Abstract

Using a generalized design for a polarization-sensitive optical coherence tomography (PS-OCT) system with a single input polarization state (SIPS), we prove the existence of an infinitely large design space over which it is possible to develop simple PS-OCT systems that yield closed form expressions for birefringence. Through simulation and experiment, we validate this analysis by demonstrating new configurations for PS-OCT systems, and present guidelines for the general design of such systems in light of their inherent inaccuracies. After accounting for systemic errors, alternative designs exhibit similar performance on average to the traditional SIPS PS-OCT system. This analysis could be extended to systems with multiple input polarization states and could usher in a new generation of PS-OCT systems optimally designed to probe specific birefringent samples with high accuracy.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Cense, T. C. Chen, B. H. Park, M. C. Pierce, and J. F. de Boer, “In vivo depth-resolved birefringence measurements of the human retinal nerve fiber layer by polarization-sensitive optical coherence tomography,” Opt. Lett.27, 1610–1612 (2002).
    [CrossRef]
  2. J. Strasswimmer, M. Pierce, B. Park, and V. Neel, “Polarization-sensitive optical coherence tomography of invasive basal cell carcinoma,” J. Biomed. Opt.9, 292–298 (2004).
    [CrossRef] [PubMed]
  3. M. Hee, D. Huang, E. Swanson, and J. Fujimoto, “Polarization-sensitive low-coherence reflectometer for birefringence characterization and ranging,” J. Opt. Soc. Am. B9, 903–908 (1992).
    [CrossRef]
  4. M. Pircher, C. K. Hitzenberger, and U. Schmidt-Erfurth, “Polarization sensitive optical coherence tomography in the human eye,” Prog. Retin. Eye Res.30, 431–451 (2011).
    [CrossRef] [PubMed]
  5. E. Götzinger, M. Pircher, and C. K. Hitzenberger, “High speed spectral domain polarization sensitive optical coherence tomography of the human retina,” Opt. Express13, 10217–10229 (2005).
    [CrossRef] [PubMed]
  6. M. K. Al-Qaisi and T. Akkin, “Polarization-sensitive optical coherence tomography based on polarization-maintaining fibers and frequency multiplexing,” Opt. Express16, 13032–13041 (2008).
    [CrossRef] [PubMed]
  7. E. Götzinger, B. Baumann, M. Pircher, and C. K. Hitzenberger, “Polarization maintaining fiber based ultra-high resolution spectral domain polarization sensitive optical coherence tomography,” Opt. Express17, 22704–22717 (2009).
    [CrossRef]
  8. S.-W. Lee, J.-Y. Yoo, J.-H. Kang, M.-S. Kang, S.-H. Jung, Y. Chong, D.-S. Cha, K.-H. Han, and B.-M. Kim, “Optical diagnosis of cervical intraepithelial neoplasm (CIN) using polarization-sensitive optical coherence tomography,” Opt. Express16, 2709–2719 (2008).
    [CrossRef] [PubMed]
  9. B. Baumann, E. Götzinger, M. Pircher, H. Sattmann, C. Schuutze, F. Schlanitz, C. Ahlers, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Segmentation and quantification of retinal lesions in age-related macular degeneration using polarization-sensitive optical coherence tomography,” J. Biomed. Opt.15, 061704 (2010).
    [CrossRef]
  10. W.-C. Kuo, H.-J. Huang, C.-M. Lai, and C. Chou, “Development of linearly polarized optical coherence tomography and the measurement on porcine tendon birefringence,” in 27th Annual International Conference of the Engineering in Medicine and Biology Society, 2005. IEEE-EMBS 2005 (IEEE, 2005), pp. 3192–3195 (2005).
  11. S. Jiao, M. Todorovic, G. Stoica, and L. V. Wang, “Optical coherence tomography with continuous source polarization modulation,” Appl. Optics44, 5463–5467 (2005).
    [CrossRef]
  12. W. Y. Oh, S. H. Yun, B. J. Vakoc, M. Shishkov, a. E. Desjardins, B. H. Park, J. F. de Boer, G. J. Tearney, and B. E. Bouma, “High-speed polarization sensitive optical frequency domain imaging with frequency multiplexing,” Opt. Express16, 1096–1103 (2008).
    [CrossRef] [PubMed]
  13. K. H. Kim, B. H. Park, Y. Tu, T. Hasan, B. Lee, J. Li, and J. F. de Boer, “Polarization-sensitive optical frequency domain imaging based on unpolarized light,” Opt. Express19, 552–561 (2011).
    [CrossRef] [PubMed]
  14. C. E. Saxer, J. F. de Boer, B. H. Park, Y. Zhao, Z. Chen, and J. S. Nelson, “High-speed fiber based polarization-sensitive optical coherence tomography of in vivo human skin,” Opt. Lett.25, 1355–1357 (2000).
    [CrossRef]
  15. B. H. Park, C. Saxer, S. M. Srinivas, J. S. Nelson, and J. F. de Boer, “In vivo burn depth determination by high-speed fiber-based polarization sensitive optical coherence tomography,” J. Biomed. Opt.6, 474–479 (2001).
    [CrossRef] [PubMed]
  16. B. H. Park, M. C. Pierce, B. Cense, and J. F. de Boer, “Jones matrix analysis for a polarization-sensitive optical coherence tomography system using fiber-optic components,” Opt. Lett.29, 2512–2514 (2004).
    [CrossRef] [PubMed]
  17. J. E. Roth, J. a. Kozak, S. Yazdanfar, a. M. Rollins, and J. a. Izatt, “Simplified method for polarization-sensitive optical coherence tomography,” Opt. Lett.26, 1069–1071 (2001).
    [CrossRef]
  18. M. Yamanari, S. Makita, V. D. Madjarova, T. Yatagai, and Y. Yasuno, “Fiber-based polarization-sensitive Fourier domain optical coherence tomography using B-scan-oriented polarization modulation method,” Opt. Express14, 350–358 (2006).
    [CrossRef]
  19. B. H. Park, M. C. Pierce, B. Cense, and J. F. de Boer, “Optic axis determination accuracy for fiber-based polarization-sensitive optical coherence tomography,” Opt. Lett.30, 2587–2589 (2005).
    [CrossRef] [PubMed]
  20. Z. Lu and S. J. Matcher, “Absolute fast axis determination using non-polarization-maintaining fiber-based polarization-sensitive optical coherence tomography,” Opt. Lett.37, 1931–1933 (2012).
    [CrossRef] [PubMed]
  21. W. A. Ling and A. K. Ellerbee, “The effects of reduced bit depth on optical coherence tomography phase data,” Opt. Express20, 15654–15668 (2012).
    [CrossRef] [PubMed]
  22. C. Hitzenberger, E. Goetzinger, M. Sticker, M. Pircher, and A. Fercher, “Measurement and imaging of birefringence and optic axis orientation by phase resolved polarization sensitive optical coherence tomography,” Opt. Express9, 780–790 (2001).
    [CrossRef] [PubMed]

2012 (2)

2011 (2)

M. Pircher, C. K. Hitzenberger, and U. Schmidt-Erfurth, “Polarization sensitive optical coherence tomography in the human eye,” Prog. Retin. Eye Res.30, 431–451 (2011).
[CrossRef] [PubMed]

K. H. Kim, B. H. Park, Y. Tu, T. Hasan, B. Lee, J. Li, and J. F. de Boer, “Polarization-sensitive optical frequency domain imaging based on unpolarized light,” Opt. Express19, 552–561 (2011).
[CrossRef] [PubMed]

2010 (1)

B. Baumann, E. Götzinger, M. Pircher, H. Sattmann, C. Schuutze, F. Schlanitz, C. Ahlers, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Segmentation and quantification of retinal lesions in age-related macular degeneration using polarization-sensitive optical coherence tomography,” J. Biomed. Opt.15, 061704 (2010).
[CrossRef]

2009 (1)

2008 (3)

2006 (1)

M. Yamanari, S. Makita, V. D. Madjarova, T. Yatagai, and Y. Yasuno, “Fiber-based polarization-sensitive Fourier domain optical coherence tomography using B-scan-oriented polarization modulation method,” Opt. Express14, 350–358 (2006).
[CrossRef]

2005 (3)

2004 (2)

J. Strasswimmer, M. Pierce, B. Park, and V. Neel, “Polarization-sensitive optical coherence tomography of invasive basal cell carcinoma,” J. Biomed. Opt.9, 292–298 (2004).
[CrossRef] [PubMed]

B. H. Park, M. C. Pierce, B. Cense, and J. F. de Boer, “Jones matrix analysis for a polarization-sensitive optical coherence tomography system using fiber-optic components,” Opt. Lett.29, 2512–2514 (2004).
[CrossRef] [PubMed]

2002 (1)

2001 (3)

2000 (1)

1992 (1)

Ahlers, C.

B. Baumann, E. Götzinger, M. Pircher, H. Sattmann, C. Schuutze, F. Schlanitz, C. Ahlers, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Segmentation and quantification of retinal lesions in age-related macular degeneration using polarization-sensitive optical coherence tomography,” J. Biomed. Opt.15, 061704 (2010).
[CrossRef]

Akkin, T.

Al-Qaisi, M. K.

Baumann, B.

B. Baumann, E. Götzinger, M. Pircher, H. Sattmann, C. Schuutze, F. Schlanitz, C. Ahlers, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Segmentation and quantification of retinal lesions in age-related macular degeneration using polarization-sensitive optical coherence tomography,” J. Biomed. Opt.15, 061704 (2010).
[CrossRef]

E. Götzinger, B. Baumann, M. Pircher, and C. K. Hitzenberger, “Polarization maintaining fiber based ultra-high resolution spectral domain polarization sensitive optical coherence tomography,” Opt. Express17, 22704–22717 (2009).
[CrossRef]

Bouma, B. E.

Cense, B.

Cha, D.-S.

Chen, T. C.

Chen, Z.

Chong, Y.

Chou, C.

W.-C. Kuo, H.-J. Huang, C.-M. Lai, and C. Chou, “Development of linearly polarized optical coherence tomography and the measurement on porcine tendon birefringence,” in 27th Annual International Conference of the Engineering in Medicine and Biology Society, 2005. IEEE-EMBS 2005 (IEEE, 2005), pp. 3192–3195 (2005).

de Boer, J. F.

K. H. Kim, B. H. Park, Y. Tu, T. Hasan, B. Lee, J. Li, and J. F. de Boer, “Polarization-sensitive optical frequency domain imaging based on unpolarized light,” Opt. Express19, 552–561 (2011).
[CrossRef] [PubMed]

W. Y. Oh, S. H. Yun, B. J. Vakoc, M. Shishkov, a. E. Desjardins, B. H. Park, J. F. de Boer, G. J. Tearney, and B. E. Bouma, “High-speed polarization sensitive optical frequency domain imaging with frequency multiplexing,” Opt. Express16, 1096–1103 (2008).
[CrossRef] [PubMed]

B. H. Park, M. C. Pierce, B. Cense, and J. F. de Boer, “Optic axis determination accuracy for fiber-based polarization-sensitive optical coherence tomography,” Opt. Lett.30, 2587–2589 (2005).
[CrossRef] [PubMed]

B. H. Park, M. C. Pierce, B. Cense, and J. F. de Boer, “Jones matrix analysis for a polarization-sensitive optical coherence tomography system using fiber-optic components,” Opt. Lett.29, 2512–2514 (2004).
[CrossRef] [PubMed]

B. Cense, T. C. Chen, B. H. Park, M. C. Pierce, and J. F. de Boer, “In vivo depth-resolved birefringence measurements of the human retinal nerve fiber layer by polarization-sensitive optical coherence tomography,” Opt. Lett.27, 1610–1612 (2002).
[CrossRef]

B. H. Park, C. Saxer, S. M. Srinivas, J. S. Nelson, and J. F. de Boer, “In vivo burn depth determination by high-speed fiber-based polarization sensitive optical coherence tomography,” J. Biomed. Opt.6, 474–479 (2001).
[CrossRef] [PubMed]

C. E. Saxer, J. F. de Boer, B. H. Park, Y. Zhao, Z. Chen, and J. S. Nelson, “High-speed fiber based polarization-sensitive optical coherence tomography of in vivo human skin,” Opt. Lett.25, 1355–1357 (2000).
[CrossRef]

Desjardins, a. E.

Ellerbee, A. K.

Fercher, A.

Fujimoto, J.

Goetzinger, E.

Götzinger, E.

B. Baumann, E. Götzinger, M. Pircher, H. Sattmann, C. Schuutze, F. Schlanitz, C. Ahlers, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Segmentation and quantification of retinal lesions in age-related macular degeneration using polarization-sensitive optical coherence tomography,” J. Biomed. Opt.15, 061704 (2010).
[CrossRef]

E. Götzinger, B. Baumann, M. Pircher, and C. K. Hitzenberger, “Polarization maintaining fiber based ultra-high resolution spectral domain polarization sensitive optical coherence tomography,” Opt. Express17, 22704–22717 (2009).
[CrossRef]

E. Götzinger, M. Pircher, and C. K. Hitzenberger, “High speed spectral domain polarization sensitive optical coherence tomography of the human retina,” Opt. Express13, 10217–10229 (2005).
[CrossRef] [PubMed]

Han, K.-H.

Hasan, T.

Hee, M.

Hitzenberger, C.

Hitzenberger, C. K.

M. Pircher, C. K. Hitzenberger, and U. Schmidt-Erfurth, “Polarization sensitive optical coherence tomography in the human eye,” Prog. Retin. Eye Res.30, 431–451 (2011).
[CrossRef] [PubMed]

B. Baumann, E. Götzinger, M. Pircher, H. Sattmann, C. Schuutze, F. Schlanitz, C. Ahlers, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Segmentation and quantification of retinal lesions in age-related macular degeneration using polarization-sensitive optical coherence tomography,” J. Biomed. Opt.15, 061704 (2010).
[CrossRef]

E. Götzinger, B. Baumann, M. Pircher, and C. K. Hitzenberger, “Polarization maintaining fiber based ultra-high resolution spectral domain polarization sensitive optical coherence tomography,” Opt. Express17, 22704–22717 (2009).
[CrossRef]

E. Götzinger, M. Pircher, and C. K. Hitzenberger, “High speed spectral domain polarization sensitive optical coherence tomography of the human retina,” Opt. Express13, 10217–10229 (2005).
[CrossRef] [PubMed]

Huang, D.

Huang, H.-J.

W.-C. Kuo, H.-J. Huang, C.-M. Lai, and C. Chou, “Development of linearly polarized optical coherence tomography and the measurement on porcine tendon birefringence,” in 27th Annual International Conference of the Engineering in Medicine and Biology Society, 2005. IEEE-EMBS 2005 (IEEE, 2005), pp. 3192–3195 (2005).

Izatt, J. a.

Jiao, S.

S. Jiao, M. Todorovic, G. Stoica, and L. V. Wang, “Optical coherence tomography with continuous source polarization modulation,” Appl. Optics44, 5463–5467 (2005).
[CrossRef]

Jung, S.-H.

Kang, J.-H.

Kang, M.-S.

Kim, B.-M.

Kim, K. H.

Kozak, J. a.

Kuo, W.-C.

W.-C. Kuo, H.-J. Huang, C.-M. Lai, and C. Chou, “Development of linearly polarized optical coherence tomography and the measurement on porcine tendon birefringence,” in 27th Annual International Conference of the Engineering in Medicine and Biology Society, 2005. IEEE-EMBS 2005 (IEEE, 2005), pp. 3192–3195 (2005).

Lai, C.-M.

W.-C. Kuo, H.-J. Huang, C.-M. Lai, and C. Chou, “Development of linearly polarized optical coherence tomography and the measurement on porcine tendon birefringence,” in 27th Annual International Conference of the Engineering in Medicine and Biology Society, 2005. IEEE-EMBS 2005 (IEEE, 2005), pp. 3192–3195 (2005).

Lee, B.

Lee, S.-W.

Li, J.

Ling, W. A.

Lu, Z.

Madjarova, V. D.

M. Yamanari, S. Makita, V. D. Madjarova, T. Yatagai, and Y. Yasuno, “Fiber-based polarization-sensitive Fourier domain optical coherence tomography using B-scan-oriented polarization modulation method,” Opt. Express14, 350–358 (2006).
[CrossRef]

Makita, S.

M. Yamanari, S. Makita, V. D. Madjarova, T. Yatagai, and Y. Yasuno, “Fiber-based polarization-sensitive Fourier domain optical coherence tomography using B-scan-oriented polarization modulation method,” Opt. Express14, 350–358 (2006).
[CrossRef]

Matcher, S. J.

Neel, V.

J. Strasswimmer, M. Pierce, B. Park, and V. Neel, “Polarization-sensitive optical coherence tomography of invasive basal cell carcinoma,” J. Biomed. Opt.9, 292–298 (2004).
[CrossRef] [PubMed]

Nelson, J. S.

B. H. Park, C. Saxer, S. M. Srinivas, J. S. Nelson, and J. F. de Boer, “In vivo burn depth determination by high-speed fiber-based polarization sensitive optical coherence tomography,” J. Biomed. Opt.6, 474–479 (2001).
[CrossRef] [PubMed]

C. E. Saxer, J. F. de Boer, B. H. Park, Y. Zhao, Z. Chen, and J. S. Nelson, “High-speed fiber based polarization-sensitive optical coherence tomography of in vivo human skin,” Opt. Lett.25, 1355–1357 (2000).
[CrossRef]

Oh, W. Y.

Park, B.

J. Strasswimmer, M. Pierce, B. Park, and V. Neel, “Polarization-sensitive optical coherence tomography of invasive basal cell carcinoma,” J. Biomed. Opt.9, 292–298 (2004).
[CrossRef] [PubMed]

Park, B. H.

K. H. Kim, B. H. Park, Y. Tu, T. Hasan, B. Lee, J. Li, and J. F. de Boer, “Polarization-sensitive optical frequency domain imaging based on unpolarized light,” Opt. Express19, 552–561 (2011).
[CrossRef] [PubMed]

W. Y. Oh, S. H. Yun, B. J. Vakoc, M. Shishkov, a. E. Desjardins, B. H. Park, J. F. de Boer, G. J. Tearney, and B. E. Bouma, “High-speed polarization sensitive optical frequency domain imaging with frequency multiplexing,” Opt. Express16, 1096–1103 (2008).
[CrossRef] [PubMed]

B. H. Park, M. C. Pierce, B. Cense, and J. F. de Boer, “Optic axis determination accuracy for fiber-based polarization-sensitive optical coherence tomography,” Opt. Lett.30, 2587–2589 (2005).
[CrossRef] [PubMed]

B. H. Park, M. C. Pierce, B. Cense, and J. F. de Boer, “Jones matrix analysis for a polarization-sensitive optical coherence tomography system using fiber-optic components,” Opt. Lett.29, 2512–2514 (2004).
[CrossRef] [PubMed]

B. Cense, T. C. Chen, B. H. Park, M. C. Pierce, and J. F. de Boer, “In vivo depth-resolved birefringence measurements of the human retinal nerve fiber layer by polarization-sensitive optical coherence tomography,” Opt. Lett.27, 1610–1612 (2002).
[CrossRef]

B. H. Park, C. Saxer, S. M. Srinivas, J. S. Nelson, and J. F. de Boer, “In vivo burn depth determination by high-speed fiber-based polarization sensitive optical coherence tomography,” J. Biomed. Opt.6, 474–479 (2001).
[CrossRef] [PubMed]

C. E. Saxer, J. F. de Boer, B. H. Park, Y. Zhao, Z. Chen, and J. S. Nelson, “High-speed fiber based polarization-sensitive optical coherence tomography of in vivo human skin,” Opt. Lett.25, 1355–1357 (2000).
[CrossRef]

Pierce, M.

J. Strasswimmer, M. Pierce, B. Park, and V. Neel, “Polarization-sensitive optical coherence tomography of invasive basal cell carcinoma,” J. Biomed. Opt.9, 292–298 (2004).
[CrossRef] [PubMed]

Pierce, M. C.

Pircher, M.

Rollins, a. M.

Roth, J. E.

Sattmann, H.

B. Baumann, E. Götzinger, M. Pircher, H. Sattmann, C. Schuutze, F. Schlanitz, C. Ahlers, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Segmentation and quantification of retinal lesions in age-related macular degeneration using polarization-sensitive optical coherence tomography,” J. Biomed. Opt.15, 061704 (2010).
[CrossRef]

Saxer, C.

B. H. Park, C. Saxer, S. M. Srinivas, J. S. Nelson, and J. F. de Boer, “In vivo burn depth determination by high-speed fiber-based polarization sensitive optical coherence tomography,” J. Biomed. Opt.6, 474–479 (2001).
[CrossRef] [PubMed]

Saxer, C. E.

Schlanitz, F.

B. Baumann, E. Götzinger, M. Pircher, H. Sattmann, C. Schuutze, F. Schlanitz, C. Ahlers, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Segmentation and quantification of retinal lesions in age-related macular degeneration using polarization-sensitive optical coherence tomography,” J. Biomed. Opt.15, 061704 (2010).
[CrossRef]

Schmidt-Erfurth, U.

M. Pircher, C. K. Hitzenberger, and U. Schmidt-Erfurth, “Polarization sensitive optical coherence tomography in the human eye,” Prog. Retin. Eye Res.30, 431–451 (2011).
[CrossRef] [PubMed]

B. Baumann, E. Götzinger, M. Pircher, H. Sattmann, C. Schuutze, F. Schlanitz, C. Ahlers, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Segmentation and quantification of retinal lesions in age-related macular degeneration using polarization-sensitive optical coherence tomography,” J. Biomed. Opt.15, 061704 (2010).
[CrossRef]

Schuutze, C.

B. Baumann, E. Götzinger, M. Pircher, H. Sattmann, C. Schuutze, F. Schlanitz, C. Ahlers, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Segmentation and quantification of retinal lesions in age-related macular degeneration using polarization-sensitive optical coherence tomography,” J. Biomed. Opt.15, 061704 (2010).
[CrossRef]

Shishkov, M.

Srinivas, S. M.

B. H. Park, C. Saxer, S. M. Srinivas, J. S. Nelson, and J. F. de Boer, “In vivo burn depth determination by high-speed fiber-based polarization sensitive optical coherence tomography,” J. Biomed. Opt.6, 474–479 (2001).
[CrossRef] [PubMed]

Sticker, M.

Stoica, G.

S. Jiao, M. Todorovic, G. Stoica, and L. V. Wang, “Optical coherence tomography with continuous source polarization modulation,” Appl. Optics44, 5463–5467 (2005).
[CrossRef]

Strasswimmer, J.

J. Strasswimmer, M. Pierce, B. Park, and V. Neel, “Polarization-sensitive optical coherence tomography of invasive basal cell carcinoma,” J. Biomed. Opt.9, 292–298 (2004).
[CrossRef] [PubMed]

Swanson, E.

Tearney, G. J.

Todorovic, M.

S. Jiao, M. Todorovic, G. Stoica, and L. V. Wang, “Optical coherence tomography with continuous source polarization modulation,” Appl. Optics44, 5463–5467 (2005).
[CrossRef]

Tu, Y.

Vakoc, B. J.

Wang, L. V.

S. Jiao, M. Todorovic, G. Stoica, and L. V. Wang, “Optical coherence tomography with continuous source polarization modulation,” Appl. Optics44, 5463–5467 (2005).
[CrossRef]

Yamanari, M.

M. Yamanari, S. Makita, V. D. Madjarova, T. Yatagai, and Y. Yasuno, “Fiber-based polarization-sensitive Fourier domain optical coherence tomography using B-scan-oriented polarization modulation method,” Opt. Express14, 350–358 (2006).
[CrossRef]

Yasuno, Y.

M. Yamanari, S. Makita, V. D. Madjarova, T. Yatagai, and Y. Yasuno, “Fiber-based polarization-sensitive Fourier domain optical coherence tomography using B-scan-oriented polarization modulation method,” Opt. Express14, 350–358 (2006).
[CrossRef]

Yatagai, T.

M. Yamanari, S. Makita, V. D. Madjarova, T. Yatagai, and Y. Yasuno, “Fiber-based polarization-sensitive Fourier domain optical coherence tomography using B-scan-oriented polarization modulation method,” Opt. Express14, 350–358 (2006).
[CrossRef]

Yazdanfar, S.

Yoo, J.-Y.

Yun, S. H.

Zhao, Y.

Appl. Optics (1)

S. Jiao, M. Todorovic, G. Stoica, and L. V. Wang, “Optical coherence tomography with continuous source polarization modulation,” Appl. Optics44, 5463–5467 (2005).
[CrossRef]

J. Biomed. Opt. (3)

B. H. Park, C. Saxer, S. M. Srinivas, J. S. Nelson, and J. F. de Boer, “In vivo burn depth determination by high-speed fiber-based polarization sensitive optical coherence tomography,” J. Biomed. Opt.6, 474–479 (2001).
[CrossRef] [PubMed]

J. Strasswimmer, M. Pierce, B. Park, and V. Neel, “Polarization-sensitive optical coherence tomography of invasive basal cell carcinoma,” J. Biomed. Opt.9, 292–298 (2004).
[CrossRef] [PubMed]

B. Baumann, E. Götzinger, M. Pircher, H. Sattmann, C. Schuutze, F. Schlanitz, C. Ahlers, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Segmentation and quantification of retinal lesions in age-related macular degeneration using polarization-sensitive optical coherence tomography,” J. Biomed. Opt.15, 061704 (2010).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Express (9)

W. A. Ling and A. K. Ellerbee, “The effects of reduced bit depth on optical coherence tomography phase data,” Opt. Express20, 15654–15668 (2012).
[CrossRef] [PubMed]

E. Götzinger, M. Pircher, and C. K. Hitzenberger, “High speed spectral domain polarization sensitive optical coherence tomography of the human retina,” Opt. Express13, 10217–10229 (2005).
[CrossRef] [PubMed]

W. Y. Oh, S. H. Yun, B. J. Vakoc, M. Shishkov, a. E. Desjardins, B. H. Park, J. F. de Boer, G. J. Tearney, and B. E. Bouma, “High-speed polarization sensitive optical frequency domain imaging with frequency multiplexing,” Opt. Express16, 1096–1103 (2008).
[CrossRef] [PubMed]

S.-W. Lee, J.-Y. Yoo, J.-H. Kang, M.-S. Kang, S.-H. Jung, Y. Chong, D.-S. Cha, K.-H. Han, and B.-M. Kim, “Optical diagnosis of cervical intraepithelial neoplasm (CIN) using polarization-sensitive optical coherence tomography,” Opt. Express16, 2709–2719 (2008).
[CrossRef] [PubMed]

M. K. Al-Qaisi and T. Akkin, “Polarization-sensitive optical coherence tomography based on polarization-maintaining fibers and frequency multiplexing,” Opt. Express16, 13032–13041 (2008).
[CrossRef] [PubMed]

E. Götzinger, B. Baumann, M. Pircher, and C. K. Hitzenberger, “Polarization maintaining fiber based ultra-high resolution spectral domain polarization sensitive optical coherence tomography,” Opt. Express17, 22704–22717 (2009).
[CrossRef]

K. H. Kim, B. H. Park, Y. Tu, T. Hasan, B. Lee, J. Li, and J. F. de Boer, “Polarization-sensitive optical frequency domain imaging based on unpolarized light,” Opt. Express19, 552–561 (2011).
[CrossRef] [PubMed]

M. Yamanari, S. Makita, V. D. Madjarova, T. Yatagai, and Y. Yasuno, “Fiber-based polarization-sensitive Fourier domain optical coherence tomography using B-scan-oriented polarization modulation method,” Opt. Express14, 350–358 (2006).
[CrossRef]

C. Hitzenberger, E. Goetzinger, M. Sticker, M. Pircher, and A. Fercher, “Measurement and imaging of birefringence and optic axis orientation by phase resolved polarization sensitive optical coherence tomography,” Opt. Express9, 780–790 (2001).
[CrossRef] [PubMed]

Opt. Lett. (6)

Prog. Retin. Eye Res. (1)

M. Pircher, C. K. Hitzenberger, and U. Schmidt-Erfurth, “Polarization sensitive optical coherence tomography in the human eye,” Prog. Retin. Eye Res.30, 431–451 (2011).
[CrossRef] [PubMed]

Other (1)

W.-C. Kuo, H.-J. Huang, C.-M. Lai, and C. Chou, “Development of linearly polarized optical coherence tomography and the measurement on porcine tendon birefringence,” in 27th Annual International Conference of the Engineering in Medicine and Biology Society, 2005. IEEE-EMBS 2005 (IEEE, 2005), pp. 3192–3195 (2005).

Supplementary Material (4)

» Media 1: AVI (1301 KB)     
» Media 2: AVI (1289 KB)     
» Media 3: AVI (1292 KB)     
» Media 4: AVI (1297 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

The generalized PS-OCT system. The detector collects two interferograms with orthogonal polarizations from interfered reference (Er) and sample (Es) arm light; inset shows the PS-detector used in this study. Js or Jx : Jones matrix of the sample or polarization-controlling components in interferometer arm x = {src, ref, samp, det}, Ey: normalized Jones vector at y = {src, in, out}, src: source, det: detector, ref: reference, samp: sample, BS: non-polarizing beam splitter, Pol: linear polarizer, HWP: half-wave plate, L: lens, H: horizontal, V: vertical.

Fig. 2
Fig. 2

Poincaré sphere representation of the calculation of birefringence. (a) Transformed light from the source (Ssrc) to the sample (Sin) is rotated by the sample (Sout) prior to measurement (SI(z)). (b) A birefringent sample with optic axis θ rotates Sin about the vector [cos(2θ), sin(2θ),0], tracing out an arc of a circle on the sphere. (c) Optic axθ is proportional to the angle between the +U axis and (SinSout), the projection of SinSout in the Q-U plane. (d) Retardance η is proportional to the angle between Sin and Sout, where Sx is the projection of Sx in the plane with normal vector [cos(2θ), sin(2θ),0] and containing point (cos(2θ), sin(2θ),0).

Fig. 3
Fig. 3

Effects of polarization properties of the system on the accuracy of the birefringence measurement. (a) Simulated absolute retardance and optic axis error for the systems described in Table 1. Error is associated with a noisy version of the A-scan vector from Eq. 6 and locations of large error depend on Ein ( Media 1 and Media 2). (b) Location of nodes (black, associated with H: horizontal and V: vertical polarization states) and convergence loci (dashed lines) in the retardance-optic axis space. Nodes typically depress error; convergence loci lead to increased error. (c) Convergence points on Poincaré sphere (arrows) associated with the convergence loci in (b), derived from the intersections of contour lines for optic axis (black) and/or retardance (gray); the location of the H node (red circle) is independent of the system design. (d) Average absolute error (mean of logarithm) across the whole retardance-optic axis space as a function of the polarization state of Er, modeled as a linear polarizer (LP) ( Media 3). (e) Average absolute error as a function of the rotation applied by the sample-to-detector Jones matrix ( J d s = J det J samp T), modeled as a QWP ( Media 4).

Fig. 4
Fig. 4

Measured birefringence parameters for the four experimental systems from Table 1. (a) Raw data. (b) Revised data after compensating for systemic non-idealities. The ideal behavior of these graphs is shown in the first column for comparison.

Fig. 5
Fig. 5

Absolute error between ideal (set) and actual retardance and optic axis measurements for (a) simulations of compensated systems and (b) experimental data both before and (c) after compensation. Convergence loci for the compensated systems are overlaid as thin black lines in (b) and (c) as a visual aid.

Tables (3)

Tables Icon

Table 1 Description of the experimental systems we constructed in terms of their constituent combinations of physical components (Polarization Components) or induced changes in polarization state (Polarization Properties) as described in Fig. 1a

Tables Icon

Table 2 Summary of the parameters varied to test the contribution of different polarization properties by simulating modification of the traditional system from Table 1

Tables Icon

Table 3 Median of the absolute error before (pre) and after (post) compensation for the four implemented systems (rows). Data given are median values taken over all errors in the retardance-optic axis space.

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

J s ( η , θ ) = [ cos ( θ ) sin ( θ ) sin ( θ ) cos ( θ ) ] [ exp ( i η ) 0 0 exp ( i η ) ] [ cos ( θ ) sin ( θ ) sin ( θ ) cos ( θ ) ] .
I ( z ) = E s E r * R r R s ( z ) exp ( i ψ ( z ) )
E r = J det J ref T J ref E src
E s = J det J samp T J s ( η , θ ) J samp E src
I ( z ) = [ I H ( z ) I V ( z ) ] = J r J det J samp T J s ( η , θ ) J samp E src R ( z ) exp ( i ψ ( z ) ) .
I ( z ) = J out J s ( η , θ ) E in R ( z ) exp ( i ψ ( z ) )
R = | J out 1 I ( z s ) | 2 .
E out = J out 1 I ( z s ) ( J out 1 I ( z s )
θ = 1 2 arctan ( Q out Q in U out U in ) .
η = 1 2 arctan 2 ( U out cos ( 2 θ ) Q out sin ( 2 θ ) , V out ) 1 2 arctan 2 ( U in cos ( 2 θ ) Q in sin ( 2 θ ) , V in )
θ std = { θ η 90 ° θ + 90 ° η > 90 °
η std = { η η 90 ° 180 ° η η > 90 °

Metrics