Abstract

This paper characterizes the Utah Slant Optrode Array (USOA) as a means to deliver infrared light deep into tissue. An undoped crystalline silicon (100) substrate was used to fabricate 10 × 10 arrays of optrodes with rows of varying lengths from 0.5 mm to 1.5 mm on a 400-μm pitch. Light delivery from optical fibers and loss mechanisms through these Si optrodes were characterized, with the primary loss mechanisms being Fresnel reflection, coupling, radiation losses from the tapered shank and total internal reflection in the tips. Transmission at the optrode tips with different optical fiber core diameters and light in-coupling interfaces was investigated. At λ = 1.55μm, the highest optrode transmittance of 34.7%, relative to the optical fiber output power, was obtained with a 50-μm multi-mode fiber butt-coupled to the optrode through an intervening medium of index n = 1.66. Maximum power is directed into the optrodes when using fibers with core diameters of 200 μm or less. In addition, the output power varied with the optrode length/taper such that longer and less tapered optrodes exhibited higher light transmission efficiency. Output beam profiles and potential impacts on physiological tests were also examined. Future work is expected to improve USOA efficiency to greater than 64%.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. X. Navarro, T. B. Krueger, N. Lago, S. Micera, T. Stieglitz, and P. Dario, “A critical review of interfaces with the peripheral nervous system for the control of neuroprostheses and hybrid bionic systems,” J. Peripher. Nerv. Syst.10, 229–258 (2005).
    [CrossRef] [PubMed]
  2. A. Branner, R. B. Stein, and R. A. Normann, “Selective stimulation of cat sciatic nerve using an array of varying-length microelectrodes,” J. Neurophysiol.85, 1585–1594 (2001).
    [PubMed]
  3. A. Branner, R. Stein, E. Fernandez, Y. Aoyagi, and R. Normann, “Long-term stimulation and recording with a penetrating microelectrode array in cat sciatic nerve,” IEEE T. Bio-Med. Eng.51, 146–157 (2004).
    [CrossRef]
  4. R. A. Normann, B. R. Dowden, M. A. Frankel, A. M. Wilder, S. D. Hiatt, N. M. Ledbetter, D. A. Warren, and G. A. Clark, “Coordinated, multi-joint, fatigue-resistant feline stance produced with intrafascicular hind limb nerve stimulation,” J. Neural Eng.9, 026019 (2012).
    [CrossRef] [PubMed]
  5. M. Frankel, B. Dowden, V. Mathews, R. Normann, G. Clark, and S. Meek, “Multiple-input single-output closed-loop isometric force control using asynchronous intrafascicular multi-electrode stimulation,” IEEE T. Neur. Sys. Reh.19, 325–332 (2011).
    [CrossRef]
  6. P. Tathireddy, D. Rakwal, E. Bamberg, and F. Solzbacher, “Fabrication of 3-dimensional silicon microelectrode arrays using micro electro discharge machining for neural applications,” in Proceedings of the International Conference on Solid-State Sensors, Actuators and Microsystems (Transducers) (IEEE, 2009), pp. 1206–1209.
    [CrossRef]
  7. R. Normann, D. McDonnall, G. Clark, R. Stein, and A. Branner, “Physiological activation of the hind limb muscles of the anesthetized cat using the Utah Slanted Electrode Array,” in Proceedings of IEEE International Joint Conference on Neural Networks (IEEE, 2005), pp. 3103–3108.
    [CrossRef]
  8. J. A. McNulty, “Histology part 6: Neural tissue, http://zoomify.lumc.edu/histonew/neuro/neuro_main.htm ”.
  9. J. Wells, C. Kao, K. Mariappan, J. Albea, E. D. Jansen, P. Konrad, and A. Mahadevan-Jansen, “Optical stimulation of neural tissue in vivo,” Opt. Lett.30, 504–506 (2005).
    [CrossRef] [PubMed]
  10. J. Wells, C. Kao, P. Konrad, T. Milner, J. Kim, A. Mahadevan-Jansen, and E. D. Jansen, “Biophysical mechanisms of transient optical stimulation of peripheral nerve,” Biophys. J.93, 2567–2580 (2007).
    [CrossRef] [PubMed]
  11. M. G. Shapiro, K. Homma, S. Villarreal, C.-P. Richter, and F. Bezanilla, “Infrared light excites cells by changing their electrical capacitance,” Nat. Commun.3, 736 (2012).
    [CrossRef] [PubMed]
  12. J. Wells, P. Konrad, C. Kao, E. D. Jansen, and A. Mahadevan-Jansen, “Pulsed laser versus electrical energy for peripheral nerve stimulation,” J. Neurosci. Methods163, 326–337 (2007).
    [CrossRef] [PubMed]
  13. J. Wells, C. Kao, E. D. Jansen, P. Konrad, and A. Mahadevan-Jansen, “Application of infrared light for in vivo neural stimulation,” J. Biomed. Opt.10, 064003 (2005).
    [CrossRef]
  14. R. G. McCaughey, C. Chlebicki, and B. J. Wong, “Novel wavelengths for laser nerve stimulation,” Lasers Surg. Med.42, 69–75 (2010).
    [CrossRef]
  15. N. Fried, S. Rais-Bahrami, G. Lagoda, A.-Y. Chuang, L.-M. Su, and A. Burnett, “Identification and imaging of the nerves responsible for erectile function in rat prostate, in vivo, using optical nerve stimulation and optical coherence tomography,” IEEE J. Sel. Topics in Quantum Electron.13, 1641–1645 (2007).
    [CrossRef]
  16. A. Izzo, J. Walsh, E. Jansen, M. Bendett, J. Webb, H. Ralph, and C.-P. Richter, “Optical parameter variability in laser nerve stimulation: A study of pulse duration, repetition rate, and wavelength,” IEEE T. Bio-Med. Eng.54, 1108–1114 (2007).
    [CrossRef]
  17. J. M. Cayce, R. M. Friedman, E. D. Jansen, A. Mahavaden-Jansen, and A. W. Roe, “Pulsed infrared light alters neural activity in rat somatosensory cortex in vivo,” Neuroimage57, 155–166 (2011).
    [CrossRef] [PubMed]
  18. J. Zhang, F. Laiwalla, J. A. Kim, H. Urabe, R. V. Wagenen, Y.-K. Song, B. W. Connors, F. Zhang, K. Deisseroth, and A. V. Nurmikko, “Integrated device for optical stimulation and spatiotemporal electrical recording of neural activity in light-sensitized brain tissue,” J. Neural Eng.6, 055007 (2009).
    [CrossRef] [PubMed]
  19. J. Wang, F. Wagner, D. A. Borton, J. Zhang, I. Ozden, R. D. Burwell, A. V. Nurmikko, R. van Wagenen, I. Diester, and K. Deisseroth, “Integrated device for combined optical neuromodulation and electrical recording for chronic in vivo applications,” J. Neural Eng.9, 016001 (2012).
    [CrossRef]
  20. S. Royer, B. V. Zemelman, M. Barbic, A. Losonczy, G. Buzski, and J. C. Magee, “Multi-array silicon probes with integrated optical fibers: light-assisted perturbation and recording of local neural circuits in the behaving animal.” Eur. J. Neurosci.31, 2279–2291 (2010).
    [CrossRef] [PubMed]
  21. A. V. Kravitz and A. C. Kreitzer, “Optogenetic manipulation of neural circuitry in vivo.” Curr. Opin. Neurobiol.21, 433–439 (2011).
    [CrossRef] [PubMed]
  22. A. V. Kravitz, B. S. Freeze, P. R. L. Parker, K. Kay, M. T. Thwin, K. Deisseroth, and A. C. Kreitzer, “Regulation of parkinsonian motor behaviours by optogenetic control of basal ganglia circuitry,” Nature466, 622–626 (2010).
    [CrossRef] [PubMed]
  23. V. Gradinaru, K. R. Thompson, F. Zhang, M. Mogri, K. Kay, M. B. Schneider, and K. Deisseroth, “Targeting and readout strategies for fast optical neural control in vitro and in vivo.” J. Neurosci.27, 14231–14238 (2007).
    [CrossRef] [PubMed]
  24. A. N. Zorzos, E. S. Boyden, and C. G. Fonstad, “Multiwaveguide implantable probe for light delivery to sets of distributed brain targets,” Opt. Lett.35, 4133–4135 (2010).
    [CrossRef] [PubMed]
  25. T. V. F. Abaya, M. Diwekar, S. Blair, P. Tathireddy, L. Rieth, G. A. Clark, and F. Solzbacher, “Optical characterization of the Utah Slant OptrodeAarray for intrafascicular infrared neural stimulation,” Proc. SPIE8207, 82075M (2012).
    [CrossRef]
  26. G. A. Clark, S. L. Schister, N. M. Ledbetter, D. J. Warren, F. Solzbacher, J. D. Wells, M. D. Keller, S. M. Blair, L. W. Rieth, and P. R. Tathireddy, “Selective, high-optrode-count, artifact-free stimulation with infrared light via intrafascicular Utah Slanted Optrode Arrays,” Proc. SPIE8207, 82075I (2012).
    [CrossRef]
  27. R. Bhandari, S. Negi, L. Rieth, and F. Solzbacher, “Wafer-scale processed, low impedance, neural arrays with varying length microelectrodes,” in International Solid-State Sensors, Actuators and Microsystems Conference (Transducers) (IEEE, 2009), pp. 1210–1213.
    [CrossRef]
  28. R. Bhandari, S. Negi, L. Rieth, and F. Solzbacher, “A wafer-scale etching technique for high aspect ratio implantable mems structures,” Sens. Actuators A162, 130–136 (2010).
    [CrossRef]
  29. M. Bass, C. DeCusatis, G. Li, V. Mahajan, J. Enoch, and E. Stryland, Handbook of Optics: Optical Properties of Materials, Nonlinear Optics, Quantum Optics (McGraw-Hill, 2009).
  30. V. Tuchin, Handbook of Optical Biomedical Diagnostics (SPIE, 2002).
  31. D. Mynbaev and L. Scheiner, Fiber-Optic Communications Technology (Prentice Hall, 2001).
  32. Y.-F. Li and J. W. Y. Lit, “Transmission properties of a multimode optical-fiber taper,” J. Opt. Soc. Am. A2, 462–468 (1985).
    [CrossRef]
  33. S. Tang, L. Wu, F. Li, T. Li, and R. T. Chen, “Compression-molded three-dimensional tapered optical polymeric waveguides for optoelectronic packaging,” Proc. SPIE3005, 202–211 (1997).
    [CrossRef]
  34. Z.-N. Lu, R. Bansal, and P. Cheo, “Radiation losses of tapered dielectric waveguides: a finite difference analysis with ridge waveguide applications,” J. Lightwave Technol.12, 1373–1377 (1994).
    [CrossRef]
  35. B. K. Garside, T. K. Lim, and J. P. Marton, “Ray trajectories in optical fiber tapered sections,” Appl. Opt.17, 3670–3674 (1978).
    [CrossRef] [PubMed]
  36. R. Deri and E. Kapon, “Low-loss III–V semiconductor optical waveguides,” IEEE J. Quantum. Electron.27, 626–640 (1991).
    [CrossRef]
  37. F. Bahloul, R. Attia, and D. Pagnoux, “Reduction of the overall coupling loss using nonuniform tapered microstructured optical fiber,” in Proceedings of International Conference on Transparent Optical Networks (IEEE, 2010), pp. 1–4.
    [CrossRef]
  38. S.-C. Hung, E.-Z. Liang, and C.-F. Lin, “Silicon waveguide sidewall smoothing by KrF excimer laser reformation,” J. Lightwave Technol.27, 887–892 (2009).
    [CrossRef]
  39. Q. Xia, P. F. Murphy, H. Gao, and S. Y. Chou, “Ultrafast and selective reduction of sidewall roughness in silicon waveguides using self-perfection by liquefaction,” Nanotechnology20, 345302 (2009).
    [CrossRef] [PubMed]
  40. K. K. Lee, D. R. Lim, L. C. Kimerling, J. Shin, and F. Cerrina, “Fabrication of ultralow-loss Si/SiO2 waveguides by roughness reduction,” Opt. Lett.26, 1888–1890 (2001).
    [CrossRef]
  41. D. Sparacin, S. Spector, and L. Kimerling, “Silicon waveguide sidewall smoothing by wet chemical oxidation,” J. Lightwave Technol.23, 2455–2461 (2005).
    [CrossRef]

2012 (5)

M. G. Shapiro, K. Homma, S. Villarreal, C.-P. Richter, and F. Bezanilla, “Infrared light excites cells by changing their electrical capacitance,” Nat. Commun.3, 736 (2012).
[CrossRef] [PubMed]

J. Wang, F. Wagner, D. A. Borton, J. Zhang, I. Ozden, R. D. Burwell, A. V. Nurmikko, R. van Wagenen, I. Diester, and K. Deisseroth, “Integrated device for combined optical neuromodulation and electrical recording for chronic in vivo applications,” J. Neural Eng.9, 016001 (2012).
[CrossRef]

R. A. Normann, B. R. Dowden, M. A. Frankel, A. M. Wilder, S. D. Hiatt, N. M. Ledbetter, D. A. Warren, and G. A. Clark, “Coordinated, multi-joint, fatigue-resistant feline stance produced with intrafascicular hind limb nerve stimulation,” J. Neural Eng.9, 026019 (2012).
[CrossRef] [PubMed]

T. V. F. Abaya, M. Diwekar, S. Blair, P. Tathireddy, L. Rieth, G. A. Clark, and F. Solzbacher, “Optical characterization of the Utah Slant OptrodeAarray for intrafascicular infrared neural stimulation,” Proc. SPIE8207, 82075M (2012).
[CrossRef]

G. A. Clark, S. L. Schister, N. M. Ledbetter, D. J. Warren, F. Solzbacher, J. D. Wells, M. D. Keller, S. M. Blair, L. W. Rieth, and P. R. Tathireddy, “Selective, high-optrode-count, artifact-free stimulation with infrared light via intrafascicular Utah Slanted Optrode Arrays,” Proc. SPIE8207, 82075I (2012).
[CrossRef]

2011 (3)

M. Frankel, B. Dowden, V. Mathews, R. Normann, G. Clark, and S. Meek, “Multiple-input single-output closed-loop isometric force control using asynchronous intrafascicular multi-electrode stimulation,” IEEE T. Neur. Sys. Reh.19, 325–332 (2011).
[CrossRef]

A. V. Kravitz and A. C. Kreitzer, “Optogenetic manipulation of neural circuitry in vivo.” Curr. Opin. Neurobiol.21, 433–439 (2011).
[CrossRef] [PubMed]

J. M. Cayce, R. M. Friedman, E. D. Jansen, A. Mahavaden-Jansen, and A. W. Roe, “Pulsed infrared light alters neural activity in rat somatosensory cortex in vivo,” Neuroimage57, 155–166 (2011).
[CrossRef] [PubMed]

2010 (5)

S. Royer, B. V. Zemelman, M. Barbic, A. Losonczy, G. Buzski, and J. C. Magee, “Multi-array silicon probes with integrated optical fibers: light-assisted perturbation and recording of local neural circuits in the behaving animal.” Eur. J. Neurosci.31, 2279–2291 (2010).
[CrossRef] [PubMed]

R. G. McCaughey, C. Chlebicki, and B. J. Wong, “Novel wavelengths for laser nerve stimulation,” Lasers Surg. Med.42, 69–75 (2010).
[CrossRef]

A. V. Kravitz, B. S. Freeze, P. R. L. Parker, K. Kay, M. T. Thwin, K. Deisseroth, and A. C. Kreitzer, “Regulation of parkinsonian motor behaviours by optogenetic control of basal ganglia circuitry,” Nature466, 622–626 (2010).
[CrossRef] [PubMed]

R. Bhandari, S. Negi, L. Rieth, and F. Solzbacher, “A wafer-scale etching technique for high aspect ratio implantable mems structures,” Sens. Actuators A162, 130–136 (2010).
[CrossRef]

A. N. Zorzos, E. S. Boyden, and C. G. Fonstad, “Multiwaveguide implantable probe for light delivery to sets of distributed brain targets,” Opt. Lett.35, 4133–4135 (2010).
[CrossRef] [PubMed]

2009 (3)

S.-C. Hung, E.-Z. Liang, and C.-F. Lin, “Silicon waveguide sidewall smoothing by KrF excimer laser reformation,” J. Lightwave Technol.27, 887–892 (2009).
[CrossRef]

Q. Xia, P. F. Murphy, H. Gao, and S. Y. Chou, “Ultrafast and selective reduction of sidewall roughness in silicon waveguides using self-perfection by liquefaction,” Nanotechnology20, 345302 (2009).
[CrossRef] [PubMed]

J. Zhang, F. Laiwalla, J. A. Kim, H. Urabe, R. V. Wagenen, Y.-K. Song, B. W. Connors, F. Zhang, K. Deisseroth, and A. V. Nurmikko, “Integrated device for optical stimulation and spatiotemporal electrical recording of neural activity in light-sensitized brain tissue,” J. Neural Eng.6, 055007 (2009).
[CrossRef] [PubMed]

2007 (5)

N. Fried, S. Rais-Bahrami, G. Lagoda, A.-Y. Chuang, L.-M. Su, and A. Burnett, “Identification and imaging of the nerves responsible for erectile function in rat prostate, in vivo, using optical nerve stimulation and optical coherence tomography,” IEEE J. Sel. Topics in Quantum Electron.13, 1641–1645 (2007).
[CrossRef]

A. Izzo, J. Walsh, E. Jansen, M. Bendett, J. Webb, H. Ralph, and C.-P. Richter, “Optical parameter variability in laser nerve stimulation: A study of pulse duration, repetition rate, and wavelength,” IEEE T. Bio-Med. Eng.54, 1108–1114 (2007).
[CrossRef]

J. Wells, P. Konrad, C. Kao, E. D. Jansen, and A. Mahadevan-Jansen, “Pulsed laser versus electrical energy for peripheral nerve stimulation,” J. Neurosci. Methods163, 326–337 (2007).
[CrossRef] [PubMed]

V. Gradinaru, K. R. Thompson, F. Zhang, M. Mogri, K. Kay, M. B. Schneider, and K. Deisseroth, “Targeting and readout strategies for fast optical neural control in vitro and in vivo.” J. Neurosci.27, 14231–14238 (2007).
[CrossRef] [PubMed]

J. Wells, C. Kao, P. Konrad, T. Milner, J. Kim, A. Mahadevan-Jansen, and E. D. Jansen, “Biophysical mechanisms of transient optical stimulation of peripheral nerve,” Biophys. J.93, 2567–2580 (2007).
[CrossRef] [PubMed]

2005 (4)

X. Navarro, T. B. Krueger, N. Lago, S. Micera, T. Stieglitz, and P. Dario, “A critical review of interfaces with the peripheral nervous system for the control of neuroprostheses and hybrid bionic systems,” J. Peripher. Nerv. Syst.10, 229–258 (2005).
[CrossRef] [PubMed]

J. Wells, C. Kao, E. D. Jansen, P. Konrad, and A. Mahadevan-Jansen, “Application of infrared light for in vivo neural stimulation,” J. Biomed. Opt.10, 064003 (2005).
[CrossRef]

J. Wells, C. Kao, K. Mariappan, J. Albea, E. D. Jansen, P. Konrad, and A. Mahadevan-Jansen, “Optical stimulation of neural tissue in vivo,” Opt. Lett.30, 504–506 (2005).
[CrossRef] [PubMed]

D. Sparacin, S. Spector, and L. Kimerling, “Silicon waveguide sidewall smoothing by wet chemical oxidation,” J. Lightwave Technol.23, 2455–2461 (2005).
[CrossRef]

2004 (1)

A. Branner, R. Stein, E. Fernandez, Y. Aoyagi, and R. Normann, “Long-term stimulation and recording with a penetrating microelectrode array in cat sciatic nerve,” IEEE T. Bio-Med. Eng.51, 146–157 (2004).
[CrossRef]

2001 (2)

A. Branner, R. B. Stein, and R. A. Normann, “Selective stimulation of cat sciatic nerve using an array of varying-length microelectrodes,” J. Neurophysiol.85, 1585–1594 (2001).
[PubMed]

K. K. Lee, D. R. Lim, L. C. Kimerling, J. Shin, and F. Cerrina, “Fabrication of ultralow-loss Si/SiO2 waveguides by roughness reduction,” Opt. Lett.26, 1888–1890 (2001).
[CrossRef]

1997 (1)

S. Tang, L. Wu, F. Li, T. Li, and R. T. Chen, “Compression-molded three-dimensional tapered optical polymeric waveguides for optoelectronic packaging,” Proc. SPIE3005, 202–211 (1997).
[CrossRef]

1994 (1)

Z.-N. Lu, R. Bansal, and P. Cheo, “Radiation losses of tapered dielectric waveguides: a finite difference analysis with ridge waveguide applications,” J. Lightwave Technol.12, 1373–1377 (1994).
[CrossRef]

1991 (1)

R. Deri and E. Kapon, “Low-loss III–V semiconductor optical waveguides,” IEEE J. Quantum. Electron.27, 626–640 (1991).
[CrossRef]

1985 (1)

1978 (1)

Abaya, T. V. F.

T. V. F. Abaya, M. Diwekar, S. Blair, P. Tathireddy, L. Rieth, G. A. Clark, and F. Solzbacher, “Optical characterization of the Utah Slant OptrodeAarray for intrafascicular infrared neural stimulation,” Proc. SPIE8207, 82075M (2012).
[CrossRef]

Albea, J.

Aoyagi, Y.

A. Branner, R. Stein, E. Fernandez, Y. Aoyagi, and R. Normann, “Long-term stimulation and recording with a penetrating microelectrode array in cat sciatic nerve,” IEEE T. Bio-Med. Eng.51, 146–157 (2004).
[CrossRef]

Attia, R.

F. Bahloul, R. Attia, and D. Pagnoux, “Reduction of the overall coupling loss using nonuniform tapered microstructured optical fiber,” in Proceedings of International Conference on Transparent Optical Networks (IEEE, 2010), pp. 1–4.
[CrossRef]

Bahloul, F.

F. Bahloul, R. Attia, and D. Pagnoux, “Reduction of the overall coupling loss using nonuniform tapered microstructured optical fiber,” in Proceedings of International Conference on Transparent Optical Networks (IEEE, 2010), pp. 1–4.
[CrossRef]

Bamberg, E.

P. Tathireddy, D. Rakwal, E. Bamberg, and F. Solzbacher, “Fabrication of 3-dimensional silicon microelectrode arrays using micro electro discharge machining for neural applications,” in Proceedings of the International Conference on Solid-State Sensors, Actuators and Microsystems (Transducers) (IEEE, 2009), pp. 1206–1209.
[CrossRef]

Bansal, R.

Z.-N. Lu, R. Bansal, and P. Cheo, “Radiation losses of tapered dielectric waveguides: a finite difference analysis with ridge waveguide applications,” J. Lightwave Technol.12, 1373–1377 (1994).
[CrossRef]

Barbic, M.

S. Royer, B. V. Zemelman, M. Barbic, A. Losonczy, G. Buzski, and J. C. Magee, “Multi-array silicon probes with integrated optical fibers: light-assisted perturbation and recording of local neural circuits in the behaving animal.” Eur. J. Neurosci.31, 2279–2291 (2010).
[CrossRef] [PubMed]

Bass, M.

M. Bass, C. DeCusatis, G. Li, V. Mahajan, J. Enoch, and E. Stryland, Handbook of Optics: Optical Properties of Materials, Nonlinear Optics, Quantum Optics (McGraw-Hill, 2009).

Bendett, M.

A. Izzo, J. Walsh, E. Jansen, M. Bendett, J. Webb, H. Ralph, and C.-P. Richter, “Optical parameter variability in laser nerve stimulation: A study of pulse duration, repetition rate, and wavelength,” IEEE T. Bio-Med. Eng.54, 1108–1114 (2007).
[CrossRef]

Bezanilla, F.

M. G. Shapiro, K. Homma, S. Villarreal, C.-P. Richter, and F. Bezanilla, “Infrared light excites cells by changing their electrical capacitance,” Nat. Commun.3, 736 (2012).
[CrossRef] [PubMed]

Bhandari, R.

R. Bhandari, S. Negi, L. Rieth, and F. Solzbacher, “A wafer-scale etching technique for high aspect ratio implantable mems structures,” Sens. Actuators A162, 130–136 (2010).
[CrossRef]

R. Bhandari, S. Negi, L. Rieth, and F. Solzbacher, “Wafer-scale processed, low impedance, neural arrays with varying length microelectrodes,” in International Solid-State Sensors, Actuators and Microsystems Conference (Transducers) (IEEE, 2009), pp. 1210–1213.
[CrossRef]

Blair, S.

T. V. F. Abaya, M. Diwekar, S. Blair, P. Tathireddy, L. Rieth, G. A. Clark, and F. Solzbacher, “Optical characterization of the Utah Slant OptrodeAarray for intrafascicular infrared neural stimulation,” Proc. SPIE8207, 82075M (2012).
[CrossRef]

Blair, S. M.

G. A. Clark, S. L. Schister, N. M. Ledbetter, D. J. Warren, F. Solzbacher, J. D. Wells, M. D. Keller, S. M. Blair, L. W. Rieth, and P. R. Tathireddy, “Selective, high-optrode-count, artifact-free stimulation with infrared light via intrafascicular Utah Slanted Optrode Arrays,” Proc. SPIE8207, 82075I (2012).
[CrossRef]

Borton, D. A.

J. Wang, F. Wagner, D. A. Borton, J. Zhang, I. Ozden, R. D. Burwell, A. V. Nurmikko, R. van Wagenen, I. Diester, and K. Deisseroth, “Integrated device for combined optical neuromodulation and electrical recording for chronic in vivo applications,” J. Neural Eng.9, 016001 (2012).
[CrossRef]

Boyden, E. S.

Branner, A.

A. Branner, R. Stein, E. Fernandez, Y. Aoyagi, and R. Normann, “Long-term stimulation and recording with a penetrating microelectrode array in cat sciatic nerve,” IEEE T. Bio-Med. Eng.51, 146–157 (2004).
[CrossRef]

A. Branner, R. B. Stein, and R. A. Normann, “Selective stimulation of cat sciatic nerve using an array of varying-length microelectrodes,” J. Neurophysiol.85, 1585–1594 (2001).
[PubMed]

R. Normann, D. McDonnall, G. Clark, R. Stein, and A. Branner, “Physiological activation of the hind limb muscles of the anesthetized cat using the Utah Slanted Electrode Array,” in Proceedings of IEEE International Joint Conference on Neural Networks (IEEE, 2005), pp. 3103–3108.
[CrossRef]

Burnett, A.

N. Fried, S. Rais-Bahrami, G. Lagoda, A.-Y. Chuang, L.-M. Su, and A. Burnett, “Identification and imaging of the nerves responsible for erectile function in rat prostate, in vivo, using optical nerve stimulation and optical coherence tomography,” IEEE J. Sel. Topics in Quantum Electron.13, 1641–1645 (2007).
[CrossRef]

Burwell, R. D.

J. Wang, F. Wagner, D. A. Borton, J. Zhang, I. Ozden, R. D. Burwell, A. V. Nurmikko, R. van Wagenen, I. Diester, and K. Deisseroth, “Integrated device for combined optical neuromodulation and electrical recording for chronic in vivo applications,” J. Neural Eng.9, 016001 (2012).
[CrossRef]

Buzski, G.

S. Royer, B. V. Zemelman, M. Barbic, A. Losonczy, G. Buzski, and J. C. Magee, “Multi-array silicon probes with integrated optical fibers: light-assisted perturbation and recording of local neural circuits in the behaving animal.” Eur. J. Neurosci.31, 2279–2291 (2010).
[CrossRef] [PubMed]

Cayce, J. M.

J. M. Cayce, R. M. Friedman, E. D. Jansen, A. Mahavaden-Jansen, and A. W. Roe, “Pulsed infrared light alters neural activity in rat somatosensory cortex in vivo,” Neuroimage57, 155–166 (2011).
[CrossRef] [PubMed]

Cerrina, F.

Chen, R. T.

S. Tang, L. Wu, F. Li, T. Li, and R. T. Chen, “Compression-molded three-dimensional tapered optical polymeric waveguides for optoelectronic packaging,” Proc. SPIE3005, 202–211 (1997).
[CrossRef]

Cheo, P.

Z.-N. Lu, R. Bansal, and P. Cheo, “Radiation losses of tapered dielectric waveguides: a finite difference analysis with ridge waveguide applications,” J. Lightwave Technol.12, 1373–1377 (1994).
[CrossRef]

Chlebicki, C.

R. G. McCaughey, C. Chlebicki, and B. J. Wong, “Novel wavelengths for laser nerve stimulation,” Lasers Surg. Med.42, 69–75 (2010).
[CrossRef]

Chou, S. Y.

Q. Xia, P. F. Murphy, H. Gao, and S. Y. Chou, “Ultrafast and selective reduction of sidewall roughness in silicon waveguides using self-perfection by liquefaction,” Nanotechnology20, 345302 (2009).
[CrossRef] [PubMed]

Chuang, A.-Y.

N. Fried, S. Rais-Bahrami, G. Lagoda, A.-Y. Chuang, L.-M. Su, and A. Burnett, “Identification and imaging of the nerves responsible for erectile function in rat prostate, in vivo, using optical nerve stimulation and optical coherence tomography,” IEEE J. Sel. Topics in Quantum Electron.13, 1641–1645 (2007).
[CrossRef]

Clark, G.

M. Frankel, B. Dowden, V. Mathews, R. Normann, G. Clark, and S. Meek, “Multiple-input single-output closed-loop isometric force control using asynchronous intrafascicular multi-electrode stimulation,” IEEE T. Neur. Sys. Reh.19, 325–332 (2011).
[CrossRef]

R. Normann, D. McDonnall, G. Clark, R. Stein, and A. Branner, “Physiological activation of the hind limb muscles of the anesthetized cat using the Utah Slanted Electrode Array,” in Proceedings of IEEE International Joint Conference on Neural Networks (IEEE, 2005), pp. 3103–3108.
[CrossRef]

Clark, G. A.

R. A. Normann, B. R. Dowden, M. A. Frankel, A. M. Wilder, S. D. Hiatt, N. M. Ledbetter, D. A. Warren, and G. A. Clark, “Coordinated, multi-joint, fatigue-resistant feline stance produced with intrafascicular hind limb nerve stimulation,” J. Neural Eng.9, 026019 (2012).
[CrossRef] [PubMed]

T. V. F. Abaya, M. Diwekar, S. Blair, P. Tathireddy, L. Rieth, G. A. Clark, and F. Solzbacher, “Optical characterization of the Utah Slant OptrodeAarray for intrafascicular infrared neural stimulation,” Proc. SPIE8207, 82075M (2012).
[CrossRef]

G. A. Clark, S. L. Schister, N. M. Ledbetter, D. J. Warren, F. Solzbacher, J. D. Wells, M. D. Keller, S. M. Blair, L. W. Rieth, and P. R. Tathireddy, “Selective, high-optrode-count, artifact-free stimulation with infrared light via intrafascicular Utah Slanted Optrode Arrays,” Proc. SPIE8207, 82075I (2012).
[CrossRef]

Connors, B. W.

J. Zhang, F. Laiwalla, J. A. Kim, H. Urabe, R. V. Wagenen, Y.-K. Song, B. W. Connors, F. Zhang, K. Deisseroth, and A. V. Nurmikko, “Integrated device for optical stimulation and spatiotemporal electrical recording of neural activity in light-sensitized brain tissue,” J. Neural Eng.6, 055007 (2009).
[CrossRef] [PubMed]

Dario, P.

X. Navarro, T. B. Krueger, N. Lago, S. Micera, T. Stieglitz, and P. Dario, “A critical review of interfaces with the peripheral nervous system for the control of neuroprostheses and hybrid bionic systems,” J. Peripher. Nerv. Syst.10, 229–258 (2005).
[CrossRef] [PubMed]

DeCusatis, C.

M. Bass, C. DeCusatis, G. Li, V. Mahajan, J. Enoch, and E. Stryland, Handbook of Optics: Optical Properties of Materials, Nonlinear Optics, Quantum Optics (McGraw-Hill, 2009).

Deisseroth, K.

J. Wang, F. Wagner, D. A. Borton, J. Zhang, I. Ozden, R. D. Burwell, A. V. Nurmikko, R. van Wagenen, I. Diester, and K. Deisseroth, “Integrated device for combined optical neuromodulation and electrical recording for chronic in vivo applications,” J. Neural Eng.9, 016001 (2012).
[CrossRef]

A. V. Kravitz, B. S. Freeze, P. R. L. Parker, K. Kay, M. T. Thwin, K. Deisseroth, and A. C. Kreitzer, “Regulation of parkinsonian motor behaviours by optogenetic control of basal ganglia circuitry,” Nature466, 622–626 (2010).
[CrossRef] [PubMed]

J. Zhang, F. Laiwalla, J. A. Kim, H. Urabe, R. V. Wagenen, Y.-K. Song, B. W. Connors, F. Zhang, K. Deisseroth, and A. V. Nurmikko, “Integrated device for optical stimulation and spatiotemporal electrical recording of neural activity in light-sensitized brain tissue,” J. Neural Eng.6, 055007 (2009).
[CrossRef] [PubMed]

V. Gradinaru, K. R. Thompson, F. Zhang, M. Mogri, K. Kay, M. B. Schneider, and K. Deisseroth, “Targeting and readout strategies for fast optical neural control in vitro and in vivo.” J. Neurosci.27, 14231–14238 (2007).
[CrossRef] [PubMed]

Deri, R.

R. Deri and E. Kapon, “Low-loss III–V semiconductor optical waveguides,” IEEE J. Quantum. Electron.27, 626–640 (1991).
[CrossRef]

Diester, I.

J. Wang, F. Wagner, D. A. Borton, J. Zhang, I. Ozden, R. D. Burwell, A. V. Nurmikko, R. van Wagenen, I. Diester, and K. Deisseroth, “Integrated device for combined optical neuromodulation and electrical recording for chronic in vivo applications,” J. Neural Eng.9, 016001 (2012).
[CrossRef]

Diwekar, M.

T. V. F. Abaya, M. Diwekar, S. Blair, P. Tathireddy, L. Rieth, G. A. Clark, and F. Solzbacher, “Optical characterization of the Utah Slant OptrodeAarray for intrafascicular infrared neural stimulation,” Proc. SPIE8207, 82075M (2012).
[CrossRef]

Dowden, B.

M. Frankel, B. Dowden, V. Mathews, R. Normann, G. Clark, and S. Meek, “Multiple-input single-output closed-loop isometric force control using asynchronous intrafascicular multi-electrode stimulation,” IEEE T. Neur. Sys. Reh.19, 325–332 (2011).
[CrossRef]

Dowden, B. R.

R. A. Normann, B. R. Dowden, M. A. Frankel, A. M. Wilder, S. D. Hiatt, N. M. Ledbetter, D. A. Warren, and G. A. Clark, “Coordinated, multi-joint, fatigue-resistant feline stance produced with intrafascicular hind limb nerve stimulation,” J. Neural Eng.9, 026019 (2012).
[CrossRef] [PubMed]

Enoch, J.

M. Bass, C. DeCusatis, G. Li, V. Mahajan, J. Enoch, and E. Stryland, Handbook of Optics: Optical Properties of Materials, Nonlinear Optics, Quantum Optics (McGraw-Hill, 2009).

Fernandez, E.

A. Branner, R. Stein, E. Fernandez, Y. Aoyagi, and R. Normann, “Long-term stimulation and recording with a penetrating microelectrode array in cat sciatic nerve,” IEEE T. Bio-Med. Eng.51, 146–157 (2004).
[CrossRef]

Fonstad, C. G.

Frankel, M.

M. Frankel, B. Dowden, V. Mathews, R. Normann, G. Clark, and S. Meek, “Multiple-input single-output closed-loop isometric force control using asynchronous intrafascicular multi-electrode stimulation,” IEEE T. Neur. Sys. Reh.19, 325–332 (2011).
[CrossRef]

Frankel, M. A.

R. A. Normann, B. R. Dowden, M. A. Frankel, A. M. Wilder, S. D. Hiatt, N. M. Ledbetter, D. A. Warren, and G. A. Clark, “Coordinated, multi-joint, fatigue-resistant feline stance produced with intrafascicular hind limb nerve stimulation,” J. Neural Eng.9, 026019 (2012).
[CrossRef] [PubMed]

Freeze, B. S.

A. V. Kravitz, B. S. Freeze, P. R. L. Parker, K. Kay, M. T. Thwin, K. Deisseroth, and A. C. Kreitzer, “Regulation of parkinsonian motor behaviours by optogenetic control of basal ganglia circuitry,” Nature466, 622–626 (2010).
[CrossRef] [PubMed]

Fried, N.

N. Fried, S. Rais-Bahrami, G. Lagoda, A.-Y. Chuang, L.-M. Su, and A. Burnett, “Identification and imaging of the nerves responsible for erectile function in rat prostate, in vivo, using optical nerve stimulation and optical coherence tomography,” IEEE J. Sel. Topics in Quantum Electron.13, 1641–1645 (2007).
[CrossRef]

Friedman, R. M.

J. M. Cayce, R. M. Friedman, E. D. Jansen, A. Mahavaden-Jansen, and A. W. Roe, “Pulsed infrared light alters neural activity in rat somatosensory cortex in vivo,” Neuroimage57, 155–166 (2011).
[CrossRef] [PubMed]

Gao, H.

Q. Xia, P. F. Murphy, H. Gao, and S. Y. Chou, “Ultrafast and selective reduction of sidewall roughness in silicon waveguides using self-perfection by liquefaction,” Nanotechnology20, 345302 (2009).
[CrossRef] [PubMed]

Garside, B. K.

Gradinaru, V.

V. Gradinaru, K. R. Thompson, F. Zhang, M. Mogri, K. Kay, M. B. Schneider, and K. Deisseroth, “Targeting and readout strategies for fast optical neural control in vitro and in vivo.” J. Neurosci.27, 14231–14238 (2007).
[CrossRef] [PubMed]

Hiatt, S. D.

R. A. Normann, B. R. Dowden, M. A. Frankel, A. M. Wilder, S. D. Hiatt, N. M. Ledbetter, D. A. Warren, and G. A. Clark, “Coordinated, multi-joint, fatigue-resistant feline stance produced with intrafascicular hind limb nerve stimulation,” J. Neural Eng.9, 026019 (2012).
[CrossRef] [PubMed]

Homma, K.

M. G. Shapiro, K. Homma, S. Villarreal, C.-P. Richter, and F. Bezanilla, “Infrared light excites cells by changing their electrical capacitance,” Nat. Commun.3, 736 (2012).
[CrossRef] [PubMed]

Hung, S.-C.

Izzo, A.

A. Izzo, J. Walsh, E. Jansen, M. Bendett, J. Webb, H. Ralph, and C.-P. Richter, “Optical parameter variability in laser nerve stimulation: A study of pulse duration, repetition rate, and wavelength,” IEEE T. Bio-Med. Eng.54, 1108–1114 (2007).
[CrossRef]

Jansen, E.

A. Izzo, J. Walsh, E. Jansen, M. Bendett, J. Webb, H. Ralph, and C.-P. Richter, “Optical parameter variability in laser nerve stimulation: A study of pulse duration, repetition rate, and wavelength,” IEEE T. Bio-Med. Eng.54, 1108–1114 (2007).
[CrossRef]

Jansen, E. D.

J. M. Cayce, R. M. Friedman, E. D. Jansen, A. Mahavaden-Jansen, and A. W. Roe, “Pulsed infrared light alters neural activity in rat somatosensory cortex in vivo,” Neuroimage57, 155–166 (2011).
[CrossRef] [PubMed]

J. Wells, P. Konrad, C. Kao, E. D. Jansen, and A. Mahadevan-Jansen, “Pulsed laser versus electrical energy for peripheral nerve stimulation,” J. Neurosci. Methods163, 326–337 (2007).
[CrossRef] [PubMed]

J. Wells, C. Kao, P. Konrad, T. Milner, J. Kim, A. Mahadevan-Jansen, and E. D. Jansen, “Biophysical mechanisms of transient optical stimulation of peripheral nerve,” Biophys. J.93, 2567–2580 (2007).
[CrossRef] [PubMed]

J. Wells, C. Kao, K. Mariappan, J. Albea, E. D. Jansen, P. Konrad, and A. Mahadevan-Jansen, “Optical stimulation of neural tissue in vivo,” Opt. Lett.30, 504–506 (2005).
[CrossRef] [PubMed]

J. Wells, C. Kao, E. D. Jansen, P. Konrad, and A. Mahadevan-Jansen, “Application of infrared light for in vivo neural stimulation,” J. Biomed. Opt.10, 064003 (2005).
[CrossRef]

Kao, C.

J. Wells, C. Kao, P. Konrad, T. Milner, J. Kim, A. Mahadevan-Jansen, and E. D. Jansen, “Biophysical mechanisms of transient optical stimulation of peripheral nerve,” Biophys. J.93, 2567–2580 (2007).
[CrossRef] [PubMed]

J. Wells, P. Konrad, C. Kao, E. D. Jansen, and A. Mahadevan-Jansen, “Pulsed laser versus electrical energy for peripheral nerve stimulation,” J. Neurosci. Methods163, 326–337 (2007).
[CrossRef] [PubMed]

J. Wells, C. Kao, K. Mariappan, J. Albea, E. D. Jansen, P. Konrad, and A. Mahadevan-Jansen, “Optical stimulation of neural tissue in vivo,” Opt. Lett.30, 504–506 (2005).
[CrossRef] [PubMed]

J. Wells, C. Kao, E. D. Jansen, P. Konrad, and A. Mahadevan-Jansen, “Application of infrared light for in vivo neural stimulation,” J. Biomed. Opt.10, 064003 (2005).
[CrossRef]

Kapon, E.

R. Deri and E. Kapon, “Low-loss III–V semiconductor optical waveguides,” IEEE J. Quantum. Electron.27, 626–640 (1991).
[CrossRef]

Kay, K.

A. V. Kravitz, B. S. Freeze, P. R. L. Parker, K. Kay, M. T. Thwin, K. Deisseroth, and A. C. Kreitzer, “Regulation of parkinsonian motor behaviours by optogenetic control of basal ganglia circuitry,” Nature466, 622–626 (2010).
[CrossRef] [PubMed]

V. Gradinaru, K. R. Thompson, F. Zhang, M. Mogri, K. Kay, M. B. Schneider, and K. Deisseroth, “Targeting and readout strategies for fast optical neural control in vitro and in vivo.” J. Neurosci.27, 14231–14238 (2007).
[CrossRef] [PubMed]

Keller, M. D.

G. A. Clark, S. L. Schister, N. M. Ledbetter, D. J. Warren, F. Solzbacher, J. D. Wells, M. D. Keller, S. M. Blair, L. W. Rieth, and P. R. Tathireddy, “Selective, high-optrode-count, artifact-free stimulation with infrared light via intrafascicular Utah Slanted Optrode Arrays,” Proc. SPIE8207, 82075I (2012).
[CrossRef]

Kim, J.

J. Wells, C. Kao, P. Konrad, T. Milner, J. Kim, A. Mahadevan-Jansen, and E. D. Jansen, “Biophysical mechanisms of transient optical stimulation of peripheral nerve,” Biophys. J.93, 2567–2580 (2007).
[CrossRef] [PubMed]

Kim, J. A.

J. Zhang, F. Laiwalla, J. A. Kim, H. Urabe, R. V. Wagenen, Y.-K. Song, B. W. Connors, F. Zhang, K. Deisseroth, and A. V. Nurmikko, “Integrated device for optical stimulation and spatiotemporal electrical recording of neural activity in light-sensitized brain tissue,” J. Neural Eng.6, 055007 (2009).
[CrossRef] [PubMed]

Kimerling, L.

Kimerling, L. C.

Konrad, P.

J. Wells, C. Kao, P. Konrad, T. Milner, J. Kim, A. Mahadevan-Jansen, and E. D. Jansen, “Biophysical mechanisms of transient optical stimulation of peripheral nerve,” Biophys. J.93, 2567–2580 (2007).
[CrossRef] [PubMed]

J. Wells, P. Konrad, C. Kao, E. D. Jansen, and A. Mahadevan-Jansen, “Pulsed laser versus electrical energy for peripheral nerve stimulation,” J. Neurosci. Methods163, 326–337 (2007).
[CrossRef] [PubMed]

J. Wells, C. Kao, K. Mariappan, J. Albea, E. D. Jansen, P. Konrad, and A. Mahadevan-Jansen, “Optical stimulation of neural tissue in vivo,” Opt. Lett.30, 504–506 (2005).
[CrossRef] [PubMed]

J. Wells, C. Kao, E. D. Jansen, P. Konrad, and A. Mahadevan-Jansen, “Application of infrared light for in vivo neural stimulation,” J. Biomed. Opt.10, 064003 (2005).
[CrossRef]

Kravitz, A. V.

A. V. Kravitz and A. C. Kreitzer, “Optogenetic manipulation of neural circuitry in vivo.” Curr. Opin. Neurobiol.21, 433–439 (2011).
[CrossRef] [PubMed]

A. V. Kravitz, B. S. Freeze, P. R. L. Parker, K. Kay, M. T. Thwin, K. Deisseroth, and A. C. Kreitzer, “Regulation of parkinsonian motor behaviours by optogenetic control of basal ganglia circuitry,” Nature466, 622–626 (2010).
[CrossRef] [PubMed]

Kreitzer, A. C.

A. V. Kravitz and A. C. Kreitzer, “Optogenetic manipulation of neural circuitry in vivo.” Curr. Opin. Neurobiol.21, 433–439 (2011).
[CrossRef] [PubMed]

A. V. Kravitz, B. S. Freeze, P. R. L. Parker, K. Kay, M. T. Thwin, K. Deisseroth, and A. C. Kreitzer, “Regulation of parkinsonian motor behaviours by optogenetic control of basal ganglia circuitry,” Nature466, 622–626 (2010).
[CrossRef] [PubMed]

Krueger, T. B.

X. Navarro, T. B. Krueger, N. Lago, S. Micera, T. Stieglitz, and P. Dario, “A critical review of interfaces with the peripheral nervous system for the control of neuroprostheses and hybrid bionic systems,” J. Peripher. Nerv. Syst.10, 229–258 (2005).
[CrossRef] [PubMed]

Lago, N.

X. Navarro, T. B. Krueger, N. Lago, S. Micera, T. Stieglitz, and P. Dario, “A critical review of interfaces with the peripheral nervous system for the control of neuroprostheses and hybrid bionic systems,” J. Peripher. Nerv. Syst.10, 229–258 (2005).
[CrossRef] [PubMed]

Lagoda, G.

N. Fried, S. Rais-Bahrami, G. Lagoda, A.-Y. Chuang, L.-M. Su, and A. Burnett, “Identification and imaging of the nerves responsible for erectile function in rat prostate, in vivo, using optical nerve stimulation and optical coherence tomography,” IEEE J. Sel. Topics in Quantum Electron.13, 1641–1645 (2007).
[CrossRef]

Laiwalla, F.

J. Zhang, F. Laiwalla, J. A. Kim, H. Urabe, R. V. Wagenen, Y.-K. Song, B. W. Connors, F. Zhang, K. Deisseroth, and A. V. Nurmikko, “Integrated device for optical stimulation and spatiotemporal electrical recording of neural activity in light-sensitized brain tissue,” J. Neural Eng.6, 055007 (2009).
[CrossRef] [PubMed]

Ledbetter, N. M.

R. A. Normann, B. R. Dowden, M. A. Frankel, A. M. Wilder, S. D. Hiatt, N. M. Ledbetter, D. A. Warren, and G. A. Clark, “Coordinated, multi-joint, fatigue-resistant feline stance produced with intrafascicular hind limb nerve stimulation,” J. Neural Eng.9, 026019 (2012).
[CrossRef] [PubMed]

G. A. Clark, S. L. Schister, N. M. Ledbetter, D. J. Warren, F. Solzbacher, J. D. Wells, M. D. Keller, S. M. Blair, L. W. Rieth, and P. R. Tathireddy, “Selective, high-optrode-count, artifact-free stimulation with infrared light via intrafascicular Utah Slanted Optrode Arrays,” Proc. SPIE8207, 82075I (2012).
[CrossRef]

Lee, K. K.

Li, F.

S. Tang, L. Wu, F. Li, T. Li, and R. T. Chen, “Compression-molded three-dimensional tapered optical polymeric waveguides for optoelectronic packaging,” Proc. SPIE3005, 202–211 (1997).
[CrossRef]

Li, G.

M. Bass, C. DeCusatis, G. Li, V. Mahajan, J. Enoch, and E. Stryland, Handbook of Optics: Optical Properties of Materials, Nonlinear Optics, Quantum Optics (McGraw-Hill, 2009).

Li, T.

S. Tang, L. Wu, F. Li, T. Li, and R. T. Chen, “Compression-molded three-dimensional tapered optical polymeric waveguides for optoelectronic packaging,” Proc. SPIE3005, 202–211 (1997).
[CrossRef]

Li, Y.-F.

Liang, E.-Z.

Lim, D. R.

Lim, T. K.

Lin, C.-F.

Lit, J. W. Y.

Losonczy, A.

S. Royer, B. V. Zemelman, M. Barbic, A. Losonczy, G. Buzski, and J. C. Magee, “Multi-array silicon probes with integrated optical fibers: light-assisted perturbation and recording of local neural circuits in the behaving animal.” Eur. J. Neurosci.31, 2279–2291 (2010).
[CrossRef] [PubMed]

Lu, Z.-N.

Z.-N. Lu, R. Bansal, and P. Cheo, “Radiation losses of tapered dielectric waveguides: a finite difference analysis with ridge waveguide applications,” J. Lightwave Technol.12, 1373–1377 (1994).
[CrossRef]

Magee, J. C.

S. Royer, B. V. Zemelman, M. Barbic, A. Losonczy, G. Buzski, and J. C. Magee, “Multi-array silicon probes with integrated optical fibers: light-assisted perturbation and recording of local neural circuits in the behaving animal.” Eur. J. Neurosci.31, 2279–2291 (2010).
[CrossRef] [PubMed]

Mahadevan-Jansen, A.

J. Wells, C. Kao, P. Konrad, T. Milner, J. Kim, A. Mahadevan-Jansen, and E. D. Jansen, “Biophysical mechanisms of transient optical stimulation of peripheral nerve,” Biophys. J.93, 2567–2580 (2007).
[CrossRef] [PubMed]

J. Wells, P. Konrad, C. Kao, E. D. Jansen, and A. Mahadevan-Jansen, “Pulsed laser versus electrical energy for peripheral nerve stimulation,” J. Neurosci. Methods163, 326–337 (2007).
[CrossRef] [PubMed]

J. Wells, C. Kao, K. Mariappan, J. Albea, E. D. Jansen, P. Konrad, and A. Mahadevan-Jansen, “Optical stimulation of neural tissue in vivo,” Opt. Lett.30, 504–506 (2005).
[CrossRef] [PubMed]

J. Wells, C. Kao, E. D. Jansen, P. Konrad, and A. Mahadevan-Jansen, “Application of infrared light for in vivo neural stimulation,” J. Biomed. Opt.10, 064003 (2005).
[CrossRef]

Mahajan, V.

M. Bass, C. DeCusatis, G. Li, V. Mahajan, J. Enoch, and E. Stryland, Handbook of Optics: Optical Properties of Materials, Nonlinear Optics, Quantum Optics (McGraw-Hill, 2009).

Mahavaden-Jansen, A.

J. M. Cayce, R. M. Friedman, E. D. Jansen, A. Mahavaden-Jansen, and A. W. Roe, “Pulsed infrared light alters neural activity in rat somatosensory cortex in vivo,” Neuroimage57, 155–166 (2011).
[CrossRef] [PubMed]

Mariappan, K.

Marton, J. P.

Mathews, V.

M. Frankel, B. Dowden, V. Mathews, R. Normann, G. Clark, and S. Meek, “Multiple-input single-output closed-loop isometric force control using asynchronous intrafascicular multi-electrode stimulation,” IEEE T. Neur. Sys. Reh.19, 325–332 (2011).
[CrossRef]

McCaughey, R. G.

R. G. McCaughey, C. Chlebicki, and B. J. Wong, “Novel wavelengths for laser nerve stimulation,” Lasers Surg. Med.42, 69–75 (2010).
[CrossRef]

McDonnall, D.

R. Normann, D. McDonnall, G. Clark, R. Stein, and A. Branner, “Physiological activation of the hind limb muscles of the anesthetized cat using the Utah Slanted Electrode Array,” in Proceedings of IEEE International Joint Conference on Neural Networks (IEEE, 2005), pp. 3103–3108.
[CrossRef]

Meek, S.

M. Frankel, B. Dowden, V. Mathews, R. Normann, G. Clark, and S. Meek, “Multiple-input single-output closed-loop isometric force control using asynchronous intrafascicular multi-electrode stimulation,” IEEE T. Neur. Sys. Reh.19, 325–332 (2011).
[CrossRef]

Micera, S.

X. Navarro, T. B. Krueger, N. Lago, S. Micera, T. Stieglitz, and P. Dario, “A critical review of interfaces with the peripheral nervous system for the control of neuroprostheses and hybrid bionic systems,” J. Peripher. Nerv. Syst.10, 229–258 (2005).
[CrossRef] [PubMed]

Milner, T.

J. Wells, C. Kao, P. Konrad, T. Milner, J. Kim, A. Mahadevan-Jansen, and E. D. Jansen, “Biophysical mechanisms of transient optical stimulation of peripheral nerve,” Biophys. J.93, 2567–2580 (2007).
[CrossRef] [PubMed]

Mogri, M.

V. Gradinaru, K. R. Thompson, F. Zhang, M. Mogri, K. Kay, M. B. Schneider, and K. Deisseroth, “Targeting and readout strategies for fast optical neural control in vitro and in vivo.” J. Neurosci.27, 14231–14238 (2007).
[CrossRef] [PubMed]

Murphy, P. F.

Q. Xia, P. F. Murphy, H. Gao, and S. Y. Chou, “Ultrafast and selective reduction of sidewall roughness in silicon waveguides using self-perfection by liquefaction,” Nanotechnology20, 345302 (2009).
[CrossRef] [PubMed]

Mynbaev, D.

D. Mynbaev and L. Scheiner, Fiber-Optic Communications Technology (Prentice Hall, 2001).

Navarro, X.

X. Navarro, T. B. Krueger, N. Lago, S. Micera, T. Stieglitz, and P. Dario, “A critical review of interfaces with the peripheral nervous system for the control of neuroprostheses and hybrid bionic systems,” J. Peripher. Nerv. Syst.10, 229–258 (2005).
[CrossRef] [PubMed]

Negi, S.

R. Bhandari, S. Negi, L. Rieth, and F. Solzbacher, “A wafer-scale etching technique for high aspect ratio implantable mems structures,” Sens. Actuators A162, 130–136 (2010).
[CrossRef]

R. Bhandari, S. Negi, L. Rieth, and F. Solzbacher, “Wafer-scale processed, low impedance, neural arrays with varying length microelectrodes,” in International Solid-State Sensors, Actuators and Microsystems Conference (Transducers) (IEEE, 2009), pp. 1210–1213.
[CrossRef]

Normann, R.

M. Frankel, B. Dowden, V. Mathews, R. Normann, G. Clark, and S. Meek, “Multiple-input single-output closed-loop isometric force control using asynchronous intrafascicular multi-electrode stimulation,” IEEE T. Neur. Sys. Reh.19, 325–332 (2011).
[CrossRef]

A. Branner, R. Stein, E. Fernandez, Y. Aoyagi, and R. Normann, “Long-term stimulation and recording with a penetrating microelectrode array in cat sciatic nerve,” IEEE T. Bio-Med. Eng.51, 146–157 (2004).
[CrossRef]

R. Normann, D. McDonnall, G. Clark, R. Stein, and A. Branner, “Physiological activation of the hind limb muscles of the anesthetized cat using the Utah Slanted Electrode Array,” in Proceedings of IEEE International Joint Conference on Neural Networks (IEEE, 2005), pp. 3103–3108.
[CrossRef]

Normann, R. A.

R. A. Normann, B. R. Dowden, M. A. Frankel, A. M. Wilder, S. D. Hiatt, N. M. Ledbetter, D. A. Warren, and G. A. Clark, “Coordinated, multi-joint, fatigue-resistant feline stance produced with intrafascicular hind limb nerve stimulation,” J. Neural Eng.9, 026019 (2012).
[CrossRef] [PubMed]

A. Branner, R. B. Stein, and R. A. Normann, “Selective stimulation of cat sciatic nerve using an array of varying-length microelectrodes,” J. Neurophysiol.85, 1585–1594 (2001).
[PubMed]

Nurmikko, A. V.

J. Wang, F. Wagner, D. A. Borton, J. Zhang, I. Ozden, R. D. Burwell, A. V. Nurmikko, R. van Wagenen, I. Diester, and K. Deisseroth, “Integrated device for combined optical neuromodulation and electrical recording for chronic in vivo applications,” J. Neural Eng.9, 016001 (2012).
[CrossRef]

J. Zhang, F. Laiwalla, J. A. Kim, H. Urabe, R. V. Wagenen, Y.-K. Song, B. W. Connors, F. Zhang, K. Deisseroth, and A. V. Nurmikko, “Integrated device for optical stimulation and spatiotemporal electrical recording of neural activity in light-sensitized brain tissue,” J. Neural Eng.6, 055007 (2009).
[CrossRef] [PubMed]

Ozden, I.

J. Wang, F. Wagner, D. A. Borton, J. Zhang, I. Ozden, R. D. Burwell, A. V. Nurmikko, R. van Wagenen, I. Diester, and K. Deisseroth, “Integrated device for combined optical neuromodulation and electrical recording for chronic in vivo applications,” J. Neural Eng.9, 016001 (2012).
[CrossRef]

Pagnoux, D.

F. Bahloul, R. Attia, and D. Pagnoux, “Reduction of the overall coupling loss using nonuniform tapered microstructured optical fiber,” in Proceedings of International Conference on Transparent Optical Networks (IEEE, 2010), pp. 1–4.
[CrossRef]

Parker, P. R. L.

A. V. Kravitz, B. S. Freeze, P. R. L. Parker, K. Kay, M. T. Thwin, K. Deisseroth, and A. C. Kreitzer, “Regulation of parkinsonian motor behaviours by optogenetic control of basal ganglia circuitry,” Nature466, 622–626 (2010).
[CrossRef] [PubMed]

Rais-Bahrami, S.

N. Fried, S. Rais-Bahrami, G. Lagoda, A.-Y. Chuang, L.-M. Su, and A. Burnett, “Identification and imaging of the nerves responsible for erectile function in rat prostate, in vivo, using optical nerve stimulation and optical coherence tomography,” IEEE J. Sel. Topics in Quantum Electron.13, 1641–1645 (2007).
[CrossRef]

Rakwal, D.

P. Tathireddy, D. Rakwal, E. Bamberg, and F. Solzbacher, “Fabrication of 3-dimensional silicon microelectrode arrays using micro electro discharge machining for neural applications,” in Proceedings of the International Conference on Solid-State Sensors, Actuators and Microsystems (Transducers) (IEEE, 2009), pp. 1206–1209.
[CrossRef]

Ralph, H.

A. Izzo, J. Walsh, E. Jansen, M. Bendett, J. Webb, H. Ralph, and C.-P. Richter, “Optical parameter variability in laser nerve stimulation: A study of pulse duration, repetition rate, and wavelength,” IEEE T. Bio-Med. Eng.54, 1108–1114 (2007).
[CrossRef]

Richter, C.-P.

M. G. Shapiro, K. Homma, S. Villarreal, C.-P. Richter, and F. Bezanilla, “Infrared light excites cells by changing their electrical capacitance,” Nat. Commun.3, 736 (2012).
[CrossRef] [PubMed]

A. Izzo, J. Walsh, E. Jansen, M. Bendett, J. Webb, H. Ralph, and C.-P. Richter, “Optical parameter variability in laser nerve stimulation: A study of pulse duration, repetition rate, and wavelength,” IEEE T. Bio-Med. Eng.54, 1108–1114 (2007).
[CrossRef]

Rieth, L.

T. V. F. Abaya, M. Diwekar, S. Blair, P. Tathireddy, L. Rieth, G. A. Clark, and F. Solzbacher, “Optical characterization of the Utah Slant OptrodeAarray for intrafascicular infrared neural stimulation,” Proc. SPIE8207, 82075M (2012).
[CrossRef]

R. Bhandari, S. Negi, L. Rieth, and F. Solzbacher, “A wafer-scale etching technique for high aspect ratio implantable mems structures,” Sens. Actuators A162, 130–136 (2010).
[CrossRef]

R. Bhandari, S. Negi, L. Rieth, and F. Solzbacher, “Wafer-scale processed, low impedance, neural arrays with varying length microelectrodes,” in International Solid-State Sensors, Actuators and Microsystems Conference (Transducers) (IEEE, 2009), pp. 1210–1213.
[CrossRef]

Rieth, L. W.

G. A. Clark, S. L. Schister, N. M. Ledbetter, D. J. Warren, F. Solzbacher, J. D. Wells, M. D. Keller, S. M. Blair, L. W. Rieth, and P. R. Tathireddy, “Selective, high-optrode-count, artifact-free stimulation with infrared light via intrafascicular Utah Slanted Optrode Arrays,” Proc. SPIE8207, 82075I (2012).
[CrossRef]

Roe, A. W.

J. M. Cayce, R. M. Friedman, E. D. Jansen, A. Mahavaden-Jansen, and A. W. Roe, “Pulsed infrared light alters neural activity in rat somatosensory cortex in vivo,” Neuroimage57, 155–166 (2011).
[CrossRef] [PubMed]

Royer, S.

S. Royer, B. V. Zemelman, M. Barbic, A. Losonczy, G. Buzski, and J. C. Magee, “Multi-array silicon probes with integrated optical fibers: light-assisted perturbation and recording of local neural circuits in the behaving animal.” Eur. J. Neurosci.31, 2279–2291 (2010).
[CrossRef] [PubMed]

Scheiner, L.

D. Mynbaev and L. Scheiner, Fiber-Optic Communications Technology (Prentice Hall, 2001).

Schister, S. L.

G. A. Clark, S. L. Schister, N. M. Ledbetter, D. J. Warren, F. Solzbacher, J. D. Wells, M. D. Keller, S. M. Blair, L. W. Rieth, and P. R. Tathireddy, “Selective, high-optrode-count, artifact-free stimulation with infrared light via intrafascicular Utah Slanted Optrode Arrays,” Proc. SPIE8207, 82075I (2012).
[CrossRef]

Schneider, M. B.

V. Gradinaru, K. R. Thompson, F. Zhang, M. Mogri, K. Kay, M. B. Schneider, and K. Deisseroth, “Targeting and readout strategies for fast optical neural control in vitro and in vivo.” J. Neurosci.27, 14231–14238 (2007).
[CrossRef] [PubMed]

Shapiro, M. G.

M. G. Shapiro, K. Homma, S. Villarreal, C.-P. Richter, and F. Bezanilla, “Infrared light excites cells by changing their electrical capacitance,” Nat. Commun.3, 736 (2012).
[CrossRef] [PubMed]

Shin, J.

Solzbacher, F.

T. V. F. Abaya, M. Diwekar, S. Blair, P. Tathireddy, L. Rieth, G. A. Clark, and F. Solzbacher, “Optical characterization of the Utah Slant OptrodeAarray for intrafascicular infrared neural stimulation,” Proc. SPIE8207, 82075M (2012).
[CrossRef]

G. A. Clark, S. L. Schister, N. M. Ledbetter, D. J. Warren, F. Solzbacher, J. D. Wells, M. D. Keller, S. M. Blair, L. W. Rieth, and P. R. Tathireddy, “Selective, high-optrode-count, artifact-free stimulation with infrared light via intrafascicular Utah Slanted Optrode Arrays,” Proc. SPIE8207, 82075I (2012).
[CrossRef]

R. Bhandari, S. Negi, L. Rieth, and F. Solzbacher, “A wafer-scale etching technique for high aspect ratio implantable mems structures,” Sens. Actuators A162, 130–136 (2010).
[CrossRef]

P. Tathireddy, D. Rakwal, E. Bamberg, and F. Solzbacher, “Fabrication of 3-dimensional silicon microelectrode arrays using micro electro discharge machining for neural applications,” in Proceedings of the International Conference on Solid-State Sensors, Actuators and Microsystems (Transducers) (IEEE, 2009), pp. 1206–1209.
[CrossRef]

R. Bhandari, S. Negi, L. Rieth, and F. Solzbacher, “Wafer-scale processed, low impedance, neural arrays with varying length microelectrodes,” in International Solid-State Sensors, Actuators and Microsystems Conference (Transducers) (IEEE, 2009), pp. 1210–1213.
[CrossRef]

Song, Y.-K.

J. Zhang, F. Laiwalla, J. A. Kim, H. Urabe, R. V. Wagenen, Y.-K. Song, B. W. Connors, F. Zhang, K. Deisseroth, and A. V. Nurmikko, “Integrated device for optical stimulation and spatiotemporal electrical recording of neural activity in light-sensitized brain tissue,” J. Neural Eng.6, 055007 (2009).
[CrossRef] [PubMed]

Sparacin, D.

Spector, S.

Stein, R.

A. Branner, R. Stein, E. Fernandez, Y. Aoyagi, and R. Normann, “Long-term stimulation and recording with a penetrating microelectrode array in cat sciatic nerve,” IEEE T. Bio-Med. Eng.51, 146–157 (2004).
[CrossRef]

R. Normann, D. McDonnall, G. Clark, R. Stein, and A. Branner, “Physiological activation of the hind limb muscles of the anesthetized cat using the Utah Slanted Electrode Array,” in Proceedings of IEEE International Joint Conference on Neural Networks (IEEE, 2005), pp. 3103–3108.
[CrossRef]

Stein, R. B.

A. Branner, R. B. Stein, and R. A. Normann, “Selective stimulation of cat sciatic nerve using an array of varying-length microelectrodes,” J. Neurophysiol.85, 1585–1594 (2001).
[PubMed]

Stieglitz, T.

X. Navarro, T. B. Krueger, N. Lago, S. Micera, T. Stieglitz, and P. Dario, “A critical review of interfaces with the peripheral nervous system for the control of neuroprostheses and hybrid bionic systems,” J. Peripher. Nerv. Syst.10, 229–258 (2005).
[CrossRef] [PubMed]

Stryland, E.

M. Bass, C. DeCusatis, G. Li, V. Mahajan, J. Enoch, and E. Stryland, Handbook of Optics: Optical Properties of Materials, Nonlinear Optics, Quantum Optics (McGraw-Hill, 2009).

Su, L.-M.

N. Fried, S. Rais-Bahrami, G. Lagoda, A.-Y. Chuang, L.-M. Su, and A. Burnett, “Identification and imaging of the nerves responsible for erectile function in rat prostate, in vivo, using optical nerve stimulation and optical coherence tomography,” IEEE J. Sel. Topics in Quantum Electron.13, 1641–1645 (2007).
[CrossRef]

Tang, S.

S. Tang, L. Wu, F. Li, T. Li, and R. T. Chen, “Compression-molded three-dimensional tapered optical polymeric waveguides for optoelectronic packaging,” Proc. SPIE3005, 202–211 (1997).
[CrossRef]

Tathireddy, P.

T. V. F. Abaya, M. Diwekar, S. Blair, P. Tathireddy, L. Rieth, G. A. Clark, and F. Solzbacher, “Optical characterization of the Utah Slant OptrodeAarray for intrafascicular infrared neural stimulation,” Proc. SPIE8207, 82075M (2012).
[CrossRef]

P. Tathireddy, D. Rakwal, E. Bamberg, and F. Solzbacher, “Fabrication of 3-dimensional silicon microelectrode arrays using micro electro discharge machining for neural applications,” in Proceedings of the International Conference on Solid-State Sensors, Actuators and Microsystems (Transducers) (IEEE, 2009), pp. 1206–1209.
[CrossRef]

Tathireddy, P. R.

G. A. Clark, S. L. Schister, N. M. Ledbetter, D. J. Warren, F. Solzbacher, J. D. Wells, M. D. Keller, S. M. Blair, L. W. Rieth, and P. R. Tathireddy, “Selective, high-optrode-count, artifact-free stimulation with infrared light via intrafascicular Utah Slanted Optrode Arrays,” Proc. SPIE8207, 82075I (2012).
[CrossRef]

Thompson, K. R.

V. Gradinaru, K. R. Thompson, F. Zhang, M. Mogri, K. Kay, M. B. Schneider, and K. Deisseroth, “Targeting and readout strategies for fast optical neural control in vitro and in vivo.” J. Neurosci.27, 14231–14238 (2007).
[CrossRef] [PubMed]

Thwin, M. T.

A. V. Kravitz, B. S. Freeze, P. R. L. Parker, K. Kay, M. T. Thwin, K. Deisseroth, and A. C. Kreitzer, “Regulation of parkinsonian motor behaviours by optogenetic control of basal ganglia circuitry,” Nature466, 622–626 (2010).
[CrossRef] [PubMed]

Tuchin, V.

V. Tuchin, Handbook of Optical Biomedical Diagnostics (SPIE, 2002).

Urabe, H.

J. Zhang, F. Laiwalla, J. A. Kim, H. Urabe, R. V. Wagenen, Y.-K. Song, B. W. Connors, F. Zhang, K. Deisseroth, and A. V. Nurmikko, “Integrated device for optical stimulation and spatiotemporal electrical recording of neural activity in light-sensitized brain tissue,” J. Neural Eng.6, 055007 (2009).
[CrossRef] [PubMed]

van Wagenen, R.

J. Wang, F. Wagner, D. A. Borton, J. Zhang, I. Ozden, R. D. Burwell, A. V. Nurmikko, R. van Wagenen, I. Diester, and K. Deisseroth, “Integrated device for combined optical neuromodulation and electrical recording for chronic in vivo applications,” J. Neural Eng.9, 016001 (2012).
[CrossRef]

Villarreal, S.

M. G. Shapiro, K. Homma, S. Villarreal, C.-P. Richter, and F. Bezanilla, “Infrared light excites cells by changing their electrical capacitance,” Nat. Commun.3, 736 (2012).
[CrossRef] [PubMed]

Wagenen, R. V.

J. Zhang, F. Laiwalla, J. A. Kim, H. Urabe, R. V. Wagenen, Y.-K. Song, B. W. Connors, F. Zhang, K. Deisseroth, and A. V. Nurmikko, “Integrated device for optical stimulation and spatiotemporal electrical recording of neural activity in light-sensitized brain tissue,” J. Neural Eng.6, 055007 (2009).
[CrossRef] [PubMed]

Wagner, F.

J. Wang, F. Wagner, D. A. Borton, J. Zhang, I. Ozden, R. D. Burwell, A. V. Nurmikko, R. van Wagenen, I. Diester, and K. Deisseroth, “Integrated device for combined optical neuromodulation and electrical recording for chronic in vivo applications,” J. Neural Eng.9, 016001 (2012).
[CrossRef]

Walsh, J.

A. Izzo, J. Walsh, E. Jansen, M. Bendett, J. Webb, H. Ralph, and C.-P. Richter, “Optical parameter variability in laser nerve stimulation: A study of pulse duration, repetition rate, and wavelength,” IEEE T. Bio-Med. Eng.54, 1108–1114 (2007).
[CrossRef]

Wang, J.

J. Wang, F. Wagner, D. A. Borton, J. Zhang, I. Ozden, R. D. Burwell, A. V. Nurmikko, R. van Wagenen, I. Diester, and K. Deisseroth, “Integrated device for combined optical neuromodulation and electrical recording for chronic in vivo applications,” J. Neural Eng.9, 016001 (2012).
[CrossRef]

Warren, D. A.

R. A. Normann, B. R. Dowden, M. A. Frankel, A. M. Wilder, S. D. Hiatt, N. M. Ledbetter, D. A. Warren, and G. A. Clark, “Coordinated, multi-joint, fatigue-resistant feline stance produced with intrafascicular hind limb nerve stimulation,” J. Neural Eng.9, 026019 (2012).
[CrossRef] [PubMed]

Warren, D. J.

G. A. Clark, S. L. Schister, N. M. Ledbetter, D. J. Warren, F. Solzbacher, J. D. Wells, M. D. Keller, S. M. Blair, L. W. Rieth, and P. R. Tathireddy, “Selective, high-optrode-count, artifact-free stimulation with infrared light via intrafascicular Utah Slanted Optrode Arrays,” Proc. SPIE8207, 82075I (2012).
[CrossRef]

Webb, J.

A. Izzo, J. Walsh, E. Jansen, M. Bendett, J. Webb, H. Ralph, and C.-P. Richter, “Optical parameter variability in laser nerve stimulation: A study of pulse duration, repetition rate, and wavelength,” IEEE T. Bio-Med. Eng.54, 1108–1114 (2007).
[CrossRef]

Wells, J.

J. Wells, P. Konrad, C. Kao, E. D. Jansen, and A. Mahadevan-Jansen, “Pulsed laser versus electrical energy for peripheral nerve stimulation,” J. Neurosci. Methods163, 326–337 (2007).
[CrossRef] [PubMed]

J. Wells, C. Kao, P. Konrad, T. Milner, J. Kim, A. Mahadevan-Jansen, and E. D. Jansen, “Biophysical mechanisms of transient optical stimulation of peripheral nerve,” Biophys. J.93, 2567–2580 (2007).
[CrossRef] [PubMed]

J. Wells, C. Kao, K. Mariappan, J. Albea, E. D. Jansen, P. Konrad, and A. Mahadevan-Jansen, “Optical stimulation of neural tissue in vivo,” Opt. Lett.30, 504–506 (2005).
[CrossRef] [PubMed]

J. Wells, C. Kao, E. D. Jansen, P. Konrad, and A. Mahadevan-Jansen, “Application of infrared light for in vivo neural stimulation,” J. Biomed. Opt.10, 064003 (2005).
[CrossRef]

Wells, J. D.

G. A. Clark, S. L. Schister, N. M. Ledbetter, D. J. Warren, F. Solzbacher, J. D. Wells, M. D. Keller, S. M. Blair, L. W. Rieth, and P. R. Tathireddy, “Selective, high-optrode-count, artifact-free stimulation with infrared light via intrafascicular Utah Slanted Optrode Arrays,” Proc. SPIE8207, 82075I (2012).
[CrossRef]

Wilder, A. M.

R. A. Normann, B. R. Dowden, M. A. Frankel, A. M. Wilder, S. D. Hiatt, N. M. Ledbetter, D. A. Warren, and G. A. Clark, “Coordinated, multi-joint, fatigue-resistant feline stance produced with intrafascicular hind limb nerve stimulation,” J. Neural Eng.9, 026019 (2012).
[CrossRef] [PubMed]

Wong, B. J.

R. G. McCaughey, C. Chlebicki, and B. J. Wong, “Novel wavelengths for laser nerve stimulation,” Lasers Surg. Med.42, 69–75 (2010).
[CrossRef]

Wu, L.

S. Tang, L. Wu, F. Li, T. Li, and R. T. Chen, “Compression-molded three-dimensional tapered optical polymeric waveguides for optoelectronic packaging,” Proc. SPIE3005, 202–211 (1997).
[CrossRef]

Xia, Q.

Q. Xia, P. F. Murphy, H. Gao, and S. Y. Chou, “Ultrafast and selective reduction of sidewall roughness in silicon waveguides using self-perfection by liquefaction,” Nanotechnology20, 345302 (2009).
[CrossRef] [PubMed]

Zemelman, B. V.

S. Royer, B. V. Zemelman, M. Barbic, A. Losonczy, G. Buzski, and J. C. Magee, “Multi-array silicon probes with integrated optical fibers: light-assisted perturbation and recording of local neural circuits in the behaving animal.” Eur. J. Neurosci.31, 2279–2291 (2010).
[CrossRef] [PubMed]

Zhang, F.

J. Zhang, F. Laiwalla, J. A. Kim, H. Urabe, R. V. Wagenen, Y.-K. Song, B. W. Connors, F. Zhang, K. Deisseroth, and A. V. Nurmikko, “Integrated device for optical stimulation and spatiotemporal electrical recording of neural activity in light-sensitized brain tissue,” J. Neural Eng.6, 055007 (2009).
[CrossRef] [PubMed]

V. Gradinaru, K. R. Thompson, F. Zhang, M. Mogri, K. Kay, M. B. Schneider, and K. Deisseroth, “Targeting and readout strategies for fast optical neural control in vitro and in vivo.” J. Neurosci.27, 14231–14238 (2007).
[CrossRef] [PubMed]

Zhang, J.

J. Wang, F. Wagner, D. A. Borton, J. Zhang, I. Ozden, R. D. Burwell, A. V. Nurmikko, R. van Wagenen, I. Diester, and K. Deisseroth, “Integrated device for combined optical neuromodulation and electrical recording for chronic in vivo applications,” J. Neural Eng.9, 016001 (2012).
[CrossRef]

J. Zhang, F. Laiwalla, J. A. Kim, H. Urabe, R. V. Wagenen, Y.-K. Song, B. W. Connors, F. Zhang, K. Deisseroth, and A. V. Nurmikko, “Integrated device for optical stimulation and spatiotemporal electrical recording of neural activity in light-sensitized brain tissue,” J. Neural Eng.6, 055007 (2009).
[CrossRef] [PubMed]

Zorzos, A. N.

Appl. Opt. (1)

Biophys. J. (1)

J. Wells, C. Kao, P. Konrad, T. Milner, J. Kim, A. Mahadevan-Jansen, and E. D. Jansen, “Biophysical mechanisms of transient optical stimulation of peripheral nerve,” Biophys. J.93, 2567–2580 (2007).
[CrossRef] [PubMed]

Curr. Opin. Neurobiol. (1)

A. V. Kravitz and A. C. Kreitzer, “Optogenetic manipulation of neural circuitry in vivo.” Curr. Opin. Neurobiol.21, 433–439 (2011).
[CrossRef] [PubMed]

Eur. J. Neurosci. (1)

S. Royer, B. V. Zemelman, M. Barbic, A. Losonczy, G. Buzski, and J. C. Magee, “Multi-array silicon probes with integrated optical fibers: light-assisted perturbation and recording of local neural circuits in the behaving animal.” Eur. J. Neurosci.31, 2279–2291 (2010).
[CrossRef] [PubMed]

IEEE J. Quantum. Electron. (1)

R. Deri and E. Kapon, “Low-loss III–V semiconductor optical waveguides,” IEEE J. Quantum. Electron.27, 626–640 (1991).
[CrossRef]

IEEE J. Sel. Topics in Quantum Electron. (1)

N. Fried, S. Rais-Bahrami, G. Lagoda, A.-Y. Chuang, L.-M. Su, and A. Burnett, “Identification and imaging of the nerves responsible for erectile function in rat prostate, in vivo, using optical nerve stimulation and optical coherence tomography,” IEEE J. Sel. Topics in Quantum Electron.13, 1641–1645 (2007).
[CrossRef]

IEEE T. Bio-Med. Eng. (2)

A. Izzo, J. Walsh, E. Jansen, M. Bendett, J. Webb, H. Ralph, and C.-P. Richter, “Optical parameter variability in laser nerve stimulation: A study of pulse duration, repetition rate, and wavelength,” IEEE T. Bio-Med. Eng.54, 1108–1114 (2007).
[CrossRef]

A. Branner, R. Stein, E. Fernandez, Y. Aoyagi, and R. Normann, “Long-term stimulation and recording with a penetrating microelectrode array in cat sciatic nerve,” IEEE T. Bio-Med. Eng.51, 146–157 (2004).
[CrossRef]

IEEE T. Neur. Sys. Reh. (1)

M. Frankel, B. Dowden, V. Mathews, R. Normann, G. Clark, and S. Meek, “Multiple-input single-output closed-loop isometric force control using asynchronous intrafascicular multi-electrode stimulation,” IEEE T. Neur. Sys. Reh.19, 325–332 (2011).
[CrossRef]

J. Biomed. Opt. (1)

J. Wells, C. Kao, E. D. Jansen, P. Konrad, and A. Mahadevan-Jansen, “Application of infrared light for in vivo neural stimulation,” J. Biomed. Opt.10, 064003 (2005).
[CrossRef]

J. Lightwave Technol. (3)

J. Neural Eng. (3)

J. Zhang, F. Laiwalla, J. A. Kim, H. Urabe, R. V. Wagenen, Y.-K. Song, B. W. Connors, F. Zhang, K. Deisseroth, and A. V. Nurmikko, “Integrated device for optical stimulation and spatiotemporal electrical recording of neural activity in light-sensitized brain tissue,” J. Neural Eng.6, 055007 (2009).
[CrossRef] [PubMed]

J. Wang, F. Wagner, D. A. Borton, J. Zhang, I. Ozden, R. D. Burwell, A. V. Nurmikko, R. van Wagenen, I. Diester, and K. Deisseroth, “Integrated device for combined optical neuromodulation and electrical recording for chronic in vivo applications,” J. Neural Eng.9, 016001 (2012).
[CrossRef]

R. A. Normann, B. R. Dowden, M. A. Frankel, A. M. Wilder, S. D. Hiatt, N. M. Ledbetter, D. A. Warren, and G. A. Clark, “Coordinated, multi-joint, fatigue-resistant feline stance produced with intrafascicular hind limb nerve stimulation,” J. Neural Eng.9, 026019 (2012).
[CrossRef] [PubMed]

J. Neurophysiol. (1)

A. Branner, R. B. Stein, and R. A. Normann, “Selective stimulation of cat sciatic nerve using an array of varying-length microelectrodes,” J. Neurophysiol.85, 1585–1594 (2001).
[PubMed]

J. Neurosci. (1)

V. Gradinaru, K. R. Thompson, F. Zhang, M. Mogri, K. Kay, M. B. Schneider, and K. Deisseroth, “Targeting and readout strategies for fast optical neural control in vitro and in vivo.” J. Neurosci.27, 14231–14238 (2007).
[CrossRef] [PubMed]

J. Neurosci. Methods (1)

J. Wells, P. Konrad, C. Kao, E. D. Jansen, and A. Mahadevan-Jansen, “Pulsed laser versus electrical energy for peripheral nerve stimulation,” J. Neurosci. Methods163, 326–337 (2007).
[CrossRef] [PubMed]

J. Opt. Soc. Am. A (1)

J. Peripher. Nerv. Syst. (1)

X. Navarro, T. B. Krueger, N. Lago, S. Micera, T. Stieglitz, and P. Dario, “A critical review of interfaces with the peripheral nervous system for the control of neuroprostheses and hybrid bionic systems,” J. Peripher. Nerv. Syst.10, 229–258 (2005).
[CrossRef] [PubMed]

Lasers Surg. Med. (1)

R. G. McCaughey, C. Chlebicki, and B. J. Wong, “Novel wavelengths for laser nerve stimulation,” Lasers Surg. Med.42, 69–75 (2010).
[CrossRef]

Nanotechnology (1)

Q. Xia, P. F. Murphy, H. Gao, and S. Y. Chou, “Ultrafast and selective reduction of sidewall roughness in silicon waveguides using self-perfection by liquefaction,” Nanotechnology20, 345302 (2009).
[CrossRef] [PubMed]

Nat. Commun. (1)

M. G. Shapiro, K. Homma, S. Villarreal, C.-P. Richter, and F. Bezanilla, “Infrared light excites cells by changing their electrical capacitance,” Nat. Commun.3, 736 (2012).
[CrossRef] [PubMed]

Nature (1)

A. V. Kravitz, B. S. Freeze, P. R. L. Parker, K. Kay, M. T. Thwin, K. Deisseroth, and A. C. Kreitzer, “Regulation of parkinsonian motor behaviours by optogenetic control of basal ganglia circuitry,” Nature466, 622–626 (2010).
[CrossRef] [PubMed]

Neuroimage (1)

J. M. Cayce, R. M. Friedman, E. D. Jansen, A. Mahavaden-Jansen, and A. W. Roe, “Pulsed infrared light alters neural activity in rat somatosensory cortex in vivo,” Neuroimage57, 155–166 (2011).
[CrossRef] [PubMed]

Opt. Lett. (3)

Proc. SPIE (3)

T. V. F. Abaya, M. Diwekar, S. Blair, P. Tathireddy, L. Rieth, G. A. Clark, and F. Solzbacher, “Optical characterization of the Utah Slant OptrodeAarray for intrafascicular infrared neural stimulation,” Proc. SPIE8207, 82075M (2012).
[CrossRef]

G. A. Clark, S. L. Schister, N. M. Ledbetter, D. J. Warren, F. Solzbacher, J. D. Wells, M. D. Keller, S. M. Blair, L. W. Rieth, and P. R. Tathireddy, “Selective, high-optrode-count, artifact-free stimulation with infrared light via intrafascicular Utah Slanted Optrode Arrays,” Proc. SPIE8207, 82075I (2012).
[CrossRef]

S. Tang, L. Wu, F. Li, T. Li, and R. T. Chen, “Compression-molded three-dimensional tapered optical polymeric waveguides for optoelectronic packaging,” Proc. SPIE3005, 202–211 (1997).
[CrossRef]

Sens. Actuators A (1)

R. Bhandari, S. Negi, L. Rieth, and F. Solzbacher, “A wafer-scale etching technique for high aspect ratio implantable mems structures,” Sens. Actuators A162, 130–136 (2010).
[CrossRef]

Other (8)

M. Bass, C. DeCusatis, G. Li, V. Mahajan, J. Enoch, and E. Stryland, Handbook of Optics: Optical Properties of Materials, Nonlinear Optics, Quantum Optics (McGraw-Hill, 2009).

V. Tuchin, Handbook of Optical Biomedical Diagnostics (SPIE, 2002).

D. Mynbaev and L. Scheiner, Fiber-Optic Communications Technology (Prentice Hall, 2001).

F. Bahloul, R. Attia, and D. Pagnoux, “Reduction of the overall coupling loss using nonuniform tapered microstructured optical fiber,” in Proceedings of International Conference on Transparent Optical Networks (IEEE, 2010), pp. 1–4.
[CrossRef]

R. Bhandari, S. Negi, L. Rieth, and F. Solzbacher, “Wafer-scale processed, low impedance, neural arrays with varying length microelectrodes,” in International Solid-State Sensors, Actuators and Microsystems Conference (Transducers) (IEEE, 2009), pp. 1210–1213.
[CrossRef]

P. Tathireddy, D. Rakwal, E. Bamberg, and F. Solzbacher, “Fabrication of 3-dimensional silicon microelectrode arrays using micro electro discharge machining for neural applications,” in Proceedings of the International Conference on Solid-State Sensors, Actuators and Microsystems (Transducers) (IEEE, 2009), pp. 1206–1209.
[CrossRef]

R. Normann, D. McDonnall, G. Clark, R. Stein, and A. Branner, “Physiological activation of the hind limb muscles of the anesthetized cat using the Utah Slanted Electrode Array,” in Proceedings of IEEE International Joint Conference on Neural Networks (IEEE, 2005), pp. 3103–3108.
[CrossRef]

J. A. McNulty, “Histology part 6: Neural tissue, http://zoomify.lumc.edu/histonew/neuro/neuro_main.htm ”.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (16)

Fig. 1
Fig. 1

Utah Slant Electrode/Optrode Array for peripheral nerve stimulation and/or recording. (a) Transverse cross-section of cat sciatic nerve with single row of slant array shown. The microneedles penetrate through epineurium, perineurium and endoneurium to access axons within the fascicle. (b) Longitudinal cross-section showing slant array reaching axons at various depths within the nerve. Adapted from [8].

Fig. 2
Fig. 2

Water absorption curve for IR wavelengths, which is representative of tissue absorption in the IR. 1.87 μm is recommended for peripheral nerve INS, but 2.1 μm has also been extensively used.

Fig. 3
Fig. 3

SEM images of a Utah Slant Optrode Array. The array is bulk-micromachined from intrinsic (100) silicon. (a) Optrode lengths vary from 0.5 to 1.5 mm. (b) Taper profile of the shortest optrode. (c) Definition of optrode sections along the path of light propagation: 500-μm backplane, base extending 120 μm into linearly tapered shank, and ∼50-μm tip.

Fig. 4
Fig. 4

Optrode backside showing windows in the aluminum layer for fiber alignment

Fig. 5
Fig. 5

Array dicing steps. Darker shanks constitute sacrificial regions.

Fig. 6
Fig. 6

Etching steps. (a) Initial shape of shanks. (b) Dynamic etching is performed for isotropic thinning. (c) Static etching preferentially sharpens the tips. (d) A missile-shaped optrode is formed. The arrows indicate locations of pronounced etching.

Fig. 7
Fig. 7

SEM images showing optrode shape at different stages of the etching process. Dynamic etching narrows the shank (a), while static etching sharpens it (b–d). As etch time progresses, the tips progress from being blunt (b) to missile-shaped (c) to over-etched (d).

Fig. 8
Fig. 8

Loss mechanisms within the optrode include Fresnel reflectance (Ri/o), coupling, radiation and backreflection losses.

Fig. 9
Fig. 9

Experimental setup. (a) Measuring output power from optrode tips. (b) Measuring taper loss from the shank. (c) Measuring base radiation. (d) Measuring backplane radiation.

Fig. 10
Fig. 10

Normalized output power from optrode tips with varying refractive index at the input interface using a 50-μm fiber with 0.22 NA.

Fig. 11
Fig. 11

Measurements to isolate coupling and taper losses with Ti factored out. Normalized tip output and radiation measurements from integrating sphere are shown. Fibers of 0.22 NA with 50-μm (a), 105-μm (b), 200-μm (c) and 400-μm (d) core diameters are coupled to the input.

Fig. 12
Fig. 12

Radiation loss through the tapered shank after factoring out Ti and fitting the CMT estimate. Fibers of 0.22 NA with varying core diameters are coupled to the input.

Fig. 13
Fig. 13

Beam profile of a Row 6 optrode with a 105-μm input fiber of 0.22 NA. Power is relative to peak; widths vary according to row number and input fiber size.

Fig. 14
Fig. 14

Ray trajectory in a tapered waveguide. Because there is a faster increase in the propagation angle of a ray travelling through shorter optrodes, the rays exit away farther from the tip, which leads to a wider beam divergence.

Fig. 15
Fig. 15

Changes in beam width with propagation distance from an optrode in Row 6 of the array with a 105-μm input fiber of 0.22 NA.

Fig. 16
Fig. 16

Transmission through the optrode tips with 200 and 400-μm fibers using the Capella laser (1875 nm). The input coupling interface has n=1.66.

Tables (7)

Tables Icon

Table 1 Refractive indices at 1.55μm

Tables Icon

Table 2 Reflectance at interfaces

Tables Icon

Table 3 Beam width (2W0) in μm at 13.5 % of peak power and M2 fit.

Tables Icon

Table 4 Beam far-field full divergence angle (ϕ) in ° and Rayleigh distance (zR) in μm.

Tables Icon

Table 5 Transmitted power from the Capella laser to multi-mode fibers of different diameters

Tables Icon

Table 6 Total efficiency (%) of coupling light from the Capella to the longest optrodes with varying fiber core sizes. Output power from the optrode tips is listed for a Capella emitting 5 W. For the 105-μm fiber, the overall efficiency and output power are estimated at λ = 1550 nm.

Tables Icon

Table 7 Expected normalized power loss of the longest optrode when using a 50-μm input fiber with loss-minimization techniques. Optimizing tip shape is not yet considered.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

P in × ( 1 R i ) = P in = P back + P base + P shank + P out + P ref .
R = ( n 1 n 2 n 1 + n 2 ) 2 ,
R eff = 1 ( 1 R 1 ) ( 1 R 2 ) = R 1 + R 2 R 1 R 2 .
η A = A O A F
η NA = ( NA O NA F ) 2 ,
NA = d min d max cos θ n 1 2 n 2 2 ,
P rad = ( 3 n 8 π d max 2 d min 2 λ z ) 2 ,
P s = σ 2 k 0 2 h β ( n 1 2 n 2 2 ) E S 2 ,

Metrics