Abstract

Along with the lens, the cornea is the only transparent tissue in the human body. However, the development of an edema involves structural disturbances increasing light scattering and leading to the opacification of the cornea. Several mechanisms of transparency loss have been studied in the literature, but the whole phenomenon is complex and the part played by each scatterer is still unclear. We propose here to study human corneal grafts combining microscopic OCT imagery with far-field measurement of the scattered light in the reflected half-space. We introduce afterwards numerical calculations based on electromagnetic equations solved with first order approximation to link the observed microscopic-scale structural modifications with the intensity level of the scattered light, and to try and quantify the relationship between them.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Nishida, “Cornea: anatomy and physiology,” in Cornea: Fundamentals, Diagnosis and Management, 2nd ed., J. H. Krachmer, M. J. Mannis, and E. J. Holland, eds. (Elsevier/Mosby, 2005).
  2. D. M. Maurice, “The structure and transparency of the cornea,” J. Physiol.136(2), 263–286 (1957).
    [PubMed]
  3. R. W. Hart and R. A. Farrell, “Light scattering in the cornea,” J. Opt. Soc. Am.59(6), 766–774 (1969).
    [CrossRef] [PubMed]
  4. G. B. Benedek, “Theory of transparency of the eye,” Appl. Opt.10(3), 459–473 (1971).
    [CrossRef] [PubMed]
  5. J. N. Goldman, G. B. Benedek, C. H. Dohlman, and B. Kravitt, “Structural alterations affecting transparency in swollen human corneas,” Invest. Ophthalmol.7(5), 501–519 (1968).
    [PubMed]
  6. R. A. Farrell, R. L. McCally, and P. E. R. Tatham, “Wave-length dependencies of light scattering in normal and cold swollen rabbit corneas and their structural implications,” J. Physiol.233(3), 589–612 (1973).
    [PubMed]
  7. D. A. Peyrot, F. Aptel, C. Crotti, F. Deloison, S. Lemaire, T. Marciano, S. Bancelin, F. Alahyane, L. Kowalczuk, M. Savoldelli, J.-M. Legeais, and K. Plamann, “Effect of incident light wavelength and corneal edema on light scattering and penetration: laboratory study of human corneas,” J. Refract. Surg.26(10), 786–795 (2010).
    [CrossRef] [PubMed]
  8. J. V. Jester, T. Møller-Pedersen, J. Huang, C. M. Sax, W. T. Kays, H. D. Cavangh, W. M. Petroll, and J. Piatigorsky, “The cellular basis of corneal transparency: evidence for ‘corneal crystallins’,” J. Cell Sci.112(Pt 5), 613–622 (1999).
    [PubMed]
  9. T. Møller-Pedersen, “Keratocyte reflectivity and corneal haze,” Exp. Eye Res.78(3), 553–560 (2004).
    [CrossRef] [PubMed]
  10. E. Pels, H. Beele, and I. Claerhout, “Eye bank issues: II. Preservation techniques: warm versus cold storage,” Int. Ophthalmol.28(3), 155–163 (2008).
    [CrossRef] [PubMed]
  11. A. H. Wolf, U. C. Welge-Lüßen, S. Priglinger, D. Kook, M. Grueterich, K. Hartmann, A. Kampik, and A. S. Neubauer, “Optimizing the deswelling process of organ-cultured corneas,” Cornea28(5), 524–529 (2009).
    [CrossRef] [PubMed]
  12. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
    [CrossRef] [PubMed]
  13. E. Beaurepaire, A. C. Boccara, M. Lebec, L. Blanchot, and H. Saint-Jalmes, “Full-field optical coherence microscopy,” Opt. Lett.23(4), 244–246 (1998).
    [CrossRef] [PubMed]
  14. A. Dubois, L. Vabre, A. C. Boccara, and E. Beaurepaire, “High-resolution full-field optical coherence tomography with a Linnik microscope,” Appl. Opt.41(4), 805–812 (2002).
    [CrossRef] [PubMed]
  15. G. Latour, G. Georges, L. S. Lamoine, C. Deumié, J. Conrath, and L. Hoffart, “Human graft cornea and laser incisions imaging with micrometer scale resolution full-field optical coherence tomography,” J. Biomed. Opt.15(5), 056006 (2010).
    [CrossRef] [PubMed]
  16. C. Amra, D. Torricini, and P. Roche, “Multiwavelength (0.45-10.6 µm) angle-resolved scatterometer or how to extend the optical window,” Appl. Opt.32(28), 5462–5474 (1993).
    [CrossRef] [PubMed]
  17. G. Latour, G. Georges, L. Siozade-Lamoine, C. Deumié, J. Conrath, and L. Hoffart, “Light scattering from human corneal grafts: Bulk and surface contribution,” J. Appl. Phys.108(5), 053104 (2010).
    [CrossRef]
  18. C. Amra, C. Grèzes-Besset, and L. Bruel, “Comparison of surface and bulk scattering in optical multilayers,” Appl. Opt.32(28), 5492–5503 (1993).
    [CrossRef] [PubMed]
  19. C. Amra, “First-order vector theory of bulk scattering in optical multilayers,” J. Opt. Soc. Am. A10(2), 365–374 (1993).
    [CrossRef]
  20. M. Born and E. Wolf, Principle of Optics, 6th ed. (Pergamon, New York, 1986), p.453.
  21. C. Deumié, R. Richier, P. Dumas, and C. Amra, “Multiscale roughness in optical multilayers: atomic force microscopy and light scattering,” Appl. Opt.35(28), 5583–5594 (1996).
    [CrossRef] [PubMed]
  22. S. Patel, J. Marshall, and F. W. Fitzke, “Refractive index of the human corneal epithelium and stroma,” J. Refract. Surg.11(2), 100–105 (1995).
    [PubMed]
  23. K. M. Meek, D. W. Leonard, C. J. Connon, S. Dennis, and S. Khan, “Transparency, swelling and scarring in the corneal stroma,” Eye (Lond.)17(8), 927–936 (2003).
    [CrossRef] [PubMed]
  24. E. Popov and M. Nevière, “Maxwell equations in Fourier space: fast-converging formulation for diffraction by arbitrary shaped, periodic, anisotropic media,” J. Opt. Soc. Am. A18(11), 2886–2894 (2001).
    [CrossRef] [PubMed]
  25. L. Arnaud, G. Georges, J. Sorrentini, M. Zerrad, C. Deumié, and C. Amra, “An enhanced contrast to detect bulk objects under arbitrary rough surfaces,” Opt. Express17(7), 5758–5773 (2009).
    [CrossRef] [PubMed]

2010

D. A. Peyrot, F. Aptel, C. Crotti, F. Deloison, S. Lemaire, T. Marciano, S. Bancelin, F. Alahyane, L. Kowalczuk, M. Savoldelli, J.-M. Legeais, and K. Plamann, “Effect of incident light wavelength and corneal edema on light scattering and penetration: laboratory study of human corneas,” J. Refract. Surg.26(10), 786–795 (2010).
[CrossRef] [PubMed]

G. Latour, G. Georges, L. S. Lamoine, C. Deumié, J. Conrath, and L. Hoffart, “Human graft cornea and laser incisions imaging with micrometer scale resolution full-field optical coherence tomography,” J. Biomed. Opt.15(5), 056006 (2010).
[CrossRef] [PubMed]

G. Latour, G. Georges, L. Siozade-Lamoine, C. Deumié, J. Conrath, and L. Hoffart, “Light scattering from human corneal grafts: Bulk and surface contribution,” J. Appl. Phys.108(5), 053104 (2010).
[CrossRef]

2009

A. H. Wolf, U. C. Welge-Lüßen, S. Priglinger, D. Kook, M. Grueterich, K. Hartmann, A. Kampik, and A. S. Neubauer, “Optimizing the deswelling process of organ-cultured corneas,” Cornea28(5), 524–529 (2009).
[CrossRef] [PubMed]

L. Arnaud, G. Georges, J. Sorrentini, M. Zerrad, C. Deumié, and C. Amra, “An enhanced contrast to detect bulk objects under arbitrary rough surfaces,” Opt. Express17(7), 5758–5773 (2009).
[CrossRef] [PubMed]

2008

E. Pels, H. Beele, and I. Claerhout, “Eye bank issues: II. Preservation techniques: warm versus cold storage,” Int. Ophthalmol.28(3), 155–163 (2008).
[CrossRef] [PubMed]

2004

T. Møller-Pedersen, “Keratocyte reflectivity and corneal haze,” Exp. Eye Res.78(3), 553–560 (2004).
[CrossRef] [PubMed]

2003

K. M. Meek, D. W. Leonard, C. J. Connon, S. Dennis, and S. Khan, “Transparency, swelling and scarring in the corneal stroma,” Eye (Lond.)17(8), 927–936 (2003).
[CrossRef] [PubMed]

2002

2001

1999

J. V. Jester, T. Møller-Pedersen, J. Huang, C. M. Sax, W. T. Kays, H. D. Cavangh, W. M. Petroll, and J. Piatigorsky, “The cellular basis of corneal transparency: evidence for ‘corneal crystallins’,” J. Cell Sci.112(Pt 5), 613–622 (1999).
[PubMed]

1998

1996

1995

S. Patel, J. Marshall, and F. W. Fitzke, “Refractive index of the human corneal epithelium and stroma,” J. Refract. Surg.11(2), 100–105 (1995).
[PubMed]

1993

1991

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

1973

R. A. Farrell, R. L. McCally, and P. E. R. Tatham, “Wave-length dependencies of light scattering in normal and cold swollen rabbit corneas and their structural implications,” J. Physiol.233(3), 589–612 (1973).
[PubMed]

1971

1969

1968

J. N. Goldman, G. B. Benedek, C. H. Dohlman, and B. Kravitt, “Structural alterations affecting transparency in swollen human corneas,” Invest. Ophthalmol.7(5), 501–519 (1968).
[PubMed]

1957

D. M. Maurice, “The structure and transparency of the cornea,” J. Physiol.136(2), 263–286 (1957).
[PubMed]

Alahyane, F.

D. A. Peyrot, F. Aptel, C. Crotti, F. Deloison, S. Lemaire, T. Marciano, S. Bancelin, F. Alahyane, L. Kowalczuk, M. Savoldelli, J.-M. Legeais, and K. Plamann, “Effect of incident light wavelength and corneal edema on light scattering and penetration: laboratory study of human corneas,” J. Refract. Surg.26(10), 786–795 (2010).
[CrossRef] [PubMed]

Amra, C.

Aptel, F.

D. A. Peyrot, F. Aptel, C. Crotti, F. Deloison, S. Lemaire, T. Marciano, S. Bancelin, F. Alahyane, L. Kowalczuk, M. Savoldelli, J.-M. Legeais, and K. Plamann, “Effect of incident light wavelength and corneal edema on light scattering and penetration: laboratory study of human corneas,” J. Refract. Surg.26(10), 786–795 (2010).
[CrossRef] [PubMed]

Arnaud, L.

Bancelin, S.

D. A. Peyrot, F. Aptel, C. Crotti, F. Deloison, S. Lemaire, T. Marciano, S. Bancelin, F. Alahyane, L. Kowalczuk, M. Savoldelli, J.-M. Legeais, and K. Plamann, “Effect of incident light wavelength and corneal edema on light scattering and penetration: laboratory study of human corneas,” J. Refract. Surg.26(10), 786–795 (2010).
[CrossRef] [PubMed]

Beaurepaire, E.

Beele, H.

E. Pels, H. Beele, and I. Claerhout, “Eye bank issues: II. Preservation techniques: warm versus cold storage,” Int. Ophthalmol.28(3), 155–163 (2008).
[CrossRef] [PubMed]

Benedek, G. B.

G. B. Benedek, “Theory of transparency of the eye,” Appl. Opt.10(3), 459–473 (1971).
[CrossRef] [PubMed]

J. N. Goldman, G. B. Benedek, C. H. Dohlman, and B. Kravitt, “Structural alterations affecting transparency in swollen human corneas,” Invest. Ophthalmol.7(5), 501–519 (1968).
[PubMed]

Blanchot, L.

Boccara, A. C.

Bruel, L.

Cavangh, H. D.

J. V. Jester, T. Møller-Pedersen, J. Huang, C. M. Sax, W. T. Kays, H. D. Cavangh, W. M. Petroll, and J. Piatigorsky, “The cellular basis of corneal transparency: evidence for ‘corneal crystallins’,” J. Cell Sci.112(Pt 5), 613–622 (1999).
[PubMed]

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Claerhout, I.

E. Pels, H. Beele, and I. Claerhout, “Eye bank issues: II. Preservation techniques: warm versus cold storage,” Int. Ophthalmol.28(3), 155–163 (2008).
[CrossRef] [PubMed]

Connon, C. J.

K. M. Meek, D. W. Leonard, C. J. Connon, S. Dennis, and S. Khan, “Transparency, swelling and scarring in the corneal stroma,” Eye (Lond.)17(8), 927–936 (2003).
[CrossRef] [PubMed]

Conrath, J.

G. Latour, G. Georges, L. Siozade-Lamoine, C. Deumié, J. Conrath, and L. Hoffart, “Light scattering from human corneal grafts: Bulk and surface contribution,” J. Appl. Phys.108(5), 053104 (2010).
[CrossRef]

G. Latour, G. Georges, L. S. Lamoine, C. Deumié, J. Conrath, and L. Hoffart, “Human graft cornea and laser incisions imaging with micrometer scale resolution full-field optical coherence tomography,” J. Biomed. Opt.15(5), 056006 (2010).
[CrossRef] [PubMed]

Crotti, C.

D. A. Peyrot, F. Aptel, C. Crotti, F. Deloison, S. Lemaire, T. Marciano, S. Bancelin, F. Alahyane, L. Kowalczuk, M. Savoldelli, J.-M. Legeais, and K. Plamann, “Effect of incident light wavelength and corneal edema on light scattering and penetration: laboratory study of human corneas,” J. Refract. Surg.26(10), 786–795 (2010).
[CrossRef] [PubMed]

Deloison, F.

D. A. Peyrot, F. Aptel, C. Crotti, F. Deloison, S. Lemaire, T. Marciano, S. Bancelin, F. Alahyane, L. Kowalczuk, M. Savoldelli, J.-M. Legeais, and K. Plamann, “Effect of incident light wavelength and corneal edema on light scattering and penetration: laboratory study of human corneas,” J. Refract. Surg.26(10), 786–795 (2010).
[CrossRef] [PubMed]

Dennis, S.

K. M. Meek, D. W. Leonard, C. J. Connon, S. Dennis, and S. Khan, “Transparency, swelling and scarring in the corneal stroma,” Eye (Lond.)17(8), 927–936 (2003).
[CrossRef] [PubMed]

Deumié, C.

G. Latour, G. Georges, L. Siozade-Lamoine, C. Deumié, J. Conrath, and L. Hoffart, “Light scattering from human corneal grafts: Bulk and surface contribution,” J. Appl. Phys.108(5), 053104 (2010).
[CrossRef]

G. Latour, G. Georges, L. S. Lamoine, C. Deumié, J. Conrath, and L. Hoffart, “Human graft cornea and laser incisions imaging with micrometer scale resolution full-field optical coherence tomography,” J. Biomed. Opt.15(5), 056006 (2010).
[CrossRef] [PubMed]

L. Arnaud, G. Georges, J. Sorrentini, M. Zerrad, C. Deumié, and C. Amra, “An enhanced contrast to detect bulk objects under arbitrary rough surfaces,” Opt. Express17(7), 5758–5773 (2009).
[CrossRef] [PubMed]

C. Deumié, R. Richier, P. Dumas, and C. Amra, “Multiscale roughness in optical multilayers: atomic force microscopy and light scattering,” Appl. Opt.35(28), 5583–5594 (1996).
[CrossRef] [PubMed]

Dohlman, C. H.

J. N. Goldman, G. B. Benedek, C. H. Dohlman, and B. Kravitt, “Structural alterations affecting transparency in swollen human corneas,” Invest. Ophthalmol.7(5), 501–519 (1968).
[PubMed]

Dubois, A.

Dumas, P.

Farrell, R. A.

R. A. Farrell, R. L. McCally, and P. E. R. Tatham, “Wave-length dependencies of light scattering in normal and cold swollen rabbit corneas and their structural implications,” J. Physiol.233(3), 589–612 (1973).
[PubMed]

R. W. Hart and R. A. Farrell, “Light scattering in the cornea,” J. Opt. Soc. Am.59(6), 766–774 (1969).
[CrossRef] [PubMed]

Fitzke, F. W.

S. Patel, J. Marshall, and F. W. Fitzke, “Refractive index of the human corneal epithelium and stroma,” J. Refract. Surg.11(2), 100–105 (1995).
[PubMed]

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Fujimoto, J. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Georges, G.

G. Latour, G. Georges, L. Siozade-Lamoine, C. Deumié, J. Conrath, and L. Hoffart, “Light scattering from human corneal grafts: Bulk and surface contribution,” J. Appl. Phys.108(5), 053104 (2010).
[CrossRef]

G. Latour, G. Georges, L. S. Lamoine, C. Deumié, J. Conrath, and L. Hoffart, “Human graft cornea and laser incisions imaging with micrometer scale resolution full-field optical coherence tomography,” J. Biomed. Opt.15(5), 056006 (2010).
[CrossRef] [PubMed]

L. Arnaud, G. Georges, J. Sorrentini, M. Zerrad, C. Deumié, and C. Amra, “An enhanced contrast to detect bulk objects under arbitrary rough surfaces,” Opt. Express17(7), 5758–5773 (2009).
[CrossRef] [PubMed]

Goldman, J. N.

J. N. Goldman, G. B. Benedek, C. H. Dohlman, and B. Kravitt, “Structural alterations affecting transparency in swollen human corneas,” Invest. Ophthalmol.7(5), 501–519 (1968).
[PubMed]

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Grèzes-Besset, C.

Grueterich, M.

A. H. Wolf, U. C. Welge-Lüßen, S. Priglinger, D. Kook, M. Grueterich, K. Hartmann, A. Kampik, and A. S. Neubauer, “Optimizing the deswelling process of organ-cultured corneas,” Cornea28(5), 524–529 (2009).
[CrossRef] [PubMed]

Hart, R. W.

Hartmann, K.

A. H. Wolf, U. C. Welge-Lüßen, S. Priglinger, D. Kook, M. Grueterich, K. Hartmann, A. Kampik, and A. S. Neubauer, “Optimizing the deswelling process of organ-cultured corneas,” Cornea28(5), 524–529 (2009).
[CrossRef] [PubMed]

Hee, M. R.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Hoffart, L.

G. Latour, G. Georges, L. Siozade-Lamoine, C. Deumié, J. Conrath, and L. Hoffart, “Light scattering from human corneal grafts: Bulk and surface contribution,” J. Appl. Phys.108(5), 053104 (2010).
[CrossRef]

G. Latour, G. Georges, L. S. Lamoine, C. Deumié, J. Conrath, and L. Hoffart, “Human graft cornea and laser incisions imaging with micrometer scale resolution full-field optical coherence tomography,” J. Biomed. Opt.15(5), 056006 (2010).
[CrossRef] [PubMed]

Huang, D.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Huang, J.

J. V. Jester, T. Møller-Pedersen, J. Huang, C. M. Sax, W. T. Kays, H. D. Cavangh, W. M. Petroll, and J. Piatigorsky, “The cellular basis of corneal transparency: evidence for ‘corneal crystallins’,” J. Cell Sci.112(Pt 5), 613–622 (1999).
[PubMed]

Jester, J. V.

J. V. Jester, T. Møller-Pedersen, J. Huang, C. M. Sax, W. T. Kays, H. D. Cavangh, W. M. Petroll, and J. Piatigorsky, “The cellular basis of corneal transparency: evidence for ‘corneal crystallins’,” J. Cell Sci.112(Pt 5), 613–622 (1999).
[PubMed]

Kampik, A.

A. H. Wolf, U. C. Welge-Lüßen, S. Priglinger, D. Kook, M. Grueterich, K. Hartmann, A. Kampik, and A. S. Neubauer, “Optimizing the deswelling process of organ-cultured corneas,” Cornea28(5), 524–529 (2009).
[CrossRef] [PubMed]

Kays, W. T.

J. V. Jester, T. Møller-Pedersen, J. Huang, C. M. Sax, W. T. Kays, H. D. Cavangh, W. M. Petroll, and J. Piatigorsky, “The cellular basis of corneal transparency: evidence for ‘corneal crystallins’,” J. Cell Sci.112(Pt 5), 613–622 (1999).
[PubMed]

Khan, S.

K. M. Meek, D. W. Leonard, C. J. Connon, S. Dennis, and S. Khan, “Transparency, swelling and scarring in the corneal stroma,” Eye (Lond.)17(8), 927–936 (2003).
[CrossRef] [PubMed]

Kook, D.

A. H. Wolf, U. C. Welge-Lüßen, S. Priglinger, D. Kook, M. Grueterich, K. Hartmann, A. Kampik, and A. S. Neubauer, “Optimizing the deswelling process of organ-cultured corneas,” Cornea28(5), 524–529 (2009).
[CrossRef] [PubMed]

Kowalczuk, L.

D. A. Peyrot, F. Aptel, C. Crotti, F. Deloison, S. Lemaire, T. Marciano, S. Bancelin, F. Alahyane, L. Kowalczuk, M. Savoldelli, J.-M. Legeais, and K. Plamann, “Effect of incident light wavelength and corneal edema on light scattering and penetration: laboratory study of human corneas,” J. Refract. Surg.26(10), 786–795 (2010).
[CrossRef] [PubMed]

Kravitt, B.

J. N. Goldman, G. B. Benedek, C. H. Dohlman, and B. Kravitt, “Structural alterations affecting transparency in swollen human corneas,” Invest. Ophthalmol.7(5), 501–519 (1968).
[PubMed]

Lamoine, L. S.

G. Latour, G. Georges, L. S. Lamoine, C. Deumié, J. Conrath, and L. Hoffart, “Human graft cornea and laser incisions imaging with micrometer scale resolution full-field optical coherence tomography,” J. Biomed. Opt.15(5), 056006 (2010).
[CrossRef] [PubMed]

Latour, G.

G. Latour, G. Georges, L. S. Lamoine, C. Deumié, J. Conrath, and L. Hoffart, “Human graft cornea and laser incisions imaging with micrometer scale resolution full-field optical coherence tomography,” J. Biomed. Opt.15(5), 056006 (2010).
[CrossRef] [PubMed]

G. Latour, G. Georges, L. Siozade-Lamoine, C. Deumié, J. Conrath, and L. Hoffart, “Light scattering from human corneal grafts: Bulk and surface contribution,” J. Appl. Phys.108(5), 053104 (2010).
[CrossRef]

Lebec, M.

Legeais, J.-M.

D. A. Peyrot, F. Aptel, C. Crotti, F. Deloison, S. Lemaire, T. Marciano, S. Bancelin, F. Alahyane, L. Kowalczuk, M. Savoldelli, J.-M. Legeais, and K. Plamann, “Effect of incident light wavelength and corneal edema on light scattering and penetration: laboratory study of human corneas,” J. Refract. Surg.26(10), 786–795 (2010).
[CrossRef] [PubMed]

Lemaire, S.

D. A. Peyrot, F. Aptel, C. Crotti, F. Deloison, S. Lemaire, T. Marciano, S. Bancelin, F. Alahyane, L. Kowalczuk, M. Savoldelli, J.-M. Legeais, and K. Plamann, “Effect of incident light wavelength and corneal edema on light scattering and penetration: laboratory study of human corneas,” J. Refract. Surg.26(10), 786–795 (2010).
[CrossRef] [PubMed]

Leonard, D. W.

K. M. Meek, D. W. Leonard, C. J. Connon, S. Dennis, and S. Khan, “Transparency, swelling and scarring in the corneal stroma,” Eye (Lond.)17(8), 927–936 (2003).
[CrossRef] [PubMed]

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Marciano, T.

D. A. Peyrot, F. Aptel, C. Crotti, F. Deloison, S. Lemaire, T. Marciano, S. Bancelin, F. Alahyane, L. Kowalczuk, M. Savoldelli, J.-M. Legeais, and K. Plamann, “Effect of incident light wavelength and corneal edema on light scattering and penetration: laboratory study of human corneas,” J. Refract. Surg.26(10), 786–795 (2010).
[CrossRef] [PubMed]

Marshall, J.

S. Patel, J. Marshall, and F. W. Fitzke, “Refractive index of the human corneal epithelium and stroma,” J. Refract. Surg.11(2), 100–105 (1995).
[PubMed]

Maurice, D. M.

D. M. Maurice, “The structure and transparency of the cornea,” J. Physiol.136(2), 263–286 (1957).
[PubMed]

McCally, R. L.

R. A. Farrell, R. L. McCally, and P. E. R. Tatham, “Wave-length dependencies of light scattering in normal and cold swollen rabbit corneas and their structural implications,” J. Physiol.233(3), 589–612 (1973).
[PubMed]

Meek, K. M.

K. M. Meek, D. W. Leonard, C. J. Connon, S. Dennis, and S. Khan, “Transparency, swelling and scarring in the corneal stroma,” Eye (Lond.)17(8), 927–936 (2003).
[CrossRef] [PubMed]

Møller-Pedersen, T.

T. Møller-Pedersen, “Keratocyte reflectivity and corneal haze,” Exp. Eye Res.78(3), 553–560 (2004).
[CrossRef] [PubMed]

J. V. Jester, T. Møller-Pedersen, J. Huang, C. M. Sax, W. T. Kays, H. D. Cavangh, W. M. Petroll, and J. Piatigorsky, “The cellular basis of corneal transparency: evidence for ‘corneal crystallins’,” J. Cell Sci.112(Pt 5), 613–622 (1999).
[PubMed]

Neubauer, A. S.

A. H. Wolf, U. C. Welge-Lüßen, S. Priglinger, D. Kook, M. Grueterich, K. Hartmann, A. Kampik, and A. S. Neubauer, “Optimizing the deswelling process of organ-cultured corneas,” Cornea28(5), 524–529 (2009).
[CrossRef] [PubMed]

Nevière, M.

Patel, S.

S. Patel, J. Marshall, and F. W. Fitzke, “Refractive index of the human corneal epithelium and stroma,” J. Refract. Surg.11(2), 100–105 (1995).
[PubMed]

Pels, E.

E. Pels, H. Beele, and I. Claerhout, “Eye bank issues: II. Preservation techniques: warm versus cold storage,” Int. Ophthalmol.28(3), 155–163 (2008).
[CrossRef] [PubMed]

Petroll, W. M.

J. V. Jester, T. Møller-Pedersen, J. Huang, C. M. Sax, W. T. Kays, H. D. Cavangh, W. M. Petroll, and J. Piatigorsky, “The cellular basis of corneal transparency: evidence for ‘corneal crystallins’,” J. Cell Sci.112(Pt 5), 613–622 (1999).
[PubMed]

Peyrot, D. A.

D. A. Peyrot, F. Aptel, C. Crotti, F. Deloison, S. Lemaire, T. Marciano, S. Bancelin, F. Alahyane, L. Kowalczuk, M. Savoldelli, J.-M. Legeais, and K. Plamann, “Effect of incident light wavelength and corneal edema on light scattering and penetration: laboratory study of human corneas,” J. Refract. Surg.26(10), 786–795 (2010).
[CrossRef] [PubMed]

Piatigorsky, J.

J. V. Jester, T. Møller-Pedersen, J. Huang, C. M. Sax, W. T. Kays, H. D. Cavangh, W. M. Petroll, and J. Piatigorsky, “The cellular basis of corneal transparency: evidence for ‘corneal crystallins’,” J. Cell Sci.112(Pt 5), 613–622 (1999).
[PubMed]

Plamann, K.

D. A. Peyrot, F. Aptel, C. Crotti, F. Deloison, S. Lemaire, T. Marciano, S. Bancelin, F. Alahyane, L. Kowalczuk, M. Savoldelli, J.-M. Legeais, and K. Plamann, “Effect of incident light wavelength and corneal edema on light scattering and penetration: laboratory study of human corneas,” J. Refract. Surg.26(10), 786–795 (2010).
[CrossRef] [PubMed]

Popov, E.

Priglinger, S.

A. H. Wolf, U. C. Welge-Lüßen, S. Priglinger, D. Kook, M. Grueterich, K. Hartmann, A. Kampik, and A. S. Neubauer, “Optimizing the deswelling process of organ-cultured corneas,” Cornea28(5), 524–529 (2009).
[CrossRef] [PubMed]

Puliafito, C. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Richier, R.

Roche, P.

Saint-Jalmes, H.

Savoldelli, M.

D. A. Peyrot, F. Aptel, C. Crotti, F. Deloison, S. Lemaire, T. Marciano, S. Bancelin, F. Alahyane, L. Kowalczuk, M. Savoldelli, J.-M. Legeais, and K. Plamann, “Effect of incident light wavelength and corneal edema on light scattering and penetration: laboratory study of human corneas,” J. Refract. Surg.26(10), 786–795 (2010).
[CrossRef] [PubMed]

Sax, C. M.

J. V. Jester, T. Møller-Pedersen, J. Huang, C. M. Sax, W. T. Kays, H. D. Cavangh, W. M. Petroll, and J. Piatigorsky, “The cellular basis of corneal transparency: evidence for ‘corneal crystallins’,” J. Cell Sci.112(Pt 5), 613–622 (1999).
[PubMed]

Schuman, J. S.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Siozade-Lamoine, L.

G. Latour, G. Georges, L. Siozade-Lamoine, C. Deumié, J. Conrath, and L. Hoffart, “Light scattering from human corneal grafts: Bulk and surface contribution,” J. Appl. Phys.108(5), 053104 (2010).
[CrossRef]

Sorrentini, J.

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Swanson, E. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Tatham, P. E. R.

R. A. Farrell, R. L. McCally, and P. E. R. Tatham, “Wave-length dependencies of light scattering in normal and cold swollen rabbit corneas and their structural implications,” J. Physiol.233(3), 589–612 (1973).
[PubMed]

Torricini, D.

Vabre, L.

Welge-Lüßen, U. C.

A. H. Wolf, U. C. Welge-Lüßen, S. Priglinger, D. Kook, M. Grueterich, K. Hartmann, A. Kampik, and A. S. Neubauer, “Optimizing the deswelling process of organ-cultured corneas,” Cornea28(5), 524–529 (2009).
[CrossRef] [PubMed]

Wolf, A. H.

A. H. Wolf, U. C. Welge-Lüßen, S. Priglinger, D. Kook, M. Grueterich, K. Hartmann, A. Kampik, and A. S. Neubauer, “Optimizing the deswelling process of organ-cultured corneas,” Cornea28(5), 524–529 (2009).
[CrossRef] [PubMed]

Zerrad, M.

Appl. Opt.

Cornea

A. H. Wolf, U. C. Welge-Lüßen, S. Priglinger, D. Kook, M. Grueterich, K. Hartmann, A. Kampik, and A. S. Neubauer, “Optimizing the deswelling process of organ-cultured corneas,” Cornea28(5), 524–529 (2009).
[CrossRef] [PubMed]

Exp. Eye Res.

T. Møller-Pedersen, “Keratocyte reflectivity and corneal haze,” Exp. Eye Res.78(3), 553–560 (2004).
[CrossRef] [PubMed]

Eye (Lond.)

K. M. Meek, D. W. Leonard, C. J. Connon, S. Dennis, and S. Khan, “Transparency, swelling and scarring in the corneal stroma,” Eye (Lond.)17(8), 927–936 (2003).
[CrossRef] [PubMed]

Int. Ophthalmol.

E. Pels, H. Beele, and I. Claerhout, “Eye bank issues: II. Preservation techniques: warm versus cold storage,” Int. Ophthalmol.28(3), 155–163 (2008).
[CrossRef] [PubMed]

Invest. Ophthalmol.

J. N. Goldman, G. B. Benedek, C. H. Dohlman, and B. Kravitt, “Structural alterations affecting transparency in swollen human corneas,” Invest. Ophthalmol.7(5), 501–519 (1968).
[PubMed]

J. Appl. Phys.

G. Latour, G. Georges, L. Siozade-Lamoine, C. Deumié, J. Conrath, and L. Hoffart, “Light scattering from human corneal grafts: Bulk and surface contribution,” J. Appl. Phys.108(5), 053104 (2010).
[CrossRef]

J. Biomed. Opt.

G. Latour, G. Georges, L. S. Lamoine, C. Deumié, J. Conrath, and L. Hoffart, “Human graft cornea and laser incisions imaging with micrometer scale resolution full-field optical coherence tomography,” J. Biomed. Opt.15(5), 056006 (2010).
[CrossRef] [PubMed]

J. Cell Sci.

J. V. Jester, T. Møller-Pedersen, J. Huang, C. M. Sax, W. T. Kays, H. D. Cavangh, W. M. Petroll, and J. Piatigorsky, “The cellular basis of corneal transparency: evidence for ‘corneal crystallins’,” J. Cell Sci.112(Pt 5), 613–622 (1999).
[PubMed]

J. Opt. Soc. Am.

J. Opt. Soc. Am. A

J. Physiol.

D. M. Maurice, “The structure and transparency of the cornea,” J. Physiol.136(2), 263–286 (1957).
[PubMed]

R. A. Farrell, R. L. McCally, and P. E. R. Tatham, “Wave-length dependencies of light scattering in normal and cold swollen rabbit corneas and their structural implications,” J. Physiol.233(3), 589–612 (1973).
[PubMed]

J. Refract. Surg.

D. A. Peyrot, F. Aptel, C. Crotti, F. Deloison, S. Lemaire, T. Marciano, S. Bancelin, F. Alahyane, L. Kowalczuk, M. Savoldelli, J.-M. Legeais, and K. Plamann, “Effect of incident light wavelength and corneal edema on light scattering and penetration: laboratory study of human corneas,” J. Refract. Surg.26(10), 786–795 (2010).
[CrossRef] [PubMed]

S. Patel, J. Marshall, and F. W. Fitzke, “Refractive index of the human corneal epithelium and stroma,” J. Refract. Surg.11(2), 100–105 (1995).
[PubMed]

Opt. Express

Opt. Lett.

Science

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Other

T. Nishida, “Cornea: anatomy and physiology,” in Cornea: Fundamentals, Diagnosis and Management, 2nd ed., J. H. Krachmer, M. J. Mannis, and E. J. Holland, eds. (Elsevier/Mosby, 2005).

M. Born and E. Wolf, Principle of Optics, 6th ed. (Pergamon, New York, 1986), p.453.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (19)

Fig. 1
Fig. 1

Histological section of a human cornea (source: www.missionforvisionusa.org).

Fig. 2
Fig. 2

Full-field optical coherence tomography configuration.

Fig. 3
Fig. 3

Angular-resolved scattering measuring setup scheme (left) and intensity levels for a cornea and BSS with dynamics measurements (right).

Fig. 4
Fig. 4

OCT images from a 670 µm-thick cornea; depth-scan along the whole depth (left) and details of the anterior part with epithelium and Bowman’s membrane (upper right) and the posterior part with stroma, Descemet’s layer and endothelium (lower right).

Fig. 5
Fig. 5

Depth-scan OCT slices for one cornea at three different edematous states; thicknesses are from left to right of 730, 795 and 815 µm; arrows point out lakes appearing when the corneal swells.

Fig. 6
Fig. 6

Lakes details: short and thick lakes (left) and elongated liquid infiltrations (right).

Fig. 7
Fig. 7

Angular-resolved measurement in the reflected half-space for corneas at different edematous states. Intensity levels are plotted for one unique cornea at different hydration states after swelling and deswelling protocols (left). Same measurements are executed for different grafts with color indications referring to the thickness of the sample (right).

Fig. 8
Fig. 8

Comparison of visual impression and TIS parameter. Corneal grafts are laid on a cross pattern to help appreciate the transparency and the associated TIS values are calculated for scattering angles between 20 and 70°.

Fig. 9
Fig. 9

Total Integrated Scattering calculated in the reflected half-space as a function of the thickness measured with OCT.

Fig. 10
Fig. 10

Wave propagation vectors configuration.

Fig. 11
Fig. 11

Stroma OCT image used as a layer description (left) and refractive index amplitude Δn effect over scattering intensity from 620µm-thick sample (right) (simulations for Δn = 0.001, 0.0025, 0.005, 0.0075).

Fig. 12
Fig. 12

nmean influence over scattering level for the fixed refractive index amplitude Δn = 0.0025. The TIS variation depending on the value of nmean from 1.33 to 1.4 is inferior to 2%.

Fig. 13
Fig. 13

Surface profiles extraction: Epithelium (up) and Bowman’s membrane (down).

Fig. 14
Fig. 14

Surface effect simulations for epithelium and Bowman’s membrane surfaces and comparison with purely bulk scattered intensity level for a 620µm thick sample.

Fig. 15
Fig. 15

Scattering intensity levels for different thicknesses with preserved (a) and z-dilated (b) microstructure repartitions within the layer. The image transformations are illustrated in (c) with zoom on equivalent areas on each image for comparison (false-color representation is used to highlight the structure’s density differences).

Fig. 16
Fig. 16

TIS values plotted relatively to thickness. Comparison between experimental values for one cornea at different hydration states and two numeric simulations (thickness influence only and dilation effect).

Fig. 17
Fig. 17

Binary models for lakes’ distributions and TIS calculations compared with experimental values for 780 µm-thick corneas.

Fig. 18
Fig. 18

Scattering levels calculated from OCT images of different grafts with several thicknesses and transparency states, applying Δn = 0.0025 and nmean = 1.376; the experimental level for the thickest cornea is also indicated.

Fig. 19
Fig. 19

Calculation of the Δn parameter matching experimental and calculated scattering levels in function of the parameter 106.TIS/e where e is the graft thickness and TIS is calculated on the range 20-50° from the experimental data.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

| R q λ |1 and | p |1
p = Δε ε mean
ε(M)= ε mean [ 1+p(M) ].
I( θ )= 4 π 2 S | E d | 2 | E 0 | 2 | k | 3 | k 0 | cos²( θ ) cos( i 0 )

Metrics