Abstract

Raman spectroscopy is used to gather information on the mineral and organic components of bone tissue to analyze their composition. By measuring the Raman signal of bone through spatially offset Raman spectroscopy the health of the bone can be determined. We’ve customized a system with 8 collection channels that consist of individual fibers, which are coupled to separate spectrometers and cooled CCDs. This parallel detection system was used to scan gelatin phantoms with Teflon inclusions of two sizes. Raman signals were decoupled from the autofluorescence background using channel specific polynomial fitting. Images with high contrast to background ratios of Raman yield and accurate spatial resolution were recovered using a model-based diffuse tomography approach.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. J. Bailey, S. F. Wotton, T. J. Sims, and P. W. Thompson, “Post-translational modifications in the collagen of human osteoporotic femoral head,” Biochem. Biophys. Res. Commun.185(3), 801–805 (1992).
    [CrossRef] [PubMed]
  2. E. P. Paschalis, E. Shane, G. Lyritis, G. Skarantavos, R. Mendelsohn, and A. L. Boskey, “Bone fragility and collagen cross-links,” J. Bone Miner. Res.19(12), 2000–2004 (2004).
    [CrossRef] [PubMed]
  3. A. Mahadevan-Jansen, M. F. Mitchell, N. Ramanujamf, A. Malpica, S. Thomsen, U. Utzinger, and R. Richards-Kortum, “Near-infrared Raman spectroscopy for in vitro detection of cervical precancers,” Photochem. Photobiol.68(1), 123–132 (1998).
    [CrossRef] [PubMed]
  4. C. Krafft, G. Steiner, C. Beleites, and R. Salzer, “Disease recognition by infrared and Raman spectroscopy,” J Biophotonics2(1-2), 13–28 (2009).
    [CrossRef] [PubMed]
  5. N. J. Crane, V. Popescu, M. D. Morris, P. Steenhuis, and M. A. Ignelzi., “Raman spectroscopic evidence for octacalcium phosphate and other transient mineral species deposited during intramembranous mineralization,” Bone39(3), 434–442 (2006).
    [CrossRef] [PubMed]
  6. G. Boivin and P. J. Meunier, “The mineralization of bone tissue: a forgotten dimension in osteoporosis research,” Osteoporos. Int.14(Suppl 3), S19–S24 (2003).
    [PubMed]
  7. P. Matousek and N. Stone, “Emerging concepts in deep Raman spectroscopy of biological tissue,” Analyst (Lond.)134(6), 1058–1066 (2009).
    [CrossRef] [PubMed]
  8. N. Stone, R. Baker, K. Rogers, A. W. Parker, and P. Matousek, “Subsurface probing of calcifications with spatially offset Raman spectroscopy (SORS): future possibilities for the diagnosis of breast cancer,” Analyst (Lond.)132(9), 899–905 (2007).
    [CrossRef] [PubMed]
  9. M. D. Morris, W. F. Finney, R. M. Rajachar, and D. H. Kohn, “Bone tissue ultrastructural response to elastic deformation probed by Raman spectroscopy,” Faraday Discuss.126, 159–168, discussion 169–183 (2004).
    [CrossRef] [PubMed]
  10. B. R. McCreadie, M. D. Morris, T. C. Chen, D. Sudhaker Rao, W. F. Finney, E. Widjaja, and S. A. Goldstein, “Bone tissue compositional differences in women with and without osteoporotic fracture,” Bone39(6), 1190–1195 (2006).
    [CrossRef] [PubMed]
  11. E. R. Draper, M. D. Morris, N. P. Camacho, P. Matousek, M. Towrie, A. W. Parker, and A. E. Goodship, “Novel assessment of bone using time-resolved transcutaneous Raman spectroscopy,” J. Bone Miner. Res.20(11), 1968–1972 (2005).
    [CrossRef] [PubMed]
  12. M. D. Morris and G. S. Mandair, “Raman assessment of bone quality,” Clin. Orthop. Relat. Res.469(8), 2160–2169 (2011).
    [CrossRef] [PubMed]
  13. S. Srinivasan, M. Schulmerich, J. H. Cole, K. A. Dooley, J. M. Kreider, B. W. Pogue, M. D. Morris, and S. A. Goldstein, “Image-guided Raman spectroscopic recovery of canine cortical bone contrast in situ,” Opt. Express16(16), 12190–12200 (2008).
    [CrossRef] [PubMed]
  14. M. D. Keller, S. K. Majumder, and A. Mahadevan-Jansen, “Spatially offset Raman spectroscopy of layered soft tissues,” Opt. Lett.34(7), 926–928 (2009).
    [CrossRef] [PubMed]
  15. P. Matousek, E. R. Draper, A. E. Goodship, I. P. Clark, K. L. Ronayne, and A. W. Parker, “Noninvasive Raman spectroscopy of human tissue in vivo,” Appl. Spectrosc.60(7), 758–763 (2006).
    [CrossRef] [PubMed]
  16. D. S. Kepshire, S. C. Davis, H. Dehghani, K. D. Paulsen, and B. W. Pogue, “Subsurface diffuse optical tomography can localize absorber and fluorescent objects but recovered image sensitivity is nonlinear with depth,” Appl. Opt.46(10), 1669–1678 (2007).
    [CrossRef] [PubMed]
  17. S. C. Davis, B. W. Pogue, R. Springett, C. Leussler, P. Mazurkewitz, S. B. Tuttle, S. L. Gibbs-Strauss, S. S. Jiang, H. Dehghani, and K. D. Paulsen, “Magnetic resonance-coupled fluorescence tomography scanner for molecular imaging of tissue,” Rev. Sci. Instrum.79(6), 064302 (2008).
    [CrossRef] [PubMed]
  18. S. J. Madsen, M. S. Patterson, and B. C. Wilson, “The use of India ink as an optical absorber in tissue-simulating phantoms,” Phys. Med. Biol.37(4), 985–993 (1992).
    [CrossRef] [PubMed]
  19. J. R. Janesick, Scientific Charge-Coupled Devices (SPIE Press, Bellingham, Wash., 2001), p. xvi.
  20. F. W. L. Esmonde-White, K. A. Esmonde-White, and M. D. Morris, “Minor distortions with major consequences: correcting distortions in imaging spectrographs,” Appl. Spectrosc.65(1), 85–98 (2011).
    [CrossRef] [PubMed]
  21. C. A. Lieber and A. Mahadevan-Jansen, “Automated method for subtraction of fluorescence from biological Raman spectra,” Appl. Spectrosc.57(11), 1363–1367 (2003).
    [CrossRef] [PubMed]
  22. H. Dehghani, M. E. Eames, P. K. Yalavarthy, S. C. Davis, S. Srinivasan, C. M. Carpenter, B. W. Pogue, and K. D. Paulsen, “Near infrared optical tomography using NIRFAST: Algorithm for numerical model and image reconstruction,” Commun. Numer. Methods Eng.25(6), 711–732 (2009).
    [CrossRef] [PubMed]
  23. S. C. Davis, H. Dehghani, J. Wang, S. Jiang, B. W. Pogue, and K. D. Paulsen, “Image-guided diffuse optical fluorescence tomography implemented with Laplacian-type regularization,” Opt. Express15(7), 4066–4082 (2007).
    [CrossRef] [PubMed]
  24. A. Soubret, J. Ripoll, and V. Ntziachristos, “Accuracy of fluorescent tomography in the presence of heterogeneities: study of the normalized Born ratio,” IEEE Trans. Med. Imaging24(10), 1377–1386 (2005).
    [CrossRef] [PubMed]

2011 (2)

2009 (4)

M. D. Keller, S. K. Majumder, and A. Mahadevan-Jansen, “Spatially offset Raman spectroscopy of layered soft tissues,” Opt. Lett.34(7), 926–928 (2009).
[CrossRef] [PubMed]

H. Dehghani, M. E. Eames, P. K. Yalavarthy, S. C. Davis, S. Srinivasan, C. M. Carpenter, B. W. Pogue, and K. D. Paulsen, “Near infrared optical tomography using NIRFAST: Algorithm for numerical model and image reconstruction,” Commun. Numer. Methods Eng.25(6), 711–732 (2009).
[CrossRef] [PubMed]

C. Krafft, G. Steiner, C. Beleites, and R. Salzer, “Disease recognition by infrared and Raman spectroscopy,” J Biophotonics2(1-2), 13–28 (2009).
[CrossRef] [PubMed]

P. Matousek and N. Stone, “Emerging concepts in deep Raman spectroscopy of biological tissue,” Analyst (Lond.)134(6), 1058–1066 (2009).
[CrossRef] [PubMed]

2008 (2)

S. C. Davis, B. W. Pogue, R. Springett, C. Leussler, P. Mazurkewitz, S. B. Tuttle, S. L. Gibbs-Strauss, S. S. Jiang, H. Dehghani, and K. D. Paulsen, “Magnetic resonance-coupled fluorescence tomography scanner for molecular imaging of tissue,” Rev. Sci. Instrum.79(6), 064302 (2008).
[CrossRef] [PubMed]

S. Srinivasan, M. Schulmerich, J. H. Cole, K. A. Dooley, J. M. Kreider, B. W. Pogue, M. D. Morris, and S. A. Goldstein, “Image-guided Raman spectroscopic recovery of canine cortical bone contrast in situ,” Opt. Express16(16), 12190–12200 (2008).
[CrossRef] [PubMed]

2007 (3)

2006 (3)

B. R. McCreadie, M. D. Morris, T. C. Chen, D. Sudhaker Rao, W. F. Finney, E. Widjaja, and S. A. Goldstein, “Bone tissue compositional differences in women with and without osteoporotic fracture,” Bone39(6), 1190–1195 (2006).
[CrossRef] [PubMed]

N. J. Crane, V. Popescu, M. D. Morris, P. Steenhuis, and M. A. Ignelzi., “Raman spectroscopic evidence for octacalcium phosphate and other transient mineral species deposited during intramembranous mineralization,” Bone39(3), 434–442 (2006).
[CrossRef] [PubMed]

P. Matousek, E. R. Draper, A. E. Goodship, I. P. Clark, K. L. Ronayne, and A. W. Parker, “Noninvasive Raman spectroscopy of human tissue in vivo,” Appl. Spectrosc.60(7), 758–763 (2006).
[CrossRef] [PubMed]

2005 (2)

A. Soubret, J. Ripoll, and V. Ntziachristos, “Accuracy of fluorescent tomography in the presence of heterogeneities: study of the normalized Born ratio,” IEEE Trans. Med. Imaging24(10), 1377–1386 (2005).
[CrossRef] [PubMed]

E. R. Draper, M. D. Morris, N. P. Camacho, P. Matousek, M. Towrie, A. W. Parker, and A. E. Goodship, “Novel assessment of bone using time-resolved transcutaneous Raman spectroscopy,” J. Bone Miner. Res.20(11), 1968–1972 (2005).
[CrossRef] [PubMed]

2004 (2)

M. D. Morris, W. F. Finney, R. M. Rajachar, and D. H. Kohn, “Bone tissue ultrastructural response to elastic deformation probed by Raman spectroscopy,” Faraday Discuss.126, 159–168, discussion 169–183 (2004).
[CrossRef] [PubMed]

E. P. Paschalis, E. Shane, G. Lyritis, G. Skarantavos, R. Mendelsohn, and A. L. Boskey, “Bone fragility and collagen cross-links,” J. Bone Miner. Res.19(12), 2000–2004 (2004).
[CrossRef] [PubMed]

2003 (2)

G. Boivin and P. J. Meunier, “The mineralization of bone tissue: a forgotten dimension in osteoporosis research,” Osteoporos. Int.14(Suppl 3), S19–S24 (2003).
[PubMed]

C. A. Lieber and A. Mahadevan-Jansen, “Automated method for subtraction of fluorescence from biological Raman spectra,” Appl. Spectrosc.57(11), 1363–1367 (2003).
[CrossRef] [PubMed]

1998 (1)

A. Mahadevan-Jansen, M. F. Mitchell, N. Ramanujamf, A. Malpica, S. Thomsen, U. Utzinger, and R. Richards-Kortum, “Near-infrared Raman spectroscopy for in vitro detection of cervical precancers,” Photochem. Photobiol.68(1), 123–132 (1998).
[CrossRef] [PubMed]

1992 (2)

S. J. Madsen, M. S. Patterson, and B. C. Wilson, “The use of India ink as an optical absorber in tissue-simulating phantoms,” Phys. Med. Biol.37(4), 985–993 (1992).
[CrossRef] [PubMed]

A. J. Bailey, S. F. Wotton, T. J. Sims, and P. W. Thompson, “Post-translational modifications in the collagen of human osteoporotic femoral head,” Biochem. Biophys. Res. Commun.185(3), 801–805 (1992).
[CrossRef] [PubMed]

Bailey, A. J.

A. J. Bailey, S. F. Wotton, T. J. Sims, and P. W. Thompson, “Post-translational modifications in the collagen of human osteoporotic femoral head,” Biochem. Biophys. Res. Commun.185(3), 801–805 (1992).
[CrossRef] [PubMed]

Baker, R.

N. Stone, R. Baker, K. Rogers, A. W. Parker, and P. Matousek, “Subsurface probing of calcifications with spatially offset Raman spectroscopy (SORS): future possibilities for the diagnosis of breast cancer,” Analyst (Lond.)132(9), 899–905 (2007).
[CrossRef] [PubMed]

Beleites, C.

C. Krafft, G. Steiner, C. Beleites, and R. Salzer, “Disease recognition by infrared and Raman spectroscopy,” J Biophotonics2(1-2), 13–28 (2009).
[CrossRef] [PubMed]

Boivin, G.

G. Boivin and P. J. Meunier, “The mineralization of bone tissue: a forgotten dimension in osteoporosis research,” Osteoporos. Int.14(Suppl 3), S19–S24 (2003).
[PubMed]

Boskey, A. L.

E. P. Paschalis, E. Shane, G. Lyritis, G. Skarantavos, R. Mendelsohn, and A. L. Boskey, “Bone fragility and collagen cross-links,” J. Bone Miner. Res.19(12), 2000–2004 (2004).
[CrossRef] [PubMed]

Camacho, N. P.

E. R. Draper, M. D. Morris, N. P. Camacho, P. Matousek, M. Towrie, A. W. Parker, and A. E. Goodship, “Novel assessment of bone using time-resolved transcutaneous Raman spectroscopy,” J. Bone Miner. Res.20(11), 1968–1972 (2005).
[CrossRef] [PubMed]

Carpenter, C. M.

H. Dehghani, M. E. Eames, P. K. Yalavarthy, S. C. Davis, S. Srinivasan, C. M. Carpenter, B. W. Pogue, and K. D. Paulsen, “Near infrared optical tomography using NIRFAST: Algorithm for numerical model and image reconstruction,” Commun. Numer. Methods Eng.25(6), 711–732 (2009).
[CrossRef] [PubMed]

Chen, T. C.

B. R. McCreadie, M. D. Morris, T. C. Chen, D. Sudhaker Rao, W. F. Finney, E. Widjaja, and S. A. Goldstein, “Bone tissue compositional differences in women with and without osteoporotic fracture,” Bone39(6), 1190–1195 (2006).
[CrossRef] [PubMed]

Clark, I. P.

Cole, J. H.

Crane, N. J.

N. J. Crane, V. Popescu, M. D. Morris, P. Steenhuis, and M. A. Ignelzi., “Raman spectroscopic evidence for octacalcium phosphate and other transient mineral species deposited during intramembranous mineralization,” Bone39(3), 434–442 (2006).
[CrossRef] [PubMed]

Davis, S. C.

H. Dehghani, M. E. Eames, P. K. Yalavarthy, S. C. Davis, S. Srinivasan, C. M. Carpenter, B. W. Pogue, and K. D. Paulsen, “Near infrared optical tomography using NIRFAST: Algorithm for numerical model and image reconstruction,” Commun. Numer. Methods Eng.25(6), 711–732 (2009).
[CrossRef] [PubMed]

S. C. Davis, B. W. Pogue, R. Springett, C. Leussler, P. Mazurkewitz, S. B. Tuttle, S. L. Gibbs-Strauss, S. S. Jiang, H. Dehghani, and K. D. Paulsen, “Magnetic resonance-coupled fluorescence tomography scanner for molecular imaging of tissue,” Rev. Sci. Instrum.79(6), 064302 (2008).
[CrossRef] [PubMed]

D. S. Kepshire, S. C. Davis, H. Dehghani, K. D. Paulsen, and B. W. Pogue, “Subsurface diffuse optical tomography can localize absorber and fluorescent objects but recovered image sensitivity is nonlinear with depth,” Appl. Opt.46(10), 1669–1678 (2007).
[CrossRef] [PubMed]

S. C. Davis, H. Dehghani, J. Wang, S. Jiang, B. W. Pogue, and K. D. Paulsen, “Image-guided diffuse optical fluorescence tomography implemented with Laplacian-type regularization,” Opt. Express15(7), 4066–4082 (2007).
[CrossRef] [PubMed]

Dehghani, H.

H. Dehghani, M. E. Eames, P. K. Yalavarthy, S. C. Davis, S. Srinivasan, C. M. Carpenter, B. W. Pogue, and K. D. Paulsen, “Near infrared optical tomography using NIRFAST: Algorithm for numerical model and image reconstruction,” Commun. Numer. Methods Eng.25(6), 711–732 (2009).
[CrossRef] [PubMed]

S. C. Davis, B. W. Pogue, R. Springett, C. Leussler, P. Mazurkewitz, S. B. Tuttle, S. L. Gibbs-Strauss, S. S. Jiang, H. Dehghani, and K. D. Paulsen, “Magnetic resonance-coupled fluorescence tomography scanner for molecular imaging of tissue,” Rev. Sci. Instrum.79(6), 064302 (2008).
[CrossRef] [PubMed]

D. S. Kepshire, S. C. Davis, H. Dehghani, K. D. Paulsen, and B. W. Pogue, “Subsurface diffuse optical tomography can localize absorber and fluorescent objects but recovered image sensitivity is nonlinear with depth,” Appl. Opt.46(10), 1669–1678 (2007).
[CrossRef] [PubMed]

S. C. Davis, H. Dehghani, J. Wang, S. Jiang, B. W. Pogue, and K. D. Paulsen, “Image-guided diffuse optical fluorescence tomography implemented with Laplacian-type regularization,” Opt. Express15(7), 4066–4082 (2007).
[CrossRef] [PubMed]

Dooley, K. A.

Draper, E. R.

P. Matousek, E. R. Draper, A. E. Goodship, I. P. Clark, K. L. Ronayne, and A. W. Parker, “Noninvasive Raman spectroscopy of human tissue in vivo,” Appl. Spectrosc.60(7), 758–763 (2006).
[CrossRef] [PubMed]

E. R. Draper, M. D. Morris, N. P. Camacho, P. Matousek, M. Towrie, A. W. Parker, and A. E. Goodship, “Novel assessment of bone using time-resolved transcutaneous Raman spectroscopy,” J. Bone Miner. Res.20(11), 1968–1972 (2005).
[CrossRef] [PubMed]

Eames, M. E.

H. Dehghani, M. E. Eames, P. K. Yalavarthy, S. C. Davis, S. Srinivasan, C. M. Carpenter, B. W. Pogue, and K. D. Paulsen, “Near infrared optical tomography using NIRFAST: Algorithm for numerical model and image reconstruction,” Commun. Numer. Methods Eng.25(6), 711–732 (2009).
[CrossRef] [PubMed]

Esmonde-White, F. W. L.

Esmonde-White, K. A.

Finney, W. F.

B. R. McCreadie, M. D. Morris, T. C. Chen, D. Sudhaker Rao, W. F. Finney, E. Widjaja, and S. A. Goldstein, “Bone tissue compositional differences in women with and without osteoporotic fracture,” Bone39(6), 1190–1195 (2006).
[CrossRef] [PubMed]

M. D. Morris, W. F. Finney, R. M. Rajachar, and D. H. Kohn, “Bone tissue ultrastructural response to elastic deformation probed by Raman spectroscopy,” Faraday Discuss.126, 159–168, discussion 169–183 (2004).
[CrossRef] [PubMed]

Gibbs-Strauss, S. L.

S. C. Davis, B. W. Pogue, R. Springett, C. Leussler, P. Mazurkewitz, S. B. Tuttle, S. L. Gibbs-Strauss, S. S. Jiang, H. Dehghani, and K. D. Paulsen, “Magnetic resonance-coupled fluorescence tomography scanner for molecular imaging of tissue,” Rev. Sci. Instrum.79(6), 064302 (2008).
[CrossRef] [PubMed]

Goldstein, S. A.

S. Srinivasan, M. Schulmerich, J. H. Cole, K. A. Dooley, J. M. Kreider, B. W. Pogue, M. D. Morris, and S. A. Goldstein, “Image-guided Raman spectroscopic recovery of canine cortical bone contrast in situ,” Opt. Express16(16), 12190–12200 (2008).
[CrossRef] [PubMed]

B. R. McCreadie, M. D. Morris, T. C. Chen, D. Sudhaker Rao, W. F. Finney, E. Widjaja, and S. A. Goldstein, “Bone tissue compositional differences in women with and without osteoporotic fracture,” Bone39(6), 1190–1195 (2006).
[CrossRef] [PubMed]

Goodship, A. E.

P. Matousek, E. R. Draper, A. E. Goodship, I. P. Clark, K. L. Ronayne, and A. W. Parker, “Noninvasive Raman spectroscopy of human tissue in vivo,” Appl. Spectrosc.60(7), 758–763 (2006).
[CrossRef] [PubMed]

E. R. Draper, M. D. Morris, N. P. Camacho, P. Matousek, M. Towrie, A. W. Parker, and A. E. Goodship, “Novel assessment of bone using time-resolved transcutaneous Raman spectroscopy,” J. Bone Miner. Res.20(11), 1968–1972 (2005).
[CrossRef] [PubMed]

Ignelzi, M. A.

N. J. Crane, V. Popescu, M. D. Morris, P. Steenhuis, and M. A. Ignelzi., “Raman spectroscopic evidence for octacalcium phosphate and other transient mineral species deposited during intramembranous mineralization,” Bone39(3), 434–442 (2006).
[CrossRef] [PubMed]

Jiang, S.

Jiang, S. S.

S. C. Davis, B. W. Pogue, R. Springett, C. Leussler, P. Mazurkewitz, S. B. Tuttle, S. L. Gibbs-Strauss, S. S. Jiang, H. Dehghani, and K. D. Paulsen, “Magnetic resonance-coupled fluorescence tomography scanner for molecular imaging of tissue,” Rev. Sci. Instrum.79(6), 064302 (2008).
[CrossRef] [PubMed]

Keller, M. D.

Kepshire, D. S.

Kohn, D. H.

M. D. Morris, W. F. Finney, R. M. Rajachar, and D. H. Kohn, “Bone tissue ultrastructural response to elastic deformation probed by Raman spectroscopy,” Faraday Discuss.126, 159–168, discussion 169–183 (2004).
[CrossRef] [PubMed]

Krafft, C.

C. Krafft, G. Steiner, C. Beleites, and R. Salzer, “Disease recognition by infrared and Raman spectroscopy,” J Biophotonics2(1-2), 13–28 (2009).
[CrossRef] [PubMed]

Kreider, J. M.

Leussler, C.

S. C. Davis, B. W. Pogue, R. Springett, C. Leussler, P. Mazurkewitz, S. B. Tuttle, S. L. Gibbs-Strauss, S. S. Jiang, H. Dehghani, and K. D. Paulsen, “Magnetic resonance-coupled fluorescence tomography scanner for molecular imaging of tissue,” Rev. Sci. Instrum.79(6), 064302 (2008).
[CrossRef] [PubMed]

Lieber, C. A.

Lyritis, G.

E. P. Paschalis, E. Shane, G. Lyritis, G. Skarantavos, R. Mendelsohn, and A. L. Boskey, “Bone fragility and collagen cross-links,” J. Bone Miner. Res.19(12), 2000–2004 (2004).
[CrossRef] [PubMed]

Madsen, S. J.

S. J. Madsen, M. S. Patterson, and B. C. Wilson, “The use of India ink as an optical absorber in tissue-simulating phantoms,” Phys. Med. Biol.37(4), 985–993 (1992).
[CrossRef] [PubMed]

Mahadevan-Jansen, A.

Majumder, S. K.

Malpica, A.

A. Mahadevan-Jansen, M. F. Mitchell, N. Ramanujamf, A. Malpica, S. Thomsen, U. Utzinger, and R. Richards-Kortum, “Near-infrared Raman spectroscopy for in vitro detection of cervical precancers,” Photochem. Photobiol.68(1), 123–132 (1998).
[CrossRef] [PubMed]

Mandair, G. S.

M. D. Morris and G. S. Mandair, “Raman assessment of bone quality,” Clin. Orthop. Relat. Res.469(8), 2160–2169 (2011).
[CrossRef] [PubMed]

Matousek, P.

P. Matousek and N. Stone, “Emerging concepts in deep Raman spectroscopy of biological tissue,” Analyst (Lond.)134(6), 1058–1066 (2009).
[CrossRef] [PubMed]

N. Stone, R. Baker, K. Rogers, A. W. Parker, and P. Matousek, “Subsurface probing of calcifications with spatially offset Raman spectroscopy (SORS): future possibilities for the diagnosis of breast cancer,” Analyst (Lond.)132(9), 899–905 (2007).
[CrossRef] [PubMed]

P. Matousek, E. R. Draper, A. E. Goodship, I. P. Clark, K. L. Ronayne, and A. W. Parker, “Noninvasive Raman spectroscopy of human tissue in vivo,” Appl. Spectrosc.60(7), 758–763 (2006).
[CrossRef] [PubMed]

E. R. Draper, M. D. Morris, N. P. Camacho, P. Matousek, M. Towrie, A. W. Parker, and A. E. Goodship, “Novel assessment of bone using time-resolved transcutaneous Raman spectroscopy,” J. Bone Miner. Res.20(11), 1968–1972 (2005).
[CrossRef] [PubMed]

Mazurkewitz, P.

S. C. Davis, B. W. Pogue, R. Springett, C. Leussler, P. Mazurkewitz, S. B. Tuttle, S. L. Gibbs-Strauss, S. S. Jiang, H. Dehghani, and K. D. Paulsen, “Magnetic resonance-coupled fluorescence tomography scanner for molecular imaging of tissue,” Rev. Sci. Instrum.79(6), 064302 (2008).
[CrossRef] [PubMed]

McCreadie, B. R.

B. R. McCreadie, M. D. Morris, T. C. Chen, D. Sudhaker Rao, W. F. Finney, E. Widjaja, and S. A. Goldstein, “Bone tissue compositional differences in women with and without osteoporotic fracture,” Bone39(6), 1190–1195 (2006).
[CrossRef] [PubMed]

Mendelsohn, R.

E. P. Paschalis, E. Shane, G. Lyritis, G. Skarantavos, R. Mendelsohn, and A. L. Boskey, “Bone fragility and collagen cross-links,” J. Bone Miner. Res.19(12), 2000–2004 (2004).
[CrossRef] [PubMed]

Meunier, P. J.

G. Boivin and P. J. Meunier, “The mineralization of bone tissue: a forgotten dimension in osteoporosis research,” Osteoporos. Int.14(Suppl 3), S19–S24 (2003).
[PubMed]

Mitchell, M. F.

A. Mahadevan-Jansen, M. F. Mitchell, N. Ramanujamf, A. Malpica, S. Thomsen, U. Utzinger, and R. Richards-Kortum, “Near-infrared Raman spectroscopy for in vitro detection of cervical precancers,” Photochem. Photobiol.68(1), 123–132 (1998).
[CrossRef] [PubMed]

Morris, M. D.

F. W. L. Esmonde-White, K. A. Esmonde-White, and M. D. Morris, “Minor distortions with major consequences: correcting distortions in imaging spectrographs,” Appl. Spectrosc.65(1), 85–98 (2011).
[CrossRef] [PubMed]

M. D. Morris and G. S. Mandair, “Raman assessment of bone quality,” Clin. Orthop. Relat. Res.469(8), 2160–2169 (2011).
[CrossRef] [PubMed]

S. Srinivasan, M. Schulmerich, J. H. Cole, K. A. Dooley, J. M. Kreider, B. W. Pogue, M. D. Morris, and S. A. Goldstein, “Image-guided Raman spectroscopic recovery of canine cortical bone contrast in situ,” Opt. Express16(16), 12190–12200 (2008).
[CrossRef] [PubMed]

B. R. McCreadie, M. D. Morris, T. C. Chen, D. Sudhaker Rao, W. F. Finney, E. Widjaja, and S. A. Goldstein, “Bone tissue compositional differences in women with and without osteoporotic fracture,” Bone39(6), 1190–1195 (2006).
[CrossRef] [PubMed]

N. J. Crane, V. Popescu, M. D. Morris, P. Steenhuis, and M. A. Ignelzi., “Raman spectroscopic evidence for octacalcium phosphate and other transient mineral species deposited during intramembranous mineralization,” Bone39(3), 434–442 (2006).
[CrossRef] [PubMed]

E. R. Draper, M. D. Morris, N. P. Camacho, P. Matousek, M. Towrie, A. W. Parker, and A. E. Goodship, “Novel assessment of bone using time-resolved transcutaneous Raman spectroscopy,” J. Bone Miner. Res.20(11), 1968–1972 (2005).
[CrossRef] [PubMed]

M. D. Morris, W. F. Finney, R. M. Rajachar, and D. H. Kohn, “Bone tissue ultrastructural response to elastic deformation probed by Raman spectroscopy,” Faraday Discuss.126, 159–168, discussion 169–183 (2004).
[CrossRef] [PubMed]

Ntziachristos, V.

A. Soubret, J. Ripoll, and V. Ntziachristos, “Accuracy of fluorescent tomography in the presence of heterogeneities: study of the normalized Born ratio,” IEEE Trans. Med. Imaging24(10), 1377–1386 (2005).
[CrossRef] [PubMed]

Parker, A. W.

N. Stone, R. Baker, K. Rogers, A. W. Parker, and P. Matousek, “Subsurface probing of calcifications with spatially offset Raman spectroscopy (SORS): future possibilities for the diagnosis of breast cancer,” Analyst (Lond.)132(9), 899–905 (2007).
[CrossRef] [PubMed]

P. Matousek, E. R. Draper, A. E. Goodship, I. P. Clark, K. L. Ronayne, and A. W. Parker, “Noninvasive Raman spectroscopy of human tissue in vivo,” Appl. Spectrosc.60(7), 758–763 (2006).
[CrossRef] [PubMed]

E. R. Draper, M. D. Morris, N. P. Camacho, P. Matousek, M. Towrie, A. W. Parker, and A. E. Goodship, “Novel assessment of bone using time-resolved transcutaneous Raman spectroscopy,” J. Bone Miner. Res.20(11), 1968–1972 (2005).
[CrossRef] [PubMed]

Paschalis, E. P.

E. P. Paschalis, E. Shane, G. Lyritis, G. Skarantavos, R. Mendelsohn, and A. L. Boskey, “Bone fragility and collagen cross-links,” J. Bone Miner. Res.19(12), 2000–2004 (2004).
[CrossRef] [PubMed]

Patterson, M. S.

S. J. Madsen, M. S. Patterson, and B. C. Wilson, “The use of India ink as an optical absorber in tissue-simulating phantoms,” Phys. Med. Biol.37(4), 985–993 (1992).
[CrossRef] [PubMed]

Paulsen, K. D.

H. Dehghani, M. E. Eames, P. K. Yalavarthy, S. C. Davis, S. Srinivasan, C. M. Carpenter, B. W. Pogue, and K. D. Paulsen, “Near infrared optical tomography using NIRFAST: Algorithm for numerical model and image reconstruction,” Commun. Numer. Methods Eng.25(6), 711–732 (2009).
[CrossRef] [PubMed]

S. C. Davis, B. W. Pogue, R. Springett, C. Leussler, P. Mazurkewitz, S. B. Tuttle, S. L. Gibbs-Strauss, S. S. Jiang, H. Dehghani, and K. D. Paulsen, “Magnetic resonance-coupled fluorescence tomography scanner for molecular imaging of tissue,” Rev. Sci. Instrum.79(6), 064302 (2008).
[CrossRef] [PubMed]

D. S. Kepshire, S. C. Davis, H. Dehghani, K. D. Paulsen, and B. W. Pogue, “Subsurface diffuse optical tomography can localize absorber and fluorescent objects but recovered image sensitivity is nonlinear with depth,” Appl. Opt.46(10), 1669–1678 (2007).
[CrossRef] [PubMed]

S. C. Davis, H. Dehghani, J. Wang, S. Jiang, B. W. Pogue, and K. D. Paulsen, “Image-guided diffuse optical fluorescence tomography implemented with Laplacian-type regularization,” Opt. Express15(7), 4066–4082 (2007).
[CrossRef] [PubMed]

Pogue, B. W.

H. Dehghani, M. E. Eames, P. K. Yalavarthy, S. C. Davis, S. Srinivasan, C. M. Carpenter, B. W. Pogue, and K. D. Paulsen, “Near infrared optical tomography using NIRFAST: Algorithm for numerical model and image reconstruction,” Commun. Numer. Methods Eng.25(6), 711–732 (2009).
[CrossRef] [PubMed]

S. C. Davis, B. W. Pogue, R. Springett, C. Leussler, P. Mazurkewitz, S. B. Tuttle, S. L. Gibbs-Strauss, S. S. Jiang, H. Dehghani, and K. D. Paulsen, “Magnetic resonance-coupled fluorescence tomography scanner for molecular imaging of tissue,” Rev. Sci. Instrum.79(6), 064302 (2008).
[CrossRef] [PubMed]

S. Srinivasan, M. Schulmerich, J. H. Cole, K. A. Dooley, J. M. Kreider, B. W. Pogue, M. D. Morris, and S. A. Goldstein, “Image-guided Raman spectroscopic recovery of canine cortical bone contrast in situ,” Opt. Express16(16), 12190–12200 (2008).
[CrossRef] [PubMed]

D. S. Kepshire, S. C. Davis, H. Dehghani, K. D. Paulsen, and B. W. Pogue, “Subsurface diffuse optical tomography can localize absorber and fluorescent objects but recovered image sensitivity is nonlinear with depth,” Appl. Opt.46(10), 1669–1678 (2007).
[CrossRef] [PubMed]

S. C. Davis, H. Dehghani, J. Wang, S. Jiang, B. W. Pogue, and K. D. Paulsen, “Image-guided diffuse optical fluorescence tomography implemented with Laplacian-type regularization,” Opt. Express15(7), 4066–4082 (2007).
[CrossRef] [PubMed]

Popescu, V.

N. J. Crane, V. Popescu, M. D. Morris, P. Steenhuis, and M. A. Ignelzi., “Raman spectroscopic evidence for octacalcium phosphate and other transient mineral species deposited during intramembranous mineralization,” Bone39(3), 434–442 (2006).
[CrossRef] [PubMed]

Rajachar, R. M.

M. D. Morris, W. F. Finney, R. M. Rajachar, and D. H. Kohn, “Bone tissue ultrastructural response to elastic deformation probed by Raman spectroscopy,” Faraday Discuss.126, 159–168, discussion 169–183 (2004).
[CrossRef] [PubMed]

Ramanujamf, N.

A. Mahadevan-Jansen, M. F. Mitchell, N. Ramanujamf, A. Malpica, S. Thomsen, U. Utzinger, and R. Richards-Kortum, “Near-infrared Raman spectroscopy for in vitro detection of cervical precancers,” Photochem. Photobiol.68(1), 123–132 (1998).
[CrossRef] [PubMed]

Richards-Kortum, R.

A. Mahadevan-Jansen, M. F. Mitchell, N. Ramanujamf, A. Malpica, S. Thomsen, U. Utzinger, and R. Richards-Kortum, “Near-infrared Raman spectroscopy for in vitro detection of cervical precancers,” Photochem. Photobiol.68(1), 123–132 (1998).
[CrossRef] [PubMed]

Ripoll, J.

A. Soubret, J. Ripoll, and V. Ntziachristos, “Accuracy of fluorescent tomography in the presence of heterogeneities: study of the normalized Born ratio,” IEEE Trans. Med. Imaging24(10), 1377–1386 (2005).
[CrossRef] [PubMed]

Rogers, K.

N. Stone, R. Baker, K. Rogers, A. W. Parker, and P. Matousek, “Subsurface probing of calcifications with spatially offset Raman spectroscopy (SORS): future possibilities for the diagnosis of breast cancer,” Analyst (Lond.)132(9), 899–905 (2007).
[CrossRef] [PubMed]

Ronayne, K. L.

Salzer, R.

C. Krafft, G. Steiner, C. Beleites, and R. Salzer, “Disease recognition by infrared and Raman spectroscopy,” J Biophotonics2(1-2), 13–28 (2009).
[CrossRef] [PubMed]

Schulmerich, M.

Shane, E.

E. P. Paschalis, E. Shane, G. Lyritis, G. Skarantavos, R. Mendelsohn, and A. L. Boskey, “Bone fragility and collagen cross-links,” J. Bone Miner. Res.19(12), 2000–2004 (2004).
[CrossRef] [PubMed]

Sims, T. J.

A. J. Bailey, S. F. Wotton, T. J. Sims, and P. W. Thompson, “Post-translational modifications in the collagen of human osteoporotic femoral head,” Biochem. Biophys. Res. Commun.185(3), 801–805 (1992).
[CrossRef] [PubMed]

Skarantavos, G.

E. P. Paschalis, E. Shane, G. Lyritis, G. Skarantavos, R. Mendelsohn, and A. L. Boskey, “Bone fragility and collagen cross-links,” J. Bone Miner. Res.19(12), 2000–2004 (2004).
[CrossRef] [PubMed]

Soubret, A.

A. Soubret, J. Ripoll, and V. Ntziachristos, “Accuracy of fluorescent tomography in the presence of heterogeneities: study of the normalized Born ratio,” IEEE Trans. Med. Imaging24(10), 1377–1386 (2005).
[CrossRef] [PubMed]

Springett, R.

S. C. Davis, B. W. Pogue, R. Springett, C. Leussler, P. Mazurkewitz, S. B. Tuttle, S. L. Gibbs-Strauss, S. S. Jiang, H. Dehghani, and K. D. Paulsen, “Magnetic resonance-coupled fluorescence tomography scanner for molecular imaging of tissue,” Rev. Sci. Instrum.79(6), 064302 (2008).
[CrossRef] [PubMed]

Srinivasan, S.

H. Dehghani, M. E. Eames, P. K. Yalavarthy, S. C. Davis, S. Srinivasan, C. M. Carpenter, B. W. Pogue, and K. D. Paulsen, “Near infrared optical tomography using NIRFAST: Algorithm for numerical model and image reconstruction,” Commun. Numer. Methods Eng.25(6), 711–732 (2009).
[CrossRef] [PubMed]

S. Srinivasan, M. Schulmerich, J. H. Cole, K. A. Dooley, J. M. Kreider, B. W. Pogue, M. D. Morris, and S. A. Goldstein, “Image-guided Raman spectroscopic recovery of canine cortical bone contrast in situ,” Opt. Express16(16), 12190–12200 (2008).
[CrossRef] [PubMed]

Steenhuis, P.

N. J. Crane, V. Popescu, M. D. Morris, P. Steenhuis, and M. A. Ignelzi., “Raman spectroscopic evidence for octacalcium phosphate and other transient mineral species deposited during intramembranous mineralization,” Bone39(3), 434–442 (2006).
[CrossRef] [PubMed]

Steiner, G.

C. Krafft, G. Steiner, C. Beleites, and R. Salzer, “Disease recognition by infrared and Raman spectroscopy,” J Biophotonics2(1-2), 13–28 (2009).
[CrossRef] [PubMed]

Stone, N.

P. Matousek and N. Stone, “Emerging concepts in deep Raman spectroscopy of biological tissue,” Analyst (Lond.)134(6), 1058–1066 (2009).
[CrossRef] [PubMed]

N. Stone, R. Baker, K. Rogers, A. W. Parker, and P. Matousek, “Subsurface probing of calcifications with spatially offset Raman spectroscopy (SORS): future possibilities for the diagnosis of breast cancer,” Analyst (Lond.)132(9), 899–905 (2007).
[CrossRef] [PubMed]

Sudhaker Rao, D.

B. R. McCreadie, M. D. Morris, T. C. Chen, D. Sudhaker Rao, W. F. Finney, E. Widjaja, and S. A. Goldstein, “Bone tissue compositional differences in women with and without osteoporotic fracture,” Bone39(6), 1190–1195 (2006).
[CrossRef] [PubMed]

Thompson, P. W.

A. J. Bailey, S. F. Wotton, T. J. Sims, and P. W. Thompson, “Post-translational modifications in the collagen of human osteoporotic femoral head,” Biochem. Biophys. Res. Commun.185(3), 801–805 (1992).
[CrossRef] [PubMed]

Thomsen, S.

A. Mahadevan-Jansen, M. F. Mitchell, N. Ramanujamf, A. Malpica, S. Thomsen, U. Utzinger, and R. Richards-Kortum, “Near-infrared Raman spectroscopy for in vitro detection of cervical precancers,” Photochem. Photobiol.68(1), 123–132 (1998).
[CrossRef] [PubMed]

Towrie, M.

E. R. Draper, M. D. Morris, N. P. Camacho, P. Matousek, M. Towrie, A. W. Parker, and A. E. Goodship, “Novel assessment of bone using time-resolved transcutaneous Raman spectroscopy,” J. Bone Miner. Res.20(11), 1968–1972 (2005).
[CrossRef] [PubMed]

Tuttle, S. B.

S. C. Davis, B. W. Pogue, R. Springett, C. Leussler, P. Mazurkewitz, S. B. Tuttle, S. L. Gibbs-Strauss, S. S. Jiang, H. Dehghani, and K. D. Paulsen, “Magnetic resonance-coupled fluorescence tomography scanner for molecular imaging of tissue,” Rev. Sci. Instrum.79(6), 064302 (2008).
[CrossRef] [PubMed]

Utzinger, U.

A. Mahadevan-Jansen, M. F. Mitchell, N. Ramanujamf, A. Malpica, S. Thomsen, U. Utzinger, and R. Richards-Kortum, “Near-infrared Raman spectroscopy for in vitro detection of cervical precancers,” Photochem. Photobiol.68(1), 123–132 (1998).
[CrossRef] [PubMed]

Wang, J.

Widjaja, E.

B. R. McCreadie, M. D. Morris, T. C. Chen, D. Sudhaker Rao, W. F. Finney, E. Widjaja, and S. A. Goldstein, “Bone tissue compositional differences in women with and without osteoporotic fracture,” Bone39(6), 1190–1195 (2006).
[CrossRef] [PubMed]

Wilson, B. C.

S. J. Madsen, M. S. Patterson, and B. C. Wilson, “The use of India ink as an optical absorber in tissue-simulating phantoms,” Phys. Med. Biol.37(4), 985–993 (1992).
[CrossRef] [PubMed]

Wotton, S. F.

A. J. Bailey, S. F. Wotton, T. J. Sims, and P. W. Thompson, “Post-translational modifications in the collagen of human osteoporotic femoral head,” Biochem. Biophys. Res. Commun.185(3), 801–805 (1992).
[CrossRef] [PubMed]

Yalavarthy, P. K.

H. Dehghani, M. E. Eames, P. K. Yalavarthy, S. C. Davis, S. Srinivasan, C. M. Carpenter, B. W. Pogue, and K. D. Paulsen, “Near infrared optical tomography using NIRFAST: Algorithm for numerical model and image reconstruction,” Commun. Numer. Methods Eng.25(6), 711–732 (2009).
[CrossRef] [PubMed]

Analyst (Lond.) (2)

P. Matousek and N. Stone, “Emerging concepts in deep Raman spectroscopy of biological tissue,” Analyst (Lond.)134(6), 1058–1066 (2009).
[CrossRef] [PubMed]

N. Stone, R. Baker, K. Rogers, A. W. Parker, and P. Matousek, “Subsurface probing of calcifications with spatially offset Raman spectroscopy (SORS): future possibilities for the diagnosis of breast cancer,” Analyst (Lond.)132(9), 899–905 (2007).
[CrossRef] [PubMed]

Appl. Opt. (1)

Appl. Spectrosc. (3)

Biochem. Biophys. Res. Commun. (1)

A. J. Bailey, S. F. Wotton, T. J. Sims, and P. W. Thompson, “Post-translational modifications in the collagen of human osteoporotic femoral head,” Biochem. Biophys. Res. Commun.185(3), 801–805 (1992).
[CrossRef] [PubMed]

Bone (2)

N. J. Crane, V. Popescu, M. D. Morris, P. Steenhuis, and M. A. Ignelzi., “Raman spectroscopic evidence for octacalcium phosphate and other transient mineral species deposited during intramembranous mineralization,” Bone39(3), 434–442 (2006).
[CrossRef] [PubMed]

B. R. McCreadie, M. D. Morris, T. C. Chen, D. Sudhaker Rao, W. F. Finney, E. Widjaja, and S. A. Goldstein, “Bone tissue compositional differences in women with and without osteoporotic fracture,” Bone39(6), 1190–1195 (2006).
[CrossRef] [PubMed]

Clin. Orthop. Relat. Res. (1)

M. D. Morris and G. S. Mandair, “Raman assessment of bone quality,” Clin. Orthop. Relat. Res.469(8), 2160–2169 (2011).
[CrossRef] [PubMed]

Commun. Numer. Methods Eng. (1)

H. Dehghani, M. E. Eames, P. K. Yalavarthy, S. C. Davis, S. Srinivasan, C. M. Carpenter, B. W. Pogue, and K. D. Paulsen, “Near infrared optical tomography using NIRFAST: Algorithm for numerical model and image reconstruction,” Commun. Numer. Methods Eng.25(6), 711–732 (2009).
[CrossRef] [PubMed]

Faraday Discuss. (1)

M. D. Morris, W. F. Finney, R. M. Rajachar, and D. H. Kohn, “Bone tissue ultrastructural response to elastic deformation probed by Raman spectroscopy,” Faraday Discuss.126, 159–168, discussion 169–183 (2004).
[CrossRef] [PubMed]

IEEE Trans. Med. Imaging (1)

A. Soubret, J. Ripoll, and V. Ntziachristos, “Accuracy of fluorescent tomography in the presence of heterogeneities: study of the normalized Born ratio,” IEEE Trans. Med. Imaging24(10), 1377–1386 (2005).
[CrossRef] [PubMed]

J Biophotonics (1)

C. Krafft, G. Steiner, C. Beleites, and R. Salzer, “Disease recognition by infrared and Raman spectroscopy,” J Biophotonics2(1-2), 13–28 (2009).
[CrossRef] [PubMed]

J. Bone Miner. Res. (2)

E. R. Draper, M. D. Morris, N. P. Camacho, P. Matousek, M. Towrie, A. W. Parker, and A. E. Goodship, “Novel assessment of bone using time-resolved transcutaneous Raman spectroscopy,” J. Bone Miner. Res.20(11), 1968–1972 (2005).
[CrossRef] [PubMed]

E. P. Paschalis, E. Shane, G. Lyritis, G. Skarantavos, R. Mendelsohn, and A. L. Boskey, “Bone fragility and collagen cross-links,” J. Bone Miner. Res.19(12), 2000–2004 (2004).
[CrossRef] [PubMed]

Opt. Express (2)

Opt. Lett. (1)

Osteoporos. Int. (1)

G. Boivin and P. J. Meunier, “The mineralization of bone tissue: a forgotten dimension in osteoporosis research,” Osteoporos. Int.14(Suppl 3), S19–S24 (2003).
[PubMed]

Photochem. Photobiol. (1)

A. Mahadevan-Jansen, M. F. Mitchell, N. Ramanujamf, A. Malpica, S. Thomsen, U. Utzinger, and R. Richards-Kortum, “Near-infrared Raman spectroscopy for in vitro detection of cervical precancers,” Photochem. Photobiol.68(1), 123–132 (1998).
[CrossRef] [PubMed]

Phys. Med. Biol. (1)

S. J. Madsen, M. S. Patterson, and B. C. Wilson, “The use of India ink as an optical absorber in tissue-simulating phantoms,” Phys. Med. Biol.37(4), 985–993 (1992).
[CrossRef] [PubMed]

Rev. Sci. Instrum. (1)

S. C. Davis, B. W. Pogue, R. Springett, C. Leussler, P. Mazurkewitz, S. B. Tuttle, S. L. Gibbs-Strauss, S. S. Jiang, H. Dehghani, and K. D. Paulsen, “Magnetic resonance-coupled fluorescence tomography scanner for molecular imaging of tissue,” Rev. Sci. Instrum.79(6), 064302 (2008).
[CrossRef] [PubMed]

Other (1)

J. R. Janesick, Scientific Charge-Coupled Devices (SPIE Press, Bellingham, Wash., 2001), p. xvi.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Gelatin phantom with Teflon inclusion inside fiber holder with inset image showing the location of the inclusion. (b) Measured Teflon spectrum without background subtraction.

Fig. 2
Fig. 2

(a) Measured spectra from 7 parallel detection channels, showing narrow spikes present before median filtering. (b) Polynomial fits for background signal when measuring a homogeneous gelatin phantom. (c) Truncated measured signal with Teflon Raman peaks; the polynomial fit to the background and the difference between them, highlighting the portion of the spectra that is integrated in order to construct the Raman data.

Fig. 3
Fig. 3

(a) Plot of the log intensity of Raman and Excitation for each source and detector pair for 8 sources and 7 detection channels. (b) Born ratio of the measured data along with the born ratio calculated for a heterogeneous diffusion model.

Fig. 4
Fig. 4

(a) and (b) Experimental reconstructed Raman yield for gelatin-based phantoms with Teflon inclusions using spatial prior information to restrict the recovered values to be homogeneous in the two regions. (c) and (d) Experimental reconstructed Raman yield for phantoms when no prior spatial information is included in the iterative algorithm.

Metrics