Abstract

Diffuse optical remission spectra from the mammalian neocortex at visible wavelengths contain spectral features originating from the mitochondria. A new algorithm is presented, based on analytically relating the first differential of the attenuation spectrum to the first differential of the chromophore spectra, that can separate and calculate the oxidation state of cytochrome c as well as the absolute concentration and saturation of hemoglobin. The algorithm is validated in phantoms and then tested on the neocortex of the rat during an anoxic challenge. Implementation of the algorithm will provide detailed information of mitochondrial oxygenation and mitochondrial function in physiological studies of the mammalian brain.

© 2012 OSA

Full Article  |  PDF Article
Related Articles
Spectral dependence of temporal point spread functions in human tissues

M. Essenpreis, C. E. Elwell, M. Cope, P. van der Zee, S. R. Arridge, and D. T. Delpy
Appl. Opt. 32(4) 418-425 (1993)

Absorption and scattering imaging of tissue with steady-state second-differential spectral-analysis tomography

Heng Xu, Brian W. Pogue, Hamid Dehghani, Keith D. Paulsen, Roger Springett, and Jeff F. Dunn
Opt. Lett. 29(17) 2043-2045 (2004)

Quantitative measurement of muscle oxygen saturation without influence from skin and fat using continuous-wave near infrared spectroscopy

Ye Yang, Olusola O. Soyemi, Peter J. Scott, Michelle R. Landry, Stuart M. C. Lee, Leah Stroud, and Babs R. Soller
Opt. Express 15(21) 13715-13730 (2007)

References

  • View by:
  • |
  • |
  • |

  1. C. H. Snyder, E. B. Gutierrez-Cirlos, and B. L. Trumpower, “Evidence for a concerted mechanism of ubiquinol oxidation by the cytochrome bc1 complex,” J. Biol. Chem. 275(18), 13535–13541 (2000).
    [Crossref] [PubMed]
  2. P. R. Rich, I. C. West, and P. Mitchell, “The location of CuA in mammalian cytochrome c oxidase,” FEBS Lett. 233(1), 25–30 (1988).
    [Crossref] [PubMed]
  3. C. Hunte, H. Palsdottir, and B. L. Trumpower, “Protonmotive pathways and mechanisms in the cytochrome bc1 complex,” FEBS Lett. 545(1), 39–46 (2003).
    [Crossref] [PubMed]
  4. B. Chance and G. R. Williams, “The respiratory chain and oxidative phosphorylation,” Adv. Enzymol. Relat. Subj. Biochem. 17, 65–134 (1956).
    [PubMed]
  5. J. E. Morgan and M. Wikström, “Steady-state redox behavior of cytochrome c, cytochrome a, and CuA of cytochrome c oxidase in intact rat liver mitochondria,” Biochemistry 30(4), 948–958 (1991).
    [Crossref] [PubMed]
  6. J. G. Lindsay, P. L. Dutton, and D. F. Wilson, “Energy-dependent effects on the oxidation-reduction midpoint potentials of the b and c cytochromes in phosphorylating submitochondrial particles from pigeon heart,” Biochemistry 11(10), 1937–1943 (1972).
    [Crossref] [PubMed]
  7. V. S. Hollis, M. Palacios-Callender, R. J. Springett, D. T. Delpy, and S. Moncada, “Monitoring cytochrome redox changes in the mitochondria of intact cells using multi-wavelength visible light spectroscopy,” Biochim. Biophys. Acta 1607(2-3), 191–202 (2003).
    [Crossref] [PubMed]
  8. F. G. Hempel, F. F. Jöbsis, J. L. LaManna, M. R. Rosenthal, and H. A. Saltzman, “Oxidation of cerebral cytochrome aa3 by oxygen plus carbon dioxide at hyperbaric pressures,” J. Appl. Physiol. 43(5), 873–879 (1977).
    [PubMed]
  9. F. F. Jöbsis, J. H. Keizer, J. C. LaManna, and M. Rosenthal, “Reflectance spectrophotometry of cytochrome aa3 in vivo,” J. Appl. Physiol. 43(5), 858–872 (1977).
    [PubMed]
  10. N. R. Kreisman, T. J. Sick, J. C. LaManna, and M. Rosenthal, “Local tissue oxygen tension-cytochrome a,a3 redox relationships in rat cerebral cortex in vivo,” Brain Res. 218(1-2), 161–174 (1981).
    [Crossref] [PubMed]
  11. A. E. Arai, C. E. Kasserra, P. R. Territo, A. H. Gandjbakhche, and R. S. Balaban, “Myocardial oxygenation in vivo: optical spectroscopy of cytoplasmic myoglobin and mitochondrial cytochromes,” Am. J. Physiol. 277(2 Pt 2), H683–H697 (1999).
    [PubMed]
  12. J. Mayhew, Y. Zheng, Y. Hou, B. Vuksanovic, J. Berwick, S. Askew, and P. Coffey, “Spectroscopic analysis of changes in remitted illumination: the response to increased neural activity in brain,” Neuroimage 10(3), 304–326 (1999).
    [Crossref] [PubMed]
  13. D. Malonek and A. Grinvald, “Interactions between electrical activity and cortical microcirculation revealed by imaging spectroscopy: implications for functional brain mapping,” Science 272(5261), 551–554 (1996).
    [Crossref] [PubMed]
  14. S. M. Narayan, E. M. Santori, A. J. Blood, J. S. Burton, and A. W. Toga, “Imaging optical reflectance in rodent barrel and forelimb sensory cortex,” Neuroimage 1(3), 181–190 (1994).
    [Crossref] [PubMed]
  15. D. Malonek, U. Dirnagl, U. Lindauer, K. Yamada, I. Kanno, and A. Grinvald, “Vascular imprints of neuronal activity: relationships between the dynamics of cortical blood flow, oxygenation, and volume changes following sensory stimulation,” Proc. Natl. Acad. Sci. U.S.A. 94(26), 14826–14831 (1997).
    [Crossref] [PubMed]
  16. M. Jones, J. Berwick, and J. Mayhew, “Changes in blood flow, oxygenation, and volume following extended stimulation of rodent barrel cortex,” Neuroimage 15(3), 474–487 (2002).
    [Crossref] [PubMed]
  17. U. Lindauer, J. Gethmann, M. Kühl, M. Kohl-Bareis, and U. Dirnagl, “Neuronal activity-induced changes of local cerebral microvascular blood oxygenation in the rat: effect of systemic hyperoxia or hypoxia,” Brain Res. 975(1-2), 135–140 (2003).
    [Crossref] [PubMed]
  18. M. Kohl, U. Lindauer, G. Royl, M. Kuhl, L. Gold, A. Villringer, and U. Dirnagl, “Physical model for the spectroscopic analysis of cortical intrinsic optical signals,” Phys. Med. Biol. 45(12), 3749–3764 (2000).
    [Crossref] [PubMed]
  19. R. B. Buxton, “The elusive initial dip,” Neuroimage 13(6), 953–958 (2001).
    [Crossref] [PubMed]
  20. M. Jones, J. Berwick, D. Johnston, and J. Mayhew, “Concurrent optical imaging spectroscopy and laser-Doppler flowmetry: the relationship between blood flow, oxygenation, and volume in rodent barrel cortex,” Neuroimage 13(6), 1002–1015 (2001).
    [Crossref] [PubMed]
  21. J. Mayhew, D. Johnston, J. Martindale, M. Jones, J. Berwick, and Y. Zheng, “Increased oxygen consumption following activation of brain: theoretical footnotes using spectroscopic data from barrel cortex,” Neuroimage 13(6), 975–987 (2001).
    [Crossref] [PubMed]
  22. U. Lindauer, G. Royl, C. Leithner, M. Kühl, L. Gold, J. Gethmann, M. Kohl-Bareis, A. Villringer, and U. Dirnagl, “No evidence for early decrease in blood oxygenation in rat whisker cortex in response to functional activation,” Neuroimage 13(6), 988–1001 (2001).
    [Crossref] [PubMed]
  23. I. Vanzetta and A. Grinvald, “Evidence and lack of evidence for the initial dip in the anesthetized rat: implications for human functional brain imaging,” Neuroimage 13(6), 959–967 (2001).
    [Crossref] [PubMed]
  24. E. M. Hillman, D. A. Boas, A. M. Dale, and A. K. Dunn, “Laminar optical tomography: demonstration of millimeter-scale depth-resolved imaging in turbid media,” Opt. Lett. 29(14), 1650–1652 (2004).
    [Crossref] [PubMed]
  25. M. Paoli, J. Marles-Wright, and A. Smith, “Structure-function relationships in heme-proteins,” DNA Cell Biol. 21(4), 271–280 (2002).
    [Crossref] [PubMed]
  26. C. Cooper, M. Sharpe, C. Elwell, R. Springett, J. Penrice, L. Tyszczuk, P. Amess, J. Wyatt, V. Quaresima, and D. Delpy, “The cytochrome oxidase redox state in vivo,” Adv. Exp. Med. Biol. 428, 449–456 (1997).
    [Crossref] [PubMed]
  27. R. Springett, J. Newman, M. Cope, and D. T. Delpy, “Oxygen dependency and precision of cytochrome oxidase signal from full spectral NIRS of the piglet brain,” Am. J. Physiol. Heart Circ. Physiol. 279(5), H2202–H2209 (2000).
    [PubMed]
  28. G. L. Liao and G. Palmer, “The reduced minus oxidized difference spectra of cytochromes a and a3,” Biochim. Biophys. Acta 1274(3), 109–111 (1996).
    [Crossref] [PubMed]
  29. C. R. Simpson, M. Kohl, M. Essenpreis, and M. Cope, “Near-infrared optical properties of ex vivo human skin and subcutaneous tissues measured using the Monte Carlo inversion technique,” Phys. Med. Biol. 43(9), 2465–2478 (1998).
    [Crossref] [PubMed]
  30. L. G. Henyey and J. L. Greenstein, “Diffuse radiation in the galaxy,” Astrophys. J. 93, 70–83 (1941).
    [Crossref]
  31. S. R. Arridge, M. Cope, and D. T. Delpy, “The theoretical basis for the determination of optical pathlengths in tissue: temporal and frequency analysis,” Phys. Med. Biol. 37(7), 1531–1560 (1992).
    [Crossref] [PubMed]
  32. H. J. van Staveren, C. J. M. Moes, J. van Marie, S. A. Prahl, and M. J. C. van Gemert, “Light scattering in Intralipid-10% in the wavelength range of 400-1100 nm,” Appl. Opt. 30(31), 4507–4514 (1991).
    [Crossref] [PubMed]
  33. D. F. Wilson, M. Erecińska, C. Drown, and I. A. Silver, “Effect of oxygen tension on cellular energetics,” Am. J. Physiol. 233(5), C135–C140 (1977).
    [PubMed]
  34. G. De Visscher, R. Springett, D. T. Delpy, J. Van Reempts, M. Borgers, and K. van Rossem, “Nitric oxide does not inhibit cerebral cytochrome oxidase in vivo or in the reactive hyperemic phase after brief anoxia in the adult rat,” J. Cereb. Blood Flow Metab. 22(5), 515–519 (2002).
    [Crossref] [PubMed]
  35. J. C. Finlay and T. H. Foster, “Effect of pigment packaging on diffuse reflectance spectroscopy of samples containing red blood cells,” Opt. Lett. 29(9), 965–967 (2004).
    [Crossref] [PubMed]
  36. R. Springett, M. Wylezinska, E. B. Cady, M. Cope, and D. T. Delpy, “Oxygen dependency of cerebral oxidative phosphorylation in newborn piglets,” J. Cereb. Blood Flow Metab. 20(2), 280–289 (2000).
    [Crossref] [PubMed]
  37. D. R. Green and G. Kroemer, “The pathophysiology of mitochondrial cell death,” Science 305(5684), 626–629 (2004).
    [Crossref] [PubMed]
  38. M. O. Ripple, M. Abajian, and R. Springett, “Cytochrome c is rapidly reduced in the cytosol after mitochondrial outer membrane permeabilization,” Apoptosis 15(5), 563–573 (2010).
    [Crossref] [PubMed]

2010 (1)

M. O. Ripple, M. Abajian, and R. Springett, “Cytochrome c is rapidly reduced in the cytosol after mitochondrial outer membrane permeabilization,” Apoptosis 15(5), 563–573 (2010).
[Crossref] [PubMed]

2004 (3)

2003 (3)

C. Hunte, H. Palsdottir, and B. L. Trumpower, “Protonmotive pathways and mechanisms in the cytochrome bc1 complex,” FEBS Lett. 545(1), 39–46 (2003).
[Crossref] [PubMed]

V. S. Hollis, M. Palacios-Callender, R. J. Springett, D. T. Delpy, and S. Moncada, “Monitoring cytochrome redox changes in the mitochondria of intact cells using multi-wavelength visible light spectroscopy,” Biochim. Biophys. Acta 1607(2-3), 191–202 (2003).
[Crossref] [PubMed]

U. Lindauer, J. Gethmann, M. Kühl, M. Kohl-Bareis, and U. Dirnagl, “Neuronal activity-induced changes of local cerebral microvascular blood oxygenation in the rat: effect of systemic hyperoxia or hypoxia,” Brain Res. 975(1-2), 135–140 (2003).
[Crossref] [PubMed]

2002 (3)

M. Jones, J. Berwick, and J. Mayhew, “Changes in blood flow, oxygenation, and volume following extended stimulation of rodent barrel cortex,” Neuroimage 15(3), 474–487 (2002).
[Crossref] [PubMed]

G. De Visscher, R. Springett, D. T. Delpy, J. Van Reempts, M. Borgers, and K. van Rossem, “Nitric oxide does not inhibit cerebral cytochrome oxidase in vivo or in the reactive hyperemic phase after brief anoxia in the adult rat,” J. Cereb. Blood Flow Metab. 22(5), 515–519 (2002).
[Crossref] [PubMed]

M. Paoli, J. Marles-Wright, and A. Smith, “Structure-function relationships in heme-proteins,” DNA Cell Biol. 21(4), 271–280 (2002).
[Crossref] [PubMed]

2001 (5)

R. B. Buxton, “The elusive initial dip,” Neuroimage 13(6), 953–958 (2001).
[Crossref] [PubMed]

M. Jones, J. Berwick, D. Johnston, and J. Mayhew, “Concurrent optical imaging spectroscopy and laser-Doppler flowmetry: the relationship between blood flow, oxygenation, and volume in rodent barrel cortex,” Neuroimage 13(6), 1002–1015 (2001).
[Crossref] [PubMed]

J. Mayhew, D. Johnston, J. Martindale, M. Jones, J. Berwick, and Y. Zheng, “Increased oxygen consumption following activation of brain: theoretical footnotes using spectroscopic data from barrel cortex,” Neuroimage 13(6), 975–987 (2001).
[Crossref] [PubMed]

U. Lindauer, G. Royl, C. Leithner, M. Kühl, L. Gold, J. Gethmann, M. Kohl-Bareis, A. Villringer, and U. Dirnagl, “No evidence for early decrease in blood oxygenation in rat whisker cortex in response to functional activation,” Neuroimage 13(6), 988–1001 (2001).
[Crossref] [PubMed]

I. Vanzetta and A. Grinvald, “Evidence and lack of evidence for the initial dip in the anesthetized rat: implications for human functional brain imaging,” Neuroimage 13(6), 959–967 (2001).
[Crossref] [PubMed]

2000 (4)

R. Springett, J. Newman, M. Cope, and D. T. Delpy, “Oxygen dependency and precision of cytochrome oxidase signal from full spectral NIRS of the piglet brain,” Am. J. Physiol. Heart Circ. Physiol. 279(5), H2202–H2209 (2000).
[PubMed]

R. Springett, M. Wylezinska, E. B. Cady, M. Cope, and D. T. Delpy, “Oxygen dependency of cerebral oxidative phosphorylation in newborn piglets,” J. Cereb. Blood Flow Metab. 20(2), 280–289 (2000).
[Crossref] [PubMed]

M. Kohl, U. Lindauer, G. Royl, M. Kuhl, L. Gold, A. Villringer, and U. Dirnagl, “Physical model for the spectroscopic analysis of cortical intrinsic optical signals,” Phys. Med. Biol. 45(12), 3749–3764 (2000).
[Crossref] [PubMed]

C. H. Snyder, E. B. Gutierrez-Cirlos, and B. L. Trumpower, “Evidence for a concerted mechanism of ubiquinol oxidation by the cytochrome bc1 complex,” J. Biol. Chem. 275(18), 13535–13541 (2000).
[Crossref] [PubMed]

1999 (2)

A. E. Arai, C. E. Kasserra, P. R. Territo, A. H. Gandjbakhche, and R. S. Balaban, “Myocardial oxygenation in vivo: optical spectroscopy of cytoplasmic myoglobin and mitochondrial cytochromes,” Am. J. Physiol. 277(2 Pt 2), H683–H697 (1999).
[PubMed]

J. Mayhew, Y. Zheng, Y. Hou, B. Vuksanovic, J. Berwick, S. Askew, and P. Coffey, “Spectroscopic analysis of changes in remitted illumination: the response to increased neural activity in brain,” Neuroimage 10(3), 304–326 (1999).
[Crossref] [PubMed]

1998 (1)

C. R. Simpson, M. Kohl, M. Essenpreis, and M. Cope, “Near-infrared optical properties of ex vivo human skin and subcutaneous tissues measured using the Monte Carlo inversion technique,” Phys. Med. Biol. 43(9), 2465–2478 (1998).
[Crossref] [PubMed]

1997 (2)

C. Cooper, M. Sharpe, C. Elwell, R. Springett, J. Penrice, L. Tyszczuk, P. Amess, J. Wyatt, V. Quaresima, and D. Delpy, “The cytochrome oxidase redox state in vivo,” Adv. Exp. Med. Biol. 428, 449–456 (1997).
[Crossref] [PubMed]

D. Malonek, U. Dirnagl, U. Lindauer, K. Yamada, I. Kanno, and A. Grinvald, “Vascular imprints of neuronal activity: relationships between the dynamics of cortical blood flow, oxygenation, and volume changes following sensory stimulation,” Proc. Natl. Acad. Sci. U.S.A. 94(26), 14826–14831 (1997).
[Crossref] [PubMed]

1996 (2)

D. Malonek and A. Grinvald, “Interactions between electrical activity and cortical microcirculation revealed by imaging spectroscopy: implications for functional brain mapping,” Science 272(5261), 551–554 (1996).
[Crossref] [PubMed]

G. L. Liao and G. Palmer, “The reduced minus oxidized difference spectra of cytochromes a and a3,” Biochim. Biophys. Acta 1274(3), 109–111 (1996).
[Crossref] [PubMed]

1994 (1)

S. M. Narayan, E. M. Santori, A. J. Blood, J. S. Burton, and A. W. Toga, “Imaging optical reflectance in rodent barrel and forelimb sensory cortex,” Neuroimage 1(3), 181–190 (1994).
[Crossref] [PubMed]

1992 (1)

S. R. Arridge, M. Cope, and D. T. Delpy, “The theoretical basis for the determination of optical pathlengths in tissue: temporal and frequency analysis,” Phys. Med. Biol. 37(7), 1531–1560 (1992).
[Crossref] [PubMed]

1991 (2)

H. J. van Staveren, C. J. M. Moes, J. van Marie, S. A. Prahl, and M. J. C. van Gemert, “Light scattering in Intralipid-10% in the wavelength range of 400-1100 nm,” Appl. Opt. 30(31), 4507–4514 (1991).
[Crossref] [PubMed]

J. E. Morgan and M. Wikström, “Steady-state redox behavior of cytochrome c, cytochrome a, and CuA of cytochrome c oxidase in intact rat liver mitochondria,” Biochemistry 30(4), 948–958 (1991).
[Crossref] [PubMed]

1988 (1)

P. R. Rich, I. C. West, and P. Mitchell, “The location of CuA in mammalian cytochrome c oxidase,” FEBS Lett. 233(1), 25–30 (1988).
[Crossref] [PubMed]

1981 (1)

N. R. Kreisman, T. J. Sick, J. C. LaManna, and M. Rosenthal, “Local tissue oxygen tension-cytochrome a,a3 redox relationships in rat cerebral cortex in vivo,” Brain Res. 218(1-2), 161–174 (1981).
[Crossref] [PubMed]

1977 (3)

F. G. Hempel, F. F. Jöbsis, J. L. LaManna, M. R. Rosenthal, and H. A. Saltzman, “Oxidation of cerebral cytochrome aa3 by oxygen plus carbon dioxide at hyperbaric pressures,” J. Appl. Physiol. 43(5), 873–879 (1977).
[PubMed]

F. F. Jöbsis, J. H. Keizer, J. C. LaManna, and M. Rosenthal, “Reflectance spectrophotometry of cytochrome aa3 in vivo,” J. Appl. Physiol. 43(5), 858–872 (1977).
[PubMed]

D. F. Wilson, M. Erecińska, C. Drown, and I. A. Silver, “Effect of oxygen tension on cellular energetics,” Am. J. Physiol. 233(5), C135–C140 (1977).
[PubMed]

1972 (1)

J. G. Lindsay, P. L. Dutton, and D. F. Wilson, “Energy-dependent effects on the oxidation-reduction midpoint potentials of the b and c cytochromes in phosphorylating submitochondrial particles from pigeon heart,” Biochemistry 11(10), 1937–1943 (1972).
[Crossref] [PubMed]

1956 (1)

B. Chance and G. R. Williams, “The respiratory chain and oxidative phosphorylation,” Adv. Enzymol. Relat. Subj. Biochem. 17, 65–134 (1956).
[PubMed]

1941 (1)

L. G. Henyey and J. L. Greenstein, “Diffuse radiation in the galaxy,” Astrophys. J. 93, 70–83 (1941).
[Crossref]

Abajian, M.

M. O. Ripple, M. Abajian, and R. Springett, “Cytochrome c is rapidly reduced in the cytosol after mitochondrial outer membrane permeabilization,” Apoptosis 15(5), 563–573 (2010).
[Crossref] [PubMed]

Amess, P.

C. Cooper, M. Sharpe, C. Elwell, R. Springett, J. Penrice, L. Tyszczuk, P. Amess, J. Wyatt, V. Quaresima, and D. Delpy, “The cytochrome oxidase redox state in vivo,” Adv. Exp. Med. Biol. 428, 449–456 (1997).
[Crossref] [PubMed]

Arai, A. E.

A. E. Arai, C. E. Kasserra, P. R. Territo, A. H. Gandjbakhche, and R. S. Balaban, “Myocardial oxygenation in vivo: optical spectroscopy of cytoplasmic myoglobin and mitochondrial cytochromes,” Am. J. Physiol. 277(2 Pt 2), H683–H697 (1999).
[PubMed]

Arridge, S. R.

S. R. Arridge, M. Cope, and D. T. Delpy, “The theoretical basis for the determination of optical pathlengths in tissue: temporal and frequency analysis,” Phys. Med. Biol. 37(7), 1531–1560 (1992).
[Crossref] [PubMed]

Askew, S.

J. Mayhew, Y. Zheng, Y. Hou, B. Vuksanovic, J. Berwick, S. Askew, and P. Coffey, “Spectroscopic analysis of changes in remitted illumination: the response to increased neural activity in brain,” Neuroimage 10(3), 304–326 (1999).
[Crossref] [PubMed]

Balaban, R. S.

A. E. Arai, C. E. Kasserra, P. R. Territo, A. H. Gandjbakhche, and R. S. Balaban, “Myocardial oxygenation in vivo: optical spectroscopy of cytoplasmic myoglobin and mitochondrial cytochromes,” Am. J. Physiol. 277(2 Pt 2), H683–H697 (1999).
[PubMed]

Berwick, J.

M. Jones, J. Berwick, and J. Mayhew, “Changes in blood flow, oxygenation, and volume following extended stimulation of rodent barrel cortex,” Neuroimage 15(3), 474–487 (2002).
[Crossref] [PubMed]

M. Jones, J. Berwick, D. Johnston, and J. Mayhew, “Concurrent optical imaging spectroscopy and laser-Doppler flowmetry: the relationship between blood flow, oxygenation, and volume in rodent barrel cortex,” Neuroimage 13(6), 1002–1015 (2001).
[Crossref] [PubMed]

J. Mayhew, D. Johnston, J. Martindale, M. Jones, J. Berwick, and Y. Zheng, “Increased oxygen consumption following activation of brain: theoretical footnotes using spectroscopic data from barrel cortex,” Neuroimage 13(6), 975–987 (2001).
[Crossref] [PubMed]

J. Mayhew, Y. Zheng, Y. Hou, B. Vuksanovic, J. Berwick, S. Askew, and P. Coffey, “Spectroscopic analysis of changes in remitted illumination: the response to increased neural activity in brain,” Neuroimage 10(3), 304–326 (1999).
[Crossref] [PubMed]

Blood, A. J.

S. M. Narayan, E. M. Santori, A. J. Blood, J. S. Burton, and A. W. Toga, “Imaging optical reflectance in rodent barrel and forelimb sensory cortex,” Neuroimage 1(3), 181–190 (1994).
[Crossref] [PubMed]

Boas, D. A.

Borgers, M.

G. De Visscher, R. Springett, D. T. Delpy, J. Van Reempts, M. Borgers, and K. van Rossem, “Nitric oxide does not inhibit cerebral cytochrome oxidase in vivo or in the reactive hyperemic phase after brief anoxia in the adult rat,” J. Cereb. Blood Flow Metab. 22(5), 515–519 (2002).
[Crossref] [PubMed]

Burton, J. S.

S. M. Narayan, E. M. Santori, A. J. Blood, J. S. Burton, and A. W. Toga, “Imaging optical reflectance in rodent barrel and forelimb sensory cortex,” Neuroimage 1(3), 181–190 (1994).
[Crossref] [PubMed]

Buxton, R. B.

R. B. Buxton, “The elusive initial dip,” Neuroimage 13(6), 953–958 (2001).
[Crossref] [PubMed]

Cady, E. B.

R. Springett, M. Wylezinska, E. B. Cady, M. Cope, and D. T. Delpy, “Oxygen dependency of cerebral oxidative phosphorylation in newborn piglets,” J. Cereb. Blood Flow Metab. 20(2), 280–289 (2000).
[Crossref] [PubMed]

Chance, B.

B. Chance and G. R. Williams, “The respiratory chain and oxidative phosphorylation,” Adv. Enzymol. Relat. Subj. Biochem. 17, 65–134 (1956).
[PubMed]

Coffey, P.

J. Mayhew, Y. Zheng, Y. Hou, B. Vuksanovic, J. Berwick, S. Askew, and P. Coffey, “Spectroscopic analysis of changes in remitted illumination: the response to increased neural activity in brain,” Neuroimage 10(3), 304–326 (1999).
[Crossref] [PubMed]

Cooper, C.

C. Cooper, M. Sharpe, C. Elwell, R. Springett, J. Penrice, L. Tyszczuk, P. Amess, J. Wyatt, V. Quaresima, and D. Delpy, “The cytochrome oxidase redox state in vivo,” Adv. Exp. Med. Biol. 428, 449–456 (1997).
[Crossref] [PubMed]

Cope, M.

R. Springett, M. Wylezinska, E. B. Cady, M. Cope, and D. T. Delpy, “Oxygen dependency of cerebral oxidative phosphorylation in newborn piglets,” J. Cereb. Blood Flow Metab. 20(2), 280–289 (2000).
[Crossref] [PubMed]

R. Springett, J. Newman, M. Cope, and D. T. Delpy, “Oxygen dependency and precision of cytochrome oxidase signal from full spectral NIRS of the piglet brain,” Am. J. Physiol. Heart Circ. Physiol. 279(5), H2202–H2209 (2000).
[PubMed]

C. R. Simpson, M. Kohl, M. Essenpreis, and M. Cope, “Near-infrared optical properties of ex vivo human skin and subcutaneous tissues measured using the Monte Carlo inversion technique,” Phys. Med. Biol. 43(9), 2465–2478 (1998).
[Crossref] [PubMed]

S. R. Arridge, M. Cope, and D. T. Delpy, “The theoretical basis for the determination of optical pathlengths in tissue: temporal and frequency analysis,” Phys. Med. Biol. 37(7), 1531–1560 (1992).
[Crossref] [PubMed]

Dale, A. M.

De Visscher, G.

G. De Visscher, R. Springett, D. T. Delpy, J. Van Reempts, M. Borgers, and K. van Rossem, “Nitric oxide does not inhibit cerebral cytochrome oxidase in vivo or in the reactive hyperemic phase after brief anoxia in the adult rat,” J. Cereb. Blood Flow Metab. 22(5), 515–519 (2002).
[Crossref] [PubMed]

Delpy, D.

C. Cooper, M. Sharpe, C. Elwell, R. Springett, J. Penrice, L. Tyszczuk, P. Amess, J. Wyatt, V. Quaresima, and D. Delpy, “The cytochrome oxidase redox state in vivo,” Adv. Exp. Med. Biol. 428, 449–456 (1997).
[Crossref] [PubMed]

Delpy, D. T.

V. S. Hollis, M. Palacios-Callender, R. J. Springett, D. T. Delpy, and S. Moncada, “Monitoring cytochrome redox changes in the mitochondria of intact cells using multi-wavelength visible light spectroscopy,” Biochim. Biophys. Acta 1607(2-3), 191–202 (2003).
[Crossref] [PubMed]

G. De Visscher, R. Springett, D. T. Delpy, J. Van Reempts, M. Borgers, and K. van Rossem, “Nitric oxide does not inhibit cerebral cytochrome oxidase in vivo or in the reactive hyperemic phase after brief anoxia in the adult rat,” J. Cereb. Blood Flow Metab. 22(5), 515–519 (2002).
[Crossref] [PubMed]

R. Springett, M. Wylezinska, E. B. Cady, M. Cope, and D. T. Delpy, “Oxygen dependency of cerebral oxidative phosphorylation in newborn piglets,” J. Cereb. Blood Flow Metab. 20(2), 280–289 (2000).
[Crossref] [PubMed]

R. Springett, J. Newman, M. Cope, and D. T. Delpy, “Oxygen dependency and precision of cytochrome oxidase signal from full spectral NIRS of the piglet brain,” Am. J. Physiol. Heart Circ. Physiol. 279(5), H2202–H2209 (2000).
[PubMed]

S. R. Arridge, M. Cope, and D. T. Delpy, “The theoretical basis for the determination of optical pathlengths in tissue: temporal and frequency analysis,” Phys. Med. Biol. 37(7), 1531–1560 (1992).
[Crossref] [PubMed]

Dirnagl, U.

U. Lindauer, J. Gethmann, M. Kühl, M. Kohl-Bareis, and U. Dirnagl, “Neuronal activity-induced changes of local cerebral microvascular blood oxygenation in the rat: effect of systemic hyperoxia or hypoxia,” Brain Res. 975(1-2), 135–140 (2003).
[Crossref] [PubMed]

U. Lindauer, G. Royl, C. Leithner, M. Kühl, L. Gold, J. Gethmann, M. Kohl-Bareis, A. Villringer, and U. Dirnagl, “No evidence for early decrease in blood oxygenation in rat whisker cortex in response to functional activation,” Neuroimage 13(6), 988–1001 (2001).
[Crossref] [PubMed]

M. Kohl, U. Lindauer, G. Royl, M. Kuhl, L. Gold, A. Villringer, and U. Dirnagl, “Physical model for the spectroscopic analysis of cortical intrinsic optical signals,” Phys. Med. Biol. 45(12), 3749–3764 (2000).
[Crossref] [PubMed]

D. Malonek, U. Dirnagl, U. Lindauer, K. Yamada, I. Kanno, and A. Grinvald, “Vascular imprints of neuronal activity: relationships between the dynamics of cortical blood flow, oxygenation, and volume changes following sensory stimulation,” Proc. Natl. Acad. Sci. U.S.A. 94(26), 14826–14831 (1997).
[Crossref] [PubMed]

Drown, C.

D. F. Wilson, M. Erecińska, C. Drown, and I. A. Silver, “Effect of oxygen tension on cellular energetics,” Am. J. Physiol. 233(5), C135–C140 (1977).
[PubMed]

Dunn, A. K.

Dutton, P. L.

J. G. Lindsay, P. L. Dutton, and D. F. Wilson, “Energy-dependent effects on the oxidation-reduction midpoint potentials of the b and c cytochromes in phosphorylating submitochondrial particles from pigeon heart,” Biochemistry 11(10), 1937–1943 (1972).
[Crossref] [PubMed]

Elwell, C.

C. Cooper, M. Sharpe, C. Elwell, R. Springett, J. Penrice, L. Tyszczuk, P. Amess, J. Wyatt, V. Quaresima, and D. Delpy, “The cytochrome oxidase redox state in vivo,” Adv. Exp. Med. Biol. 428, 449–456 (1997).
[Crossref] [PubMed]

Erecinska, M.

D. F. Wilson, M. Erecińska, C. Drown, and I. A. Silver, “Effect of oxygen tension on cellular energetics,” Am. J. Physiol. 233(5), C135–C140 (1977).
[PubMed]

Essenpreis, M.

C. R. Simpson, M. Kohl, M. Essenpreis, and M. Cope, “Near-infrared optical properties of ex vivo human skin and subcutaneous tissues measured using the Monte Carlo inversion technique,” Phys. Med. Biol. 43(9), 2465–2478 (1998).
[Crossref] [PubMed]

Finlay, J. C.

Foster, T. H.

Gandjbakhche, A. H.

A. E. Arai, C. E. Kasserra, P. R. Territo, A. H. Gandjbakhche, and R. S. Balaban, “Myocardial oxygenation in vivo: optical spectroscopy of cytoplasmic myoglobin and mitochondrial cytochromes,” Am. J. Physiol. 277(2 Pt 2), H683–H697 (1999).
[PubMed]

Gethmann, J.

U. Lindauer, J. Gethmann, M. Kühl, M. Kohl-Bareis, and U. Dirnagl, “Neuronal activity-induced changes of local cerebral microvascular blood oxygenation in the rat: effect of systemic hyperoxia or hypoxia,” Brain Res. 975(1-2), 135–140 (2003).
[Crossref] [PubMed]

U. Lindauer, G. Royl, C. Leithner, M. Kühl, L. Gold, J. Gethmann, M. Kohl-Bareis, A. Villringer, and U. Dirnagl, “No evidence for early decrease in blood oxygenation in rat whisker cortex in response to functional activation,” Neuroimage 13(6), 988–1001 (2001).
[Crossref] [PubMed]

Gold, L.

U. Lindauer, G. Royl, C. Leithner, M. Kühl, L. Gold, J. Gethmann, M. Kohl-Bareis, A. Villringer, and U. Dirnagl, “No evidence for early decrease in blood oxygenation in rat whisker cortex in response to functional activation,” Neuroimage 13(6), 988–1001 (2001).
[Crossref] [PubMed]

M. Kohl, U. Lindauer, G. Royl, M. Kuhl, L. Gold, A. Villringer, and U. Dirnagl, “Physical model for the spectroscopic analysis of cortical intrinsic optical signals,” Phys. Med. Biol. 45(12), 3749–3764 (2000).
[Crossref] [PubMed]

Green, D. R.

D. R. Green and G. Kroemer, “The pathophysiology of mitochondrial cell death,” Science 305(5684), 626–629 (2004).
[Crossref] [PubMed]

Greenstein, J. L.

L. G. Henyey and J. L. Greenstein, “Diffuse radiation in the galaxy,” Astrophys. J. 93, 70–83 (1941).
[Crossref]

Grinvald, A.

I. Vanzetta and A. Grinvald, “Evidence and lack of evidence for the initial dip in the anesthetized rat: implications for human functional brain imaging,” Neuroimage 13(6), 959–967 (2001).
[Crossref] [PubMed]

D. Malonek, U. Dirnagl, U. Lindauer, K. Yamada, I. Kanno, and A. Grinvald, “Vascular imprints of neuronal activity: relationships between the dynamics of cortical blood flow, oxygenation, and volume changes following sensory stimulation,” Proc. Natl. Acad. Sci. U.S.A. 94(26), 14826–14831 (1997).
[Crossref] [PubMed]

D. Malonek and A. Grinvald, “Interactions between electrical activity and cortical microcirculation revealed by imaging spectroscopy: implications for functional brain mapping,” Science 272(5261), 551–554 (1996).
[Crossref] [PubMed]

Gutierrez-Cirlos, E. B.

C. H. Snyder, E. B. Gutierrez-Cirlos, and B. L. Trumpower, “Evidence for a concerted mechanism of ubiquinol oxidation by the cytochrome bc1 complex,” J. Biol. Chem. 275(18), 13535–13541 (2000).
[Crossref] [PubMed]

Hempel, F. G.

F. G. Hempel, F. F. Jöbsis, J. L. LaManna, M. R. Rosenthal, and H. A. Saltzman, “Oxidation of cerebral cytochrome aa3 by oxygen plus carbon dioxide at hyperbaric pressures,” J. Appl. Physiol. 43(5), 873–879 (1977).
[PubMed]

Henyey, L. G.

L. G. Henyey and J. L. Greenstein, “Diffuse radiation in the galaxy,” Astrophys. J. 93, 70–83 (1941).
[Crossref]

Hillman, E. M.

Hollis, V. S.

V. S. Hollis, M. Palacios-Callender, R. J. Springett, D. T. Delpy, and S. Moncada, “Monitoring cytochrome redox changes in the mitochondria of intact cells using multi-wavelength visible light spectroscopy,” Biochim. Biophys. Acta 1607(2-3), 191–202 (2003).
[Crossref] [PubMed]

Hou, Y.

J. Mayhew, Y. Zheng, Y. Hou, B. Vuksanovic, J. Berwick, S. Askew, and P. Coffey, “Spectroscopic analysis of changes in remitted illumination: the response to increased neural activity in brain,” Neuroimage 10(3), 304–326 (1999).
[Crossref] [PubMed]

Hunte, C.

C. Hunte, H. Palsdottir, and B. L. Trumpower, “Protonmotive pathways and mechanisms in the cytochrome bc1 complex,” FEBS Lett. 545(1), 39–46 (2003).
[Crossref] [PubMed]

Jöbsis, F. F.

F. G. Hempel, F. F. Jöbsis, J. L. LaManna, M. R. Rosenthal, and H. A. Saltzman, “Oxidation of cerebral cytochrome aa3 by oxygen plus carbon dioxide at hyperbaric pressures,” J. Appl. Physiol. 43(5), 873–879 (1977).
[PubMed]

F. F. Jöbsis, J. H. Keizer, J. C. LaManna, and M. Rosenthal, “Reflectance spectrophotometry of cytochrome aa3 in vivo,” J. Appl. Physiol. 43(5), 858–872 (1977).
[PubMed]

Johnston, D.

J. Mayhew, D. Johnston, J. Martindale, M. Jones, J. Berwick, and Y. Zheng, “Increased oxygen consumption following activation of brain: theoretical footnotes using spectroscopic data from barrel cortex,” Neuroimage 13(6), 975–987 (2001).
[Crossref] [PubMed]

M. Jones, J. Berwick, D. Johnston, and J. Mayhew, “Concurrent optical imaging spectroscopy and laser-Doppler flowmetry: the relationship between blood flow, oxygenation, and volume in rodent barrel cortex,” Neuroimage 13(6), 1002–1015 (2001).
[Crossref] [PubMed]

Jones, M.

M. Jones, J. Berwick, and J. Mayhew, “Changes in blood flow, oxygenation, and volume following extended stimulation of rodent barrel cortex,” Neuroimage 15(3), 474–487 (2002).
[Crossref] [PubMed]

M. Jones, J. Berwick, D. Johnston, and J. Mayhew, “Concurrent optical imaging spectroscopy and laser-Doppler flowmetry: the relationship between blood flow, oxygenation, and volume in rodent barrel cortex,” Neuroimage 13(6), 1002–1015 (2001).
[Crossref] [PubMed]

J. Mayhew, D. Johnston, J. Martindale, M. Jones, J. Berwick, and Y. Zheng, “Increased oxygen consumption following activation of brain: theoretical footnotes using spectroscopic data from barrel cortex,” Neuroimage 13(6), 975–987 (2001).
[Crossref] [PubMed]

Kanno, I.

D. Malonek, U. Dirnagl, U. Lindauer, K. Yamada, I. Kanno, and A. Grinvald, “Vascular imprints of neuronal activity: relationships between the dynamics of cortical blood flow, oxygenation, and volume changes following sensory stimulation,” Proc. Natl. Acad. Sci. U.S.A. 94(26), 14826–14831 (1997).
[Crossref] [PubMed]

Kasserra, C. E.

A. E. Arai, C. E. Kasserra, P. R. Territo, A. H. Gandjbakhche, and R. S. Balaban, “Myocardial oxygenation in vivo: optical spectroscopy of cytoplasmic myoglobin and mitochondrial cytochromes,” Am. J. Physiol. 277(2 Pt 2), H683–H697 (1999).
[PubMed]

Keizer, J. H.

F. F. Jöbsis, J. H. Keizer, J. C. LaManna, and M. Rosenthal, “Reflectance spectrophotometry of cytochrome aa3 in vivo,” J. Appl. Physiol. 43(5), 858–872 (1977).
[PubMed]

Kohl, M.

M. Kohl, U. Lindauer, G. Royl, M. Kuhl, L. Gold, A. Villringer, and U. Dirnagl, “Physical model for the spectroscopic analysis of cortical intrinsic optical signals,” Phys. Med. Biol. 45(12), 3749–3764 (2000).
[Crossref] [PubMed]

C. R. Simpson, M. Kohl, M. Essenpreis, and M. Cope, “Near-infrared optical properties of ex vivo human skin and subcutaneous tissues measured using the Monte Carlo inversion technique,” Phys. Med. Biol. 43(9), 2465–2478 (1998).
[Crossref] [PubMed]

Kohl-Bareis, M.

U. Lindauer, J. Gethmann, M. Kühl, M. Kohl-Bareis, and U. Dirnagl, “Neuronal activity-induced changes of local cerebral microvascular blood oxygenation in the rat: effect of systemic hyperoxia or hypoxia,” Brain Res. 975(1-2), 135–140 (2003).
[Crossref] [PubMed]

U. Lindauer, G. Royl, C. Leithner, M. Kühl, L. Gold, J. Gethmann, M. Kohl-Bareis, A. Villringer, and U. Dirnagl, “No evidence for early decrease in blood oxygenation in rat whisker cortex in response to functional activation,” Neuroimage 13(6), 988–1001 (2001).
[Crossref] [PubMed]

Kreisman, N. R.

N. R. Kreisman, T. J. Sick, J. C. LaManna, and M. Rosenthal, “Local tissue oxygen tension-cytochrome a,a3 redox relationships in rat cerebral cortex in vivo,” Brain Res. 218(1-2), 161–174 (1981).
[Crossref] [PubMed]

Kroemer, G.

D. R. Green and G. Kroemer, “The pathophysiology of mitochondrial cell death,” Science 305(5684), 626–629 (2004).
[Crossref] [PubMed]

Kuhl, M.

M. Kohl, U. Lindauer, G. Royl, M. Kuhl, L. Gold, A. Villringer, and U. Dirnagl, “Physical model for the spectroscopic analysis of cortical intrinsic optical signals,” Phys. Med. Biol. 45(12), 3749–3764 (2000).
[Crossref] [PubMed]

Kühl, M.

U. Lindauer, J. Gethmann, M. Kühl, M. Kohl-Bareis, and U. Dirnagl, “Neuronal activity-induced changes of local cerebral microvascular blood oxygenation in the rat: effect of systemic hyperoxia or hypoxia,” Brain Res. 975(1-2), 135–140 (2003).
[Crossref] [PubMed]

U. Lindauer, G. Royl, C. Leithner, M. Kühl, L. Gold, J. Gethmann, M. Kohl-Bareis, A. Villringer, and U. Dirnagl, “No evidence for early decrease in blood oxygenation in rat whisker cortex in response to functional activation,” Neuroimage 13(6), 988–1001 (2001).
[Crossref] [PubMed]

LaManna, J. C.

N. R. Kreisman, T. J. Sick, J. C. LaManna, and M. Rosenthal, “Local tissue oxygen tension-cytochrome a,a3 redox relationships in rat cerebral cortex in vivo,” Brain Res. 218(1-2), 161–174 (1981).
[Crossref] [PubMed]

F. F. Jöbsis, J. H. Keizer, J. C. LaManna, and M. Rosenthal, “Reflectance spectrophotometry of cytochrome aa3 in vivo,” J. Appl. Physiol. 43(5), 858–872 (1977).
[PubMed]

LaManna, J. L.

F. G. Hempel, F. F. Jöbsis, J. L. LaManna, M. R. Rosenthal, and H. A. Saltzman, “Oxidation of cerebral cytochrome aa3 by oxygen plus carbon dioxide at hyperbaric pressures,” J. Appl. Physiol. 43(5), 873–879 (1977).
[PubMed]

Leithner, C.

U. Lindauer, G. Royl, C. Leithner, M. Kühl, L. Gold, J. Gethmann, M. Kohl-Bareis, A. Villringer, and U. Dirnagl, “No evidence for early decrease in blood oxygenation in rat whisker cortex in response to functional activation,” Neuroimage 13(6), 988–1001 (2001).
[Crossref] [PubMed]

Liao, G. L.

G. L. Liao and G. Palmer, “The reduced minus oxidized difference spectra of cytochromes a and a3,” Biochim. Biophys. Acta 1274(3), 109–111 (1996).
[Crossref] [PubMed]

Lindauer, U.

U. Lindauer, J. Gethmann, M. Kühl, M. Kohl-Bareis, and U. Dirnagl, “Neuronal activity-induced changes of local cerebral microvascular blood oxygenation in the rat: effect of systemic hyperoxia or hypoxia,” Brain Res. 975(1-2), 135–140 (2003).
[Crossref] [PubMed]

U. Lindauer, G. Royl, C. Leithner, M. Kühl, L. Gold, J. Gethmann, M. Kohl-Bareis, A. Villringer, and U. Dirnagl, “No evidence for early decrease in blood oxygenation in rat whisker cortex in response to functional activation,” Neuroimage 13(6), 988–1001 (2001).
[Crossref] [PubMed]

M. Kohl, U. Lindauer, G. Royl, M. Kuhl, L. Gold, A. Villringer, and U. Dirnagl, “Physical model for the spectroscopic analysis of cortical intrinsic optical signals,” Phys. Med. Biol. 45(12), 3749–3764 (2000).
[Crossref] [PubMed]

D. Malonek, U. Dirnagl, U. Lindauer, K. Yamada, I. Kanno, and A. Grinvald, “Vascular imprints of neuronal activity: relationships between the dynamics of cortical blood flow, oxygenation, and volume changes following sensory stimulation,” Proc. Natl. Acad. Sci. U.S.A. 94(26), 14826–14831 (1997).
[Crossref] [PubMed]

Lindsay, J. G.

J. G. Lindsay, P. L. Dutton, and D. F. Wilson, “Energy-dependent effects on the oxidation-reduction midpoint potentials of the b and c cytochromes in phosphorylating submitochondrial particles from pigeon heart,” Biochemistry 11(10), 1937–1943 (1972).
[Crossref] [PubMed]

Malonek, D.

D. Malonek, U. Dirnagl, U. Lindauer, K. Yamada, I. Kanno, and A. Grinvald, “Vascular imprints of neuronal activity: relationships between the dynamics of cortical blood flow, oxygenation, and volume changes following sensory stimulation,” Proc. Natl. Acad. Sci. U.S.A. 94(26), 14826–14831 (1997).
[Crossref] [PubMed]

D. Malonek and A. Grinvald, “Interactions between electrical activity and cortical microcirculation revealed by imaging spectroscopy: implications for functional brain mapping,” Science 272(5261), 551–554 (1996).
[Crossref] [PubMed]

Marles-Wright, J.

M. Paoli, J. Marles-Wright, and A. Smith, “Structure-function relationships in heme-proteins,” DNA Cell Biol. 21(4), 271–280 (2002).
[Crossref] [PubMed]

Martindale, J.

J. Mayhew, D. Johnston, J. Martindale, M. Jones, J. Berwick, and Y. Zheng, “Increased oxygen consumption following activation of brain: theoretical footnotes using spectroscopic data from barrel cortex,” Neuroimage 13(6), 975–987 (2001).
[Crossref] [PubMed]

Mayhew, J.

M. Jones, J. Berwick, and J. Mayhew, “Changes in blood flow, oxygenation, and volume following extended stimulation of rodent barrel cortex,” Neuroimage 15(3), 474–487 (2002).
[Crossref] [PubMed]

M. Jones, J. Berwick, D. Johnston, and J. Mayhew, “Concurrent optical imaging spectroscopy and laser-Doppler flowmetry: the relationship between blood flow, oxygenation, and volume in rodent barrel cortex,” Neuroimage 13(6), 1002–1015 (2001).
[Crossref] [PubMed]

J. Mayhew, D. Johnston, J. Martindale, M. Jones, J. Berwick, and Y. Zheng, “Increased oxygen consumption following activation of brain: theoretical footnotes using spectroscopic data from barrel cortex,” Neuroimage 13(6), 975–987 (2001).
[Crossref] [PubMed]

J. Mayhew, Y. Zheng, Y. Hou, B. Vuksanovic, J. Berwick, S. Askew, and P. Coffey, “Spectroscopic analysis of changes in remitted illumination: the response to increased neural activity in brain,” Neuroimage 10(3), 304–326 (1999).
[Crossref] [PubMed]

Mitchell, P.

P. R. Rich, I. C. West, and P. Mitchell, “The location of CuA in mammalian cytochrome c oxidase,” FEBS Lett. 233(1), 25–30 (1988).
[Crossref] [PubMed]

Moes, C. J. M.

Moncada, S.

V. S. Hollis, M. Palacios-Callender, R. J. Springett, D. T. Delpy, and S. Moncada, “Monitoring cytochrome redox changes in the mitochondria of intact cells using multi-wavelength visible light spectroscopy,” Biochim. Biophys. Acta 1607(2-3), 191–202 (2003).
[Crossref] [PubMed]

Morgan, J. E.

J. E. Morgan and M. Wikström, “Steady-state redox behavior of cytochrome c, cytochrome a, and CuA of cytochrome c oxidase in intact rat liver mitochondria,” Biochemistry 30(4), 948–958 (1991).
[Crossref] [PubMed]

Narayan, S. M.

S. M. Narayan, E. M. Santori, A. J. Blood, J. S. Burton, and A. W. Toga, “Imaging optical reflectance in rodent barrel and forelimb sensory cortex,” Neuroimage 1(3), 181–190 (1994).
[Crossref] [PubMed]

Newman, J.

R. Springett, J. Newman, M. Cope, and D. T. Delpy, “Oxygen dependency and precision of cytochrome oxidase signal from full spectral NIRS of the piglet brain,” Am. J. Physiol. Heart Circ. Physiol. 279(5), H2202–H2209 (2000).
[PubMed]

Palacios-Callender, M.

V. S. Hollis, M. Palacios-Callender, R. J. Springett, D. T. Delpy, and S. Moncada, “Monitoring cytochrome redox changes in the mitochondria of intact cells using multi-wavelength visible light spectroscopy,” Biochim. Biophys. Acta 1607(2-3), 191–202 (2003).
[Crossref] [PubMed]

Palmer, G.

G. L. Liao and G. Palmer, “The reduced minus oxidized difference spectra of cytochromes a and a3,” Biochim. Biophys. Acta 1274(3), 109–111 (1996).
[Crossref] [PubMed]

Palsdottir, H.

C. Hunte, H. Palsdottir, and B. L. Trumpower, “Protonmotive pathways and mechanisms in the cytochrome bc1 complex,” FEBS Lett. 545(1), 39–46 (2003).
[Crossref] [PubMed]

Paoli, M.

M. Paoli, J. Marles-Wright, and A. Smith, “Structure-function relationships in heme-proteins,” DNA Cell Biol. 21(4), 271–280 (2002).
[Crossref] [PubMed]

Penrice, J.

C. Cooper, M. Sharpe, C. Elwell, R. Springett, J. Penrice, L. Tyszczuk, P. Amess, J. Wyatt, V. Quaresima, and D. Delpy, “The cytochrome oxidase redox state in vivo,” Adv. Exp. Med. Biol. 428, 449–456 (1997).
[Crossref] [PubMed]

Prahl, S. A.

Quaresima, V.

C. Cooper, M. Sharpe, C. Elwell, R. Springett, J. Penrice, L. Tyszczuk, P. Amess, J. Wyatt, V. Quaresima, and D. Delpy, “The cytochrome oxidase redox state in vivo,” Adv. Exp. Med. Biol. 428, 449–456 (1997).
[Crossref] [PubMed]

Rich, P. R.

P. R. Rich, I. C. West, and P. Mitchell, “The location of CuA in mammalian cytochrome c oxidase,” FEBS Lett. 233(1), 25–30 (1988).
[Crossref] [PubMed]

Ripple, M. O.

M. O. Ripple, M. Abajian, and R. Springett, “Cytochrome c is rapidly reduced in the cytosol after mitochondrial outer membrane permeabilization,” Apoptosis 15(5), 563–573 (2010).
[Crossref] [PubMed]

Rosenthal, M.

N. R. Kreisman, T. J. Sick, J. C. LaManna, and M. Rosenthal, “Local tissue oxygen tension-cytochrome a,a3 redox relationships in rat cerebral cortex in vivo,” Brain Res. 218(1-2), 161–174 (1981).
[Crossref] [PubMed]

F. F. Jöbsis, J. H. Keizer, J. C. LaManna, and M. Rosenthal, “Reflectance spectrophotometry of cytochrome aa3 in vivo,” J. Appl. Physiol. 43(5), 858–872 (1977).
[PubMed]

Rosenthal, M. R.

F. G. Hempel, F. F. Jöbsis, J. L. LaManna, M. R. Rosenthal, and H. A. Saltzman, “Oxidation of cerebral cytochrome aa3 by oxygen plus carbon dioxide at hyperbaric pressures,” J. Appl. Physiol. 43(5), 873–879 (1977).
[PubMed]

Royl, G.

U. Lindauer, G. Royl, C. Leithner, M. Kühl, L. Gold, J. Gethmann, M. Kohl-Bareis, A. Villringer, and U. Dirnagl, “No evidence for early decrease in blood oxygenation in rat whisker cortex in response to functional activation,” Neuroimage 13(6), 988–1001 (2001).
[Crossref] [PubMed]

M. Kohl, U. Lindauer, G. Royl, M. Kuhl, L. Gold, A. Villringer, and U. Dirnagl, “Physical model for the spectroscopic analysis of cortical intrinsic optical signals,” Phys. Med. Biol. 45(12), 3749–3764 (2000).
[Crossref] [PubMed]

Saltzman, H. A.

F. G. Hempel, F. F. Jöbsis, J. L. LaManna, M. R. Rosenthal, and H. A. Saltzman, “Oxidation of cerebral cytochrome aa3 by oxygen plus carbon dioxide at hyperbaric pressures,” J. Appl. Physiol. 43(5), 873–879 (1977).
[PubMed]

Santori, E. M.

S. M. Narayan, E. M. Santori, A. J. Blood, J. S. Burton, and A. W. Toga, “Imaging optical reflectance in rodent barrel and forelimb sensory cortex,” Neuroimage 1(3), 181–190 (1994).
[Crossref] [PubMed]

Sharpe, M.

C. Cooper, M. Sharpe, C. Elwell, R. Springett, J. Penrice, L. Tyszczuk, P. Amess, J. Wyatt, V. Quaresima, and D. Delpy, “The cytochrome oxidase redox state in vivo,” Adv. Exp. Med. Biol. 428, 449–456 (1997).
[Crossref] [PubMed]

Sick, T. J.

N. R. Kreisman, T. J. Sick, J. C. LaManna, and M. Rosenthal, “Local tissue oxygen tension-cytochrome a,a3 redox relationships in rat cerebral cortex in vivo,” Brain Res. 218(1-2), 161–174 (1981).
[Crossref] [PubMed]

Silver, I. A.

D. F. Wilson, M. Erecińska, C. Drown, and I. A. Silver, “Effect of oxygen tension on cellular energetics,” Am. J. Physiol. 233(5), C135–C140 (1977).
[PubMed]

Simpson, C. R.

C. R. Simpson, M. Kohl, M. Essenpreis, and M. Cope, “Near-infrared optical properties of ex vivo human skin and subcutaneous tissues measured using the Monte Carlo inversion technique,” Phys. Med. Biol. 43(9), 2465–2478 (1998).
[Crossref] [PubMed]

Smith, A.

M. Paoli, J. Marles-Wright, and A. Smith, “Structure-function relationships in heme-proteins,” DNA Cell Biol. 21(4), 271–280 (2002).
[Crossref] [PubMed]

Snyder, C. H.

C. H. Snyder, E. B. Gutierrez-Cirlos, and B. L. Trumpower, “Evidence for a concerted mechanism of ubiquinol oxidation by the cytochrome bc1 complex,” J. Biol. Chem. 275(18), 13535–13541 (2000).
[Crossref] [PubMed]

Springett, R.

M. O. Ripple, M. Abajian, and R. Springett, “Cytochrome c is rapidly reduced in the cytosol after mitochondrial outer membrane permeabilization,” Apoptosis 15(5), 563–573 (2010).
[Crossref] [PubMed]

G. De Visscher, R. Springett, D. T. Delpy, J. Van Reempts, M. Borgers, and K. van Rossem, “Nitric oxide does not inhibit cerebral cytochrome oxidase in vivo or in the reactive hyperemic phase after brief anoxia in the adult rat,” J. Cereb. Blood Flow Metab. 22(5), 515–519 (2002).
[Crossref] [PubMed]

R. Springett, M. Wylezinska, E. B. Cady, M. Cope, and D. T. Delpy, “Oxygen dependency of cerebral oxidative phosphorylation in newborn piglets,” J. Cereb. Blood Flow Metab. 20(2), 280–289 (2000).
[Crossref] [PubMed]

R. Springett, J. Newman, M. Cope, and D. T. Delpy, “Oxygen dependency and precision of cytochrome oxidase signal from full spectral NIRS of the piglet brain,” Am. J. Physiol. Heart Circ. Physiol. 279(5), H2202–H2209 (2000).
[PubMed]

C. Cooper, M. Sharpe, C. Elwell, R. Springett, J. Penrice, L. Tyszczuk, P. Amess, J. Wyatt, V. Quaresima, and D. Delpy, “The cytochrome oxidase redox state in vivo,” Adv. Exp. Med. Biol. 428, 449–456 (1997).
[Crossref] [PubMed]

Springett, R. J.

V. S. Hollis, M. Palacios-Callender, R. J. Springett, D. T. Delpy, and S. Moncada, “Monitoring cytochrome redox changes in the mitochondria of intact cells using multi-wavelength visible light spectroscopy,” Biochim. Biophys. Acta 1607(2-3), 191–202 (2003).
[Crossref] [PubMed]

Territo, P. R.

A. E. Arai, C. E. Kasserra, P. R. Territo, A. H. Gandjbakhche, and R. S. Balaban, “Myocardial oxygenation in vivo: optical spectroscopy of cytoplasmic myoglobin and mitochondrial cytochromes,” Am. J. Physiol. 277(2 Pt 2), H683–H697 (1999).
[PubMed]

Toga, A. W.

S. M. Narayan, E. M. Santori, A. J. Blood, J. S. Burton, and A. W. Toga, “Imaging optical reflectance in rodent barrel and forelimb sensory cortex,” Neuroimage 1(3), 181–190 (1994).
[Crossref] [PubMed]

Trumpower, B. L.

C. Hunte, H. Palsdottir, and B. L. Trumpower, “Protonmotive pathways and mechanisms in the cytochrome bc1 complex,” FEBS Lett. 545(1), 39–46 (2003).
[Crossref] [PubMed]

C. H. Snyder, E. B. Gutierrez-Cirlos, and B. L. Trumpower, “Evidence for a concerted mechanism of ubiquinol oxidation by the cytochrome bc1 complex,” J. Biol. Chem. 275(18), 13535–13541 (2000).
[Crossref] [PubMed]

Tyszczuk, L.

C. Cooper, M. Sharpe, C. Elwell, R. Springett, J. Penrice, L. Tyszczuk, P. Amess, J. Wyatt, V. Quaresima, and D. Delpy, “The cytochrome oxidase redox state in vivo,” Adv. Exp. Med. Biol. 428, 449–456 (1997).
[Crossref] [PubMed]

van Gemert, M. J. C.

van Marie, J.

Van Reempts, J.

G. De Visscher, R. Springett, D. T. Delpy, J. Van Reempts, M. Borgers, and K. van Rossem, “Nitric oxide does not inhibit cerebral cytochrome oxidase in vivo or in the reactive hyperemic phase after brief anoxia in the adult rat,” J. Cereb. Blood Flow Metab. 22(5), 515–519 (2002).
[Crossref] [PubMed]

van Rossem, K.

G. De Visscher, R. Springett, D. T. Delpy, J. Van Reempts, M. Borgers, and K. van Rossem, “Nitric oxide does not inhibit cerebral cytochrome oxidase in vivo or in the reactive hyperemic phase after brief anoxia in the adult rat,” J. Cereb. Blood Flow Metab. 22(5), 515–519 (2002).
[Crossref] [PubMed]

van Staveren, H. J.

Vanzetta, I.

I. Vanzetta and A. Grinvald, “Evidence and lack of evidence for the initial dip in the anesthetized rat: implications for human functional brain imaging,” Neuroimage 13(6), 959–967 (2001).
[Crossref] [PubMed]

Villringer, A.

U. Lindauer, G. Royl, C. Leithner, M. Kühl, L. Gold, J. Gethmann, M. Kohl-Bareis, A. Villringer, and U. Dirnagl, “No evidence for early decrease in blood oxygenation in rat whisker cortex in response to functional activation,” Neuroimage 13(6), 988–1001 (2001).
[Crossref] [PubMed]

M. Kohl, U. Lindauer, G. Royl, M. Kuhl, L. Gold, A. Villringer, and U. Dirnagl, “Physical model for the spectroscopic analysis of cortical intrinsic optical signals,” Phys. Med. Biol. 45(12), 3749–3764 (2000).
[Crossref] [PubMed]

Vuksanovic, B.

J. Mayhew, Y. Zheng, Y. Hou, B. Vuksanovic, J. Berwick, S. Askew, and P. Coffey, “Spectroscopic analysis of changes in remitted illumination: the response to increased neural activity in brain,” Neuroimage 10(3), 304–326 (1999).
[Crossref] [PubMed]

West, I. C.

P. R. Rich, I. C. West, and P. Mitchell, “The location of CuA in mammalian cytochrome c oxidase,” FEBS Lett. 233(1), 25–30 (1988).
[Crossref] [PubMed]

Wikström, M.

J. E. Morgan and M. Wikström, “Steady-state redox behavior of cytochrome c, cytochrome a, and CuA of cytochrome c oxidase in intact rat liver mitochondria,” Biochemistry 30(4), 948–958 (1991).
[Crossref] [PubMed]

Williams, G. R.

B. Chance and G. R. Williams, “The respiratory chain and oxidative phosphorylation,” Adv. Enzymol. Relat. Subj. Biochem. 17, 65–134 (1956).
[PubMed]

Wilson, D. F.

D. F. Wilson, M. Erecińska, C. Drown, and I. A. Silver, “Effect of oxygen tension on cellular energetics,” Am. J. Physiol. 233(5), C135–C140 (1977).
[PubMed]

J. G. Lindsay, P. L. Dutton, and D. F. Wilson, “Energy-dependent effects on the oxidation-reduction midpoint potentials of the b and c cytochromes in phosphorylating submitochondrial particles from pigeon heart,” Biochemistry 11(10), 1937–1943 (1972).
[Crossref] [PubMed]

Wyatt, J.

C. Cooper, M. Sharpe, C. Elwell, R. Springett, J. Penrice, L. Tyszczuk, P. Amess, J. Wyatt, V. Quaresima, and D. Delpy, “The cytochrome oxidase redox state in vivo,” Adv. Exp. Med. Biol. 428, 449–456 (1997).
[Crossref] [PubMed]

Wylezinska, M.

R. Springett, M. Wylezinska, E. B. Cady, M. Cope, and D. T. Delpy, “Oxygen dependency of cerebral oxidative phosphorylation in newborn piglets,” J. Cereb. Blood Flow Metab. 20(2), 280–289 (2000).
[Crossref] [PubMed]

Yamada, K.

D. Malonek, U. Dirnagl, U. Lindauer, K. Yamada, I. Kanno, and A. Grinvald, “Vascular imprints of neuronal activity: relationships between the dynamics of cortical blood flow, oxygenation, and volume changes following sensory stimulation,” Proc. Natl. Acad. Sci. U.S.A. 94(26), 14826–14831 (1997).
[Crossref] [PubMed]

Zheng, Y.

J. Mayhew, D. Johnston, J. Martindale, M. Jones, J. Berwick, and Y. Zheng, “Increased oxygen consumption following activation of brain: theoretical footnotes using spectroscopic data from barrel cortex,” Neuroimage 13(6), 975–987 (2001).
[Crossref] [PubMed]

J. Mayhew, Y. Zheng, Y. Hou, B. Vuksanovic, J. Berwick, S. Askew, and P. Coffey, “Spectroscopic analysis of changes in remitted illumination: the response to increased neural activity in brain,” Neuroimage 10(3), 304–326 (1999).
[Crossref] [PubMed]

Adv. Enzymol. Relat. Subj. Biochem. (1)

B. Chance and G. R. Williams, “The respiratory chain and oxidative phosphorylation,” Adv. Enzymol. Relat. Subj. Biochem. 17, 65–134 (1956).
[PubMed]

Adv. Exp. Med. Biol. (1)

C. Cooper, M. Sharpe, C. Elwell, R. Springett, J. Penrice, L. Tyszczuk, P. Amess, J. Wyatt, V. Quaresima, and D. Delpy, “The cytochrome oxidase redox state in vivo,” Adv. Exp. Med. Biol. 428, 449–456 (1997).
[Crossref] [PubMed]

Am. J. Physiol. (2)

D. F. Wilson, M. Erecińska, C. Drown, and I. A. Silver, “Effect of oxygen tension on cellular energetics,” Am. J. Physiol. 233(5), C135–C140 (1977).
[PubMed]

A. E. Arai, C. E. Kasserra, P. R. Territo, A. H. Gandjbakhche, and R. S. Balaban, “Myocardial oxygenation in vivo: optical spectroscopy of cytoplasmic myoglobin and mitochondrial cytochromes,” Am. J. Physiol. 277(2 Pt 2), H683–H697 (1999).
[PubMed]

Am. J. Physiol. Heart Circ. Physiol. (1)

R. Springett, J. Newman, M. Cope, and D. T. Delpy, “Oxygen dependency and precision of cytochrome oxidase signal from full spectral NIRS of the piglet brain,” Am. J. Physiol. Heart Circ. Physiol. 279(5), H2202–H2209 (2000).
[PubMed]

Apoptosis (1)

M. O. Ripple, M. Abajian, and R. Springett, “Cytochrome c is rapidly reduced in the cytosol after mitochondrial outer membrane permeabilization,” Apoptosis 15(5), 563–573 (2010).
[Crossref] [PubMed]

Appl. Opt. (1)

Astrophys. J. (1)

L. G. Henyey and J. L. Greenstein, “Diffuse radiation in the galaxy,” Astrophys. J. 93, 70–83 (1941).
[Crossref]

Biochemistry (2)

J. E. Morgan and M. Wikström, “Steady-state redox behavior of cytochrome c, cytochrome a, and CuA of cytochrome c oxidase in intact rat liver mitochondria,” Biochemistry 30(4), 948–958 (1991).
[Crossref] [PubMed]

J. G. Lindsay, P. L. Dutton, and D. F. Wilson, “Energy-dependent effects on the oxidation-reduction midpoint potentials of the b and c cytochromes in phosphorylating submitochondrial particles from pigeon heart,” Biochemistry 11(10), 1937–1943 (1972).
[Crossref] [PubMed]

Biochim. Biophys. Acta (2)

V. S. Hollis, M. Palacios-Callender, R. J. Springett, D. T. Delpy, and S. Moncada, “Monitoring cytochrome redox changes in the mitochondria of intact cells using multi-wavelength visible light spectroscopy,” Biochim. Biophys. Acta 1607(2-3), 191–202 (2003).
[Crossref] [PubMed]

G. L. Liao and G. Palmer, “The reduced minus oxidized difference spectra of cytochromes a and a3,” Biochim. Biophys. Acta 1274(3), 109–111 (1996).
[Crossref] [PubMed]

Brain Res. (2)

U. Lindauer, J. Gethmann, M. Kühl, M. Kohl-Bareis, and U. Dirnagl, “Neuronal activity-induced changes of local cerebral microvascular blood oxygenation in the rat: effect of systemic hyperoxia or hypoxia,” Brain Res. 975(1-2), 135–140 (2003).
[Crossref] [PubMed]

N. R. Kreisman, T. J. Sick, J. C. LaManna, and M. Rosenthal, “Local tissue oxygen tension-cytochrome a,a3 redox relationships in rat cerebral cortex in vivo,” Brain Res. 218(1-2), 161–174 (1981).
[Crossref] [PubMed]

DNA Cell Biol. (1)

M. Paoli, J. Marles-Wright, and A. Smith, “Structure-function relationships in heme-proteins,” DNA Cell Biol. 21(4), 271–280 (2002).
[Crossref] [PubMed]

FEBS Lett. (2)

P. R. Rich, I. C. West, and P. Mitchell, “The location of CuA in mammalian cytochrome c oxidase,” FEBS Lett. 233(1), 25–30 (1988).
[Crossref] [PubMed]

C. Hunte, H. Palsdottir, and B. L. Trumpower, “Protonmotive pathways and mechanisms in the cytochrome bc1 complex,” FEBS Lett. 545(1), 39–46 (2003).
[Crossref] [PubMed]

J. Appl. Physiol. (2)

F. G. Hempel, F. F. Jöbsis, J. L. LaManna, M. R. Rosenthal, and H. A. Saltzman, “Oxidation of cerebral cytochrome aa3 by oxygen plus carbon dioxide at hyperbaric pressures,” J. Appl. Physiol. 43(5), 873–879 (1977).
[PubMed]

F. F. Jöbsis, J. H. Keizer, J. C. LaManna, and M. Rosenthal, “Reflectance spectrophotometry of cytochrome aa3 in vivo,” J. Appl. Physiol. 43(5), 858–872 (1977).
[PubMed]

J. Biol. Chem. (1)

C. H. Snyder, E. B. Gutierrez-Cirlos, and B. L. Trumpower, “Evidence for a concerted mechanism of ubiquinol oxidation by the cytochrome bc1 complex,” J. Biol. Chem. 275(18), 13535–13541 (2000).
[Crossref] [PubMed]

J. Cereb. Blood Flow Metab. (2)

G. De Visscher, R. Springett, D. T. Delpy, J. Van Reempts, M. Borgers, and K. van Rossem, “Nitric oxide does not inhibit cerebral cytochrome oxidase in vivo or in the reactive hyperemic phase after brief anoxia in the adult rat,” J. Cereb. Blood Flow Metab. 22(5), 515–519 (2002).
[Crossref] [PubMed]

R. Springett, M. Wylezinska, E. B. Cady, M. Cope, and D. T. Delpy, “Oxygen dependency of cerebral oxidative phosphorylation in newborn piglets,” J. Cereb. Blood Flow Metab. 20(2), 280–289 (2000).
[Crossref] [PubMed]

Neuroimage (8)

M. Jones, J. Berwick, and J. Mayhew, “Changes in blood flow, oxygenation, and volume following extended stimulation of rodent barrel cortex,” Neuroimage 15(3), 474–487 (2002).
[Crossref] [PubMed]

J. Mayhew, Y. Zheng, Y. Hou, B. Vuksanovic, J. Berwick, S. Askew, and P. Coffey, “Spectroscopic analysis of changes in remitted illumination: the response to increased neural activity in brain,” Neuroimage 10(3), 304–326 (1999).
[Crossref] [PubMed]

S. M. Narayan, E. M. Santori, A. J. Blood, J. S. Burton, and A. W. Toga, “Imaging optical reflectance in rodent barrel and forelimb sensory cortex,” Neuroimage 1(3), 181–190 (1994).
[Crossref] [PubMed]

R. B. Buxton, “The elusive initial dip,” Neuroimage 13(6), 953–958 (2001).
[Crossref] [PubMed]

M. Jones, J. Berwick, D. Johnston, and J. Mayhew, “Concurrent optical imaging spectroscopy and laser-Doppler flowmetry: the relationship between blood flow, oxygenation, and volume in rodent barrel cortex,” Neuroimage 13(6), 1002–1015 (2001).
[Crossref] [PubMed]

J. Mayhew, D. Johnston, J. Martindale, M. Jones, J. Berwick, and Y. Zheng, “Increased oxygen consumption following activation of brain: theoretical footnotes using spectroscopic data from barrel cortex,” Neuroimage 13(6), 975–987 (2001).
[Crossref] [PubMed]

U. Lindauer, G. Royl, C. Leithner, M. Kühl, L. Gold, J. Gethmann, M. Kohl-Bareis, A. Villringer, and U. Dirnagl, “No evidence for early decrease in blood oxygenation in rat whisker cortex in response to functional activation,” Neuroimage 13(6), 988–1001 (2001).
[Crossref] [PubMed]

I. Vanzetta and A. Grinvald, “Evidence and lack of evidence for the initial dip in the anesthetized rat: implications for human functional brain imaging,” Neuroimage 13(6), 959–967 (2001).
[Crossref] [PubMed]

Opt. Lett. (2)

Phys. Med. Biol. (3)

S. R. Arridge, M. Cope, and D. T. Delpy, “The theoretical basis for the determination of optical pathlengths in tissue: temporal and frequency analysis,” Phys. Med. Biol. 37(7), 1531–1560 (1992).
[Crossref] [PubMed]

M. Kohl, U. Lindauer, G. Royl, M. Kuhl, L. Gold, A. Villringer, and U. Dirnagl, “Physical model for the spectroscopic analysis of cortical intrinsic optical signals,” Phys. Med. Biol. 45(12), 3749–3764 (2000).
[Crossref] [PubMed]

C. R. Simpson, M. Kohl, M. Essenpreis, and M. Cope, “Near-infrared optical properties of ex vivo human skin and subcutaneous tissues measured using the Monte Carlo inversion technique,” Phys. Med. Biol. 43(9), 2465–2478 (1998).
[Crossref] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (1)

D. Malonek, U. Dirnagl, U. Lindauer, K. Yamada, I. Kanno, and A. Grinvald, “Vascular imprints of neuronal activity: relationships between the dynamics of cortical blood flow, oxygenation, and volume changes following sensory stimulation,” Proc. Natl. Acad. Sci. U.S.A. 94(26), 14826–14831 (1997).
[Crossref] [PubMed]

Science (2)

D. Malonek and A. Grinvald, “Interactions between electrical activity and cortical microcirculation revealed by imaging spectroscopy: implications for functional brain mapping,” Science 272(5261), 551–554 (1996).
[Crossref] [PubMed]

D. R. Green and G. Kroemer, “The pathophysiology of mitochondrial cell death,” Science 305(5684), 626–629 (2004).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Specific extinction spectra (upper) and 1st differential of the specific extinction spectra (lower) of HbO2 and Hb (left) and Cytc and Cytaa3 (right).

Fig. 2
Fig. 2

Wavelength dependence of the scattering coefficient, absorption coefficients of 60μmoles/L hemoglobin (H) at a saturation of 75% with (H & Cytc) and without (H only) 10µmoles/L of Cytc, and absorption coefficient of 10μmoles/L of Cytc.

Fig. 3
Fig. 3

Wavelength dependence and scattering dependence of attenuation, differential pathlength and differential scatterlength calculated from Monte Carlo simulations. Left Panels: Wavelength dependence of the attenuation (upper), differential pathlength and scatterlength (lower) for a media with the optical properties shown in Fig. 2. The differential scatterlength is scaled by a factor of −1 for clarity. Right panels: scattering dependence of attenuation (upper) and differential pathlength (lower) for a medium with absorption coefficients of 0.60 and 0.05mm−1.

Fig. 4
Fig. 4

First differential of the attenuation spectra with and without Cytc from Fig. 3 (right) and decomposition into chromophore and scattering components (left).

Fig. 5
Fig. 5

Representative traces of hemoglobin concentration (upper panels) hemoglobin saturation (middle panels) and Cytc oxidation state (lower panels) of the phantom studies. Left panels. Initially, the phantom contained 1% intralipid and then 50μmoles/L of oxygenated hemoglobin was added at time zero followed by desaturation between 2 and 3 minutes. Right panels: Same as left except 10μmoles/L of reduced Cytc was added prior to desaturation.

Fig. 6
Fig. 6

Crosstalk between Cytc and hemoglobin as a function of oxygenated or deoxygenated hemoglobin concentration. 10 μmoles/L steps of hemoglobin were added to either a saturated or desaturated phantom contain 1% intralipid and no Cytc. Observed changes in Cytc were then attributed to crosstalk. Data is expressed as mean ± SD (n = 6).

Fig. 7
Fig. 7

Typical first-differential attenuation spectra, fitting model and time chromophore course during an anoxic challenge. Left panels: fitting residuals and Cytc component of the fit from the normoxic rat cortex (upper) and during anoxia (lower). The Cytc component has been offset by −40mOD/nm for reasons of clarity. Time course of the hemoglobin concentration (upper graph), mean hemoglobin saturation (middle graph) and Cytc during a brief anoxic insult and recovery. The shaded regions correspond to the period of anoxia. Data is expressed as mean ± SD (n = 6) and only every 10th error bar is shown for reasons of clarity.

Fig. 8
Fig. 8

Relationship between Cytc oxidation and SmcO2 during the onset of anoxia. Data is expressed as mean ± SD (n = 6). The x error bars are not shown for clarity.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

A( λ )=Ln( I D ( λ ) / I S ( λ ) )
μ a ( λ )= k C k ε k ( λ )
ΔA= A μ a Δ μ a + A μ s Δ μ s =ρΔ μ a +σΔ μ s
ΔA( λ )=ρ( λ ) k Δ C k ε k ( λ )
dA( λ ) dλ = A ( λ )= A μ a d μ a dλ + A μ s d μ s dλ
A ( λ )=ρ( λ ) k C k ε k ( λ ) +σ( λ ) ε s ( λ )
I D = I S 0 Η( x, μ s ) e u a x dx
ρ=( 1 I D ) 0 Η( x, μ s )x e u a x dx
σ=( 1 I D ) 0 Η( x, μ s ) μ s e u a x dx

Metrics