Abstract

Low-coherence spectroscopy (LCS) offers the valuable possibility to measure quantitative and wavelength resolved optical property spectra within a tissue volume of choice that is controllable both in size and in depth. Until now, only time domain detection was investigated for LCS (tdLCS), but spectral domain detection offers a theoretical speed/sensitivity advantage over tdLCS. In this article, we introduce a method for spectral domain detection in LCS (sdLCS), with optimal sensitivity as a function of measurement depth. We validate our method computationally in a simulation and experimentally on a phantom with known optical properties. The attenuation, absorption and scattering coefficient spectra from the phantom that were measured by sdLCS agree well with the expected optical properties and the measured optical properties by tdLCS.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. Bosschaart, M. C. G. Aalders, D. J. Faber, J. J. A. Weda, M. J. C. van Gemert, and T. G. van Leeuwen, “Quantitative measurements of absorption spectra in scattering media by low-coherence spectroscopy,” Opt. Lett.34(23), 3746–3748 (2009).
    [CrossRef] [PubMed]
  2. N. Bosschaart, D. J. Faber, T. G. van Leeuwen, and M. C. G. Aalders, “Measurements of wavelength dependent scattering and backscattering coefficients by low-coherence spectroscopy,” J. Biomed. Opt.16(3), 030503 (2011).
    [CrossRef] [PubMed]
  3. N. Bosschaart, D. J. Faber, T. G. van Leeuwen, and M. C. G. Aalders, “In vivo low-coherence spectroscopic measurements of local hemoglobin absorption spectra in human skin,” J. Biomed. Opt.16(10), 100504 (2011).
    [CrossRef] [PubMed]
  4. R. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, “Performance of fourier domain vs. time domain optical coherence tomography,” Opt. Express11(8), 889–894 (2003).
    [CrossRef] [PubMed]
  5. D. J. Faber and T. G. van Leeuwen, “Optical coherence tomography,” in Optical-Thermal Response of Laser-Irradiated Tissue, A. J. Welch and M. J. C. van Gemert, eds. (Springer Science & Business Media, 2010), Chap. 18.
  6. R. Leitgeb, M. Wojtkowski, A. Kowalczyk, C. K. Hitzenberger, M. Sticker, and A. F. Fercher, “Spectral measurement of absorption by spectroscopic frequency-domain optical coherence tomography,” Opt. Lett.25(11), 820–822 (2000).
    [CrossRef] [PubMed]
  7. A. Wax, C. Yang, and J. A. Izatt, “Fourier-domain low-coherence interferometry for light-scattering spectroscopy,” Opt. Lett.28(14), 1230–1232 (2003).
    [CrossRef] [PubMed]
  8. F. Robles, R. N. Graf, and A. Wax, “Dual window method for processing spectroscopic optical coherence tomography signals with simultaneously high spectral and temporal resolution,” Opt. Express17(8), 6799–6812 (2009).
    [CrossRef] [PubMed]
  9. D. J. Faber and T. G. van Leeuwen, “Doppler calibration method for spectral domain OCT spectrometers,” J Biophotonics2(6-7), 407–415 (2009).
    [CrossRef] [PubMed]
  10. J. Zhang, J. S. Nelson, and Z. Chen, “Removal of a mirror image and enhancement of the signal-to-noise ratio in Fourier-domain optical coherence tomography using an electro-optic phase modulator,” Opt. Lett.30(2), 147–149 (2005).
    [CrossRef] [PubMed]
  11. N. Nassif, B. Cense, B. Park, M. Pierce, S. Yun, B. Bouma, G. Tearney, T. Chen, and J. de Boer, “In vivo high-resolution video-rate spectral-domain optical coherence tomography of the human retina and optic nerve,” Opt. Express12(3), 367–376 (2004).
    [CrossRef] [PubMed]
  12. G. Häusler and M. Linder, “Coherence radar and spectral radar—new tools for dermatological diagnosis,” J. Biomed. Opt.3(1), 21–31 (1998).
    [CrossRef]
  13. Data tabulated from various sources compiled by S. Prahl, “Optical properties spectra,” http://omlc.ogi.edu/spectra .
  14. F. E. Robles, C. Wilson, G. Grant, and A. Wax, “Molecular imaging true-colour spectroscopic optical coherence tomography,” Nat. Photonics5(12), 744–747 (2011).
    [CrossRef]

2011 (3)

N. Bosschaart, D. J. Faber, T. G. van Leeuwen, and M. C. G. Aalders, “Measurements of wavelength dependent scattering and backscattering coefficients by low-coherence spectroscopy,” J. Biomed. Opt.16(3), 030503 (2011).
[CrossRef] [PubMed]

N. Bosschaart, D. J. Faber, T. G. van Leeuwen, and M. C. G. Aalders, “In vivo low-coherence spectroscopic measurements of local hemoglobin absorption spectra in human skin,” J. Biomed. Opt.16(10), 100504 (2011).
[CrossRef] [PubMed]

F. E. Robles, C. Wilson, G. Grant, and A. Wax, “Molecular imaging true-colour spectroscopic optical coherence tomography,” Nat. Photonics5(12), 744–747 (2011).
[CrossRef]

2009 (3)

2005 (1)

2004 (1)

2003 (2)

2000 (1)

1998 (1)

G. Häusler and M. Linder, “Coherence radar and spectral radar—new tools for dermatological diagnosis,” J. Biomed. Opt.3(1), 21–31 (1998).
[CrossRef]

Aalders, M. C. G.

N. Bosschaart, D. J. Faber, T. G. van Leeuwen, and M. C. G. Aalders, “Measurements of wavelength dependent scattering and backscattering coefficients by low-coherence spectroscopy,” J. Biomed. Opt.16(3), 030503 (2011).
[CrossRef] [PubMed]

N. Bosschaart, D. J. Faber, T. G. van Leeuwen, and M. C. G. Aalders, “In vivo low-coherence spectroscopic measurements of local hemoglobin absorption spectra in human skin,” J. Biomed. Opt.16(10), 100504 (2011).
[CrossRef] [PubMed]

N. Bosschaart, M. C. G. Aalders, D. J. Faber, J. J. A. Weda, M. J. C. van Gemert, and T. G. van Leeuwen, “Quantitative measurements of absorption spectra in scattering media by low-coherence spectroscopy,” Opt. Lett.34(23), 3746–3748 (2009).
[CrossRef] [PubMed]

Bosschaart, N.

N. Bosschaart, D. J. Faber, T. G. van Leeuwen, and M. C. G. Aalders, “Measurements of wavelength dependent scattering and backscattering coefficients by low-coherence spectroscopy,” J. Biomed. Opt.16(3), 030503 (2011).
[CrossRef] [PubMed]

N. Bosschaart, D. J. Faber, T. G. van Leeuwen, and M. C. G. Aalders, “In vivo low-coherence spectroscopic measurements of local hemoglobin absorption spectra in human skin,” J. Biomed. Opt.16(10), 100504 (2011).
[CrossRef] [PubMed]

N. Bosschaart, M. C. G. Aalders, D. J. Faber, J. J. A. Weda, M. J. C. van Gemert, and T. G. van Leeuwen, “Quantitative measurements of absorption spectra in scattering media by low-coherence spectroscopy,” Opt. Lett.34(23), 3746–3748 (2009).
[CrossRef] [PubMed]

Bouma, B.

Cense, B.

Chen, T.

Chen, Z.

de Boer, J.

Faber, D. J.

N. Bosschaart, D. J. Faber, T. G. van Leeuwen, and M. C. G. Aalders, “In vivo low-coherence spectroscopic measurements of local hemoglobin absorption spectra in human skin,” J. Biomed. Opt.16(10), 100504 (2011).
[CrossRef] [PubMed]

N. Bosschaart, D. J. Faber, T. G. van Leeuwen, and M. C. G. Aalders, “Measurements of wavelength dependent scattering and backscattering coefficients by low-coherence spectroscopy,” J. Biomed. Opt.16(3), 030503 (2011).
[CrossRef] [PubMed]

D. J. Faber and T. G. van Leeuwen, “Doppler calibration method for spectral domain OCT spectrometers,” J Biophotonics2(6-7), 407–415 (2009).
[CrossRef] [PubMed]

N. Bosschaart, M. C. G. Aalders, D. J. Faber, J. J. A. Weda, M. J. C. van Gemert, and T. G. van Leeuwen, “Quantitative measurements of absorption spectra in scattering media by low-coherence spectroscopy,” Opt. Lett.34(23), 3746–3748 (2009).
[CrossRef] [PubMed]

Fercher, A. F.

Graf, R. N.

Grant, G.

F. E. Robles, C. Wilson, G. Grant, and A. Wax, “Molecular imaging true-colour spectroscopic optical coherence tomography,” Nat. Photonics5(12), 744–747 (2011).
[CrossRef]

Häusler, G.

G. Häusler and M. Linder, “Coherence radar and spectral radar—new tools for dermatological diagnosis,” J. Biomed. Opt.3(1), 21–31 (1998).
[CrossRef]

Hitzenberger, C. K.

Izatt, J. A.

Kowalczyk, A.

Leitgeb, R.

Linder, M.

G. Häusler and M. Linder, “Coherence radar and spectral radar—new tools for dermatological diagnosis,” J. Biomed. Opt.3(1), 21–31 (1998).
[CrossRef]

Nassif, N.

Nelson, J. S.

Park, B.

Pierce, M.

Robles, F.

Robles, F. E.

F. E. Robles, C. Wilson, G. Grant, and A. Wax, “Molecular imaging true-colour spectroscopic optical coherence tomography,” Nat. Photonics5(12), 744–747 (2011).
[CrossRef]

Sticker, M.

Tearney, G.

van Gemert, M. J. C.

van Leeuwen, T. G.

N. Bosschaart, D. J. Faber, T. G. van Leeuwen, and M. C. G. Aalders, “Measurements of wavelength dependent scattering and backscattering coefficients by low-coherence spectroscopy,” J. Biomed. Opt.16(3), 030503 (2011).
[CrossRef] [PubMed]

N. Bosschaart, D. J. Faber, T. G. van Leeuwen, and M. C. G. Aalders, “In vivo low-coherence spectroscopic measurements of local hemoglobin absorption spectra in human skin,” J. Biomed. Opt.16(10), 100504 (2011).
[CrossRef] [PubMed]

D. J. Faber and T. G. van Leeuwen, “Doppler calibration method for spectral domain OCT spectrometers,” J Biophotonics2(6-7), 407–415 (2009).
[CrossRef] [PubMed]

N. Bosschaart, M. C. G. Aalders, D. J. Faber, J. J. A. Weda, M. J. C. van Gemert, and T. G. van Leeuwen, “Quantitative measurements of absorption spectra in scattering media by low-coherence spectroscopy,” Opt. Lett.34(23), 3746–3748 (2009).
[CrossRef] [PubMed]

Wax, A.

Weda, J. J. A.

Wilson, C.

F. E. Robles, C. Wilson, G. Grant, and A. Wax, “Molecular imaging true-colour spectroscopic optical coherence tomography,” Nat. Photonics5(12), 744–747 (2011).
[CrossRef]

Wojtkowski, M.

Yang, C.

Yun, S.

Zhang, J.

J Biophotonics (1)

D. J. Faber and T. G. van Leeuwen, “Doppler calibration method for spectral domain OCT spectrometers,” J Biophotonics2(6-7), 407–415 (2009).
[CrossRef] [PubMed]

J. Biomed. Opt. (3)

G. Häusler and M. Linder, “Coherence radar and spectral radar—new tools for dermatological diagnosis,” J. Biomed. Opt.3(1), 21–31 (1998).
[CrossRef]

N. Bosschaart, D. J. Faber, T. G. van Leeuwen, and M. C. G. Aalders, “Measurements of wavelength dependent scattering and backscattering coefficients by low-coherence spectroscopy,” J. Biomed. Opt.16(3), 030503 (2011).
[CrossRef] [PubMed]

N. Bosschaart, D. J. Faber, T. G. van Leeuwen, and M. C. G. Aalders, “In vivo low-coherence spectroscopic measurements of local hemoglobin absorption spectra in human skin,” J. Biomed. Opt.16(10), 100504 (2011).
[CrossRef] [PubMed]

Nat. Photonics (1)

F. E. Robles, C. Wilson, G. Grant, and A. Wax, “Molecular imaging true-colour spectroscopic optical coherence tomography,” Nat. Photonics5(12), 744–747 (2011).
[CrossRef]

Opt. Express (3)

Opt. Lett. (4)

Other (2)

Data tabulated from various sources compiled by S. Prahl, “Optical properties spectra,” http://omlc.ogi.edu/spectra .

D. J. Faber and T. G. van Leeuwen, “Optical coherence tomography,” in Optical-Thermal Response of Laser-Irradiated Tissue, A. J. Welch and M. J. C. van Gemert, eds. (Springer Science & Business Media, 2010), Chap. 18.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic illustration of setup and parameters in sdLCS/tdLCS. λ0: center wavelength, λBW: spectral bandwidth, xR: reference arm length, xS: sample arm length, ΔOPL: path length difference, ΔR: reference mirror scanning range, vR: reference mirror scanning velocity, fR: reference mirror scanning frequency, ℓ: geometrical path length in sample, ΔℓR: scanning window in sample induced by ΔR, n: refractive index, µt: attenuation coefficient, iD: detector current, τ: integration time, Np: number of pixels, δλ: pixel width, Δλ: wavelength resolution.

Fig. 2
Fig. 2

Signal acquisition and processing in sdLCS. See Section 2.2 for details.

Fig. 3
Fig. 3

Theoretical and measured sensitivity roll-off of the spectrograph. Inset: illustration of the path length window Δℓ in sdLCS (Section 2.3).

Fig. 4
Fig. 4

Simulation of a µa measurement in sdLCS. a.) input spectra iD and b.) filtered spectra (S) at path lengths ℓ1 and ℓ2 inside the sample. c.) input µa and recovered µa.

Fig. 5
Fig. 5

Comparison of an sdLCS measurement to a tdLCS measurement of µt, µa and µs on a polystyrene-dye phantom.

Tables (1)

Tables Icon

Table 1 Acquisition settings for sdLCS and tdLCS

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

i D ( k ) I S ( k )+ I R ( k )+ I S ( k ) I R ( k ) 2cos(kΔOPL),
S( ) = α e - μ t ,
I(ΔOPL)= si n 2 ( πΔOPL/[2ΔOP L max ] ) ( πΔOPL/[2ΔOP L max ] ) 2 exp( - π 2 ( Δk/δk ) 2 8ln2 ( ΔOPL ΔOP L max ) 2 ),
SNR = εS hν f BW = S hν ×{ ε SD τ= ε SD f scan,SD (sdLCS) ε TD λ 0 f 0 λ BW = ε TD λ 0 2 2 v R λ BW = ε TD f scan,TD λ 0 2 2 L scan,TD λ BW (tdLCS) .
SN R SD = N p ( ε SD ε TD )( 2 f R τ )( 2ΔR Δ L max )SN R TD ,

Metrics