Abstract

A special challenge arises when pursuing multi-wavelength imaging of retinal tissue in vivo, because the eye’s optics must be used as the main focusing elements, and they introduce significant chromatic dispersion. Here we present an image-based method to measure and correct for the eye’s transverse chromatic aberrations rapidly, non-invasively, and with high precision. We validate the technique against hyperacute psychophysical performance and the standard chromatic human eye model. In vivo correction of chromatic dispersion will enable confocal multi-wavelength images of the living retina to be aligned, and allow targeted chromatic stimulation of the photoreceptor mosaic to be performed accurately with sub-cellular resolution.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Liang and D. R. Williams, “Aberrations and retinal image quality of the normal human eye,” J. Opt. Soc. Am. A14(11), 2873–2883 (1997).
    [CrossRef] [PubMed]
  2. J. Liang, D. R. Williams, and D. T. Miller, “Supernormal vision and high-resolution retinal imaging through adaptive optics,” J. Opt. Soc. Am. A14(11), 2884–2892 (1997).
    [CrossRef] [PubMed]
  3. A. Dubra, Y. Sulai, J. L. Norris, R. F. Cooper, A. M. Dubis, D. R. Williams, and J. Carroll, “Noninvasive imaging of the human rod photoreceptor mosaic using a confocal adaptive optics scanning ophthalmoscope,” Biomed. Opt. Express2(7), 1864–1876 (2011).
    [CrossRef] [PubMed]
  4. D. W. Arathorn, Q. Yang, C. R. Vogel, Y. Zhang, P. Tiruveedhula, and A. Roorda, “Retinally stabilized cone-targeted stimulus delivery,” Opt. Express15(21), 13731–13744 (2007).
    [CrossRef] [PubMed]
  5. H. Hofer, J. Carroll, J. Neitz, M. Neitz, and D. R. Williams, “Organization of the human trichromatic cone mosaic,” J. Neurosci.25(42), 9669–9679 (2005).
    [CrossRef] [PubMed]
  6. G. Palczewska, T. Maeda, Y. Imanishi, W. Sun, Y. Chen, D. R. Williams, D. W. Piston, A. Maeda, and K. Palczewski, “Noninvasive multiphoton fluorescence microscopy resolves retinol and retinal condensation products in mouse eyes,” Nat. Med.16(12), 1444–1449 (2010).
    [CrossRef] [PubMed]
  7. M. J. Koss, I. Beger, and F. H. Koch, “Subthreshold diode laser micropulse photocoagulation versus intravitreal injections of bevacizumab in the treatment of central serous chorioretinopathy,” Eye (Lond.)26(2), 307–314 (2012).
    [CrossRef] [PubMed]
  8. D. A. Atchison and G. Smith, “Chromatic dispersions of the ocular media of human eyes,” J. Opt. Soc. Am. A22(1), 29–37 (2005).
    [CrossRef] [PubMed]
  9. L. N. Thibos, A. Bradley, D. L. Still, X. Zhang, and P. A. Howarth, “Theory and measurement of ocular chromatic aberration,” Vision Res.30(1), 33–49 (1990).
    [CrossRef] [PubMed]
  10. P. Simonet and M. C. Campbell, “The optical transverse chromatic aberration on the fovea of the human eye,” Vision Res.30(2), 187–206 (1990).
    [CrossRef] [PubMed]
  11. R. M. Steinman, G. M. Haddad, A. A. Skavenski, and D. Wyman, “Miniature eye movement,” Science181(4102), 810–819 (1973).
    [CrossRef] [PubMed]
  12. M. Rucci, R. Iovin, M. Poletti, and F. Santini, “Miniature eye movements enhance fine spatial detail,” Nature447(7146), 852–854 (2007).
    [CrossRef] [PubMed]
  13. Y. Zhang, S. Poonja, and A. Roorda, “MEMS-based adaptive optics scanning laser ophthalmoscopy,” Opt. Lett.31(9), 1268–1270 (2006).
    [CrossRef] [PubMed]
  14. Q. Yang, D. W. Arathorn, P. Tiruveedhula, C. R. Vogel, and A. Roorda, “Design of an integrated hardware interface for AOSLO image capture and cone-targeted stimulus delivery,” Opt. Express18(17), 17841–17858 (2010).
    [CrossRef] [PubMed]
  15. S. Marcos, S. A. Burns, P. M. Prieto, R. Navarro, and B. Baraibar, “Investigating sources of variability of monochromatic and transverse chromatic aberrations across eyes,” Vision Res.41(28), 3861–3871 (2001).
    [CrossRef] [PubMed]
  16. M. Rynders, B. Lidkea, W. Chisholm, and L. N. Thibos, “Statistical distribution of foveal transverse chromatic aberration, pupil centration, and angle psi in a population of young adult eyes,” J. Opt. Soc. Am. A12(10), 2348–2357 (1995).
    [CrossRef] [PubMed]
  17. M. Guizar-Sicairos, S. T. Thurman, and J. R. Fienup, “Efficient subpixel image registration algorithms,” Opt. Lett.33(2), 156–158 (2008).
    [CrossRef] [PubMed]
  18. C. Bolger, S. Bojanic, N. F. Sheahan, D. Coakley, and J. F. Malone, “Dominant frequency content of ocular microtremor from normal subjects,” Vision Res.39(11), 1911–1915 (1999).
    [CrossRef] [PubMed]
  19. G. Westheimer and S. P. McKee, “Spatial configurations for visual hyperacuity,” Vision Res.17(8), 941–947 (1977).
    [CrossRef] [PubMed]
  20. S. Marcos, S. A. Burns, E. Moreno-Barriusop, and R. Navarro, “A new approach to the study of ocular chromatic aberrations,” Vision Res.39(26), 4309–4323 (1999).
    [CrossRef] [PubMed]
  21. L. N. Thibos, M. Ye, X. Zhang, and A. Bradley, “The chromatic eye: a new reduced-eye model of ocular chromatic aberration in humans,” Appl. Opt.31(19), 3594–3600 (1992).
    [CrossRef] [PubMed]
  22. D. R. Williams, “Imaging single cells in the living retina,” Vision Res.51(13), 1379–1396 (2011).
    [CrossRef] [PubMed]
  23. E. A. Rossi and A. Roorda, “The relationship between visual resolution and cone spacing in the human fovea,” Nat. Neurosci.13(2), 156–157 (2010).
    [CrossRef] [PubMed]
  24. L. C. Sincich, Y. Zhang, P. Tiruveedhula, J. C. Horton, and A. Roorda, “Resolving single cone inputs to visual receptive fields,” Nat. Neurosci.12(8), 967–969 (2009).
    [CrossRef] [PubMed]
  25. A. Stockman, L. T. Sharpe, and C. Fach, “The spectral sensitivity of the human short-wavelength sensitive cones derived from thresholds and color matches,” Vision Res.39(17), 2901–2927 (1999).
    [CrossRef] [PubMed]
  26. A. Stockman and L. T. Sharpe, “The spectral sensitivities of the middle- and long-wavelength-sensitive cones derived from measurements in observers of known genotype,” Vision Res.40(13), 1711–1737 (2000).
    [CrossRef] [PubMed]
  27. G. Wald, “Human vision and the spectrum,” Science101(2635), 653–658 (1945).
    [CrossRef] [PubMed]
  28. W. S. Tuten, P. Tiruveedhula, and A. Roorda, “Adaptive optics scanning laser ophthalmoscope-based microperimetry,” Optom. Vis. Sci.89(5), 563–574 (2012).
    [CrossRef] [PubMed]
  29. C. A. Johnson, A. J. Adams, E. J. Casson, and J. D. Brandt, “Blue-on-yellow perimetry can predict the development of glaucomatous visual field loss,” Arch. Ophthalmol.111(5), 645–650 (1993).
    [CrossRef] [PubMed]
  30. K. Grieve, P. Tiruveedhula, Y. Zhang, and A. Roorda, “Multi-wavelength imaging with the adaptive optics scanning laser Ophthalmoscope,” Opt. Express14(25), 12230–12242 (2006).
    [CrossRef] [PubMed]
  31. Y. Geng, L. A. Schery, R. Sharma, A. Dubra, K. Ahmad, R. T. Libby, and D. R. Williams, “Optical properties of the mouse eye,” Biomed. Opt. Express2(4), 717–738 (2011).
    [CrossRef] [PubMed]
  32. G. Feng, R. H. Mellor, M. Bernstein, C. Keller-Peck, Q. T. Nguyen, M. Wallace, J. M. Nerbonne, J. W. Lichtman, and J. R. Sanes, “Imaging neuronal subsets in transgenic mice expressing multiple spectral variants of GFP,” Neuron28(1), 41–51 (2000).
    [CrossRef] [PubMed]
  33. I.-J. Kim, Y. Zhang, M. Meister, and J. R. Sanes, “Laminar restriction of retinal ganglion cell dendrites and axons: subtype-specific developmental patterns revealed with transgenic markers,” J. Neurosci.30(4), 1452–1462 (2010).
    [CrossRef] [PubMed]
  34. J. Carroll, M. Neitz, H. Hofer, J. Neitz, and D. R. Williams, “Functional photoreceptor loss revealed with adaptive optics: an alternate cause of color blindness,” Proc. Natl. Acad. Sci. U.S.A.101(22), 8461–8466 (2004).
    [CrossRef] [PubMed]

2012 (2)

M. J. Koss, I. Beger, and F. H. Koch, “Subthreshold diode laser micropulse photocoagulation versus intravitreal injections of bevacizumab in the treatment of central serous chorioretinopathy,” Eye (Lond.)26(2), 307–314 (2012).
[CrossRef] [PubMed]

W. S. Tuten, P. Tiruveedhula, and A. Roorda, “Adaptive optics scanning laser ophthalmoscope-based microperimetry,” Optom. Vis. Sci.89(5), 563–574 (2012).
[CrossRef] [PubMed]

2011 (3)

2010 (4)

E. A. Rossi and A. Roorda, “The relationship between visual resolution and cone spacing in the human fovea,” Nat. Neurosci.13(2), 156–157 (2010).
[CrossRef] [PubMed]

G. Palczewska, T. Maeda, Y. Imanishi, W. Sun, Y. Chen, D. R. Williams, D. W. Piston, A. Maeda, and K. Palczewski, “Noninvasive multiphoton fluorescence microscopy resolves retinol and retinal condensation products in mouse eyes,” Nat. Med.16(12), 1444–1449 (2010).
[CrossRef] [PubMed]

Q. Yang, D. W. Arathorn, P. Tiruveedhula, C. R. Vogel, and A. Roorda, “Design of an integrated hardware interface for AOSLO image capture and cone-targeted stimulus delivery,” Opt. Express18(17), 17841–17858 (2010).
[CrossRef] [PubMed]

I.-J. Kim, Y. Zhang, M. Meister, and J. R. Sanes, “Laminar restriction of retinal ganglion cell dendrites and axons: subtype-specific developmental patterns revealed with transgenic markers,” J. Neurosci.30(4), 1452–1462 (2010).
[CrossRef] [PubMed]

2009 (1)

L. C. Sincich, Y. Zhang, P. Tiruveedhula, J. C. Horton, and A. Roorda, “Resolving single cone inputs to visual receptive fields,” Nat. Neurosci.12(8), 967–969 (2009).
[CrossRef] [PubMed]

2008 (1)

2007 (2)

2006 (2)

2005 (2)

D. A. Atchison and G. Smith, “Chromatic dispersions of the ocular media of human eyes,” J. Opt. Soc. Am. A22(1), 29–37 (2005).
[CrossRef] [PubMed]

H. Hofer, J. Carroll, J. Neitz, M. Neitz, and D. R. Williams, “Organization of the human trichromatic cone mosaic,” J. Neurosci.25(42), 9669–9679 (2005).
[CrossRef] [PubMed]

2004 (1)

J. Carroll, M. Neitz, H. Hofer, J. Neitz, and D. R. Williams, “Functional photoreceptor loss revealed with adaptive optics: an alternate cause of color blindness,” Proc. Natl. Acad. Sci. U.S.A.101(22), 8461–8466 (2004).
[CrossRef] [PubMed]

2001 (1)

S. Marcos, S. A. Burns, P. M. Prieto, R. Navarro, and B. Baraibar, “Investigating sources of variability of monochromatic and transverse chromatic aberrations across eyes,” Vision Res.41(28), 3861–3871 (2001).
[CrossRef] [PubMed]

2000 (2)

A. Stockman and L. T. Sharpe, “The spectral sensitivities of the middle- and long-wavelength-sensitive cones derived from measurements in observers of known genotype,” Vision Res.40(13), 1711–1737 (2000).
[CrossRef] [PubMed]

G. Feng, R. H. Mellor, M. Bernstein, C. Keller-Peck, Q. T. Nguyen, M. Wallace, J. M. Nerbonne, J. W. Lichtman, and J. R. Sanes, “Imaging neuronal subsets in transgenic mice expressing multiple spectral variants of GFP,” Neuron28(1), 41–51 (2000).
[CrossRef] [PubMed]

1999 (3)

S. Marcos, S. A. Burns, E. Moreno-Barriusop, and R. Navarro, “A new approach to the study of ocular chromatic aberrations,” Vision Res.39(26), 4309–4323 (1999).
[CrossRef] [PubMed]

A. Stockman, L. T. Sharpe, and C. Fach, “The spectral sensitivity of the human short-wavelength sensitive cones derived from thresholds and color matches,” Vision Res.39(17), 2901–2927 (1999).
[CrossRef] [PubMed]

C. Bolger, S. Bojanic, N. F. Sheahan, D. Coakley, and J. F. Malone, “Dominant frequency content of ocular microtremor from normal subjects,” Vision Res.39(11), 1911–1915 (1999).
[CrossRef] [PubMed]

1997 (2)

1995 (1)

1993 (1)

C. A. Johnson, A. J. Adams, E. J. Casson, and J. D. Brandt, “Blue-on-yellow perimetry can predict the development of glaucomatous visual field loss,” Arch. Ophthalmol.111(5), 645–650 (1993).
[CrossRef] [PubMed]

1992 (1)

1990 (2)

L. N. Thibos, A. Bradley, D. L. Still, X. Zhang, and P. A. Howarth, “Theory and measurement of ocular chromatic aberration,” Vision Res.30(1), 33–49 (1990).
[CrossRef] [PubMed]

P. Simonet and M. C. Campbell, “The optical transverse chromatic aberration on the fovea of the human eye,” Vision Res.30(2), 187–206 (1990).
[CrossRef] [PubMed]

1977 (1)

G. Westheimer and S. P. McKee, “Spatial configurations for visual hyperacuity,” Vision Res.17(8), 941–947 (1977).
[CrossRef] [PubMed]

1973 (1)

R. M. Steinman, G. M. Haddad, A. A. Skavenski, and D. Wyman, “Miniature eye movement,” Science181(4102), 810–819 (1973).
[CrossRef] [PubMed]

1945 (1)

G. Wald, “Human vision and the spectrum,” Science101(2635), 653–658 (1945).
[CrossRef] [PubMed]

Adams, A. J.

C. A. Johnson, A. J. Adams, E. J. Casson, and J. D. Brandt, “Blue-on-yellow perimetry can predict the development of glaucomatous visual field loss,” Arch. Ophthalmol.111(5), 645–650 (1993).
[CrossRef] [PubMed]

Ahmad, K.

Arathorn, D. W.

Atchison, D. A.

Baraibar, B.

S. Marcos, S. A. Burns, P. M. Prieto, R. Navarro, and B. Baraibar, “Investigating sources of variability of monochromatic and transverse chromatic aberrations across eyes,” Vision Res.41(28), 3861–3871 (2001).
[CrossRef] [PubMed]

Beger, I.

M. J. Koss, I. Beger, and F. H. Koch, “Subthreshold diode laser micropulse photocoagulation versus intravitreal injections of bevacizumab in the treatment of central serous chorioretinopathy,” Eye (Lond.)26(2), 307–314 (2012).
[CrossRef] [PubMed]

Bernstein, M.

G. Feng, R. H. Mellor, M. Bernstein, C. Keller-Peck, Q. T. Nguyen, M. Wallace, J. M. Nerbonne, J. W. Lichtman, and J. R. Sanes, “Imaging neuronal subsets in transgenic mice expressing multiple spectral variants of GFP,” Neuron28(1), 41–51 (2000).
[CrossRef] [PubMed]

Bojanic, S.

C. Bolger, S. Bojanic, N. F. Sheahan, D. Coakley, and J. F. Malone, “Dominant frequency content of ocular microtremor from normal subjects,” Vision Res.39(11), 1911–1915 (1999).
[CrossRef] [PubMed]

Bolger, C.

C. Bolger, S. Bojanic, N. F. Sheahan, D. Coakley, and J. F. Malone, “Dominant frequency content of ocular microtremor from normal subjects,” Vision Res.39(11), 1911–1915 (1999).
[CrossRef] [PubMed]

Bradley, A.

L. N. Thibos, M. Ye, X. Zhang, and A. Bradley, “The chromatic eye: a new reduced-eye model of ocular chromatic aberration in humans,” Appl. Opt.31(19), 3594–3600 (1992).
[CrossRef] [PubMed]

L. N. Thibos, A. Bradley, D. L. Still, X. Zhang, and P. A. Howarth, “Theory and measurement of ocular chromatic aberration,” Vision Res.30(1), 33–49 (1990).
[CrossRef] [PubMed]

Brandt, J. D.

C. A. Johnson, A. J. Adams, E. J. Casson, and J. D. Brandt, “Blue-on-yellow perimetry can predict the development of glaucomatous visual field loss,” Arch. Ophthalmol.111(5), 645–650 (1993).
[CrossRef] [PubMed]

Burns, S. A.

S. Marcos, S. A. Burns, P. M. Prieto, R. Navarro, and B. Baraibar, “Investigating sources of variability of monochromatic and transverse chromatic aberrations across eyes,” Vision Res.41(28), 3861–3871 (2001).
[CrossRef] [PubMed]

S. Marcos, S. A. Burns, E. Moreno-Barriusop, and R. Navarro, “A new approach to the study of ocular chromatic aberrations,” Vision Res.39(26), 4309–4323 (1999).
[CrossRef] [PubMed]

Campbell, M. C.

P. Simonet and M. C. Campbell, “The optical transverse chromatic aberration on the fovea of the human eye,” Vision Res.30(2), 187–206 (1990).
[CrossRef] [PubMed]

Carroll, J.

A. Dubra, Y. Sulai, J. L. Norris, R. F. Cooper, A. M. Dubis, D. R. Williams, and J. Carroll, “Noninvasive imaging of the human rod photoreceptor mosaic using a confocal adaptive optics scanning ophthalmoscope,” Biomed. Opt. Express2(7), 1864–1876 (2011).
[CrossRef] [PubMed]

H. Hofer, J. Carroll, J. Neitz, M. Neitz, and D. R. Williams, “Organization of the human trichromatic cone mosaic,” J. Neurosci.25(42), 9669–9679 (2005).
[CrossRef] [PubMed]

J. Carroll, M. Neitz, H. Hofer, J. Neitz, and D. R. Williams, “Functional photoreceptor loss revealed with adaptive optics: an alternate cause of color blindness,” Proc. Natl. Acad. Sci. U.S.A.101(22), 8461–8466 (2004).
[CrossRef] [PubMed]

Casson, E. J.

C. A. Johnson, A. J. Adams, E. J. Casson, and J. D. Brandt, “Blue-on-yellow perimetry can predict the development of glaucomatous visual field loss,” Arch. Ophthalmol.111(5), 645–650 (1993).
[CrossRef] [PubMed]

Chen, Y.

G. Palczewska, T. Maeda, Y. Imanishi, W. Sun, Y. Chen, D. R. Williams, D. W. Piston, A. Maeda, and K. Palczewski, “Noninvasive multiphoton fluorescence microscopy resolves retinol and retinal condensation products in mouse eyes,” Nat. Med.16(12), 1444–1449 (2010).
[CrossRef] [PubMed]

Chisholm, W.

Coakley, D.

C. Bolger, S. Bojanic, N. F. Sheahan, D. Coakley, and J. F. Malone, “Dominant frequency content of ocular microtremor from normal subjects,” Vision Res.39(11), 1911–1915 (1999).
[CrossRef] [PubMed]

Cooper, R. F.

Dubis, A. M.

Dubra, A.

Fach, C.

A. Stockman, L. T. Sharpe, and C. Fach, “The spectral sensitivity of the human short-wavelength sensitive cones derived from thresholds and color matches,” Vision Res.39(17), 2901–2927 (1999).
[CrossRef] [PubMed]

Feng, G.

G. Feng, R. H. Mellor, M. Bernstein, C. Keller-Peck, Q. T. Nguyen, M. Wallace, J. M. Nerbonne, J. W. Lichtman, and J. R. Sanes, “Imaging neuronal subsets in transgenic mice expressing multiple spectral variants of GFP,” Neuron28(1), 41–51 (2000).
[CrossRef] [PubMed]

Fienup, J. R.

Geng, Y.

Grieve, K.

Guizar-Sicairos, M.

Haddad, G. M.

R. M. Steinman, G. M. Haddad, A. A. Skavenski, and D. Wyman, “Miniature eye movement,” Science181(4102), 810–819 (1973).
[CrossRef] [PubMed]

Hofer, H.

H. Hofer, J. Carroll, J. Neitz, M. Neitz, and D. R. Williams, “Organization of the human trichromatic cone mosaic,” J. Neurosci.25(42), 9669–9679 (2005).
[CrossRef] [PubMed]

J. Carroll, M. Neitz, H. Hofer, J. Neitz, and D. R. Williams, “Functional photoreceptor loss revealed with adaptive optics: an alternate cause of color blindness,” Proc. Natl. Acad. Sci. U.S.A.101(22), 8461–8466 (2004).
[CrossRef] [PubMed]

Horton, J. C.

L. C. Sincich, Y. Zhang, P. Tiruveedhula, J. C. Horton, and A. Roorda, “Resolving single cone inputs to visual receptive fields,” Nat. Neurosci.12(8), 967–969 (2009).
[CrossRef] [PubMed]

Howarth, P. A.

L. N. Thibos, A. Bradley, D. L. Still, X. Zhang, and P. A. Howarth, “Theory and measurement of ocular chromatic aberration,” Vision Res.30(1), 33–49 (1990).
[CrossRef] [PubMed]

Imanishi, Y.

G. Palczewska, T. Maeda, Y. Imanishi, W. Sun, Y. Chen, D. R. Williams, D. W. Piston, A. Maeda, and K. Palczewski, “Noninvasive multiphoton fluorescence microscopy resolves retinol and retinal condensation products in mouse eyes,” Nat. Med.16(12), 1444–1449 (2010).
[CrossRef] [PubMed]

Iovin, R.

M. Rucci, R. Iovin, M. Poletti, and F. Santini, “Miniature eye movements enhance fine spatial detail,” Nature447(7146), 852–854 (2007).
[CrossRef] [PubMed]

Johnson, C. A.

C. A. Johnson, A. J. Adams, E. J. Casson, and J. D. Brandt, “Blue-on-yellow perimetry can predict the development of glaucomatous visual field loss,” Arch. Ophthalmol.111(5), 645–650 (1993).
[CrossRef] [PubMed]

Keller-Peck, C.

G. Feng, R. H. Mellor, M. Bernstein, C. Keller-Peck, Q. T. Nguyen, M. Wallace, J. M. Nerbonne, J. W. Lichtman, and J. R. Sanes, “Imaging neuronal subsets in transgenic mice expressing multiple spectral variants of GFP,” Neuron28(1), 41–51 (2000).
[CrossRef] [PubMed]

Kim, I.-J.

I.-J. Kim, Y. Zhang, M. Meister, and J. R. Sanes, “Laminar restriction of retinal ganglion cell dendrites and axons: subtype-specific developmental patterns revealed with transgenic markers,” J. Neurosci.30(4), 1452–1462 (2010).
[CrossRef] [PubMed]

Koch, F. H.

M. J. Koss, I. Beger, and F. H. Koch, “Subthreshold diode laser micropulse photocoagulation versus intravitreal injections of bevacizumab in the treatment of central serous chorioretinopathy,” Eye (Lond.)26(2), 307–314 (2012).
[CrossRef] [PubMed]

Koss, M. J.

M. J. Koss, I. Beger, and F. H. Koch, “Subthreshold diode laser micropulse photocoagulation versus intravitreal injections of bevacizumab in the treatment of central serous chorioretinopathy,” Eye (Lond.)26(2), 307–314 (2012).
[CrossRef] [PubMed]

Liang, J.

Libby, R. T.

Lichtman, J. W.

G. Feng, R. H. Mellor, M. Bernstein, C. Keller-Peck, Q. T. Nguyen, M. Wallace, J. M. Nerbonne, J. W. Lichtman, and J. R. Sanes, “Imaging neuronal subsets in transgenic mice expressing multiple spectral variants of GFP,” Neuron28(1), 41–51 (2000).
[CrossRef] [PubMed]

Lidkea, B.

Maeda, A.

G. Palczewska, T. Maeda, Y. Imanishi, W. Sun, Y. Chen, D. R. Williams, D. W. Piston, A. Maeda, and K. Palczewski, “Noninvasive multiphoton fluorescence microscopy resolves retinol and retinal condensation products in mouse eyes,” Nat. Med.16(12), 1444–1449 (2010).
[CrossRef] [PubMed]

Maeda, T.

G. Palczewska, T. Maeda, Y. Imanishi, W. Sun, Y. Chen, D. R. Williams, D. W. Piston, A. Maeda, and K. Palczewski, “Noninvasive multiphoton fluorescence microscopy resolves retinol and retinal condensation products in mouse eyes,” Nat. Med.16(12), 1444–1449 (2010).
[CrossRef] [PubMed]

Malone, J. F.

C. Bolger, S. Bojanic, N. F. Sheahan, D. Coakley, and J. F. Malone, “Dominant frequency content of ocular microtremor from normal subjects,” Vision Res.39(11), 1911–1915 (1999).
[CrossRef] [PubMed]

Marcos, S.

S. Marcos, S. A. Burns, P. M. Prieto, R. Navarro, and B. Baraibar, “Investigating sources of variability of monochromatic and transverse chromatic aberrations across eyes,” Vision Res.41(28), 3861–3871 (2001).
[CrossRef] [PubMed]

S. Marcos, S. A. Burns, E. Moreno-Barriusop, and R. Navarro, “A new approach to the study of ocular chromatic aberrations,” Vision Res.39(26), 4309–4323 (1999).
[CrossRef] [PubMed]

McKee, S. P.

G. Westheimer and S. P. McKee, “Spatial configurations for visual hyperacuity,” Vision Res.17(8), 941–947 (1977).
[CrossRef] [PubMed]

Meister, M.

I.-J. Kim, Y. Zhang, M. Meister, and J. R. Sanes, “Laminar restriction of retinal ganglion cell dendrites and axons: subtype-specific developmental patterns revealed with transgenic markers,” J. Neurosci.30(4), 1452–1462 (2010).
[CrossRef] [PubMed]

Mellor, R. H.

G. Feng, R. H. Mellor, M. Bernstein, C. Keller-Peck, Q. T. Nguyen, M. Wallace, J. M. Nerbonne, J. W. Lichtman, and J. R. Sanes, “Imaging neuronal subsets in transgenic mice expressing multiple spectral variants of GFP,” Neuron28(1), 41–51 (2000).
[CrossRef] [PubMed]

Miller, D. T.

Moreno-Barriusop, E.

S. Marcos, S. A. Burns, E. Moreno-Barriusop, and R. Navarro, “A new approach to the study of ocular chromatic aberrations,” Vision Res.39(26), 4309–4323 (1999).
[CrossRef] [PubMed]

Navarro, R.

S. Marcos, S. A. Burns, P. M. Prieto, R. Navarro, and B. Baraibar, “Investigating sources of variability of monochromatic and transverse chromatic aberrations across eyes,” Vision Res.41(28), 3861–3871 (2001).
[CrossRef] [PubMed]

S. Marcos, S. A. Burns, E. Moreno-Barriusop, and R. Navarro, “A new approach to the study of ocular chromatic aberrations,” Vision Res.39(26), 4309–4323 (1999).
[CrossRef] [PubMed]

Neitz, J.

H. Hofer, J. Carroll, J. Neitz, M. Neitz, and D. R. Williams, “Organization of the human trichromatic cone mosaic,” J. Neurosci.25(42), 9669–9679 (2005).
[CrossRef] [PubMed]

J. Carroll, M. Neitz, H. Hofer, J. Neitz, and D. R. Williams, “Functional photoreceptor loss revealed with adaptive optics: an alternate cause of color blindness,” Proc. Natl. Acad. Sci. U.S.A.101(22), 8461–8466 (2004).
[CrossRef] [PubMed]

Neitz, M.

H. Hofer, J. Carroll, J. Neitz, M. Neitz, and D. R. Williams, “Organization of the human trichromatic cone mosaic,” J. Neurosci.25(42), 9669–9679 (2005).
[CrossRef] [PubMed]

J. Carroll, M. Neitz, H. Hofer, J. Neitz, and D. R. Williams, “Functional photoreceptor loss revealed with adaptive optics: an alternate cause of color blindness,” Proc. Natl. Acad. Sci. U.S.A.101(22), 8461–8466 (2004).
[CrossRef] [PubMed]

Nerbonne, J. M.

G. Feng, R. H. Mellor, M. Bernstein, C. Keller-Peck, Q. T. Nguyen, M. Wallace, J. M. Nerbonne, J. W. Lichtman, and J. R. Sanes, “Imaging neuronal subsets in transgenic mice expressing multiple spectral variants of GFP,” Neuron28(1), 41–51 (2000).
[CrossRef] [PubMed]

Nguyen, Q. T.

G. Feng, R. H. Mellor, M. Bernstein, C. Keller-Peck, Q. T. Nguyen, M. Wallace, J. M. Nerbonne, J. W. Lichtman, and J. R. Sanes, “Imaging neuronal subsets in transgenic mice expressing multiple spectral variants of GFP,” Neuron28(1), 41–51 (2000).
[CrossRef] [PubMed]

Norris, J. L.

Palczewska, G.

G. Palczewska, T. Maeda, Y. Imanishi, W. Sun, Y. Chen, D. R. Williams, D. W. Piston, A. Maeda, and K. Palczewski, “Noninvasive multiphoton fluorescence microscopy resolves retinol and retinal condensation products in mouse eyes,” Nat. Med.16(12), 1444–1449 (2010).
[CrossRef] [PubMed]

Palczewski, K.

G. Palczewska, T. Maeda, Y. Imanishi, W. Sun, Y. Chen, D. R. Williams, D. W. Piston, A. Maeda, and K. Palczewski, “Noninvasive multiphoton fluorescence microscopy resolves retinol and retinal condensation products in mouse eyes,” Nat. Med.16(12), 1444–1449 (2010).
[CrossRef] [PubMed]

Piston, D. W.

G. Palczewska, T. Maeda, Y. Imanishi, W. Sun, Y. Chen, D. R. Williams, D. W. Piston, A. Maeda, and K. Palczewski, “Noninvasive multiphoton fluorescence microscopy resolves retinol and retinal condensation products in mouse eyes,” Nat. Med.16(12), 1444–1449 (2010).
[CrossRef] [PubMed]

Poletti, M.

M. Rucci, R. Iovin, M. Poletti, and F. Santini, “Miniature eye movements enhance fine spatial detail,” Nature447(7146), 852–854 (2007).
[CrossRef] [PubMed]

Poonja, S.

Prieto, P. M.

S. Marcos, S. A. Burns, P. M. Prieto, R. Navarro, and B. Baraibar, “Investigating sources of variability of monochromatic and transverse chromatic aberrations across eyes,” Vision Res.41(28), 3861–3871 (2001).
[CrossRef] [PubMed]

Roorda, A.

Rossi, E. A.

E. A. Rossi and A. Roorda, “The relationship between visual resolution and cone spacing in the human fovea,” Nat. Neurosci.13(2), 156–157 (2010).
[CrossRef] [PubMed]

Rucci, M.

M. Rucci, R. Iovin, M. Poletti, and F. Santini, “Miniature eye movements enhance fine spatial detail,” Nature447(7146), 852–854 (2007).
[CrossRef] [PubMed]

Rynders, M.

Sanes, J. R.

I.-J. Kim, Y. Zhang, M. Meister, and J. R. Sanes, “Laminar restriction of retinal ganglion cell dendrites and axons: subtype-specific developmental patterns revealed with transgenic markers,” J. Neurosci.30(4), 1452–1462 (2010).
[CrossRef] [PubMed]

G. Feng, R. H. Mellor, M. Bernstein, C. Keller-Peck, Q. T. Nguyen, M. Wallace, J. M. Nerbonne, J. W. Lichtman, and J. R. Sanes, “Imaging neuronal subsets in transgenic mice expressing multiple spectral variants of GFP,” Neuron28(1), 41–51 (2000).
[CrossRef] [PubMed]

Santini, F.

M. Rucci, R. Iovin, M. Poletti, and F. Santini, “Miniature eye movements enhance fine spatial detail,” Nature447(7146), 852–854 (2007).
[CrossRef] [PubMed]

Schery, L. A.

Sharma, R.

Sharpe, L. T.

A. Stockman and L. T. Sharpe, “The spectral sensitivities of the middle- and long-wavelength-sensitive cones derived from measurements in observers of known genotype,” Vision Res.40(13), 1711–1737 (2000).
[CrossRef] [PubMed]

A. Stockman, L. T. Sharpe, and C. Fach, “The spectral sensitivity of the human short-wavelength sensitive cones derived from thresholds and color matches,” Vision Res.39(17), 2901–2927 (1999).
[CrossRef] [PubMed]

Sheahan, N. F.

C. Bolger, S. Bojanic, N. F. Sheahan, D. Coakley, and J. F. Malone, “Dominant frequency content of ocular microtremor from normal subjects,” Vision Res.39(11), 1911–1915 (1999).
[CrossRef] [PubMed]

Simonet, P.

P. Simonet and M. C. Campbell, “The optical transverse chromatic aberration on the fovea of the human eye,” Vision Res.30(2), 187–206 (1990).
[CrossRef] [PubMed]

Sincich, L. C.

L. C. Sincich, Y. Zhang, P. Tiruveedhula, J. C. Horton, and A. Roorda, “Resolving single cone inputs to visual receptive fields,” Nat. Neurosci.12(8), 967–969 (2009).
[CrossRef] [PubMed]

Skavenski, A. A.

R. M. Steinman, G. M. Haddad, A. A. Skavenski, and D. Wyman, “Miniature eye movement,” Science181(4102), 810–819 (1973).
[CrossRef] [PubMed]

Smith, G.

Steinman, R. M.

R. M. Steinman, G. M. Haddad, A. A. Skavenski, and D. Wyman, “Miniature eye movement,” Science181(4102), 810–819 (1973).
[CrossRef] [PubMed]

Still, D. L.

L. N. Thibos, A. Bradley, D. L. Still, X. Zhang, and P. A. Howarth, “Theory and measurement of ocular chromatic aberration,” Vision Res.30(1), 33–49 (1990).
[CrossRef] [PubMed]

Stockman, A.

A. Stockman and L. T. Sharpe, “The spectral sensitivities of the middle- and long-wavelength-sensitive cones derived from measurements in observers of known genotype,” Vision Res.40(13), 1711–1737 (2000).
[CrossRef] [PubMed]

A. Stockman, L. T. Sharpe, and C. Fach, “The spectral sensitivity of the human short-wavelength sensitive cones derived from thresholds and color matches,” Vision Res.39(17), 2901–2927 (1999).
[CrossRef] [PubMed]

Sulai, Y.

Sun, W.

G. Palczewska, T. Maeda, Y. Imanishi, W. Sun, Y. Chen, D. R. Williams, D. W. Piston, A. Maeda, and K. Palczewski, “Noninvasive multiphoton fluorescence microscopy resolves retinol and retinal condensation products in mouse eyes,” Nat. Med.16(12), 1444–1449 (2010).
[CrossRef] [PubMed]

Thibos, L. N.

Thurman, S. T.

Tiruveedhula, P.

Tuten, W. S.

W. S. Tuten, P. Tiruveedhula, and A. Roorda, “Adaptive optics scanning laser ophthalmoscope-based microperimetry,” Optom. Vis. Sci.89(5), 563–574 (2012).
[CrossRef] [PubMed]

Vogel, C. R.

Wald, G.

G. Wald, “Human vision and the spectrum,” Science101(2635), 653–658 (1945).
[CrossRef] [PubMed]

Wallace, M.

G. Feng, R. H. Mellor, M. Bernstein, C. Keller-Peck, Q. T. Nguyen, M. Wallace, J. M. Nerbonne, J. W. Lichtman, and J. R. Sanes, “Imaging neuronal subsets in transgenic mice expressing multiple spectral variants of GFP,” Neuron28(1), 41–51 (2000).
[CrossRef] [PubMed]

Westheimer, G.

G. Westheimer and S. P. McKee, “Spatial configurations for visual hyperacuity,” Vision Res.17(8), 941–947 (1977).
[CrossRef] [PubMed]

Williams, D. R.

D. R. Williams, “Imaging single cells in the living retina,” Vision Res.51(13), 1379–1396 (2011).
[CrossRef] [PubMed]

Y. Geng, L. A. Schery, R. Sharma, A. Dubra, K. Ahmad, R. T. Libby, and D. R. Williams, “Optical properties of the mouse eye,” Biomed. Opt. Express2(4), 717–738 (2011).
[CrossRef] [PubMed]

A. Dubra, Y. Sulai, J. L. Norris, R. F. Cooper, A. M. Dubis, D. R. Williams, and J. Carroll, “Noninvasive imaging of the human rod photoreceptor mosaic using a confocal adaptive optics scanning ophthalmoscope,” Biomed. Opt. Express2(7), 1864–1876 (2011).
[CrossRef] [PubMed]

G. Palczewska, T. Maeda, Y. Imanishi, W. Sun, Y. Chen, D. R. Williams, D. W. Piston, A. Maeda, and K. Palczewski, “Noninvasive multiphoton fluorescence microscopy resolves retinol and retinal condensation products in mouse eyes,” Nat. Med.16(12), 1444–1449 (2010).
[CrossRef] [PubMed]

H. Hofer, J. Carroll, J. Neitz, M. Neitz, and D. R. Williams, “Organization of the human trichromatic cone mosaic,” J. Neurosci.25(42), 9669–9679 (2005).
[CrossRef] [PubMed]

J. Carroll, M. Neitz, H. Hofer, J. Neitz, and D. R. Williams, “Functional photoreceptor loss revealed with adaptive optics: an alternate cause of color blindness,” Proc. Natl. Acad. Sci. U.S.A.101(22), 8461–8466 (2004).
[CrossRef] [PubMed]

J. Liang, D. R. Williams, and D. T. Miller, “Supernormal vision and high-resolution retinal imaging through adaptive optics,” J. Opt. Soc. Am. A14(11), 2884–2892 (1997).
[CrossRef] [PubMed]

J. Liang and D. R. Williams, “Aberrations and retinal image quality of the normal human eye,” J. Opt. Soc. Am. A14(11), 2873–2883 (1997).
[CrossRef] [PubMed]

Wyman, D.

R. M. Steinman, G. M. Haddad, A. A. Skavenski, and D. Wyman, “Miniature eye movement,” Science181(4102), 810–819 (1973).
[CrossRef] [PubMed]

Yang, Q.

Ye, M.

Zhang, X.

L. N. Thibos, M. Ye, X. Zhang, and A. Bradley, “The chromatic eye: a new reduced-eye model of ocular chromatic aberration in humans,” Appl. Opt.31(19), 3594–3600 (1992).
[CrossRef] [PubMed]

L. N. Thibos, A. Bradley, D. L. Still, X. Zhang, and P. A. Howarth, “Theory and measurement of ocular chromatic aberration,” Vision Res.30(1), 33–49 (1990).
[CrossRef] [PubMed]

Zhang, Y.

I.-J. Kim, Y. Zhang, M. Meister, and J. R. Sanes, “Laminar restriction of retinal ganglion cell dendrites and axons: subtype-specific developmental patterns revealed with transgenic markers,” J. Neurosci.30(4), 1452–1462 (2010).
[CrossRef] [PubMed]

L. C. Sincich, Y. Zhang, P. Tiruveedhula, J. C. Horton, and A. Roorda, “Resolving single cone inputs to visual receptive fields,” Nat. Neurosci.12(8), 967–969 (2009).
[CrossRef] [PubMed]

D. W. Arathorn, Q. Yang, C. R. Vogel, Y. Zhang, P. Tiruveedhula, and A. Roorda, “Retinally stabilized cone-targeted stimulus delivery,” Opt. Express15(21), 13731–13744 (2007).
[CrossRef] [PubMed]

Y. Zhang, S. Poonja, and A. Roorda, “MEMS-based adaptive optics scanning laser ophthalmoscopy,” Opt. Lett.31(9), 1268–1270 (2006).
[CrossRef] [PubMed]

K. Grieve, P. Tiruveedhula, Y. Zhang, and A. Roorda, “Multi-wavelength imaging with the adaptive optics scanning laser Ophthalmoscope,” Opt. Express14(25), 12230–12242 (2006).
[CrossRef] [PubMed]

Appl. Opt. (1)

Arch. Ophthalmol. (1)

C. A. Johnson, A. J. Adams, E. J. Casson, and J. D. Brandt, “Blue-on-yellow perimetry can predict the development of glaucomatous visual field loss,” Arch. Ophthalmol.111(5), 645–650 (1993).
[CrossRef] [PubMed]

Biomed. Opt. Express (2)

Eye (Lond.) (1)

M. J. Koss, I. Beger, and F. H. Koch, “Subthreshold diode laser micropulse photocoagulation versus intravitreal injections of bevacizumab in the treatment of central serous chorioretinopathy,” Eye (Lond.)26(2), 307–314 (2012).
[CrossRef] [PubMed]

J. Neurosci. (2)

H. Hofer, J. Carroll, J. Neitz, M. Neitz, and D. R. Williams, “Organization of the human trichromatic cone mosaic,” J. Neurosci.25(42), 9669–9679 (2005).
[CrossRef] [PubMed]

I.-J. Kim, Y. Zhang, M. Meister, and J. R. Sanes, “Laminar restriction of retinal ganglion cell dendrites and axons: subtype-specific developmental patterns revealed with transgenic markers,” J. Neurosci.30(4), 1452–1462 (2010).
[CrossRef] [PubMed]

J. Opt. Soc. Am. A (4)

Nat. Med. (1)

G. Palczewska, T. Maeda, Y. Imanishi, W. Sun, Y. Chen, D. R. Williams, D. W. Piston, A. Maeda, and K. Palczewski, “Noninvasive multiphoton fluorescence microscopy resolves retinol and retinal condensation products in mouse eyes,” Nat. Med.16(12), 1444–1449 (2010).
[CrossRef] [PubMed]

Nat. Neurosci. (2)

E. A. Rossi and A. Roorda, “The relationship between visual resolution and cone spacing in the human fovea,” Nat. Neurosci.13(2), 156–157 (2010).
[CrossRef] [PubMed]

L. C. Sincich, Y. Zhang, P. Tiruveedhula, J. C. Horton, and A. Roorda, “Resolving single cone inputs to visual receptive fields,” Nat. Neurosci.12(8), 967–969 (2009).
[CrossRef] [PubMed]

Nature (1)

M. Rucci, R. Iovin, M. Poletti, and F. Santini, “Miniature eye movements enhance fine spatial detail,” Nature447(7146), 852–854 (2007).
[CrossRef] [PubMed]

Neuron (1)

G. Feng, R. H. Mellor, M. Bernstein, C. Keller-Peck, Q. T. Nguyen, M. Wallace, J. M. Nerbonne, J. W. Lichtman, and J. R. Sanes, “Imaging neuronal subsets in transgenic mice expressing multiple spectral variants of GFP,” Neuron28(1), 41–51 (2000).
[CrossRef] [PubMed]

Opt. Express (3)

Opt. Lett. (2)

Optom. Vis. Sci. (1)

W. S. Tuten, P. Tiruveedhula, and A. Roorda, “Adaptive optics scanning laser ophthalmoscope-based microperimetry,” Optom. Vis. Sci.89(5), 563–574 (2012).
[CrossRef] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (1)

J. Carroll, M. Neitz, H. Hofer, J. Neitz, and D. R. Williams, “Functional photoreceptor loss revealed with adaptive optics: an alternate cause of color blindness,” Proc. Natl. Acad. Sci. U.S.A.101(22), 8461–8466 (2004).
[CrossRef] [PubMed]

Science (2)

R. M. Steinman, G. M. Haddad, A. A. Skavenski, and D. Wyman, “Miniature eye movement,” Science181(4102), 810–819 (1973).
[CrossRef] [PubMed]

G. Wald, “Human vision and the spectrum,” Science101(2635), 653–658 (1945).
[CrossRef] [PubMed]

Vision Res. (9)

A. Stockman, L. T. Sharpe, and C. Fach, “The spectral sensitivity of the human short-wavelength sensitive cones derived from thresholds and color matches,” Vision Res.39(17), 2901–2927 (1999).
[CrossRef] [PubMed]

A. Stockman and L. T. Sharpe, “The spectral sensitivities of the middle- and long-wavelength-sensitive cones derived from measurements in observers of known genotype,” Vision Res.40(13), 1711–1737 (2000).
[CrossRef] [PubMed]

S. Marcos, S. A. Burns, P. M. Prieto, R. Navarro, and B. Baraibar, “Investigating sources of variability of monochromatic and transverse chromatic aberrations across eyes,” Vision Res.41(28), 3861–3871 (2001).
[CrossRef] [PubMed]

C. Bolger, S. Bojanic, N. F. Sheahan, D. Coakley, and J. F. Malone, “Dominant frequency content of ocular microtremor from normal subjects,” Vision Res.39(11), 1911–1915 (1999).
[CrossRef] [PubMed]

G. Westheimer and S. P. McKee, “Spatial configurations for visual hyperacuity,” Vision Res.17(8), 941–947 (1977).
[CrossRef] [PubMed]

S. Marcos, S. A. Burns, E. Moreno-Barriusop, and R. Navarro, “A new approach to the study of ocular chromatic aberrations,” Vision Res.39(26), 4309–4323 (1999).
[CrossRef] [PubMed]

D. R. Williams, “Imaging single cells in the living retina,” Vision Res.51(13), 1379–1396 (2011).
[CrossRef] [PubMed]

L. N. Thibos, A. Bradley, D. L. Still, X. Zhang, and P. A. Howarth, “Theory and measurement of ocular chromatic aberration,” Vision Res.30(1), 33–49 (1990).
[CrossRef] [PubMed]

P. Simonet and M. C. Campbell, “The optical transverse chromatic aberration on the fovea of the human eye,” Vision Res.30(2), 187–206 (1990).
[CrossRef] [PubMed]

Supplementary Material (2)

» Media 1: AVI (3708 KB)     
» Media 2: AVI (2983 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Emergence of transverse chromatic aberration (TCA) when longitudinal chromatic aberration (LCA) is corrected. (A) Due to the eye’s chromatic dispersion, its refractive power and hence image focal length, f′, is a function of wavelength. (B) The effects of TCA can be observed if a multi-wavelength object is viewed through an aperture, S, that is laterally offset by h. (C) For light sources with different wavelengths, LCA can be corrected by adjusting the object divergence angle, or object focal length, f, such that objects are in focus for each wavelength. (D) If the eye and thus the entrance pupil are translated laterally relative to the chief ray by the amount h, retinal images will be offset by the same amount as in B, but with opposite sign. We refer to these chromatic parallax offsets as ‘TCA offsets’ within this paper. Colors indicate wavelength relation. Individual parts not drawn to scale.

Fig. 2
Fig. 2

Schematic of a 3-channel AOSLO, with separate light delivery and detection for each color channel: infrared (drawn in black), red and green. AOM: acousto-optic modulator, WS: Shack-Hartmann wavefront sensor, DM: deformable mirror, SO: scanning optics, PMT: photo-multiplier tube. Broken lines: apertures and pinholes. Curved lines: spherical front-surface mirrors. Straight lines: flat mirrors or beam splitters.

Fig. 3
Fig. 3

Chromatic dispersion in AOSLO imaging. (A) When LCA is corrected, retinal images for all wavelengths (infrared, red, green) are in focus but offset laterally due to TCA. The imaged area of the retina is outlined on the fundus photograph (top). TCA offsets between colors are highlighted with example cone outlines. Dark regions in the AOSLO microphotographs are caused by blood capillary shadows. Cone images are constructed by referenced averaging of ~150 individual video frames, and are individually normalized for display purposes. Scale bar: 2 deg (top), 2 arcmin (bottom). (B) Schematic explanation of chromatic offsets in AOSLO imaging. Two aligned input beams (red and green) reach a dispersing lens and land at different locations on the retina. The reflected light, passing back through the lens, is realigned into one beam and is captured by two imaging devices. Although the effects of TCA are cancelled on the second pass through the lens and the outward beams are re-aligned, one can determine how much dispersion occurred between the two beams, because the retina being imaged has spatial structure. This principle holds for our three wavelength AOSLO setup.

Fig. 4
Fig. 4

TCA measurement and correction. A) Retinal images for each color channel are recorded interleaved as shown. B) The interleaved composite image is separated into each color channel and then spatially compressed along the horizontal axis. These single images are registered by two-dimensional cross-correlation to find their relative offsets. The true horizontal image offsets in the original images are found by expanding along the compression axis (see text). Scale bar: 10 arcmin. Colors are used for clarity only.

Fig. 5
Fig. 5

Multi-wavelength interleaved retinal images. A single frame of interleaved recording is separated into the three color channels (infrared, red and green) as shown in Fig. 4(B). Due to the interleaving, only every third pixel line contains image information. Colored circles represent corresponding retinal locations derived from the image registration procedure detailed in Fig. 4(B). White circles are corresponding locations with respect to the frame. The reader is invited to view the corresponding video, because retinal features and relative locations are easier to appreciate in the presence of coherent motion. Note in the video how the retina is constantly moving due to small fixational eye movements, yet TCA offsets are relatively stable (Media 1).

Fig. 6
Fig. 6

Image offset measurement quality and significance. A) Frame-by-frame offsets calculated from a 5 s video. Colors code the red/infrared and green/infrared offsets, for x and y dimensions in the images. Arrows indicate artifacts introduced by microsaccades. B) The frame-by-frame offsets from A plotted to scale on the cone image relative to infrared (black dot). Here, uncorrected light delivery for the different colors would land on different cones. Image offsets were measured at ~1° eccentricity. Scale bar: 1 arcmin.

Fig. 7
Fig. 7

Validation by hyperacute psychophysics. A) The psychophysical task required subjects to align a small colored square (red or green) within four flankers presented against the IR background (dark red). Each of 50 trials began with the colored square randomly displaced. Colors in this schematic were chosen to resemble actual appearance. B) Subjective, psychophysical measurements (top row) are compared to the objective, image-based TCA measurements (bottom row) in three subjects. Single alignment trials are plotted as colored squares; the medians ± 1 SD are plotted in darker color as crosses. Small dots represent 150 frame-by-frame measurements of red/IR and green/IR TCA offsets measured at the site of preferred fixation in the foveola. Large dots represent the data centroids. Black crosshair is IR zero reference point. Note the idiosyncratic differences in foveal TCA between subjects. The image-based centroid is copied onto the psychophysical data for comparison. Scale bar: 30 arcsec.

Fig. 8
Fig. 8

Validation by geometrical optics. A) Frame-by-frame TCA measurement while the pupil was shifted horizontally in 0.25 mm steps relative to beam center. B) The mean horizontal offset per step (dots) is plotted over theoretical calculation of TCA (lines) derived from the standard chromatic model eye [21]. All SDs were smaller than dot size.

Fig. 9
Fig. 9

TCA changes due to gaze shifts. Left: The subject’s pupil during image-based TCA measurements. The subject performs voluntary gaze shifts while fixating the four corners of the imaging field, corresponding to 1.2 deg of visual angle between each shift. The center of the pupil (red cross) moves about 0.25 mm for each shift. Corneal reflexes originate from the AOSLO’s imaging beam (center) and a red LED (bottom left), serving as additional light source for pupil videography only. Right: Synchronous recording of imaged-based TCA. Colored dots represent the frame-by-frame two-dimensional image offsets between the infrared/red and infrared/green channels, respectively. Offsets for the current frame are plotted in darker color. The scale bar roughly equals the diameter of a foveal cone (30 arcsec) (Media 2).

Metrics