Popel, and M. Intaglietta, “Effects of red cell aggregation on the venous microcirculation,” Biorheology36(5-6), 457–460 (1999).
[PubMed]

Jossang, T.

E. L. Hinrichsen, J. Feder, and T. Jossang, “Random packing of disks in two dimensions,” Phys. Rev. A41(8), 4199–4209 (1990).
[CrossRef]

Karmakar, S.

R. K. Saha, S. Karmakar, E. Hysi, M. Roy, and M. C. Kolios, “Validity of a theoretical model to examine blood oxygenation dependent optoacoustics,” J. Biomed. Opt.17(5), 055002 (2012).
[CrossRef] [PubMed]

Karpiouk, A. B.

A. B. Karpiouk, S. R. Aglyamov, S. Mallidi, J. Shah, W. G. Scott, J. M. Rubin, and S. Y. Emelianov, “Combined ultrasound and photoacoustic imaging to detect and stage deep vein thrombosis: phantom and ex vivo studies,” J. Biomed. Opt.13(5), 054061 (2008).
[CrossRef] [PubMed]

Keyrouz, S. G.

E. I. Galanzha, M. Sarimollaoglu, D. A. Nedosekin, S. G. Keyrouz, J. L. Mehta, and V. P. Zharov, “In vivo flow cytometry of circulating clots using negative photothermal and photoacoustic contrasts,” Cytometry A79A(10), 814–824 (2011).
[CrossRef] [PubMed]

Kolios, M. C.

R. K. Saha, S. Karmakar, E. Hysi, M. Roy, and M. C. Kolios, “Validity of a theoretical model to examine blood oxygenation dependent optoacoustics,” J. Biomed. Opt.17(5), 055002 (2012).
[CrossRef] [PubMed]

R. K. Saha and M. C. Kolios, “Effects of erythrocyte oxygenation on optoacoustic signals,” J. Biomed. Opt.16(11), 115003 (2011).
[CrossRef] [PubMed]

R. K. Saha and M. C. Kolios, “A simulation study on photoacoustic signals from red blood cells,” J. Acoust. Soc. Am.129(5), 2935–2943 (2011).
[CrossRef] [PubMed]

E. Hysi, R. K. Saha, and M. C. Kolios, “Photoacoustic radiofrequency spectroscopy for assessing red blood cell aggregation and oxygenation,” J. Biomed. Opt.submitted.

Ku, G.

X. Wang, X. Xie, G. Ku, L. V. Wang, and G. Stoica, “Noninvasive imaging of hemoglobin concentration and oxygenation in the rat brain using high-resolution photoacoustic tomography,” J. Biomed. Opt.11(2), 024015 (2006).
[CrossRef] [PubMed]

Lessing, J. B.

B. Almog, R. Gamzu, R. Almog, J. B. Lessing, I. Shapira, S. Berliner, D. Pauzner, S. Maslovitz, and I. Levin, “Enhanced erythrocyte aggregation in clinically diagnosed pelvic inflammatory disease,” Sex. Transm. Dis.32(8), 484–486 (2005).
[CrossRef] [PubMed]

Levin, I.

B. Almog, R. Gamzu, R. Almog, J. B. Lessing, I. Shapira, S. Berliner, D. Pauzner, S. Maslovitz, and I. Levin, “Enhanced erythrocyte aggregation in clinically diagnosed pelvic inflammatory disease,” Sex. Transm. Dis.32(8), 484–486 (2005).
[CrossRef] [PubMed]

Lizzi, F. L.

F. L. Lizzi, M. Ostromogilsky, E. J. Feleppa, M. C. Rorke, and M. M. Yaremko, “Relationship of ultrasonic spectral parameters to features of tissue microstructure,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control34(3), 319–329 (1987).
[CrossRef] [PubMed]

Mallidi, S.

A. B. Karpiouk, S. R. Aglyamov, S. Mallidi, J. Shah, W. G. Scott, J. M. Rubin, and S. Y. Emelianov, “Combined ultrasound and photoacoustic imaging to detect and stage deep vein thrombosis: phantom and ex vivo studies,” J. Biomed. Opt.13(5), 054061 (2008).
[CrossRef] [PubMed]

Maslovitz, S.

B. Almog, R. Gamzu, R. Almog, J. B. Lessing, I. Shapira, S. Berliner, D. Pauzner, S. Maslovitz, and I. Levin, “Enhanced erythrocyte aggregation in clinically diagnosed pelvic inflammatory disease,” Sex. Transm. Dis.32(8), 484–486 (2005).
[CrossRef] [PubMed]

Mehta, J. L.

E. I. Galanzha, M. Sarimollaoglu, D. A. Nedosekin, S. G. Keyrouz, J. L. Mehta, and V. P. Zharov, “In vivo flow cytometry of circulating clots using negative photothermal and photoacoustic contrasts,” Cytometry A79A(10), 814–824 (2011).
[CrossRef] [PubMed]

Meiselman, H. J.

M. Uyuklu, M. Canpolat, H. J. Meiselman, and O. K. Baskurt, “Wavelength selection in measuring red blood cell aggregation based on light transmittance,” J. Biomed. Opt.16(11), 117006 (2011).
[CrossRef] [PubMed]

H. J. Meiselman, “Red blood cell aggregation: 45 years being curious,” Biorheology46(1), 1–19 (2009).
[PubMed]

F. T. H. Yu, E. Franceschini, B. Chayer, J. K. Armstrong, H. J. Meiselman, and G. Cloutier, “Ultrasonic parametric imaging of erythrocyte aggregation using the structure factor size estimator,” Biorheology46(4), 343–363 (2009).
[PubMed]

O. K. Baskurt and H. J. Meiselman, “Blood rheology and hemodynamics,” Semin. Thromb. Hemost.29(5), 435–450 (2003).
[CrossRef] [PubMed]

O. K. Baskurt, A. Temiz, and H. J. Meiselman, “Red blood cell aggregation in experimental sepsis,” J. Lab. Clin. Med.130(2), 183–190 (1997).
[CrossRef] [PubMed]

O. K. Baskurt and H. J. Meiselman, “Cellular determinants of low-shear blood viscosity,” Biorheology34(3), 235–247 (1997).
[CrossRef] [PubMed]

Nedosekin, D. A.

E. I. Galanzha, M. Sarimollaoglu, D. A. Nedosekin, S. G. Keyrouz, J. L. Mehta, and V. P. Zharov, “In vivo flow cytometry of circulating clots using negative photothermal and photoacoustic contrasts,” Cytometry A79A(10), 814–824 (2011).
[CrossRef] [PubMed]

Ostromogilsky, M.

F. L. Lizzi, M. Ostromogilsky, E. J. Feleppa, M. C. Rorke, and M. M. Yaremko, “Relationship of ultrasonic spectral parameters to features of tissue microstructure,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control34(3), 319–329 (1987).
[CrossRef] [PubMed]

Pauzner, D.

B. Almog, R. Gamzu, R. Almog, J. B. Lessing, I. Shapira, S. Berliner, D. Pauzner, S. Maslovitz, and I. Levin, “Enhanced erythrocyte aggregation in clinically diagnosed pelvic inflammatory disease,” Sex. Transm. Dis.32(8), 484–486 (2005).
[CrossRef] [PubMed]

Piva, E.

E. Piva, M. C. Sanzari, G. Servidio, and M. Plebani, “Length of sedimentation reaction in undiluted blood (erythrocyte sedimentation rate): variations with sex and age and reference limits,” Clin. Chem. Lab. Med.39(5), 451–454 (2001).
[CrossRef] [PubMed]

Plebani, M.

E. Piva, M. C. Sanzari, G. Servidio, and M. Plebani, “Length of sedimentation reaction in undiluted blood (erythrocyte sedimentation rate): variations with sex and age and reference limits,” Clin. Chem. Lab. Med.39(5), 451–454 (2001).
[CrossRef] [PubMed]

Popel, S.

P. C. Johnson, J. J. Bishop, S. Popel, and M. Intaglietta, “Effects of red cell aggregation on the venous microcirculation,” Biorheology36(5-6), 457–460 (1999).
[PubMed]

Racca, L.

P. Foresto, M. D’Arrigo, F. Filippini, R. Gallo, L. Barberena, L. Racca, J. Valverde, and R. J. Rasia, “Evaluación de alteraciones hemorreológicas en pacientes hipertensos [Hemorheological alterations in hypertensive patients],” Medicina (B. Aires)65(2), 121–125 (2005).
[PubMed]

Rasia, R. J.

P. Foresto, M. D’Arrigo, F. Filippini, R. Gallo, L. Barberena, L. Racca, J. Valverde, and R. J. Rasia, “Evaluación de alteraciones hemorreológicas en pacientes hipertensos [Hemorheological alterations in hypertensive patients],” Medicina (B. Aires)65(2), 121–125 (2005).
[PubMed]

Rorke, M. C.

F. L. Lizzi, M. Ostromogilsky, E. J. Feleppa, M. C. Rorke, and M. M. Yaremko, “Relationship of ultrasonic spectral parameters to features of tissue microstructure,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control34(3), 319–329 (1987).
[CrossRef] [PubMed]

Roy, M.

R. K. Saha, S. Karmakar, E. Hysi, M. Roy, and M. C. Kolios, “Validity of a theoretical model to examine blood oxygenation dependent optoacoustics,” J. Biomed. Opt.17(5), 055002 (2012).
[CrossRef] [PubMed]

Rubin, J. M.

A. B. Karpiouk, S. R. Aglyamov, S. Mallidi, J. Shah, W. G. Scott, J. M. Rubin, and S. Y. Emelianov, “Combined ultrasound and photoacoustic imaging to detect and stage deep vein thrombosis: phantom and ex vivo studies,” J. Biomed. Opt.13(5), 054061 (2008).
[CrossRef] [PubMed]

Rutten, M. C. M.

J. G. G. Dobbe, G. J. Streekstra, J. Strackee, M. C. M. Rutten, J. M. A. Stijnen, and C. A. Grimbergen, ““Syllectometry: The effect of aggregometer geometry in the assessment of red blood cell shape recovery and aggregation,” IEEE T,” Biomed. Eng. (N.Y.)50, 97–106 (2003).

Saha, R. K.

R. K. Saha, S. Karmakar, E. Hysi, M. Roy, and M. C. Kolios, “Validity of a theoretical model to examine blood oxygenation dependent optoacoustics,” J. Biomed. Opt.17(5), 055002 (2012).
[CrossRef] [PubMed]

R. K. Saha and M. C. Kolios, “Effects of erythrocyte oxygenation on optoacoustic signals,” J. Biomed. Opt.16(11), 115003 (2011).
[CrossRef] [PubMed]

R. K. Saha and M. C. Kolios, “A simulation study on photoacoustic signals from red blood cells,” J. Acoust. Soc. Am.129(5), 2935–2943 (2011).
[CrossRef] [PubMed]

E. Hysi, R. K. Saha, and M. C. Kolios, “Photoacoustic radiofrequency spectroscopy for assessing red blood cell aggregation and oxygenation,” J. Biomed. Opt.submitted.

Sanzari, M. C.

E. Piva, M. C. Sanzari, G. Servidio, and M. Plebani, “Length of sedimentation reaction in undiluted blood (erythrocyte sedimentation rate): variations with sex and age and reference limits,” Clin. Chem. Lab. Med.39(5), 451–454 (2001).
[CrossRef] [PubMed]

Sarimollaoglu, M.

E. I. Galanzha, M. Sarimollaoglu, D. A. Nedosekin, S. G. Keyrouz, J. L. Mehta, and V. P. Zharov, “In vivo flow cytometry of circulating clots using negative photothermal and photoacoustic contrasts,” Cytometry A79A(10), 814–824 (2011).
[CrossRef] [PubMed]

Scott, W. G.

A. B. Karpiouk, S. R. Aglyamov, S. Mallidi, J. Shah, W. G. Scott, J. M. Rubin, and S. Y. Emelianov, “Combined ultrasound and photoacoustic imaging to detect and stage deep vein thrombosis: phantom and ex vivo studies,” J. Biomed. Opt.13(5), 054061 (2008).
[CrossRef] [PubMed]

Servidio, G.

E. Piva, M. C. Sanzari, G. Servidio, and M. Plebani, “Length of sedimentation reaction in undiluted blood (erythrocyte sedimentation rate): variations with sex and age and reference limits,” Clin. Chem. Lab. Med.39(5), 451–454 (2001).
[CrossRef] [PubMed]

Shah, J.

A. B. Karpiouk, S. R. Aglyamov, S. Mallidi, J. Shah, W. G. Scott, J. M. Rubin, and S. Y. Emelianov, “Combined ultrasound and photoacoustic imaging to detect and stage deep vein thrombosis: phantom and ex vivo studies,” J. Biomed. Opt.13(5), 054061 (2008).
[CrossRef] [PubMed]

Shapira, I.

B. Almog, R. Gamzu, R. Almog, J. B. Lessing, I. Shapira, S. Berliner, D. Pauzner, S. Maslovitz, and I. Levin, “Enhanced erythrocyte aggregation in clinically diagnosed pelvic inflammatory disease,” Sex. Transm. Dis.32(8), 484–486 (2005).
[CrossRef] [PubMed]

Stijnen, J. M. A.

J. G. G. Dobbe, G. J. Streekstra, J. Strackee, M. C. M. Rutten, J. M. A. Stijnen, and C. A. Grimbergen, ““Syllectometry: The effect of aggregometer geometry in the assessment of red blood cell shape recovery and aggregation,” IEEE T,” Biomed. Eng. (N.Y.)50, 97–106 (2003).

Stoica, G.

X. Wang, X. Xie, G. Ku, L. V. Wang, and G. Stoica, “Noninvasive imaging of hemoglobin concentration and oxygenation in the rat brain using high-resolution photoacoustic tomography,” J. Biomed. Opt.11(2), 024015 (2006).
[CrossRef] [PubMed]

Strackee, J.

J. G. G. Dobbe, G. J. Streekstra, J. Strackee, M. C. M. Rutten, J. M. A. Stijnen, and C. A. Grimbergen, ““Syllectometry: The effect of aggregometer geometry in the assessment of red blood cell shape recovery and aggregation,” IEEE T,” Biomed. Eng. (N.Y.)50, 97–106 (2003).

Streekstra, G. J.

J. G. G. Dobbe, G. J. Streekstra, J. Strackee, M. C. M. Rutten, J. M. A. Stijnen, and C. A. Grimbergen, ““Syllectometry: The effect of aggregometer geometry in the assessment of red blood cell shape recovery and aggregation,” IEEE T,” Biomed. Eng. (N.Y.)50, 97–106 (2003).

Temiz, A.

O. K. Baskurt, A. Temiz, and H. J. Meiselman, “Red blood cell aggregation in experimental sepsis,” J. Lab. Clin. Med.130(2), 183–190 (1997).
[CrossRef] [PubMed]

Uyuklu, M.

M. Uyuklu, M. Canpolat, H. J. Meiselman, and O. K. Baskurt, “Wavelength selection in measuring red blood cell aggregation based on light transmittance,” J. Biomed. Opt.16(11), 117006 (2011).
[CrossRef] [PubMed]

Valls, M.

A. Vayá, C. Falcó, P. Fernández, T. Contreras, M. Valls, and J. Aznar, “Erythrocyte aggregation determined with the Myrenne aggregometer at two modes (M0, M1) and at two times (5 and 10 sec),” Clin. Hemorheol. Microcirc.29(2), 119–127 (2003).
[PubMed]

Valverde, J.

P. Foresto, M. D’Arrigo, F. Filippini, R. Gallo, L. Barberena, L. Racca, J. Valverde, and R. J. Rasia, “Evaluación de alteraciones hemorreológicas en pacientes hipertensos [Hemorheological alterations in hypertensive patients],” Medicina (B. Aires)65(2), 121–125 (2005).
[PubMed]

Vayá, A.

A. Vayá, C. Falcó, P. Fernández, T. Contreras, M. Valls, and J. Aznar, “Erythrocyte aggregation determined with the Myrenne aggregometer at two modes (M0, M1) and at two times (5 and 10 sec),” Clin. Hemorheol. Microcirc.29(2), 119–127 (2003).
[PubMed]

Wang, L. V.

L. V. Wang and S. Hu, “Photoacoustic tomography: in vivo imaging from organelles to organs,” Science335(6075), 1458–1462 (2012).
[CrossRef] [PubMed]

L. V. Wang, “Prospects of photoacoustic tomography,” Med. Phys.35(12), 5758–5767 (2008).
[CrossRef] [PubMed]

X. Wang, X. Xie, G. Ku, L. V. Wang, and G. Stoica, “Noninvasive imaging of hemoglobin concentration and oxygenation in the rat brain using high-resolution photoacoustic tomography,” J. Biomed. Opt.11(2), 024015 (2006).
[CrossRef] [PubMed]

Wang, X.

X. Wang, X. Xie, G. Ku, L. V. Wang, and G. Stoica, “Noninvasive imaging of hemoglobin concentration and oxygenation in the rat brain using high-resolution photoacoustic tomography,” J. Biomed. Opt.11(2), 024015 (2006).
[CrossRef] [PubMed]

Xie, X.

X. Wang, X. Xie, G. Ku, L. V. Wang, and G. Stoica, “Noninvasive imaging of hemoglobin concentration and oxygenation in the rat brain using high-resolution photoacoustic tomography,” J. Biomed. Opt.11(2), 024015 (2006).
[CrossRef] [PubMed]

Yaremko, M. M.

F. L. Lizzi, M. Ostromogilsky, E. J. Feleppa, M. C. Rorke, and M. M. Yaremko, “Relationship of ultrasonic spectral parameters to features of tissue microstructure,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control34(3), 319–329 (1987).
[CrossRef] [PubMed]

Yu, F. T. H.

F. T. H. Yu, E. Franceschini, B. Chayer, J. K. Armstrong, H. J. Meiselman, and G. Cloutier, “Ultrasonic parametric imaging of erythrocyte aggregation using the structure factor size estimator,” Biorheology46(4), 343–363 (2009).
[PubMed]

F. T. H. Yu and G. Cloutier, “Experimental ultrasound characterization of red blood cell aggregation using the structure factor size estimator,” J. Acoust. Soc. Am.122(1), 645–656 (2007).
[CrossRef] [PubMed]

Zharov, V. P.

E. I. Galanzha, M. Sarimollaoglu, D. A. Nedosekin, S. G. Keyrouz, J. L. Mehta, and V. P. Zharov, “In vivo flow cytometry of circulating clots using negative photothermal and photoacoustic contrasts,” Cytometry A79A(10), 814–824 (2011).
[CrossRef] [PubMed]

E. I. Galanzha and V. P. Zharov, “Photoacoustic flow cytometry,” Methods. in press.
[PubMed]

Am. J. Physiol. Heart Circ. Physiol. (1)

O. K. Baskurt, “R. A. Farley and H. J. Meiselman, “Erythrocyte aggregation tendency and cellular properties in horse, human and rat: a comparative study,” Am. J. Physiol. Heart Circ. Physiol.273, H2604–H2612 (1997).

Biomed. Eng. (N.Y.) (1)

J. G. G. Dobbe, G. J. Streekstra, J. Strackee, M. C. M. Rutten, J. M. A. Stijnen, and C. A. Grimbergen, ““Syllectometry: The effect of aggregometer geometry in the assessment of red blood cell shape recovery and aggregation,” IEEE T,” Biomed. Eng. (N.Y.)50, 97–106 (2003).

Biorheology (4)

O. K. Baskurt and H. J. Meiselman, “Cellular determinants of low-shear blood viscosity,” Biorheology34(3), 235–247 (1997).
[CrossRef] [PubMed]

H. J. Meiselman, “Red blood cell aggregation: 45 years being curious,” Biorheology46(1), 1–19 (2009).
[PubMed]

P. C. Johnson, J. J. Bishop, S. Popel, and M. Intaglietta, “Effects of red cell aggregation on the venous microcirculation,” Biorheology36(5-6), 457–460 (1999).
[PubMed]

F. T. H. Yu, E. Franceschini, B. Chayer, J. K. Armstrong, H. J. Meiselman, and G. Cloutier, “Ultrasonic parametric imaging of erythrocyte aggregation using the structure factor size estimator,” Biorheology46(4), 343–363 (2009).
[PubMed]

Clin. Chem. Lab. Med. (1)

E. Piva, M. C. Sanzari, G. Servidio, and M. Plebani, “Length of sedimentation reaction in undiluted blood (erythrocyte sedimentation rate): variations with sex and age and reference limits,” Clin. Chem. Lab. Med.39(5), 451–454 (2001).
[CrossRef] [PubMed]

Clin. Hemorheol. Microcirc. (1)

A. Vayá, C. Falcó, P. Fernández, T. Contreras, M. Valls, and J. Aznar, “Erythrocyte aggregation determined with the Myrenne aggregometer at two modes (M0, M1) and at two times (5 and 10 sec),” Clin. Hemorheol. Microcirc.29(2), 119–127 (2003).
[PubMed]

Cytometry A (1)

E. I. Galanzha, M. Sarimollaoglu, D. A. Nedosekin, S. G. Keyrouz, J. L. Mehta, and V. P. Zharov, “In vivo flow cytometry of circulating clots using negative photothermal and photoacoustic contrasts,” Cytometry A79A(10), 814–824 (2011).
[CrossRef] [PubMed]

IEEE Trans. Ultrason. Ferroelectr. Freq. Control (1)

F. L. Lizzi, M. Ostromogilsky, E. J. Feleppa, M. C. Rorke, and M. M. Yaremko, “Relationship of ultrasonic spectral parameters to features of tissue microstructure,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control34(3), 319–329 (1987).
[CrossRef] [PubMed]

J. Acoust. Soc. Am. (2)

R. K. Saha and M. C. Kolios, “A simulation study on photoacoustic signals from red blood cells,” J. Acoust. Soc. Am.129(5), 2935–2943 (2011).
[CrossRef] [PubMed]

F. T. H. Yu and G. Cloutier, “Experimental ultrasound characterization of red blood cell aggregation using the structure factor size estimator,” J. Acoust. Soc. Am.122(1), 645–656 (2007).
[CrossRef] [PubMed]

J. Biomed. Opt. (6)

A. B. Karpiouk, S. R. Aglyamov, S. Mallidi, J. Shah, W. G. Scott, J. M. Rubin, and S. Y. Emelianov, “Combined ultrasound and photoacoustic imaging to detect and stage deep vein thrombosis: phantom and ex vivo studies,” J. Biomed. Opt.13(5), 054061 (2008).
[CrossRef] [PubMed]

R. K. Saha, S. Karmakar, E. Hysi, M. Roy, and M. C. Kolios, “Validity of a theoretical model to examine blood oxygenation dependent optoacoustics,” J. Biomed. Opt.17(5), 055002 (2012).
[CrossRef] [PubMed]

R. K. Saha and M. C. Kolios, “Effects of erythrocyte oxygenation on optoacoustic signals,” J. Biomed. Opt.16(11), 115003 (2011).
[CrossRef] [PubMed]

E. Hysi, R. K. Saha, and M. C. Kolios, “Photoacoustic radiofrequency spectroscopy for assessing red blood cell aggregation and oxygenation,” J. Biomed. Opt.submitted.

X. Wang, X. Xie, G. Ku, L. V. Wang, and G. Stoica, “Noninvasive imaging of hemoglobin concentration and oxygenation in the rat brain using high-resolution photoacoustic tomography,” J. Biomed. Opt.11(2), 024015 (2006).
[CrossRef] [PubMed]

M. Uyuklu, M. Canpolat, H. J. Meiselman, and O. K. Baskurt, “Wavelength selection in measuring red blood cell aggregation based on light transmittance,” J. Biomed. Opt.16(11), 117006 (2011).
[CrossRef] [PubMed]

J. Lab. Clin. Med. (1)

O. K. Baskurt, A. Temiz, and H. J. Meiselman, “Red blood cell aggregation in experimental sepsis,” J. Lab. Clin. Med.130(2), 183–190 (1997).
[CrossRef] [PubMed]

Med. Phys. (1)

L. V. Wang, “Prospects of photoacoustic tomography,” Med. Phys.35(12), 5758–5767 (2008).
[CrossRef] [PubMed]

Medicina (B. Aires) (1)

P. Foresto, M. D’Arrigo, F. Filippini, R. Gallo, L. Barberena, L. Racca, J. Valverde, and R. J. Rasia, “Evaluación de alteraciones hemorreológicas en pacientes hipertensos [Hemorheological alterations in hypertensive patients],” Medicina (B. Aires)65(2), 121–125 (2005).
[PubMed]

Methods (1)

E. I. Galanzha and V. P. Zharov, “Photoacoustic flow cytometry,” Methods. in press.
[PubMed]

Phys. Rev. A (1)

E. L. Hinrichsen, J. Feder, and T. Jossang, “Random packing of disks in two dimensions,” Phys. Rev. A41(8), 4199–4209 (1990).
[CrossRef]

Science (1)

L. V. Wang and S. Hu, “Photoacoustic tomography: in vivo imaging from organelles to organs,” Science335(6075), 1458–1462 (2012).
[CrossRef] [PubMed]

Semin. Thromb. Hemost. (1)

O. K. Baskurt and H. J. Meiselman, “Blood rheology and hemodynamics,” Semin. Thromb. Hemost.29(5), 435–450 (2003).
[CrossRef] [PubMed]

Sex. Transm. Dis. (1)

B. Almog, R. Gamzu, R. Almog, J. B. Lessing, I. Shapira, S. Berliner, D. Pauzner, S. Maslovitz, and I. Levin, “Enhanced erythrocyte aggregation in clinically diagnosed pelvic inflammatory disease,” Sex. Transm. Dis.32(8), 484–486 (2005).
[CrossRef] [PubMed]

Other (7)

O. K. Baskurt, B. Neu, and H. J. Meiselman, Red Blood Cell Aggregation (CRC Press, Boca Raton, FL, 2011).

O. K. Baskurt, M. R. Hardeman, M. W. Rampling, and H. J. Meiselman, Handbook of Hemorheology and Hemodynamics (IOS Press, Amsterdam, 2007).

J. G. Diebold, “Photoacoustic monopole radiation: waves from objects with symmetry in one, two and three dimensions,” in Photoacoustic Imaging and Spectroscopy, L. V. Wang, ed. (CRC Press, Boca Raton, FL, 2009).

K. K. Shung and G A. Thieme, “Biological tissues as ultrasonic scattering media,” in Ultrasonic Scattering in Biological Tissues, K. K. Shung and G. A. Thieme, eds. (CRC Press, Boca Raton, FL, 1993).

R. S. C. Cobbold, Foundations of Biomedical Ultrasound (Oxford University Press, New York, 2007), Chap. 4.

L. V. Wang and H. Wu, Biomedical Optics Principles and Imaging (Wiley, Hoboken, NJ, 2007), Chap. 12.

T. J. Szabo, Diagnostic Imaging: Inside Out (Elsevier Academic, San Diego, 2004), Chap. 4.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Imagio PA imaging device components.

Fig. 2
Fig. 2

Representative (a) NAG and (b) AG p-RBC configurations simulated in this study. For both cases the hematocrit is 40% and for the aggregated case, Rg is 12.24 µm.

Fig. 3
Fig. 3

Simulated PA RF power spectra for NAG (top row) and AG (bottom row) h-RBCs. Panel (a) and (c) show the NBL spectra while panels (b) and (d) are the BL spectra. Hct stands for hematocrit and Rg represents the radius of gyration (used to denote aggregate size). The hematocrit for the AG RBCs was 40%.

Fig. 4
Fig. 4

Simulated PA RF power spectra for NAG (top row) and AG (bottom row) p-RBCs. Panels (a) and (c) show the NBL spectra while panels (b) and (d) are the BL spectra. Hct stands for hematocrit and Rg represents the radius of gyration (used to denote aggregate size). The hematocrit for the AG RBCs was 40%.

Fig. 5
Fig. 5

Effect of [Dextran-PBS] on the viscosity of h-RBC samples. The error bars (too small to be seen) represent the standard deviation of the viscosity measurements taken over 1 minute at a constant shear rate. The hematocrit level of all samples is 40%.

Fig. 6
Fig. 6

(a) PA signal amplitude, (b) mean spectral power and (c) correlation between the signal amplitude and viscosity for h-RBCs at 40% hematocrit. The arrows in (c) denote the [Dextran-PBS] for which the PA signal amplitude and viscosity was measured. The error bars for the PA signal amplitude and mean power denote the standard deviation of 20 PA signals and power spectra.

Fig. 7
Fig. 7

(a) PA signal amplitude and (b) mean spectral power for p-RBCs. The error bars for the PA signal amplitude and mean power denote the standard deviation of 20 PA signals and power spectra.

Tables (1)

Tables Icon

Table 1 Physical constants and simulation parameters

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

P single ( q ^ )= iμβ I 0 v s a 2 [ sin q ^ q ^ cos q ^ ]exp(i k f (ra)) C P r q ^ 2 [ (1 ρ ^ )(sin q ^ / q ^ )cos q ^ +i ρ ^ v ^ sin q ^ ] ,
P collection NBL ( q ^ )= iμβ I 0 v s a 2 [ sin q ^ q ^ cos q ^ ] C P q ^ 2 [ (1 ρ ^ )(sin q ^ / q ^ )cos q ^ +i ρ ^ v ^ sin q ^ ] × n=1 N exp(i k f (| r r n |a) | r r n | .
P collection NBL ( q ^ )= iμβ I 0 v s a 2 [ sin q ^ q ^ cos q ^ ]exp(i k f (ra)) C P r q ^ 2 [ (1 ρ ^ )(sin q ^ / q ^ )cos q ^ +i ρ ^ v ^ sin q ^ ] × n=1 N exp(i k f r n ) .
P collection BL ( q ^ )= p collection NBL ( q ^ )×exp[ (ϖ ϖ 0 ) 2 /2 σ 2 ],

Metrics