Abstract

Adaptive optics (AO) retinal image quality of rodent eyes is inferior to that of human eyes, despite the promise of greater numerical aperture. This paradox challenges several assumptions commonly made in AO imaging, assumptions which may be invalidated by the very high power and dioptric thickness of the rodent retina. We used optical modeling to compare the performance of rat and human eyes under conditions that tested the validity of these assumptions. Results showed that AO image quality in the human eye is robust to positioning errors of the AO corrector and to differences in imaging depth and wavelength compared to the wavefront beacon. In contrast, image quality in the rat eye declines sharply with each of these manipulations, especially when imaging off-axis. However, some latitude does exist to offset these manipulations against each other to produce good image quality.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. V. Bui, B. Edmunds, G. A. Cioffi, and B. Fortune, “The gradient of retinal functional changes during acute intraocular pressure elevation,” Invest. Ophthalmol. Vis. Sci.46(1), 202–213 (2005).
    [CrossRef] [PubMed]
  2. B. V. Bui, M. Loeliger, M. Thomas, A. J. Vingrys, S. M. Rees, C. T. Nguyen, Z. He, and M. Tolcos, “Investigating structural and biochemical correlates of ganglion cell dysfunction in streptozotocin-induced diabetic rats,” Exp. Eye Res.88(6), 1076–1083 (2009).
    [CrossRef] [PubMed]
  3. K. Kohzaki, A. J. Vingrys, and B. V. Bui, “Early inner retinal dysfunction in streptozotocin-induced diabetic rats,” Invest. Ophthalmol. Vis. Sci.49(8), 3595–3604 (2008).
    [CrossRef] [PubMed]
  4. Z. He, B. V. Bui, and A. J. Vingrys, “Effect of repeated IOP challenge on rat retinal function,” Invest. Ophthalmol. Vis. Sci.49(7), 3026–3034 (2008).
    [CrossRef] [PubMed]
  5. R. E. Marc, B. W. Jones, C. B. Watt, F. Vazquez-Chona, D. K. Vaughan, and D. T. Organisciak, “Extreme retinal remodeling triggered by light damage: implications for age related macular degeneration,” Mol. Vis.14, 782–806 (2008).
    [PubMed]
  6. S. L. Mansour, K. R. Thomas, and M. R. Capecchi, “Disruption of the proto-oncogene int-2 in mouse embryo-derived stem cells: a general strategy for targeting mutations to non-selectable genes,” Nature336(6197), 348–352 (1988).
    [CrossRef] [PubMed]
  7. M. R. Capecchi, “Altering the genome by homologous recombination,” Science244(4910), 1288–1292 (1989).
    [CrossRef] [PubMed]
  8. A. Abbott, “Laboratory animals: the Renaissance rat,” Nature428(6982), 464–466 (2004).
    [CrossRef] [PubMed]
  9. A. M. Geurts, G. J. Cost, Y. Freyvert, B. Zeitler, J. C. Miller, V. M. Choi, S. S. Jenkins, A. Wood, X. Cui, X. Meng, A. Vincent, S. Lam, M. Michalkiewicz, R. Schilling, J. Foeckler, S. Kalloway, H. Weiler, S. Ménoret, I. Anegon, G. D. Davis, L. Zhang, E. J. Rebar, P. D. Gregory, F. D. Urnov, H. J. Jacob, and R. Buelow, “Knockout rats via embryo microinjection of zinc-finger nucleases,” Science325(5939), 433 (2009).
    [CrossRef] [PubMed]
  10. A. Roorda, “Applications of adaptive optics scanning laser ophthalmoscopy,” Optom. Vis. Sci.87(4), 260–268 (2010).
    [PubMed]
  11. P. Godara, A. M. Dubis, A. Roorda, J. L. Duncan, and J. Carroll, “Adaptive optics retinal imaging: emerging clinical applications,” Optom. Vis. Sci.87(12), 930–941 (2010).
    [CrossRef] [PubMed]
  12. J. Liang, D. R. Williams, and D. T. Miller, “Supernormal vision and high-resolution retinal imaging through adaptive optics,” J. Opt. Soc. Am. A14(11), 2884–2892 (1997).
    [CrossRef] [PubMed]
  13. Y. Geng, K. P. Greenberg, R. Wolfe, D. C. Gray, J. J. Hunter, A. Dubra, J. G. Flannery, D. R. Williams, and J. Porter, “In vivo imaging of microscopic structures in the rat retina,” Invest. Ophthalmol. Vis. Sci.50(12), 5872–5879 (2009).
    [CrossRef] [PubMed]
  14. D. P. Biss, D. Sumorok, S. A. Burns, R. H. Webb, Y. Zhou, T. G. Bifano, D. Côté, I. Veilleux, P. Zamiri, and C. P. Lin, “In vivo fluorescent imaging of the mouse retina using adaptive optics,” Opt. Lett.32(6), 659–661 (2007).
    [CrossRef] [PubMed]
  15. Y. Geng, A. Dubra, L. Yin, W. H. Merigan, R. Sharma, R. T. Libby, and D. R. Williams, “Adaptive optics retinal imaging in the living mouse eye,” Biomed. Opt. Express3(4), 715–734 (2012).
    [CrossRef] [PubMed]
  16. A. Dubra, Y. Sulai, J. L. Norris, R. F. Cooper, A. M. Dubis, D. R. Williams, and J. Carroll, “Noninvasive imaging of the human rod photoreceptor mosaic using a confocal adaptive optics scanning ophthalmoscope,” Biomed. Opt. Express2(7), 1864–1876 (2011).
    [CrossRef] [PubMed]
  17. Y. Geng, L. A. Schery, R. Sharma, A. Dubra, K. Ahmad, R. T. Libby, and D. R. Williams, “Optical properties of the mouse eye,” Biomed. Opt. Express2(4), 717–738 (2011).
    [CrossRef] [PubMed]
  18. G. Smith and D. A. Atchison, The Eye and Visual Optical Instruments (Cambridge University Press, Cambridge, UK; New York, USA, 1997).
  19. A. Hughes, “A schematic eye for the rat,” Vision Res.19(5), 569–588 (1979).
    [CrossRef] [PubMed]
  20. A. Chan, J. S. Duker, T. H. Ko, J. G. Fujimoto, and J. S. Schuman, “Normal macular thickness measurements in healthy eyes using Stratus optical coherence tomography,” Arch. Ophthalmol.124(2), 193–198 (2006).
    [CrossRef] [PubMed]
  21. A. Chaudhuri, P. E. Hallett, and J. A. Parker, “Aspheric curvatures, refractive indices and chromatic aberration for the rat eye,” Vision Res.23(12), 1351–1363 (1983).
    [CrossRef] [PubMed]
  22. R. E. Bedford and G. Wyszecki, “Axial chromatic aberration of the human eye,” J. Opt. Soc. Am.47(6), 564–565 (1957).
    [CrossRef] [PubMed]
  23. P. Bedggood and A. Metha, “System design considerations to improve isoplanatism for adaptive optics retinal imaging,” J. Opt. Soc. Am. A27(11), A37–A47 (2010).
    [CrossRef] [PubMed]
  24. M. C. W. Campbell and A. Hughes, “An analytic, gradient index schematic lens and eye for the rat which predicts aberrations for finite pupils,” Vision Res.21(7), 1129–1148, 1135–1148 (1981).
    [CrossRef] [PubMed]
  25. H. L. Liou and N. A. Brennan, “Anatomically accurate, finite model eye for optical modeling,” J. Opt. Soc. Am. A14(8), 1684–1695 (1997).
    [CrossRef] [PubMed]
  26. G. Smith, P. Bedggood, R. Ashman, M. Daaboul, and A. Metha, “Exploring ocular aberrations with a schematic human eye model,” Optom. Vis. Sci.85(5), 330–340 (2008).
    [CrossRef] [PubMed]
  27. A. V. Goncharov and C. Dainty, “Wide-field schematic eye models with gradient-index lens,” J. Opt. Soc. Am. A24(8), 2157–2174 (2007).
    [CrossRef] [PubMed]
  28. M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Cambridge University Press, Cambridge; New York, 1999).
  29. S. Remtulla and P. E. Hallett, “A schematic eye for the mouse, and comparisons with the rat,” Vision Res.25(1), 21–31 (1985).
    [CrossRef] [PubMed]
  30. E. J. Fernández, A. Unterhuber, P. M. Prieto, B. Hermann, W. Drexler, and P. Artal, “Ocular aberrations as a function of wavelength in the near infrared measured with a femtosecond laser,” Opt. Express13(2), 400–409 (2005).
    [CrossRef] [PubMed]
  31. S. Marcos, S. A. Burns, E. Moreno-Barriusop, and R. Navarro, “A new approach to the study of ocular chromatic aberrations,” Vision Res.39(26), 4309–4323 (1999).
    [CrossRef] [PubMed]
  32. P. Artal, E. Berrio, A. Guirao, and P. Piers, “Contribution of the cornea and internal surfaces to the change of ocular aberrations with age,” J. Opt. Soc. Am. A19(1), 137–143 (2002).
    [CrossRef] [PubMed]
  33. A. B. Metha, A. M. Crane, H. G. Rylander, S. L. Thomsen, and D. G. Albrecht, “Maintaining the cornea and the general physiological environment in visual neurophysiology experiments,” J. Neurosci. Methods109(2), 153–166 (2001).
    [CrossRef] [PubMed]
  34. A. Roorda, F. Romero-Borja, W. Donnelly Iii, H. Queener, T. Hebert, and M. Campbell, “Adaptive optics scanning laser ophthalmoscopy,” Opt. Express10(9), 405–412 (2002).
    [PubMed]
  35. P. A. Bedggood, Adaptive Optics Methods to Increase the Isoplanatic Patch Size for Human Retinal Imaging, (Dept. of Optometry and Vision Sciences, University of Melbourne, 2008)
  36. H. Hofer, N. Sredar, H. Queener, C. Li, and J. Porter, “Wavefront sensorless adaptive optics ophthalmoscopy in the human eye,” Opt. Express19(15), 14160–14171 (2011).
    [CrossRef] [PubMed]
  37. D. Débarre, E. J. Botcherby, T. Watanabe, S. Srinivas, M. J. Booth, and T. Wilson, “Image-based adaptive optics for two-photon microscopy,” Opt. Lett.34(16), 2495–2497 (2009).
    [CrossRef] [PubMed]
  38. D. P. Biss, R. H. Webb, Y. Zhou, T. G. Bifano, P. Zamiri, and C. P. Lin, “An adaptive optics biomicroscope for mouse retinal imaging,” Proc. SPIE6467, 646703, 646703-8 (2007).
    [CrossRef]
  39. S. Zommer, E. N. Ribak, S. G. Lipson, and J. Adler, “Simulated annealing in ocular adaptive optics,” Opt. Lett.31(7), 939–941 (2006).
    [CrossRef] [PubMed]

2012 (1)

2011 (3)

2010 (3)

P. Bedggood and A. Metha, “System design considerations to improve isoplanatism for adaptive optics retinal imaging,” J. Opt. Soc. Am. A27(11), A37–A47 (2010).
[CrossRef] [PubMed]

A. Roorda, “Applications of adaptive optics scanning laser ophthalmoscopy,” Optom. Vis. Sci.87(4), 260–268 (2010).
[PubMed]

P. Godara, A. M. Dubis, A. Roorda, J. L. Duncan, and J. Carroll, “Adaptive optics retinal imaging: emerging clinical applications,” Optom. Vis. Sci.87(12), 930–941 (2010).
[CrossRef] [PubMed]

2009 (4)

Y. Geng, K. P. Greenberg, R. Wolfe, D. C. Gray, J. J. Hunter, A. Dubra, J. G. Flannery, D. R. Williams, and J. Porter, “In vivo imaging of microscopic structures in the rat retina,” Invest. Ophthalmol. Vis. Sci.50(12), 5872–5879 (2009).
[CrossRef] [PubMed]

B. V. Bui, M. Loeliger, M. Thomas, A. J. Vingrys, S. M. Rees, C. T. Nguyen, Z. He, and M. Tolcos, “Investigating structural and biochemical correlates of ganglion cell dysfunction in streptozotocin-induced diabetic rats,” Exp. Eye Res.88(6), 1076–1083 (2009).
[CrossRef] [PubMed]

A. M. Geurts, G. J. Cost, Y. Freyvert, B. Zeitler, J. C. Miller, V. M. Choi, S. S. Jenkins, A. Wood, X. Cui, X. Meng, A. Vincent, S. Lam, M. Michalkiewicz, R. Schilling, J. Foeckler, S. Kalloway, H. Weiler, S. Ménoret, I. Anegon, G. D. Davis, L. Zhang, E. J. Rebar, P. D. Gregory, F. D. Urnov, H. J. Jacob, and R. Buelow, “Knockout rats via embryo microinjection of zinc-finger nucleases,” Science325(5939), 433 (2009).
[CrossRef] [PubMed]

D. Débarre, E. J. Botcherby, T. Watanabe, S. Srinivas, M. J. Booth, and T. Wilson, “Image-based adaptive optics for two-photon microscopy,” Opt. Lett.34(16), 2495–2497 (2009).
[CrossRef] [PubMed]

2008 (4)

K. Kohzaki, A. J. Vingrys, and B. V. Bui, “Early inner retinal dysfunction in streptozotocin-induced diabetic rats,” Invest. Ophthalmol. Vis. Sci.49(8), 3595–3604 (2008).
[CrossRef] [PubMed]

Z. He, B. V. Bui, and A. J. Vingrys, “Effect of repeated IOP challenge on rat retinal function,” Invest. Ophthalmol. Vis. Sci.49(7), 3026–3034 (2008).
[CrossRef] [PubMed]

R. E. Marc, B. W. Jones, C. B. Watt, F. Vazquez-Chona, D. K. Vaughan, and D. T. Organisciak, “Extreme retinal remodeling triggered by light damage: implications for age related macular degeneration,” Mol. Vis.14, 782–806 (2008).
[PubMed]

G. Smith, P. Bedggood, R. Ashman, M. Daaboul, and A. Metha, “Exploring ocular aberrations with a schematic human eye model,” Optom. Vis. Sci.85(5), 330–340 (2008).
[CrossRef] [PubMed]

2007 (3)

2006 (2)

S. Zommer, E. N. Ribak, S. G. Lipson, and J. Adler, “Simulated annealing in ocular adaptive optics,” Opt. Lett.31(7), 939–941 (2006).
[CrossRef] [PubMed]

A. Chan, J. S. Duker, T. H. Ko, J. G. Fujimoto, and J. S. Schuman, “Normal macular thickness measurements in healthy eyes using Stratus optical coherence tomography,” Arch. Ophthalmol.124(2), 193–198 (2006).
[CrossRef] [PubMed]

2005 (2)

B. V. Bui, B. Edmunds, G. A. Cioffi, and B. Fortune, “The gradient of retinal functional changes during acute intraocular pressure elevation,” Invest. Ophthalmol. Vis. Sci.46(1), 202–213 (2005).
[CrossRef] [PubMed]

E. J. Fernández, A. Unterhuber, P. M. Prieto, B. Hermann, W. Drexler, and P. Artal, “Ocular aberrations as a function of wavelength in the near infrared measured with a femtosecond laser,” Opt. Express13(2), 400–409 (2005).
[CrossRef] [PubMed]

2004 (1)

A. Abbott, “Laboratory animals: the Renaissance rat,” Nature428(6982), 464–466 (2004).
[CrossRef] [PubMed]

2002 (2)

2001 (1)

A. B. Metha, A. M. Crane, H. G. Rylander, S. L. Thomsen, and D. G. Albrecht, “Maintaining the cornea and the general physiological environment in visual neurophysiology experiments,” J. Neurosci. Methods109(2), 153–166 (2001).
[CrossRef] [PubMed]

1999 (1)

S. Marcos, S. A. Burns, E. Moreno-Barriusop, and R. Navarro, “A new approach to the study of ocular chromatic aberrations,” Vision Res.39(26), 4309–4323 (1999).
[CrossRef] [PubMed]

1997 (2)

1989 (1)

M. R. Capecchi, “Altering the genome by homologous recombination,” Science244(4910), 1288–1292 (1989).
[CrossRef] [PubMed]

1988 (1)

S. L. Mansour, K. R. Thomas, and M. R. Capecchi, “Disruption of the proto-oncogene int-2 in mouse embryo-derived stem cells: a general strategy for targeting mutations to non-selectable genes,” Nature336(6197), 348–352 (1988).
[CrossRef] [PubMed]

1985 (1)

S. Remtulla and P. E. Hallett, “A schematic eye for the mouse, and comparisons with the rat,” Vision Res.25(1), 21–31 (1985).
[CrossRef] [PubMed]

1983 (1)

A. Chaudhuri, P. E. Hallett, and J. A. Parker, “Aspheric curvatures, refractive indices and chromatic aberration for the rat eye,” Vision Res.23(12), 1351–1363 (1983).
[CrossRef] [PubMed]

1981 (1)

M. C. W. Campbell and A. Hughes, “An analytic, gradient index schematic lens and eye for the rat which predicts aberrations for finite pupils,” Vision Res.21(7), 1129–1148, 1135–1148 (1981).
[CrossRef] [PubMed]

1979 (1)

A. Hughes, “A schematic eye for the rat,” Vision Res.19(5), 569–588 (1979).
[CrossRef] [PubMed]

1957 (1)

Abbott, A.

A. Abbott, “Laboratory animals: the Renaissance rat,” Nature428(6982), 464–466 (2004).
[CrossRef] [PubMed]

Adler, J.

Ahmad, K.

Albrecht, D. G.

A. B. Metha, A. M. Crane, H. G. Rylander, S. L. Thomsen, and D. G. Albrecht, “Maintaining the cornea and the general physiological environment in visual neurophysiology experiments,” J. Neurosci. Methods109(2), 153–166 (2001).
[CrossRef] [PubMed]

Anegon, I.

A. M. Geurts, G. J. Cost, Y. Freyvert, B. Zeitler, J. C. Miller, V. M. Choi, S. S. Jenkins, A. Wood, X. Cui, X. Meng, A. Vincent, S. Lam, M. Michalkiewicz, R. Schilling, J. Foeckler, S. Kalloway, H. Weiler, S. Ménoret, I. Anegon, G. D. Davis, L. Zhang, E. J. Rebar, P. D. Gregory, F. D. Urnov, H. J. Jacob, and R. Buelow, “Knockout rats via embryo microinjection of zinc-finger nucleases,” Science325(5939), 433 (2009).
[CrossRef] [PubMed]

Artal, P.

Ashman, R.

G. Smith, P. Bedggood, R. Ashman, M. Daaboul, and A. Metha, “Exploring ocular aberrations with a schematic human eye model,” Optom. Vis. Sci.85(5), 330–340 (2008).
[CrossRef] [PubMed]

Bedford, R. E.

Bedggood, P.

P. Bedggood and A. Metha, “System design considerations to improve isoplanatism for adaptive optics retinal imaging,” J. Opt. Soc. Am. A27(11), A37–A47 (2010).
[CrossRef] [PubMed]

G. Smith, P. Bedggood, R. Ashman, M. Daaboul, and A. Metha, “Exploring ocular aberrations with a schematic human eye model,” Optom. Vis. Sci.85(5), 330–340 (2008).
[CrossRef] [PubMed]

Berrio, E.

Bifano, T. G.

D. P. Biss, R. H. Webb, Y. Zhou, T. G. Bifano, P. Zamiri, and C. P. Lin, “An adaptive optics biomicroscope for mouse retinal imaging,” Proc. SPIE6467, 646703, 646703-8 (2007).
[CrossRef]

D. P. Biss, D. Sumorok, S. A. Burns, R. H. Webb, Y. Zhou, T. G. Bifano, D. Côté, I. Veilleux, P. Zamiri, and C. P. Lin, “In vivo fluorescent imaging of the mouse retina using adaptive optics,” Opt. Lett.32(6), 659–661 (2007).
[CrossRef] [PubMed]

Biss, D. P.

D. P. Biss, D. Sumorok, S. A. Burns, R. H. Webb, Y. Zhou, T. G. Bifano, D. Côté, I. Veilleux, P. Zamiri, and C. P. Lin, “In vivo fluorescent imaging of the mouse retina using adaptive optics,” Opt. Lett.32(6), 659–661 (2007).
[CrossRef] [PubMed]

D. P. Biss, R. H. Webb, Y. Zhou, T. G. Bifano, P. Zamiri, and C. P. Lin, “An adaptive optics biomicroscope for mouse retinal imaging,” Proc. SPIE6467, 646703, 646703-8 (2007).
[CrossRef]

Booth, M. J.

Botcherby, E. J.

Brennan, N. A.

Buelow, R.

A. M. Geurts, G. J. Cost, Y. Freyvert, B. Zeitler, J. C. Miller, V. M. Choi, S. S. Jenkins, A. Wood, X. Cui, X. Meng, A. Vincent, S. Lam, M. Michalkiewicz, R. Schilling, J. Foeckler, S. Kalloway, H. Weiler, S. Ménoret, I. Anegon, G. D. Davis, L. Zhang, E. J. Rebar, P. D. Gregory, F. D. Urnov, H. J. Jacob, and R. Buelow, “Knockout rats via embryo microinjection of zinc-finger nucleases,” Science325(5939), 433 (2009).
[CrossRef] [PubMed]

Bui, B. V.

B. V. Bui, M. Loeliger, M. Thomas, A. J. Vingrys, S. M. Rees, C. T. Nguyen, Z. He, and M. Tolcos, “Investigating structural and biochemical correlates of ganglion cell dysfunction in streptozotocin-induced diabetic rats,” Exp. Eye Res.88(6), 1076–1083 (2009).
[CrossRef] [PubMed]

Z. He, B. V. Bui, and A. J. Vingrys, “Effect of repeated IOP challenge on rat retinal function,” Invest. Ophthalmol. Vis. Sci.49(7), 3026–3034 (2008).
[CrossRef] [PubMed]

K. Kohzaki, A. J. Vingrys, and B. V. Bui, “Early inner retinal dysfunction in streptozotocin-induced diabetic rats,” Invest. Ophthalmol. Vis. Sci.49(8), 3595–3604 (2008).
[CrossRef] [PubMed]

B. V. Bui, B. Edmunds, G. A. Cioffi, and B. Fortune, “The gradient of retinal functional changes during acute intraocular pressure elevation,” Invest. Ophthalmol. Vis. Sci.46(1), 202–213 (2005).
[CrossRef] [PubMed]

Burns, S. A.

Campbell, M.

Campbell, M. C. W.

M. C. W. Campbell and A. Hughes, “An analytic, gradient index schematic lens and eye for the rat which predicts aberrations for finite pupils,” Vision Res.21(7), 1129–1148, 1135–1148 (1981).
[CrossRef] [PubMed]

Capecchi, M. R.

M. R. Capecchi, “Altering the genome by homologous recombination,” Science244(4910), 1288–1292 (1989).
[CrossRef] [PubMed]

S. L. Mansour, K. R. Thomas, and M. R. Capecchi, “Disruption of the proto-oncogene int-2 in mouse embryo-derived stem cells: a general strategy for targeting mutations to non-selectable genes,” Nature336(6197), 348–352 (1988).
[CrossRef] [PubMed]

Carroll, J.

Chan, A.

A. Chan, J. S. Duker, T. H. Ko, J. G. Fujimoto, and J. S. Schuman, “Normal macular thickness measurements in healthy eyes using Stratus optical coherence tomography,” Arch. Ophthalmol.124(2), 193–198 (2006).
[CrossRef] [PubMed]

Chaudhuri, A.

A. Chaudhuri, P. E. Hallett, and J. A. Parker, “Aspheric curvatures, refractive indices and chromatic aberration for the rat eye,” Vision Res.23(12), 1351–1363 (1983).
[CrossRef] [PubMed]

Choi, V. M.

A. M. Geurts, G. J. Cost, Y. Freyvert, B. Zeitler, J. C. Miller, V. M. Choi, S. S. Jenkins, A. Wood, X. Cui, X. Meng, A. Vincent, S. Lam, M. Michalkiewicz, R. Schilling, J. Foeckler, S. Kalloway, H. Weiler, S. Ménoret, I. Anegon, G. D. Davis, L. Zhang, E. J. Rebar, P. D. Gregory, F. D. Urnov, H. J. Jacob, and R. Buelow, “Knockout rats via embryo microinjection of zinc-finger nucleases,” Science325(5939), 433 (2009).
[CrossRef] [PubMed]

Cioffi, G. A.

B. V. Bui, B. Edmunds, G. A. Cioffi, and B. Fortune, “The gradient of retinal functional changes during acute intraocular pressure elevation,” Invest. Ophthalmol. Vis. Sci.46(1), 202–213 (2005).
[CrossRef] [PubMed]

Cooper, R. F.

Cost, G. J.

A. M. Geurts, G. J. Cost, Y. Freyvert, B. Zeitler, J. C. Miller, V. M. Choi, S. S. Jenkins, A. Wood, X. Cui, X. Meng, A. Vincent, S. Lam, M. Michalkiewicz, R. Schilling, J. Foeckler, S. Kalloway, H. Weiler, S. Ménoret, I. Anegon, G. D. Davis, L. Zhang, E. J. Rebar, P. D. Gregory, F. D. Urnov, H. J. Jacob, and R. Buelow, “Knockout rats via embryo microinjection of zinc-finger nucleases,” Science325(5939), 433 (2009).
[CrossRef] [PubMed]

Côté, D.

Crane, A. M.

A. B. Metha, A. M. Crane, H. G. Rylander, S. L. Thomsen, and D. G. Albrecht, “Maintaining the cornea and the general physiological environment in visual neurophysiology experiments,” J. Neurosci. Methods109(2), 153–166 (2001).
[CrossRef] [PubMed]

Cui, X.

A. M. Geurts, G. J. Cost, Y. Freyvert, B. Zeitler, J. C. Miller, V. M. Choi, S. S. Jenkins, A. Wood, X. Cui, X. Meng, A. Vincent, S. Lam, M. Michalkiewicz, R. Schilling, J. Foeckler, S. Kalloway, H. Weiler, S. Ménoret, I. Anegon, G. D. Davis, L. Zhang, E. J. Rebar, P. D. Gregory, F. D. Urnov, H. J. Jacob, and R. Buelow, “Knockout rats via embryo microinjection of zinc-finger nucleases,” Science325(5939), 433 (2009).
[CrossRef] [PubMed]

Daaboul, M.

G. Smith, P. Bedggood, R. Ashman, M. Daaboul, and A. Metha, “Exploring ocular aberrations with a schematic human eye model,” Optom. Vis. Sci.85(5), 330–340 (2008).
[CrossRef] [PubMed]

Dainty, C.

Davis, G. D.

A. M. Geurts, G. J. Cost, Y. Freyvert, B. Zeitler, J. C. Miller, V. M. Choi, S. S. Jenkins, A. Wood, X. Cui, X. Meng, A. Vincent, S. Lam, M. Michalkiewicz, R. Schilling, J. Foeckler, S. Kalloway, H. Weiler, S. Ménoret, I. Anegon, G. D. Davis, L. Zhang, E. J. Rebar, P. D. Gregory, F. D. Urnov, H. J. Jacob, and R. Buelow, “Knockout rats via embryo microinjection of zinc-finger nucleases,” Science325(5939), 433 (2009).
[CrossRef] [PubMed]

Débarre, D.

Donnelly Iii, W.

Drexler, W.

Dubis, A. M.

Dubra, A.

Duker, J. S.

A. Chan, J. S. Duker, T. H. Ko, J. G. Fujimoto, and J. S. Schuman, “Normal macular thickness measurements in healthy eyes using Stratus optical coherence tomography,” Arch. Ophthalmol.124(2), 193–198 (2006).
[CrossRef] [PubMed]

Duncan, J. L.

P. Godara, A. M. Dubis, A. Roorda, J. L. Duncan, and J. Carroll, “Adaptive optics retinal imaging: emerging clinical applications,” Optom. Vis. Sci.87(12), 930–941 (2010).
[CrossRef] [PubMed]

Edmunds, B.

B. V. Bui, B. Edmunds, G. A. Cioffi, and B. Fortune, “The gradient of retinal functional changes during acute intraocular pressure elevation,” Invest. Ophthalmol. Vis. Sci.46(1), 202–213 (2005).
[CrossRef] [PubMed]

Fernández, E. J.

Flannery, J. G.

Y. Geng, K. P. Greenberg, R. Wolfe, D. C. Gray, J. J. Hunter, A. Dubra, J. G. Flannery, D. R. Williams, and J. Porter, “In vivo imaging of microscopic structures in the rat retina,” Invest. Ophthalmol. Vis. Sci.50(12), 5872–5879 (2009).
[CrossRef] [PubMed]

Foeckler, J.

A. M. Geurts, G. J. Cost, Y. Freyvert, B. Zeitler, J. C. Miller, V. M. Choi, S. S. Jenkins, A. Wood, X. Cui, X. Meng, A. Vincent, S. Lam, M. Michalkiewicz, R. Schilling, J. Foeckler, S. Kalloway, H. Weiler, S. Ménoret, I. Anegon, G. D. Davis, L. Zhang, E. J. Rebar, P. D. Gregory, F. D. Urnov, H. J. Jacob, and R. Buelow, “Knockout rats via embryo microinjection of zinc-finger nucleases,” Science325(5939), 433 (2009).
[CrossRef] [PubMed]

Fortune, B.

B. V. Bui, B. Edmunds, G. A. Cioffi, and B. Fortune, “The gradient of retinal functional changes during acute intraocular pressure elevation,” Invest. Ophthalmol. Vis. Sci.46(1), 202–213 (2005).
[CrossRef] [PubMed]

Freyvert, Y.

A. M. Geurts, G. J. Cost, Y. Freyvert, B. Zeitler, J. C. Miller, V. M. Choi, S. S. Jenkins, A. Wood, X. Cui, X. Meng, A. Vincent, S. Lam, M. Michalkiewicz, R. Schilling, J. Foeckler, S. Kalloway, H. Weiler, S. Ménoret, I. Anegon, G. D. Davis, L. Zhang, E. J. Rebar, P. D. Gregory, F. D. Urnov, H. J. Jacob, and R. Buelow, “Knockout rats via embryo microinjection of zinc-finger nucleases,” Science325(5939), 433 (2009).
[CrossRef] [PubMed]

Fujimoto, J. G.

A. Chan, J. S. Duker, T. H. Ko, J. G. Fujimoto, and J. S. Schuman, “Normal macular thickness measurements in healthy eyes using Stratus optical coherence tomography,” Arch. Ophthalmol.124(2), 193–198 (2006).
[CrossRef] [PubMed]

Geng, Y.

Geurts, A. M.

A. M. Geurts, G. J. Cost, Y. Freyvert, B. Zeitler, J. C. Miller, V. M. Choi, S. S. Jenkins, A. Wood, X. Cui, X. Meng, A. Vincent, S. Lam, M. Michalkiewicz, R. Schilling, J. Foeckler, S. Kalloway, H. Weiler, S. Ménoret, I. Anegon, G. D. Davis, L. Zhang, E. J. Rebar, P. D. Gregory, F. D. Urnov, H. J. Jacob, and R. Buelow, “Knockout rats via embryo microinjection of zinc-finger nucleases,” Science325(5939), 433 (2009).
[CrossRef] [PubMed]

Godara, P.

P. Godara, A. M. Dubis, A. Roorda, J. L. Duncan, and J. Carroll, “Adaptive optics retinal imaging: emerging clinical applications,” Optom. Vis. Sci.87(12), 930–941 (2010).
[CrossRef] [PubMed]

Goncharov, A. V.

Gray, D. C.

Y. Geng, K. P. Greenberg, R. Wolfe, D. C. Gray, J. J. Hunter, A. Dubra, J. G. Flannery, D. R. Williams, and J. Porter, “In vivo imaging of microscopic structures in the rat retina,” Invest. Ophthalmol. Vis. Sci.50(12), 5872–5879 (2009).
[CrossRef] [PubMed]

Greenberg, K. P.

Y. Geng, K. P. Greenberg, R. Wolfe, D. C. Gray, J. J. Hunter, A. Dubra, J. G. Flannery, D. R. Williams, and J. Porter, “In vivo imaging of microscopic structures in the rat retina,” Invest. Ophthalmol. Vis. Sci.50(12), 5872–5879 (2009).
[CrossRef] [PubMed]

Gregory, P. D.

A. M. Geurts, G. J. Cost, Y. Freyvert, B. Zeitler, J. C. Miller, V. M. Choi, S. S. Jenkins, A. Wood, X. Cui, X. Meng, A. Vincent, S. Lam, M. Michalkiewicz, R. Schilling, J. Foeckler, S. Kalloway, H. Weiler, S. Ménoret, I. Anegon, G. D. Davis, L. Zhang, E. J. Rebar, P. D. Gregory, F. D. Urnov, H. J. Jacob, and R. Buelow, “Knockout rats via embryo microinjection of zinc-finger nucleases,” Science325(5939), 433 (2009).
[CrossRef] [PubMed]

Guirao, A.

Hallett, P. E.

S. Remtulla and P. E. Hallett, “A schematic eye for the mouse, and comparisons with the rat,” Vision Res.25(1), 21–31 (1985).
[CrossRef] [PubMed]

A. Chaudhuri, P. E. Hallett, and J. A. Parker, “Aspheric curvatures, refractive indices and chromatic aberration for the rat eye,” Vision Res.23(12), 1351–1363 (1983).
[CrossRef] [PubMed]

He, Z.

B. V. Bui, M. Loeliger, M. Thomas, A. J. Vingrys, S. M. Rees, C. T. Nguyen, Z. He, and M. Tolcos, “Investigating structural and biochemical correlates of ganglion cell dysfunction in streptozotocin-induced diabetic rats,” Exp. Eye Res.88(6), 1076–1083 (2009).
[CrossRef] [PubMed]

Z. He, B. V. Bui, and A. J. Vingrys, “Effect of repeated IOP challenge on rat retinal function,” Invest. Ophthalmol. Vis. Sci.49(7), 3026–3034 (2008).
[CrossRef] [PubMed]

Hebert, T.

Hermann, B.

Hofer, H.

Hughes, A.

M. C. W. Campbell and A. Hughes, “An analytic, gradient index schematic lens and eye for the rat which predicts aberrations for finite pupils,” Vision Res.21(7), 1129–1148, 1135–1148 (1981).
[CrossRef] [PubMed]

A. Hughes, “A schematic eye for the rat,” Vision Res.19(5), 569–588 (1979).
[CrossRef] [PubMed]

Hunter, J. J.

Y. Geng, K. P. Greenberg, R. Wolfe, D. C. Gray, J. J. Hunter, A. Dubra, J. G. Flannery, D. R. Williams, and J. Porter, “In vivo imaging of microscopic structures in the rat retina,” Invest. Ophthalmol. Vis. Sci.50(12), 5872–5879 (2009).
[CrossRef] [PubMed]

Jacob, H. J.

A. M. Geurts, G. J. Cost, Y. Freyvert, B. Zeitler, J. C. Miller, V. M. Choi, S. S. Jenkins, A. Wood, X. Cui, X. Meng, A. Vincent, S. Lam, M. Michalkiewicz, R. Schilling, J. Foeckler, S. Kalloway, H. Weiler, S. Ménoret, I. Anegon, G. D. Davis, L. Zhang, E. J. Rebar, P. D. Gregory, F. D. Urnov, H. J. Jacob, and R. Buelow, “Knockout rats via embryo microinjection of zinc-finger nucleases,” Science325(5939), 433 (2009).
[CrossRef] [PubMed]

Jenkins, S. S.

A. M. Geurts, G. J. Cost, Y. Freyvert, B. Zeitler, J. C. Miller, V. M. Choi, S. S. Jenkins, A. Wood, X. Cui, X. Meng, A. Vincent, S. Lam, M. Michalkiewicz, R. Schilling, J. Foeckler, S. Kalloway, H. Weiler, S. Ménoret, I. Anegon, G. D. Davis, L. Zhang, E. J. Rebar, P. D. Gregory, F. D. Urnov, H. J. Jacob, and R. Buelow, “Knockout rats via embryo microinjection of zinc-finger nucleases,” Science325(5939), 433 (2009).
[CrossRef] [PubMed]

Jones, B. W.

R. E. Marc, B. W. Jones, C. B. Watt, F. Vazquez-Chona, D. K. Vaughan, and D. T. Organisciak, “Extreme retinal remodeling triggered by light damage: implications for age related macular degeneration,” Mol. Vis.14, 782–806 (2008).
[PubMed]

Kalloway, S.

A. M. Geurts, G. J. Cost, Y. Freyvert, B. Zeitler, J. C. Miller, V. M. Choi, S. S. Jenkins, A. Wood, X. Cui, X. Meng, A. Vincent, S. Lam, M. Michalkiewicz, R. Schilling, J. Foeckler, S. Kalloway, H. Weiler, S. Ménoret, I. Anegon, G. D. Davis, L. Zhang, E. J. Rebar, P. D. Gregory, F. D. Urnov, H. J. Jacob, and R. Buelow, “Knockout rats via embryo microinjection of zinc-finger nucleases,” Science325(5939), 433 (2009).
[CrossRef] [PubMed]

Ko, T. H.

A. Chan, J. S. Duker, T. H. Ko, J. G. Fujimoto, and J. S. Schuman, “Normal macular thickness measurements in healthy eyes using Stratus optical coherence tomography,” Arch. Ophthalmol.124(2), 193–198 (2006).
[CrossRef] [PubMed]

Kohzaki, K.

K. Kohzaki, A. J. Vingrys, and B. V. Bui, “Early inner retinal dysfunction in streptozotocin-induced diabetic rats,” Invest. Ophthalmol. Vis. Sci.49(8), 3595–3604 (2008).
[CrossRef] [PubMed]

Lam, S.

A. M. Geurts, G. J. Cost, Y. Freyvert, B. Zeitler, J. C. Miller, V. M. Choi, S. S. Jenkins, A. Wood, X. Cui, X. Meng, A. Vincent, S. Lam, M. Michalkiewicz, R. Schilling, J. Foeckler, S. Kalloway, H. Weiler, S. Ménoret, I. Anegon, G. D. Davis, L. Zhang, E. J. Rebar, P. D. Gregory, F. D. Urnov, H. J. Jacob, and R. Buelow, “Knockout rats via embryo microinjection of zinc-finger nucleases,” Science325(5939), 433 (2009).
[CrossRef] [PubMed]

Li, C.

Liang, J.

Libby, R. T.

Lin, C. P.

D. P. Biss, R. H. Webb, Y. Zhou, T. G. Bifano, P. Zamiri, and C. P. Lin, “An adaptive optics biomicroscope for mouse retinal imaging,” Proc. SPIE6467, 646703, 646703-8 (2007).
[CrossRef]

D. P. Biss, D. Sumorok, S. A. Burns, R. H. Webb, Y. Zhou, T. G. Bifano, D. Côté, I. Veilleux, P. Zamiri, and C. P. Lin, “In vivo fluorescent imaging of the mouse retina using adaptive optics,” Opt. Lett.32(6), 659–661 (2007).
[CrossRef] [PubMed]

Liou, H. L.

Lipson, S. G.

Loeliger, M.

B. V. Bui, M. Loeliger, M. Thomas, A. J. Vingrys, S. M. Rees, C. T. Nguyen, Z. He, and M. Tolcos, “Investigating structural and biochemical correlates of ganglion cell dysfunction in streptozotocin-induced diabetic rats,” Exp. Eye Res.88(6), 1076–1083 (2009).
[CrossRef] [PubMed]

Mansour, S. L.

S. L. Mansour, K. R. Thomas, and M. R. Capecchi, “Disruption of the proto-oncogene int-2 in mouse embryo-derived stem cells: a general strategy for targeting mutations to non-selectable genes,” Nature336(6197), 348–352 (1988).
[CrossRef] [PubMed]

Marc, R. E.

R. E. Marc, B. W. Jones, C. B. Watt, F. Vazquez-Chona, D. K. Vaughan, and D. T. Organisciak, “Extreme retinal remodeling triggered by light damage: implications for age related macular degeneration,” Mol. Vis.14, 782–806 (2008).
[PubMed]

Marcos, S.

S. Marcos, S. A. Burns, E. Moreno-Barriusop, and R. Navarro, “A new approach to the study of ocular chromatic aberrations,” Vision Res.39(26), 4309–4323 (1999).
[CrossRef] [PubMed]

Meng, X.

A. M. Geurts, G. J. Cost, Y. Freyvert, B. Zeitler, J. C. Miller, V. M. Choi, S. S. Jenkins, A. Wood, X. Cui, X. Meng, A. Vincent, S. Lam, M. Michalkiewicz, R. Schilling, J. Foeckler, S. Kalloway, H. Weiler, S. Ménoret, I. Anegon, G. D. Davis, L. Zhang, E. J. Rebar, P. D. Gregory, F. D. Urnov, H. J. Jacob, and R. Buelow, “Knockout rats via embryo microinjection of zinc-finger nucleases,” Science325(5939), 433 (2009).
[CrossRef] [PubMed]

Ménoret, S.

A. M. Geurts, G. J. Cost, Y. Freyvert, B. Zeitler, J. C. Miller, V. M. Choi, S. S. Jenkins, A. Wood, X. Cui, X. Meng, A. Vincent, S. Lam, M. Michalkiewicz, R. Schilling, J. Foeckler, S. Kalloway, H. Weiler, S. Ménoret, I. Anegon, G. D. Davis, L. Zhang, E. J. Rebar, P. D. Gregory, F. D. Urnov, H. J. Jacob, and R. Buelow, “Knockout rats via embryo microinjection of zinc-finger nucleases,” Science325(5939), 433 (2009).
[CrossRef] [PubMed]

Merigan, W. H.

Metha, A.

P. Bedggood and A. Metha, “System design considerations to improve isoplanatism for adaptive optics retinal imaging,” J. Opt. Soc. Am. A27(11), A37–A47 (2010).
[CrossRef] [PubMed]

G. Smith, P. Bedggood, R. Ashman, M. Daaboul, and A. Metha, “Exploring ocular aberrations with a schematic human eye model,” Optom. Vis. Sci.85(5), 330–340 (2008).
[CrossRef] [PubMed]

Metha, A. B.

A. B. Metha, A. M. Crane, H. G. Rylander, S. L. Thomsen, and D. G. Albrecht, “Maintaining the cornea and the general physiological environment in visual neurophysiology experiments,” J. Neurosci. Methods109(2), 153–166 (2001).
[CrossRef] [PubMed]

Michalkiewicz, M.

A. M. Geurts, G. J. Cost, Y. Freyvert, B. Zeitler, J. C. Miller, V. M. Choi, S. S. Jenkins, A. Wood, X. Cui, X. Meng, A. Vincent, S. Lam, M. Michalkiewicz, R. Schilling, J. Foeckler, S. Kalloway, H. Weiler, S. Ménoret, I. Anegon, G. D. Davis, L. Zhang, E. J. Rebar, P. D. Gregory, F. D. Urnov, H. J. Jacob, and R. Buelow, “Knockout rats via embryo microinjection of zinc-finger nucleases,” Science325(5939), 433 (2009).
[CrossRef] [PubMed]

Miller, D. T.

Miller, J. C.

A. M. Geurts, G. J. Cost, Y. Freyvert, B. Zeitler, J. C. Miller, V. M. Choi, S. S. Jenkins, A. Wood, X. Cui, X. Meng, A. Vincent, S. Lam, M. Michalkiewicz, R. Schilling, J. Foeckler, S. Kalloway, H. Weiler, S. Ménoret, I. Anegon, G. D. Davis, L. Zhang, E. J. Rebar, P. D. Gregory, F. D. Urnov, H. J. Jacob, and R. Buelow, “Knockout rats via embryo microinjection of zinc-finger nucleases,” Science325(5939), 433 (2009).
[CrossRef] [PubMed]

Moreno-Barriusop, E.

S. Marcos, S. A. Burns, E. Moreno-Barriusop, and R. Navarro, “A new approach to the study of ocular chromatic aberrations,” Vision Res.39(26), 4309–4323 (1999).
[CrossRef] [PubMed]

Navarro, R.

S. Marcos, S. A. Burns, E. Moreno-Barriusop, and R. Navarro, “A new approach to the study of ocular chromatic aberrations,” Vision Res.39(26), 4309–4323 (1999).
[CrossRef] [PubMed]

Nguyen, C. T.

B. V. Bui, M. Loeliger, M. Thomas, A. J. Vingrys, S. M. Rees, C. T. Nguyen, Z. He, and M. Tolcos, “Investigating structural and biochemical correlates of ganglion cell dysfunction in streptozotocin-induced diabetic rats,” Exp. Eye Res.88(6), 1076–1083 (2009).
[CrossRef] [PubMed]

Norris, J. L.

Organisciak, D. T.

R. E. Marc, B. W. Jones, C. B. Watt, F. Vazquez-Chona, D. K. Vaughan, and D. T. Organisciak, “Extreme retinal remodeling triggered by light damage: implications for age related macular degeneration,” Mol. Vis.14, 782–806 (2008).
[PubMed]

Parker, J. A.

A. Chaudhuri, P. E. Hallett, and J. A. Parker, “Aspheric curvatures, refractive indices and chromatic aberration for the rat eye,” Vision Res.23(12), 1351–1363 (1983).
[CrossRef] [PubMed]

Piers, P.

Porter, J.

H. Hofer, N. Sredar, H. Queener, C. Li, and J. Porter, “Wavefront sensorless adaptive optics ophthalmoscopy in the human eye,” Opt. Express19(15), 14160–14171 (2011).
[CrossRef] [PubMed]

Y. Geng, K. P. Greenberg, R. Wolfe, D. C. Gray, J. J. Hunter, A. Dubra, J. G. Flannery, D. R. Williams, and J. Porter, “In vivo imaging of microscopic structures in the rat retina,” Invest. Ophthalmol. Vis. Sci.50(12), 5872–5879 (2009).
[CrossRef] [PubMed]

Prieto, P. M.

Queener, H.

Rebar, E. J.

A. M. Geurts, G. J. Cost, Y. Freyvert, B. Zeitler, J. C. Miller, V. M. Choi, S. S. Jenkins, A. Wood, X. Cui, X. Meng, A. Vincent, S. Lam, M. Michalkiewicz, R. Schilling, J. Foeckler, S. Kalloway, H. Weiler, S. Ménoret, I. Anegon, G. D. Davis, L. Zhang, E. J. Rebar, P. D. Gregory, F. D. Urnov, H. J. Jacob, and R. Buelow, “Knockout rats via embryo microinjection of zinc-finger nucleases,” Science325(5939), 433 (2009).
[CrossRef] [PubMed]

Rees, S. M.

B. V. Bui, M. Loeliger, M. Thomas, A. J. Vingrys, S. M. Rees, C. T. Nguyen, Z. He, and M. Tolcos, “Investigating structural and biochemical correlates of ganglion cell dysfunction in streptozotocin-induced diabetic rats,” Exp. Eye Res.88(6), 1076–1083 (2009).
[CrossRef] [PubMed]

Remtulla, S.

S. Remtulla and P. E. Hallett, “A schematic eye for the mouse, and comparisons with the rat,” Vision Res.25(1), 21–31 (1985).
[CrossRef] [PubMed]

Ribak, E. N.

Romero-Borja, F.

Roorda, A.

A. Roorda, “Applications of adaptive optics scanning laser ophthalmoscopy,” Optom. Vis. Sci.87(4), 260–268 (2010).
[PubMed]

P. Godara, A. M. Dubis, A. Roorda, J. L. Duncan, and J. Carroll, “Adaptive optics retinal imaging: emerging clinical applications,” Optom. Vis. Sci.87(12), 930–941 (2010).
[CrossRef] [PubMed]

A. Roorda, F. Romero-Borja, W. Donnelly Iii, H. Queener, T. Hebert, and M. Campbell, “Adaptive optics scanning laser ophthalmoscopy,” Opt. Express10(9), 405–412 (2002).
[PubMed]

Rylander, H. G.

A. B. Metha, A. M. Crane, H. G. Rylander, S. L. Thomsen, and D. G. Albrecht, “Maintaining the cornea and the general physiological environment in visual neurophysiology experiments,” J. Neurosci. Methods109(2), 153–166 (2001).
[CrossRef] [PubMed]

Schery, L. A.

Schilling, R.

A. M. Geurts, G. J. Cost, Y. Freyvert, B. Zeitler, J. C. Miller, V. M. Choi, S. S. Jenkins, A. Wood, X. Cui, X. Meng, A. Vincent, S. Lam, M. Michalkiewicz, R. Schilling, J. Foeckler, S. Kalloway, H. Weiler, S. Ménoret, I. Anegon, G. D. Davis, L. Zhang, E. J. Rebar, P. D. Gregory, F. D. Urnov, H. J. Jacob, and R. Buelow, “Knockout rats via embryo microinjection of zinc-finger nucleases,” Science325(5939), 433 (2009).
[CrossRef] [PubMed]

Schuman, J. S.

A. Chan, J. S. Duker, T. H. Ko, J. G. Fujimoto, and J. S. Schuman, “Normal macular thickness measurements in healthy eyes using Stratus optical coherence tomography,” Arch. Ophthalmol.124(2), 193–198 (2006).
[CrossRef] [PubMed]

Sharma, R.

Smith, G.

G. Smith, P. Bedggood, R. Ashman, M. Daaboul, and A. Metha, “Exploring ocular aberrations with a schematic human eye model,” Optom. Vis. Sci.85(5), 330–340 (2008).
[CrossRef] [PubMed]

Sredar, N.

Srinivas, S.

Sulai, Y.

Sumorok, D.

Thomas, K. R.

S. L. Mansour, K. R. Thomas, and M. R. Capecchi, “Disruption of the proto-oncogene int-2 in mouse embryo-derived stem cells: a general strategy for targeting mutations to non-selectable genes,” Nature336(6197), 348–352 (1988).
[CrossRef] [PubMed]

Thomas, M.

B. V. Bui, M. Loeliger, M. Thomas, A. J. Vingrys, S. M. Rees, C. T. Nguyen, Z. He, and M. Tolcos, “Investigating structural and biochemical correlates of ganglion cell dysfunction in streptozotocin-induced diabetic rats,” Exp. Eye Res.88(6), 1076–1083 (2009).
[CrossRef] [PubMed]

Thomsen, S. L.

A. B. Metha, A. M. Crane, H. G. Rylander, S. L. Thomsen, and D. G. Albrecht, “Maintaining the cornea and the general physiological environment in visual neurophysiology experiments,” J. Neurosci. Methods109(2), 153–166 (2001).
[CrossRef] [PubMed]

Tolcos, M.

B. V. Bui, M. Loeliger, M. Thomas, A. J. Vingrys, S. M. Rees, C. T. Nguyen, Z. He, and M. Tolcos, “Investigating structural and biochemical correlates of ganglion cell dysfunction in streptozotocin-induced diabetic rats,” Exp. Eye Res.88(6), 1076–1083 (2009).
[CrossRef] [PubMed]

Unterhuber, A.

Urnov, F. D.

A. M. Geurts, G. J. Cost, Y. Freyvert, B. Zeitler, J. C. Miller, V. M. Choi, S. S. Jenkins, A. Wood, X. Cui, X. Meng, A. Vincent, S. Lam, M. Michalkiewicz, R. Schilling, J. Foeckler, S. Kalloway, H. Weiler, S. Ménoret, I. Anegon, G. D. Davis, L. Zhang, E. J. Rebar, P. D. Gregory, F. D. Urnov, H. J. Jacob, and R. Buelow, “Knockout rats via embryo microinjection of zinc-finger nucleases,” Science325(5939), 433 (2009).
[CrossRef] [PubMed]

Vaughan, D. K.

R. E. Marc, B. W. Jones, C. B. Watt, F. Vazquez-Chona, D. K. Vaughan, and D. T. Organisciak, “Extreme retinal remodeling triggered by light damage: implications for age related macular degeneration,” Mol. Vis.14, 782–806 (2008).
[PubMed]

Vazquez-Chona, F.

R. E. Marc, B. W. Jones, C. B. Watt, F. Vazquez-Chona, D. K. Vaughan, and D. T. Organisciak, “Extreme retinal remodeling triggered by light damage: implications for age related macular degeneration,” Mol. Vis.14, 782–806 (2008).
[PubMed]

Veilleux, I.

Vincent, A.

A. M. Geurts, G. J. Cost, Y. Freyvert, B. Zeitler, J. C. Miller, V. M. Choi, S. S. Jenkins, A. Wood, X. Cui, X. Meng, A. Vincent, S. Lam, M. Michalkiewicz, R. Schilling, J. Foeckler, S. Kalloway, H. Weiler, S. Ménoret, I. Anegon, G. D. Davis, L. Zhang, E. J. Rebar, P. D. Gregory, F. D. Urnov, H. J. Jacob, and R. Buelow, “Knockout rats via embryo microinjection of zinc-finger nucleases,” Science325(5939), 433 (2009).
[CrossRef] [PubMed]

Vingrys, A. J.

B. V. Bui, M. Loeliger, M. Thomas, A. J. Vingrys, S. M. Rees, C. T. Nguyen, Z. He, and M. Tolcos, “Investigating structural and biochemical correlates of ganglion cell dysfunction in streptozotocin-induced diabetic rats,” Exp. Eye Res.88(6), 1076–1083 (2009).
[CrossRef] [PubMed]

K. Kohzaki, A. J. Vingrys, and B. V. Bui, “Early inner retinal dysfunction in streptozotocin-induced diabetic rats,” Invest. Ophthalmol. Vis. Sci.49(8), 3595–3604 (2008).
[CrossRef] [PubMed]

Z. He, B. V. Bui, and A. J. Vingrys, “Effect of repeated IOP challenge on rat retinal function,” Invest. Ophthalmol. Vis. Sci.49(7), 3026–3034 (2008).
[CrossRef] [PubMed]

Watanabe, T.

Watt, C. B.

R. E. Marc, B. W. Jones, C. B. Watt, F. Vazquez-Chona, D. K. Vaughan, and D. T. Organisciak, “Extreme retinal remodeling triggered by light damage: implications for age related macular degeneration,” Mol. Vis.14, 782–806 (2008).
[PubMed]

Webb, R. H.

D. P. Biss, D. Sumorok, S. A. Burns, R. H. Webb, Y. Zhou, T. G. Bifano, D. Côté, I. Veilleux, P. Zamiri, and C. P. Lin, “In vivo fluorescent imaging of the mouse retina using adaptive optics,” Opt. Lett.32(6), 659–661 (2007).
[CrossRef] [PubMed]

D. P. Biss, R. H. Webb, Y. Zhou, T. G. Bifano, P. Zamiri, and C. P. Lin, “An adaptive optics biomicroscope for mouse retinal imaging,” Proc. SPIE6467, 646703, 646703-8 (2007).
[CrossRef]

Weiler, H.

A. M. Geurts, G. J. Cost, Y. Freyvert, B. Zeitler, J. C. Miller, V. M. Choi, S. S. Jenkins, A. Wood, X. Cui, X. Meng, A. Vincent, S. Lam, M. Michalkiewicz, R. Schilling, J. Foeckler, S. Kalloway, H. Weiler, S. Ménoret, I. Anegon, G. D. Davis, L. Zhang, E. J. Rebar, P. D. Gregory, F. D. Urnov, H. J. Jacob, and R. Buelow, “Knockout rats via embryo microinjection of zinc-finger nucleases,” Science325(5939), 433 (2009).
[CrossRef] [PubMed]

Williams, D. R.

Wilson, T.

Wolfe, R.

Y. Geng, K. P. Greenberg, R. Wolfe, D. C. Gray, J. J. Hunter, A. Dubra, J. G. Flannery, D. R. Williams, and J. Porter, “In vivo imaging of microscopic structures in the rat retina,” Invest. Ophthalmol. Vis. Sci.50(12), 5872–5879 (2009).
[CrossRef] [PubMed]

Wood, A.

A. M. Geurts, G. J. Cost, Y. Freyvert, B. Zeitler, J. C. Miller, V. M. Choi, S. S. Jenkins, A. Wood, X. Cui, X. Meng, A. Vincent, S. Lam, M. Michalkiewicz, R. Schilling, J. Foeckler, S. Kalloway, H. Weiler, S. Ménoret, I. Anegon, G. D. Davis, L. Zhang, E. J. Rebar, P. D. Gregory, F. D. Urnov, H. J. Jacob, and R. Buelow, “Knockout rats via embryo microinjection of zinc-finger nucleases,” Science325(5939), 433 (2009).
[CrossRef] [PubMed]

Wyszecki, G.

Yin, L.

Zamiri, P.

D. P. Biss, D. Sumorok, S. A. Burns, R. H. Webb, Y. Zhou, T. G. Bifano, D. Côté, I. Veilleux, P. Zamiri, and C. P. Lin, “In vivo fluorescent imaging of the mouse retina using adaptive optics,” Opt. Lett.32(6), 659–661 (2007).
[CrossRef] [PubMed]

D. P. Biss, R. H. Webb, Y. Zhou, T. G. Bifano, P. Zamiri, and C. P. Lin, “An adaptive optics biomicroscope for mouse retinal imaging,” Proc. SPIE6467, 646703, 646703-8 (2007).
[CrossRef]

Zeitler, B.

A. M. Geurts, G. J. Cost, Y. Freyvert, B. Zeitler, J. C. Miller, V. M. Choi, S. S. Jenkins, A. Wood, X. Cui, X. Meng, A. Vincent, S. Lam, M. Michalkiewicz, R. Schilling, J. Foeckler, S. Kalloway, H. Weiler, S. Ménoret, I. Anegon, G. D. Davis, L. Zhang, E. J. Rebar, P. D. Gregory, F. D. Urnov, H. J. Jacob, and R. Buelow, “Knockout rats via embryo microinjection of zinc-finger nucleases,” Science325(5939), 433 (2009).
[CrossRef] [PubMed]

Zhang, L.

A. M. Geurts, G. J. Cost, Y. Freyvert, B. Zeitler, J. C. Miller, V. M. Choi, S. S. Jenkins, A. Wood, X. Cui, X. Meng, A. Vincent, S. Lam, M. Michalkiewicz, R. Schilling, J. Foeckler, S. Kalloway, H. Weiler, S. Ménoret, I. Anegon, G. D. Davis, L. Zhang, E. J. Rebar, P. D. Gregory, F. D. Urnov, H. J. Jacob, and R. Buelow, “Knockout rats via embryo microinjection of zinc-finger nucleases,” Science325(5939), 433 (2009).
[CrossRef] [PubMed]

Zhou, Y.

D. P. Biss, R. H. Webb, Y. Zhou, T. G. Bifano, P. Zamiri, and C. P. Lin, “An adaptive optics biomicroscope for mouse retinal imaging,” Proc. SPIE6467, 646703, 646703-8 (2007).
[CrossRef]

D. P. Biss, D. Sumorok, S. A. Burns, R. H. Webb, Y. Zhou, T. G. Bifano, D. Côté, I. Veilleux, P. Zamiri, and C. P. Lin, “In vivo fluorescent imaging of the mouse retina using adaptive optics,” Opt. Lett.32(6), 659–661 (2007).
[CrossRef] [PubMed]

Zommer, S.

Arch. Ophthalmol. (1)

A. Chan, J. S. Duker, T. H. Ko, J. G. Fujimoto, and J. S. Schuman, “Normal macular thickness measurements in healthy eyes using Stratus optical coherence tomography,” Arch. Ophthalmol.124(2), 193–198 (2006).
[CrossRef] [PubMed]

Biomed. Opt. Express (3)

Exp. Eye Res. (1)

B. V. Bui, M. Loeliger, M. Thomas, A. J. Vingrys, S. M. Rees, C. T. Nguyen, Z. He, and M. Tolcos, “Investigating structural and biochemical correlates of ganglion cell dysfunction in streptozotocin-induced diabetic rats,” Exp. Eye Res.88(6), 1076–1083 (2009).
[CrossRef] [PubMed]

Invest. Ophthalmol. Vis. Sci. (4)

K. Kohzaki, A. J. Vingrys, and B. V. Bui, “Early inner retinal dysfunction in streptozotocin-induced diabetic rats,” Invest. Ophthalmol. Vis. Sci.49(8), 3595–3604 (2008).
[CrossRef] [PubMed]

Z. He, B. V. Bui, and A. J. Vingrys, “Effect of repeated IOP challenge on rat retinal function,” Invest. Ophthalmol. Vis. Sci.49(7), 3026–3034 (2008).
[CrossRef] [PubMed]

Y. Geng, K. P. Greenberg, R. Wolfe, D. C. Gray, J. J. Hunter, A. Dubra, J. G. Flannery, D. R. Williams, and J. Porter, “In vivo imaging of microscopic structures in the rat retina,” Invest. Ophthalmol. Vis. Sci.50(12), 5872–5879 (2009).
[CrossRef] [PubMed]

B. V. Bui, B. Edmunds, G. A. Cioffi, and B. Fortune, “The gradient of retinal functional changes during acute intraocular pressure elevation,” Invest. Ophthalmol. Vis. Sci.46(1), 202–213 (2005).
[CrossRef] [PubMed]

J. Neurosci. Methods (1)

A. B. Metha, A. M. Crane, H. G. Rylander, S. L. Thomsen, and D. G. Albrecht, “Maintaining the cornea and the general physiological environment in visual neurophysiology experiments,” J. Neurosci. Methods109(2), 153–166 (2001).
[CrossRef] [PubMed]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (5)

Mol. Vis. (1)

R. E. Marc, B. W. Jones, C. B. Watt, F. Vazquez-Chona, D. K. Vaughan, and D. T. Organisciak, “Extreme retinal remodeling triggered by light damage: implications for age related macular degeneration,” Mol. Vis.14, 782–806 (2008).
[PubMed]

Nature (2)

S. L. Mansour, K. R. Thomas, and M. R. Capecchi, “Disruption of the proto-oncogene int-2 in mouse embryo-derived stem cells: a general strategy for targeting mutations to non-selectable genes,” Nature336(6197), 348–352 (1988).
[CrossRef] [PubMed]

A. Abbott, “Laboratory animals: the Renaissance rat,” Nature428(6982), 464–466 (2004).
[CrossRef] [PubMed]

Opt. Express (3)

Opt. Lett. (3)

Optom. Vis. Sci. (3)

A. Roorda, “Applications of adaptive optics scanning laser ophthalmoscopy,” Optom. Vis. Sci.87(4), 260–268 (2010).
[PubMed]

P. Godara, A. M. Dubis, A. Roorda, J. L. Duncan, and J. Carroll, “Adaptive optics retinal imaging: emerging clinical applications,” Optom. Vis. Sci.87(12), 930–941 (2010).
[CrossRef] [PubMed]

G. Smith, P. Bedggood, R. Ashman, M. Daaboul, and A. Metha, “Exploring ocular aberrations with a schematic human eye model,” Optom. Vis. Sci.85(5), 330–340 (2008).
[CrossRef] [PubMed]

Proc. SPIE (1)

D. P. Biss, R. H. Webb, Y. Zhou, T. G. Bifano, P. Zamiri, and C. P. Lin, “An adaptive optics biomicroscope for mouse retinal imaging,” Proc. SPIE6467, 646703, 646703-8 (2007).
[CrossRef]

Science (2)

A. M. Geurts, G. J. Cost, Y. Freyvert, B. Zeitler, J. C. Miller, V. M. Choi, S. S. Jenkins, A. Wood, X. Cui, X. Meng, A. Vincent, S. Lam, M. Michalkiewicz, R. Schilling, J. Foeckler, S. Kalloway, H. Weiler, S. Ménoret, I. Anegon, G. D. Davis, L. Zhang, E. J. Rebar, P. D. Gregory, F. D. Urnov, H. J. Jacob, and R. Buelow, “Knockout rats via embryo microinjection of zinc-finger nucleases,” Science325(5939), 433 (2009).
[CrossRef] [PubMed]

M. R. Capecchi, “Altering the genome by homologous recombination,” Science244(4910), 1288–1292 (1989).
[CrossRef] [PubMed]

Vision Res. (5)

A. Chaudhuri, P. E. Hallett, and J. A. Parker, “Aspheric curvatures, refractive indices and chromatic aberration for the rat eye,” Vision Res.23(12), 1351–1363 (1983).
[CrossRef] [PubMed]

M. C. W. Campbell and A. Hughes, “An analytic, gradient index schematic lens and eye for the rat which predicts aberrations for finite pupils,” Vision Res.21(7), 1129–1148, 1135–1148 (1981).
[CrossRef] [PubMed]

A. Hughes, “A schematic eye for the rat,” Vision Res.19(5), 569–588 (1979).
[CrossRef] [PubMed]

S. Remtulla and P. E. Hallett, “A schematic eye for the mouse, and comparisons with the rat,” Vision Res.25(1), 21–31 (1985).
[CrossRef] [PubMed]

S. Marcos, S. A. Burns, E. Moreno-Barriusop, and R. Navarro, “A new approach to the study of ocular chromatic aberrations,” Vision Res.39(26), 4309–4323 (1999).
[CrossRef] [PubMed]

Other (3)

P. A. Bedggood, Adaptive Optics Methods to Increase the Isoplanatic Patch Size for Human Retinal Imaging, (Dept. of Optometry and Vision Sciences, University of Melbourne, 2008)

G. Smith and D. A. Atchison, The Eye and Visual Optical Instruments (Cambridge University Press, Cambridge, UK; New York, USA, 1997).

M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Cambridge University Press, Cambridge; New York, 1999).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

A schematic depicting the manipulation of key AO imaging parameters. (a) The imaging plane was shifted from the ILM to the outer retina, assuming an average retinal thickness of 170 µm for the rat and 250 µm for the human eye. (b) The imaging wavelength was shifted from 650 nm (matching the wavefront sensing wavelength) to 475 nm. (c) The position of the AO corrector relative to the exit pupil was shifted. This manipulation exacerbates existing error, as opposed to introducing its own error; therefore baseline error was introduced by separating the imaging and sensing planes by the full retinal thickness as in (a).

Fig. 2
Fig. 2

Human eye: Effect of separation between imaging and sensing planes after optimizing for defocus. Residual wavefront RMS for selected image planes within the 250 µm human retina is plotted against separation from the sensing plane (which was located at the ILM). Exit pupil size: 6.0 mm. Diffraction limit was calculated according to the Maréchal criterion (λ/14; horizontal dashed line).

Fig. 3
Fig. 3

Rat eye: Effect of separation between imaging and sensing planes after optimizing for defocus. Residual wavefront RMS for selected image planes within the 170 µm rat retina is plotted against separation from the sensing plane (which was located at the ILM). Closed symbols: centre of imaged field. Open symbols: edge of imaged field (averaged wavefront RMS from 4 points at edge of 2° diameter field). Exit pupil size: 3.5 mm. Diffraction limit was calculated according to the Maréchal criterion (λ/14; horizontal dashed line).

Fig. 4
Fig. 4

Human eye: Effect of separation between imaging and sensing wavelengths after optimizing for defocus. Residual wavefront RMS is plotted as a function of the sensing-to-imaging wavelength difference, Δλ. Exit pupil size: 6.0 mm. Diffraction limit was calculated according to the Maréchal criterion (λ/14), which is represented as a horizontal dashed line.

Fig. 5
Fig. 5

Rat eye: Effect of difference between imaging and sensing wavelengths after optimizing for defocus. Residual wavefront RMS is plotted as a function of the sensing-to-imaging wavelength difference, Δλ. Closed symbols: centre of imaged field. Open symbols: edge of imaged field (averaged wavefront RMS from 4 points at edge of 2° diameter field). Exit pupil size: 3.5 mm. Diffraction limit was calculated according to the Maréchal criterion (λ/14; horizontal dashed line).

Fig. 6
Fig. 6

Human eye: Effect of error in corrector position, in the presence of separation between imaging and sensing planes, and after optimizing for defocus. Residual wavefront RMS induced is plotted as a function of corrector separation from the exit pupil. Exit pupil size: 6.0 mm. Diffraction limit was calculated according to the Maréchal criterion (λ/14; horizontal dashed line).

Fig. 7
Fig. 7

Rat eye: Effect of error in corrector position in the presence of separation between imaging and sensing planes, and after optimizing for defocus. Only central image points are shown. Residual wavefront RMS induced is plotted as a function of corrector separation from the exit pupil. Exit pupil size: 3.5 mm. Diffraction limit was calculated according to the Maréchal criterion (λ/14; horizontal dashed line).

Fig. 8
Fig. 8

Rat eye: Effect of error in corrector position, combining the three manipulations. Wavefront sensing and AO correction at 650 nm at the ILM. Imaging at 475 nm at the outer retina, after optimizing for defocus only. Solid curve: residual wavefont RMS; dot-dashed lines: residual SA components resulting from separation between imaging/sensing plane and wavelength. Exit pupil size: 3.5 mm. Diffraction limit was calculated according to the Maréchal criterion (λ/14; horizontal dashed line).

Tables (3)

Tables Icon

Table 1 Parameters of the rat schematic eye used in the modeling, modified from Campbell and Hughes (1981)

Tables Icon

Table 2 Dispersion data for the rat schematic eye, modified from Chaudhuri et al. (1983)

Tables Icon

Table 3 Parameters of the Liou and Brennan (1997) schematic human eye

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

n(r)=A r 2 B ,
n(w,z)= n 00 + n 01 z+ n 02 z 2 + n 10 w 2 ,
n(media at λ nm)=n(media at 555nm)+0.05121.455× 10 4 λ+9.61× 10 8 λ 2 ,

Metrics