Abstract

We propose scanning localized surface plasmon microscopy of mixed lipid bilayers with submicron domain structures. Our observation technique, which employs localized surface plasmons excited on a flat metal surface as a sensing probe, provides non-label and non-contact imaging with the spatial resolution of ∼ 170 nm. We experimentally show that submicron domain structures of mixed lipid bilayers can be observed. A detailed analysis finds that the domains are classified into two groups.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Morigaki, T. Baumgart, A. Offenhaeusser, and W. Knoll, “Patterning solid-supported lipid bilayer membranes by lithographic polymerization of a diacetylene lipid,” Angew. Chem. Int. Ed. Eng.40, 172–174 (2001).
    [CrossRef]
  2. E. Sackmann, “Supported membranes:scientific and practical applications,” Science271, 43–48 (1996).
    [CrossRef] [PubMed]
  3. M. Tanaka and E. Sackmann, “Polymer-supported membranes as models of the cell surface,” Nature437, 656–663 (2005).
    [CrossRef] [PubMed]
  4. W-C. Lin, C. D. Blanchette, T. V. Ratto, and M. L. Longo, “Lipid asymmetry in DLPC/DSPC-supported lipid bilayers: a combined AFM and fluorescence microscopy study,” Biophys. J.90, 228–237 (2006).
    [CrossRef]
  5. S. L. Veatch and S. L. Keller, “Separation of liquid phases in giant vesicles of ternary mixtures of phospholipids and cholesterol,” Biophys. J.85, 3074–3083 (2003).
    [CrossRef] [PubMed]
  6. K. Simons and E. Ikonen, “Functional rafts in cell membranes,” Nature387, (1997) 569–572.
    [CrossRef] [PubMed]
  7. P. R. Richter and A. R. Brisson, “Following the formation of supported lipid bilayers on mica: A study combining AFM, QCM-D, and Ellipsometry,” Biophys. J.88, 3422–3433 (2005).
    [CrossRef] [PubMed]
  8. A. J. García-Sáez, S. Chiantia, and P. Schwille, “Effect of line tension on the lateral organization of lipid membranes,” J. Biol. Chem.282, 33537–33544 (2007).
    [CrossRef] [PubMed]
  9. J. Meunier, D. Langevin, and N. Boccara, Physics of Amphiphilic Layers (Springer-Verlag, 1987).
    [CrossRef]
  10. H. Kano and W. Knoll, “Locally excited surface plasmon polaritons for thickness measurement of LBK films,” Opt. Commun.153, 235–239 (1998).
    [CrossRef]
  11. H. Kano, S. Mizuguchi, and S. Kawata, “Excitation of surface plasmon polaritons by a focused laser beam,” J. Opt. Soc. Am B15, 1381–1386 (1998).
    [CrossRef]
  12. H. Kano and W. Knoll, “A scanning microscope employing localized surface-plasmon-polaritons as a sensing probe,” Opt. Commun.182, 11–15 (2000).
    [CrossRef]
  13. K. Watanabe, N. Horiguchi, and H. Kano, “Optimized measurement probe of localized surface plasmon microscope by using radially polarized illumination,” Appl. Opt.46, 4985–4990 (2007).
    [CrossRef] [PubMed]
  14. K. Watanabe, R. Miyazaki, G. Terakado, T. Okazaki, K. Morigaki, and H. Kano, “High resolution imaging of patterned model biological membranes by localized surface plasmon microscopy,” Appl. Opt.49, 887–891 (2010).
    [CrossRef] [PubMed]
  15. E. Kretschmann and H. Raether, “Radiative decay of non-radiative surface plasmon excited by light,” Z. Naturforsch. A23, 2135–2136 (1968).
  16. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, 1988).
  17. G. Miyaji, K. Ohbayashi, K. Sueda, K. Tsubakimoto, and N. Miyanaga, “Generation of vector beams with axially-symmetric polarization,” Rev. Laser Eng.32, 259–264 (2004).
    [CrossRef]
  18. G. Terakado, K. Watanabe, and H. Kano, “Scanning confocal total internal reflection fluorescence microscopy by using radial polarization in the illumination system,” Appl. Opt.48, 1114–1118 (2009).
    [CrossRef]
  19. T. V. Ratto and M. L. Longo, “Obstructed diffusion in phase-separated supported lipid bilayers: A combined atomic force microscopy and fluorescence recovery after photo-bleaching approach,”Biophys. J.83, 3380–3392 (2002).
    [CrossRef] [PubMed]
  20. K. Morigaki, H. Schönherr, and T. Okazaki, “Polymerization of diacetylene phospholipid bilayers on solid substrate: Influence of the film deposition temperature,” Langmuir23, 12254–12260 (2007).
    [CrossRef] [PubMed]
  21. D. Marsh, CRC Handbook of Lipid Bilayers (CRC Press, 1990).

2010 (1)

2009 (1)

2007 (3)

K. Morigaki, H. Schönherr, and T. Okazaki, “Polymerization of diacetylene phospholipid bilayers on solid substrate: Influence of the film deposition temperature,” Langmuir23, 12254–12260 (2007).
[CrossRef] [PubMed]

K. Watanabe, N. Horiguchi, and H. Kano, “Optimized measurement probe of localized surface plasmon microscope by using radially polarized illumination,” Appl. Opt.46, 4985–4990 (2007).
[CrossRef] [PubMed]

A. J. García-Sáez, S. Chiantia, and P. Schwille, “Effect of line tension on the lateral organization of lipid membranes,” J. Biol. Chem.282, 33537–33544 (2007).
[CrossRef] [PubMed]

2006 (1)

W-C. Lin, C. D. Blanchette, T. V. Ratto, and M. L. Longo, “Lipid asymmetry in DLPC/DSPC-supported lipid bilayers: a combined AFM and fluorescence microscopy study,” Biophys. J.90, 228–237 (2006).
[CrossRef]

2005 (2)

M. Tanaka and E. Sackmann, “Polymer-supported membranes as models of the cell surface,” Nature437, 656–663 (2005).
[CrossRef] [PubMed]

P. R. Richter and A. R. Brisson, “Following the formation of supported lipid bilayers on mica: A study combining AFM, QCM-D, and Ellipsometry,” Biophys. J.88, 3422–3433 (2005).
[CrossRef] [PubMed]

2004 (1)

G. Miyaji, K. Ohbayashi, K. Sueda, K. Tsubakimoto, and N. Miyanaga, “Generation of vector beams with axially-symmetric polarization,” Rev. Laser Eng.32, 259–264 (2004).
[CrossRef]

2003 (1)

S. L. Veatch and S. L. Keller, “Separation of liquid phases in giant vesicles of ternary mixtures of phospholipids and cholesterol,” Biophys. J.85, 3074–3083 (2003).
[CrossRef] [PubMed]

2002 (1)

T. V. Ratto and M. L. Longo, “Obstructed diffusion in phase-separated supported lipid bilayers: A combined atomic force microscopy and fluorescence recovery after photo-bleaching approach,”Biophys. J.83, 3380–3392 (2002).
[CrossRef] [PubMed]

2001 (1)

K. Morigaki, T. Baumgart, A. Offenhaeusser, and W. Knoll, “Patterning solid-supported lipid bilayer membranes by lithographic polymerization of a diacetylene lipid,” Angew. Chem. Int. Ed. Eng.40, 172–174 (2001).
[CrossRef]

2000 (1)

H. Kano and W. Knoll, “A scanning microscope employing localized surface-plasmon-polaritons as a sensing probe,” Opt. Commun.182, 11–15 (2000).
[CrossRef]

1998 (2)

H. Kano and W. Knoll, “Locally excited surface plasmon polaritons for thickness measurement of LBK films,” Opt. Commun.153, 235–239 (1998).
[CrossRef]

H. Kano, S. Mizuguchi, and S. Kawata, “Excitation of surface plasmon polaritons by a focused laser beam,” J. Opt. Soc. Am B15, 1381–1386 (1998).
[CrossRef]

1997 (1)

K. Simons and E. Ikonen, “Functional rafts in cell membranes,” Nature387, (1997) 569–572.
[CrossRef] [PubMed]

1996 (1)

E. Sackmann, “Supported membranes:scientific and practical applications,” Science271, 43–48 (1996).
[CrossRef] [PubMed]

1968 (1)

E. Kretschmann and H. Raether, “Radiative decay of non-radiative surface plasmon excited by light,” Z. Naturforsch. A23, 2135–2136 (1968).

Baumgart, T.

K. Morigaki, T. Baumgart, A. Offenhaeusser, and W. Knoll, “Patterning solid-supported lipid bilayer membranes by lithographic polymerization of a diacetylene lipid,” Angew. Chem. Int. Ed. Eng.40, 172–174 (2001).
[CrossRef]

Blanchette, C. D.

W-C. Lin, C. D. Blanchette, T. V. Ratto, and M. L. Longo, “Lipid asymmetry in DLPC/DSPC-supported lipid bilayers: a combined AFM and fluorescence microscopy study,” Biophys. J.90, 228–237 (2006).
[CrossRef]

Boccara, N.

J. Meunier, D. Langevin, and N. Boccara, Physics of Amphiphilic Layers (Springer-Verlag, 1987).
[CrossRef]

Brisson, A. R.

P. R. Richter and A. R. Brisson, “Following the formation of supported lipid bilayers on mica: A study combining AFM, QCM-D, and Ellipsometry,” Biophys. J.88, 3422–3433 (2005).
[CrossRef] [PubMed]

Chiantia, S.

A. J. García-Sáez, S. Chiantia, and P. Schwille, “Effect of line tension on the lateral organization of lipid membranes,” J. Biol. Chem.282, 33537–33544 (2007).
[CrossRef] [PubMed]

García-Sáez, A. J.

A. J. García-Sáez, S. Chiantia, and P. Schwille, “Effect of line tension on the lateral organization of lipid membranes,” J. Biol. Chem.282, 33537–33544 (2007).
[CrossRef] [PubMed]

Horiguchi, N.

Ikonen, E.

K. Simons and E. Ikonen, “Functional rafts in cell membranes,” Nature387, (1997) 569–572.
[CrossRef] [PubMed]

Kano, H.

Kawata, S.

H. Kano, S. Mizuguchi, and S. Kawata, “Excitation of surface plasmon polaritons by a focused laser beam,” J. Opt. Soc. Am B15, 1381–1386 (1998).
[CrossRef]

Keller, S. L.

S. L. Veatch and S. L. Keller, “Separation of liquid phases in giant vesicles of ternary mixtures of phospholipids and cholesterol,” Biophys. J.85, 3074–3083 (2003).
[CrossRef] [PubMed]

Knoll, W.

K. Morigaki, T. Baumgart, A. Offenhaeusser, and W. Knoll, “Patterning solid-supported lipid bilayer membranes by lithographic polymerization of a diacetylene lipid,” Angew. Chem. Int. Ed. Eng.40, 172–174 (2001).
[CrossRef]

H. Kano and W. Knoll, “A scanning microscope employing localized surface-plasmon-polaritons as a sensing probe,” Opt. Commun.182, 11–15 (2000).
[CrossRef]

H. Kano and W. Knoll, “Locally excited surface plasmon polaritons for thickness measurement of LBK films,” Opt. Commun.153, 235–239 (1998).
[CrossRef]

Kretschmann, E.

E. Kretschmann and H. Raether, “Radiative decay of non-radiative surface plasmon excited by light,” Z. Naturforsch. A23, 2135–2136 (1968).

Langevin, D.

J. Meunier, D. Langevin, and N. Boccara, Physics of Amphiphilic Layers (Springer-Verlag, 1987).
[CrossRef]

Lin, W-C.

W-C. Lin, C. D. Blanchette, T. V. Ratto, and M. L. Longo, “Lipid asymmetry in DLPC/DSPC-supported lipid bilayers: a combined AFM and fluorescence microscopy study,” Biophys. J.90, 228–237 (2006).
[CrossRef]

Longo, M. L.

W-C. Lin, C. D. Blanchette, T. V. Ratto, and M. L. Longo, “Lipid asymmetry in DLPC/DSPC-supported lipid bilayers: a combined AFM and fluorescence microscopy study,” Biophys. J.90, 228–237 (2006).
[CrossRef]

T. V. Ratto and M. L. Longo, “Obstructed diffusion in phase-separated supported lipid bilayers: A combined atomic force microscopy and fluorescence recovery after photo-bleaching approach,”Biophys. J.83, 3380–3392 (2002).
[CrossRef] [PubMed]

Marsh, D.

D. Marsh, CRC Handbook of Lipid Bilayers (CRC Press, 1990).

Meunier, J.

J. Meunier, D. Langevin, and N. Boccara, Physics of Amphiphilic Layers (Springer-Verlag, 1987).
[CrossRef]

Miyaji, G.

G. Miyaji, K. Ohbayashi, K. Sueda, K. Tsubakimoto, and N. Miyanaga, “Generation of vector beams with axially-symmetric polarization,” Rev. Laser Eng.32, 259–264 (2004).
[CrossRef]

Miyanaga, N.

G. Miyaji, K. Ohbayashi, K. Sueda, K. Tsubakimoto, and N. Miyanaga, “Generation of vector beams with axially-symmetric polarization,” Rev. Laser Eng.32, 259–264 (2004).
[CrossRef]

Miyazaki, R.

Mizuguchi, S.

H. Kano, S. Mizuguchi, and S. Kawata, “Excitation of surface plasmon polaritons by a focused laser beam,” J. Opt. Soc. Am B15, 1381–1386 (1998).
[CrossRef]

Morigaki, K.

K. Watanabe, R. Miyazaki, G. Terakado, T. Okazaki, K. Morigaki, and H. Kano, “High resolution imaging of patterned model biological membranes by localized surface plasmon microscopy,” Appl. Opt.49, 887–891 (2010).
[CrossRef] [PubMed]

K. Morigaki, H. Schönherr, and T. Okazaki, “Polymerization of diacetylene phospholipid bilayers on solid substrate: Influence of the film deposition temperature,” Langmuir23, 12254–12260 (2007).
[CrossRef] [PubMed]

K. Morigaki, T. Baumgart, A. Offenhaeusser, and W. Knoll, “Patterning solid-supported lipid bilayer membranes by lithographic polymerization of a diacetylene lipid,” Angew. Chem. Int. Ed. Eng.40, 172–174 (2001).
[CrossRef]

Offenhaeusser, A.

K. Morigaki, T. Baumgart, A. Offenhaeusser, and W. Knoll, “Patterning solid-supported lipid bilayer membranes by lithographic polymerization of a diacetylene lipid,” Angew. Chem. Int. Ed. Eng.40, 172–174 (2001).
[CrossRef]

Ohbayashi, K.

G. Miyaji, K. Ohbayashi, K. Sueda, K. Tsubakimoto, and N. Miyanaga, “Generation of vector beams with axially-symmetric polarization,” Rev. Laser Eng.32, 259–264 (2004).
[CrossRef]

Okazaki, T.

K. Watanabe, R. Miyazaki, G. Terakado, T. Okazaki, K. Morigaki, and H. Kano, “High resolution imaging of patterned model biological membranes by localized surface plasmon microscopy,” Appl. Opt.49, 887–891 (2010).
[CrossRef] [PubMed]

K. Morigaki, H. Schönherr, and T. Okazaki, “Polymerization of diacetylene phospholipid bilayers on solid substrate: Influence of the film deposition temperature,” Langmuir23, 12254–12260 (2007).
[CrossRef] [PubMed]

Raether, H.

E. Kretschmann and H. Raether, “Radiative decay of non-radiative surface plasmon excited by light,” Z. Naturforsch. A23, 2135–2136 (1968).

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, 1988).

Ratto, T. V.

W-C. Lin, C. D. Blanchette, T. V. Ratto, and M. L. Longo, “Lipid asymmetry in DLPC/DSPC-supported lipid bilayers: a combined AFM and fluorescence microscopy study,” Biophys. J.90, 228–237 (2006).
[CrossRef]

T. V. Ratto and M. L. Longo, “Obstructed diffusion in phase-separated supported lipid bilayers: A combined atomic force microscopy and fluorescence recovery after photo-bleaching approach,”Biophys. J.83, 3380–3392 (2002).
[CrossRef] [PubMed]

Richter, P. R.

P. R. Richter and A. R. Brisson, “Following the formation of supported lipid bilayers on mica: A study combining AFM, QCM-D, and Ellipsometry,” Biophys. J.88, 3422–3433 (2005).
[CrossRef] [PubMed]

Sackmann, E.

M. Tanaka and E. Sackmann, “Polymer-supported membranes as models of the cell surface,” Nature437, 656–663 (2005).
[CrossRef] [PubMed]

E. Sackmann, “Supported membranes:scientific and practical applications,” Science271, 43–48 (1996).
[CrossRef] [PubMed]

Schönherr, H.

K. Morigaki, H. Schönherr, and T. Okazaki, “Polymerization of diacetylene phospholipid bilayers on solid substrate: Influence of the film deposition temperature,” Langmuir23, 12254–12260 (2007).
[CrossRef] [PubMed]

Schwille, P.

A. J. García-Sáez, S. Chiantia, and P. Schwille, “Effect of line tension on the lateral organization of lipid membranes,” J. Biol. Chem.282, 33537–33544 (2007).
[CrossRef] [PubMed]

Simons, K.

K. Simons and E. Ikonen, “Functional rafts in cell membranes,” Nature387, (1997) 569–572.
[CrossRef] [PubMed]

Sueda, K.

G. Miyaji, K. Ohbayashi, K. Sueda, K. Tsubakimoto, and N. Miyanaga, “Generation of vector beams with axially-symmetric polarization,” Rev. Laser Eng.32, 259–264 (2004).
[CrossRef]

Tanaka, M.

M. Tanaka and E. Sackmann, “Polymer-supported membranes as models of the cell surface,” Nature437, 656–663 (2005).
[CrossRef] [PubMed]

Terakado, G.

Tsubakimoto, K.

G. Miyaji, K. Ohbayashi, K. Sueda, K. Tsubakimoto, and N. Miyanaga, “Generation of vector beams with axially-symmetric polarization,” Rev. Laser Eng.32, 259–264 (2004).
[CrossRef]

Veatch, S. L.

S. L. Veatch and S. L. Keller, “Separation of liquid phases in giant vesicles of ternary mixtures of phospholipids and cholesterol,” Biophys. J.85, 3074–3083 (2003).
[CrossRef] [PubMed]

Watanabe, K.

Angew. Chem. Int. Ed. Eng. (1)

K. Morigaki, T. Baumgart, A. Offenhaeusser, and W. Knoll, “Patterning solid-supported lipid bilayer membranes by lithographic polymerization of a diacetylene lipid,” Angew. Chem. Int. Ed. Eng.40, 172–174 (2001).
[CrossRef]

Appl. Opt. (3)

Biophys. J. (4)

T. V. Ratto and M. L. Longo, “Obstructed diffusion in phase-separated supported lipid bilayers: A combined atomic force microscopy and fluorescence recovery after photo-bleaching approach,”Biophys. J.83, 3380–3392 (2002).
[CrossRef] [PubMed]

W-C. Lin, C. D. Blanchette, T. V. Ratto, and M. L. Longo, “Lipid asymmetry in DLPC/DSPC-supported lipid bilayers: a combined AFM and fluorescence microscopy study,” Biophys. J.90, 228–237 (2006).
[CrossRef]

S. L. Veatch and S. L. Keller, “Separation of liquid phases in giant vesicles of ternary mixtures of phospholipids and cholesterol,” Biophys. J.85, 3074–3083 (2003).
[CrossRef] [PubMed]

P. R. Richter and A. R. Brisson, “Following the formation of supported lipid bilayers on mica: A study combining AFM, QCM-D, and Ellipsometry,” Biophys. J.88, 3422–3433 (2005).
[CrossRef] [PubMed]

J. Biol. Chem. (1)

A. J. García-Sáez, S. Chiantia, and P. Schwille, “Effect of line tension on the lateral organization of lipid membranes,” J. Biol. Chem.282, 33537–33544 (2007).
[CrossRef] [PubMed]

J. Opt. Soc. Am B (1)

H. Kano, S. Mizuguchi, and S. Kawata, “Excitation of surface plasmon polaritons by a focused laser beam,” J. Opt. Soc. Am B15, 1381–1386 (1998).
[CrossRef]

Langmuir (1)

K. Morigaki, H. Schönherr, and T. Okazaki, “Polymerization of diacetylene phospholipid bilayers on solid substrate: Influence of the film deposition temperature,” Langmuir23, 12254–12260 (2007).
[CrossRef] [PubMed]

Nature (2)

M. Tanaka and E. Sackmann, “Polymer-supported membranes as models of the cell surface,” Nature437, 656–663 (2005).
[CrossRef] [PubMed]

K. Simons and E. Ikonen, “Functional rafts in cell membranes,” Nature387, (1997) 569–572.
[CrossRef] [PubMed]

Opt. Commun. (2)

H. Kano and W. Knoll, “Locally excited surface plasmon polaritons for thickness measurement of LBK films,” Opt. Commun.153, 235–239 (1998).
[CrossRef]

H. Kano and W. Knoll, “A scanning microscope employing localized surface-plasmon-polaritons as a sensing probe,” Opt. Commun.182, 11–15 (2000).
[CrossRef]

Rev. Laser Eng. (1)

G. Miyaji, K. Ohbayashi, K. Sueda, K. Tsubakimoto, and N. Miyanaga, “Generation of vector beams with axially-symmetric polarization,” Rev. Laser Eng.32, 259–264 (2004).
[CrossRef]

Science (1)

E. Sackmann, “Supported membranes:scientific and practical applications,” Science271, 43–48 (1996).
[CrossRef] [PubMed]

Z. Naturforsch. A (1)

E. Kretschmann and H. Raether, “Radiative decay of non-radiative surface plasmon excited by light,” Z. Naturforsch. A23, 2135–2136 (1968).

Other (3)

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, 1988).

D. Marsh, CRC Handbook of Lipid Bilayers (CRC Press, 1990).

J. Meunier, D. Langevin, and N. Boccara, Physics of Amphiphilic Layers (Springer-Verlag, 1987).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

(a) Conventional configuration for exciting surface plasmons. (b) Surface plasmon propagation on thin metal film and its propagating direction. (c) Configuration for exciting LSP. The two arrows indicate the optical path for the excitation of surface plasmons. (d) Surface plasmons propagating to the optical axis and their localization.

Fig. 2
Fig. 2

(a) Calculated intensity distribution of reflected light on exit pupil plane of objective lens.

Fig. 3
Fig. 3

Calculated electric field intensity distribution of LSP assuming radially polarized light for excitation. Image (a) is the distribution on the Au surface facing pure water. The plot shown in Fig. 3(b) is the profile along the white dotted line on image (a).

Fig. 4
Fig. 4

Apparatus of the LSP microscope.

Fig. 5
Fig. 5

Schematic outline of bilayer patterning procedure and target area for observing lipid samples.

Fig. 6
Fig. 6

(a) Effective refractive index distribution of DSPC lipid bilayer in patterned lipid bilayers observed with the LSP microscope. DSPC lipid bilayers can be found as higher effective refractive index than that of patterned lipid bilayer. (b) Observed effective refractive index distribution after removing DSPC bilayers. The black circular region shows the gap of the patterned lipid bilayers.

Fig. 7
Fig. 7

(a) Effective refractive index distribution of mixed lipid bilayers in a 10 μm gap of patterned lipid bilayers observed with the LSP microscope. The white framed area shows the center part of a gap of patterned lipid bilayers, and domains due to the mixed lipid bilayer can be seen within it. (b) Histogram of effective refractive index in white framed area A.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

ρ sp = n g ω c sin θ sp Real ( ω c ( n m 2 n s 2 n m 2 + n s 2 ) 1 / 2 ) .

Metrics