Abstract

This paper presents a novel method based on a fiducial marker for correction of motion artifacts in 3D, in vivo, optical coherence tomography (OCT) scans of human skin and skin scars. The efficacy of this method was compared against a standard cross-correlation intensity-based registration method. With a fiducial marker adhered to the skin, OCT scans were acquired using two imaging protocols: direct imaging from air into tissue; and imaging through ultrasound gel into tissue, which minimized the refractive index mismatch at the tissue surface. The registration methods were assessed with data from both imaging protocols and showed reduced distortion of skin features due to motion. The fiducial-based method was found to be more accurate and robust, with an average RMS error below 20 µm and success rate above 90%. In contrast, the intensity-based method had an average RMS error ranging from 36 to 45 µm, and a success rate from 50% to 86%. The intensity-based algorithm was found to be particularly confounded by corrugations in the skin. By contrast, tissue features did not affect the fiducial-based method, as the motion correction was based on delineation of the flat fiducial marker. The average computation time for the fiducial-based algorithm was approximately 21 times less than for the intensity-based algorithm.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Welzel, E. Lankenau, R. Birngruber, and R. Engelhardt, “Optical coherence tomography of the human skin,” J. Am. Acad. Dermatol.37(6), 958–963 (1997).
    [CrossRef] [PubMed]
  2. T. Gambichler, V. Jaedicke, and S. Terras, “Optical coherence tomography in dermatology: technical and clinical aspects,” Arch. Dermatol. Res.303(7), 457–473 (2011).
    [CrossRef] [PubMed]
  3. M. Mogensen, L. Thrane, T. M. Joergensen, P. E. Andersen, and G. B. E. Jemec, “Optical coherence tomography for imaging of skin and skin diseases,” Semin. Cutan. Med. Surg.28(3), 196–202 (2009).
    [CrossRef] [PubMed]
  4. R. Steiner, K. Kunzi-Rapp, and K. Scharffetter-Kochanek, “Optical coherence tomography: clinical applications in dermatology,” Med. Laser Appl.18(3), 249–259 (2003).
    [CrossRef]
  5. M. Mogensen, B. M. Nürnberg, J. L. Forman, J. B. Thomsen, L. Thrane, and G. B. Jemec, “In vivo thickness measurement of basal cell carcinoma and actinic keratosis with optical coherence tomography and 20-MHz ultrasound,” Br. J. Dermatol.160(5), 1026–1033 (2009).
    [CrossRef] [PubMed]
  6. T. Gambichler, B. Künzlberger, V. Paech, A. Kreuter, S. Boms, A. Bader, G. Moussa, M. Sand, P. Altmeyer, and K. Hoffmann, “UVA1 and UVB irradiated skin investigated by optical coherence tomography in vivo: a preliminary study,” Clin. Exp. Dermatol.30(1), 79–82 (2005).
    [CrossRef] [PubMed]
  7. S. Sakai, M. Yamanari, A. Miyazawa, M. Matsumoto, N. Nakagawa, T. Sugawara, K. Kawabata, T. Yatagai, and Y. Yasuno, “In vivo three-dimensional birefringence analysis shows collagen differences between young and old photo-aged human skin,” J. Invest. Dermatol.128(7), 1641–1647 (2008).
    [CrossRef] [PubMed]
  8. C. Salvini, D. Massi, A. Cappetti, M. Stante, P. Cappugi, P. Fabbri, and P. Carli, “Application of optical coherence tomography in non-invasive characterization of skin vascular lesions,” Skin Res. Technol.14(1), 89–92 (2008).
    [PubMed]
  9. S. A. Coulman, J. C. Birchall, A. Alex, M. Pearton, B. Hofer, C. O’Mahony, W. Drexler, and B. Považay, “In vivo, in situ imaging of microneedle insertion into the skin of human volunteers using optical coherence tomography,” Pharm. Res.28(1), 66–81 (2011).
    [CrossRef] [PubMed]
  10. H. Morsy, S. Kamp, L. Thrane, N. Behrendt, B. Saunder, H. Zayan, E. A. Elmagid, and G. B. Jemec, “Optical coherence tomography imaging of psoriasis vulgaris: correlation with histology and disease severity,” Arch. Dermatol. Res.302(2), 105–111 (2010).
    [CrossRef] [PubMed]
  11. T. Hinz, L. K. Ehler, H. Voth, I. Fortmeier, T. Hoeller, T. Hornung, and M. H. Schmid-Wendtner, “Assessment of tumor thickness in melanocytic skin lesions: comparison of optical coherence tomography, 20-MHz ultrasound and histopathology,” Dermatology223(2), 161–168 (2011).
    [CrossRef] [PubMed]
  12. A. Alex, B. Povazay, B. Hofer, S. Popov, C. Glittenberg, S. Binder, and W. Drexler, “Multispectral in vivo three-dimensional optical coherence tomography of human skin,” J. Biomed. Opt.15(2), 026025 (2010).
    [CrossRef] [PubMed]
  13. M. Mogensen, H. A. Morsy, L. Thrane, and G. B. E. Jemec, “Morphology and epidermal thickness of normal skin imaged by optical coherence tomography,” Dermatology217(1), 14–20 (2008).
    [CrossRef] [PubMed]
  14. J. Enfield, E. Jonathan, and M. Leahy, “In vivo imaging of the microcirculation of the volar forearm using correlation mapping optical coherence tomography (cmOCT),” Biomed. Opt. Express2(5), 1184–1193 (2011).
    [CrossRef] [PubMed]
  15. E. Z. Zhang, B. Povazay, J. Laufer, A. Alex, B. Hofer, B. Pedley, C. Glittenberg, B. Treeby, B. Cox, P. Beard, and W. Drexler, “Multimodal photoacoustic and optical coherence tomography scanner using an all optical detection scheme for 3D morphological skin imaging,” Biomed. Opt. Express2(8), 2202–2215 (2011).
    [CrossRef] [PubMed]
  16. M. Mogensen, T. M. Joergensen, B. M. Nürnberg, H. A. Morsy, J. B. Thomsen, L. Thrane, and G. B. E. Jemec, “Assessment of optical coherence tomography imaging in the diagnosis of non-melanoma skin cancer and benign lesions versus normal skin: observer-blinded evaluation by dermatologists and pathologists,” Dermatol. Surg.35(6), 965–972 (2009).
    [CrossRef] [PubMed]
  17. A. M. Forsea, E. M. Carstea, L. Ghervase, C. Giurcaneanu, and G. Pavelescu, “Clinical application of optical coherence tomography for the imaging of non-melanocytic cutaneous tumors: a pilot multi-modal study,” J. Med. Life3(4), 381–389 (2010).
    [PubMed]
  18. S. Ricco, M. Chen, H. Ishikawa, G. Wollstein, and J. Schuman, “Correcting motion artifacts in retinal spectral domain optical coherence tomography via image registration,” in Medical Image Computing and Computer-Assisted Intervention—MICCAI 2009 (Springer, 2009), pp. 100–107.
  19. T. M. Jørgensen, J. Thomadsen, U. Christensen, W. Soliman, and B. Sander, “Enhancing the signal-to-noise ratio in ophthalmic optical coherence tomography by image registration—method and clinical examples,” J. Biomed. Opt.12(4), 041208 (2007).
    [CrossRef] [PubMed]
  20. R. J. Zawadzki, A. R. Fuller, S. S. Choi, D. F. Wiley, B. Hamann, and J. S. Werner, “Correction of motion artifacts and scanning beam distortions in 3D ophthalmic optical coherence tomography imaging,” Proc. SPIE6426, 642607 (2007).
    [CrossRef]
  21. B. Antony, M. D. Abràmoff, L. Tang, W. D. Ramdas, J. R. Vingerling, N. M. Jansonius, K. Lee, Y. H. Kwon, M. Sonka, and M. K. Garvin, “Automated 3-D method for the correction of axial artifacts in spectral-domain optical coherence tomography images,” Biomed. Opt. Express2(8), 2403–2416 (2011).
    [CrossRef] [PubMed]
  22. W. Kang, H. Wang, Z. Wang, M. W. Jenkins, G. A. Isenberg, A. Chak, and A. M. Rollins, “Motion artifacts associated with in vivo endoscopic OCT images of the esophagus,” Opt. Express19(21), 20722–20735 (2011).
    [CrossRef] [PubMed]
  23. R. A. McLaughlin, J. J. Armstrong, S. Becker, J. H. Walsh, A. Jain, D. R. Hillman, P. R. Eastwood, and D. D. Sampson, “Respiratory gating of anatomical optical coherence tomography images of the human airway,” Opt. Express17(8), 6568–6577 (2009).
    [CrossRef] [PubMed]
  24. M. W. Jenkins, O. Q. Chughtai, A. N. Basavanhally, M. Watanabe, and A. M. Rollins, “In vivo gated 4D imaging of the embryonic heart using optical coherence tomography,” J. Biomed. Opt.12(3), 030505 (2007).
    [CrossRef] [PubMed]
  25. T. Klein, W. Wieser, C. M. Eigenwillig, B. R. Biedermann, and R. Huber, “Megahertz OCT for ultrawide-field retinal imaging with a 1050 nm Fourier domain mode-locked laser,” Opt. Express19(4), 3044–3062 (2011).
    [CrossRef] [PubMed]
  26. D. L. G. Hill, P. G. Batchelor, M. Holden, and D. J. Hawkes, “Medical image registration,” Phys. Med. Biol.46(3), R1–R45 (2001).
    [CrossRef] [PubMed]
  27. G. P. Penney, J. Weese, J. A. Little, P. Desmedt, D. L. G. Hill, and D. J. Hawkes, “A comparison of similarity measures for use in 2-D-3-D medical image registration,” IEEE Trans. Med. Imaging17(4), 586–595 (1998).
    [CrossRef] [PubMed]
  28. M. F. Kraus, B. Potsaid, M. A. Mayer, R. Bock, B. Baumann, J. J. Liu, J. Hornegger, and J. G. Fujimoto, “Motion correction in optical coherence tomography volumes on a per A-scan basis using orthogonal scan patterns,” Biomed. Opt. Express3(6), 1182–1199 (2012).
    [CrossRef]
  29. R. A. McLaughlin, J. Hipwell, D. J. Hawkes, J. A. Noble, J. V. Byrne, and T. C. Cox, “A comparison of a similarity-based and a feature-based 2-D-3-D registration method for neurointerventional use,” IEEE Trans. Med. Imaging24(8), 1058–1066 (2005).
    [CrossRef] [PubMed]
  30. Y. Li, G. Gregori, R. W. Knighton, B. J. Lujan, and P. J. Rosenfeld, “Registration of OCT fundus images with color fundus photographs based on blood vessel ridges,” Opt. Express19(1), 7–16 (2011).
    [CrossRef] [PubMed]
  31. Y. M. Liew, R. A. McLaughlin, F. M. Wood, and D. D. Sampson, “Reduction of image artifacts in three-dimensional optical coherence tomography of skin in vivo,” J. Biomed. Opt.16(11), 116018 (2011).
    [CrossRef] [PubMed]
  32. A. Bayat, D. A. McGrouther, and M. W. J. Ferguson, “Skin scarring,” BMJ326(7380), 88–92 (2003).
    [CrossRef] [PubMed]
  33. T. Amadeu, A. Braune, C. Mandarim-de-Lacerda, L. C. Porto, A. Desmoulière, and A. Costa, “Vascularization pattern in hypertrophic scars and keloids: a stereological analysis,” Pathol. Res. Pract.199(7), 469–473 (2003).
    [CrossRef] [PubMed]
  34. R. O. Duda and P. E. Hart, “Use of the Hough transformation to detect lines and curves in pictures,” Commun. ACM15(1), 11–15 (1972).
    [CrossRef]
  35. S. Golemati, J. Stoitsis, E. G. Sifakis, T. Balkizas, and K. S. Nikita, “Using the Hough transform to segment ultrasound images of longitudinal and transverse sections of the carotid artery,” Ultrasound Med. Biol.33(12), 1918–1932 (2007).
    [CrossRef] [PubMed]
  36. Y. M. Zhu, S. M. Cochoff, and R. Sukalac, “Automatic patient table removal in CT images,” J. Digit. Imaging (2012), 6 pages, online first.
    [PubMed]
  37. R. M. Lewis and V. Torczon, “Pattern search algorithms for bound constrained minimization,” SIAM J. Optim.9(4), 1082–1099 (1999).
    [CrossRef]
  38. G. K. Rohde, A. Aldroubi, and D. M. Healy., “Interpolation artifacts in sub-pixel image registration,” IEEE Trans. Image Process.18(2), 333–345 (2009).
    [CrossRef] [PubMed]
  39. E. R. Davies, Machine Vision: Theory, Algorithms, Practicalities, 3rd ed. (Academic, 2005), Chap. 9.

2012 (2)

2011 (10)

T. Klein, W. Wieser, C. M. Eigenwillig, B. R. Biedermann, and R. Huber, “Megahertz OCT for ultrawide-field retinal imaging with a 1050 nm Fourier domain mode-locked laser,” Opt. Express19(4), 3044–3062 (2011).
[CrossRef] [PubMed]

Y. Li, G. Gregori, R. W. Knighton, B. J. Lujan, and P. J. Rosenfeld, “Registration of OCT fundus images with color fundus photographs based on blood vessel ridges,” Opt. Express19(1), 7–16 (2011).
[CrossRef] [PubMed]

Y. M. Liew, R. A. McLaughlin, F. M. Wood, and D. D. Sampson, “Reduction of image artifacts in three-dimensional optical coherence tomography of skin in vivo,” J. Biomed. Opt.16(11), 116018 (2011).
[CrossRef] [PubMed]

T. Gambichler, V. Jaedicke, and S. Terras, “Optical coherence tomography in dermatology: technical and clinical aspects,” Arch. Dermatol. Res.303(7), 457–473 (2011).
[CrossRef] [PubMed]

S. A. Coulman, J. C. Birchall, A. Alex, M. Pearton, B. Hofer, C. O’Mahony, W. Drexler, and B. Považay, “In vivo, in situ imaging of microneedle insertion into the skin of human volunteers using optical coherence tomography,” Pharm. Res.28(1), 66–81 (2011).
[CrossRef] [PubMed]

T. Hinz, L. K. Ehler, H. Voth, I. Fortmeier, T. Hoeller, T. Hornung, and M. H. Schmid-Wendtner, “Assessment of tumor thickness in melanocytic skin lesions: comparison of optical coherence tomography, 20-MHz ultrasound and histopathology,” Dermatology223(2), 161–168 (2011).
[CrossRef] [PubMed]

J. Enfield, E. Jonathan, and M. Leahy, “In vivo imaging of the microcirculation of the volar forearm using correlation mapping optical coherence tomography (cmOCT),” Biomed. Opt. Express2(5), 1184–1193 (2011).
[CrossRef] [PubMed]

E. Z. Zhang, B. Povazay, J. Laufer, A. Alex, B. Hofer, B. Pedley, C. Glittenberg, B. Treeby, B. Cox, P. Beard, and W. Drexler, “Multimodal photoacoustic and optical coherence tomography scanner using an all optical detection scheme for 3D morphological skin imaging,” Biomed. Opt. Express2(8), 2202–2215 (2011).
[CrossRef] [PubMed]

B. Antony, M. D. Abràmoff, L. Tang, W. D. Ramdas, J. R. Vingerling, N. M. Jansonius, K. Lee, Y. H. Kwon, M. Sonka, and M. K. Garvin, “Automated 3-D method for the correction of axial artifacts in spectral-domain optical coherence tomography images,” Biomed. Opt. Express2(8), 2403–2416 (2011).
[CrossRef] [PubMed]

W. Kang, H. Wang, Z. Wang, M. W. Jenkins, G. A. Isenberg, A. Chak, and A. M. Rollins, “Motion artifacts associated with in vivo endoscopic OCT images of the esophagus,” Opt. Express19(21), 20722–20735 (2011).
[CrossRef] [PubMed]

2010 (3)

A. Alex, B. Povazay, B. Hofer, S. Popov, C. Glittenberg, S. Binder, and W. Drexler, “Multispectral in vivo three-dimensional optical coherence tomography of human skin,” J. Biomed. Opt.15(2), 026025 (2010).
[CrossRef] [PubMed]

H. Morsy, S. Kamp, L. Thrane, N. Behrendt, B. Saunder, H. Zayan, E. A. Elmagid, and G. B. Jemec, “Optical coherence tomography imaging of psoriasis vulgaris: correlation with histology and disease severity,” Arch. Dermatol. Res.302(2), 105–111 (2010).
[CrossRef] [PubMed]

A. M. Forsea, E. M. Carstea, L. Ghervase, C. Giurcaneanu, and G. Pavelescu, “Clinical application of optical coherence tomography for the imaging of non-melanocytic cutaneous tumors: a pilot multi-modal study,” J. Med. Life3(4), 381–389 (2010).
[PubMed]

2009 (5)

G. K. Rohde, A. Aldroubi, and D. M. Healy., “Interpolation artifacts in sub-pixel image registration,” IEEE Trans. Image Process.18(2), 333–345 (2009).
[CrossRef] [PubMed]

M. Mogensen, L. Thrane, T. M. Joergensen, P. E. Andersen, and G. B. E. Jemec, “Optical coherence tomography for imaging of skin and skin diseases,” Semin. Cutan. Med. Surg.28(3), 196–202 (2009).
[CrossRef] [PubMed]

M. Mogensen, B. M. Nürnberg, J. L. Forman, J. B. Thomsen, L. Thrane, and G. B. Jemec, “In vivo thickness measurement of basal cell carcinoma and actinic keratosis with optical coherence tomography and 20-MHz ultrasound,” Br. J. Dermatol.160(5), 1026–1033 (2009).
[CrossRef] [PubMed]

M. Mogensen, T. M. Joergensen, B. M. Nürnberg, H. A. Morsy, J. B. Thomsen, L. Thrane, and G. B. E. Jemec, “Assessment of optical coherence tomography imaging in the diagnosis of non-melanoma skin cancer and benign lesions versus normal skin: observer-blinded evaluation by dermatologists and pathologists,” Dermatol. Surg.35(6), 965–972 (2009).
[CrossRef] [PubMed]

R. A. McLaughlin, J. J. Armstrong, S. Becker, J. H. Walsh, A. Jain, D. R. Hillman, P. R. Eastwood, and D. D. Sampson, “Respiratory gating of anatomical optical coherence tomography images of the human airway,” Opt. Express17(8), 6568–6577 (2009).
[CrossRef] [PubMed]

2008 (3)

M. Mogensen, H. A. Morsy, L. Thrane, and G. B. E. Jemec, “Morphology and epidermal thickness of normal skin imaged by optical coherence tomography,” Dermatology217(1), 14–20 (2008).
[CrossRef] [PubMed]

S. Sakai, M. Yamanari, A. Miyazawa, M. Matsumoto, N. Nakagawa, T. Sugawara, K. Kawabata, T. Yatagai, and Y. Yasuno, “In vivo three-dimensional birefringence analysis shows collagen differences between young and old photo-aged human skin,” J. Invest. Dermatol.128(7), 1641–1647 (2008).
[CrossRef] [PubMed]

C. Salvini, D. Massi, A. Cappetti, M. Stante, P. Cappugi, P. Fabbri, and P. Carli, “Application of optical coherence tomography in non-invasive characterization of skin vascular lesions,” Skin Res. Technol.14(1), 89–92 (2008).
[PubMed]

2007 (4)

M. W. Jenkins, O. Q. Chughtai, A. N. Basavanhally, M. Watanabe, and A. M. Rollins, “In vivo gated 4D imaging of the embryonic heart using optical coherence tomography,” J. Biomed. Opt.12(3), 030505 (2007).
[CrossRef] [PubMed]

S. Golemati, J. Stoitsis, E. G. Sifakis, T. Balkizas, and K. S. Nikita, “Using the Hough transform to segment ultrasound images of longitudinal and transverse sections of the carotid artery,” Ultrasound Med. Biol.33(12), 1918–1932 (2007).
[CrossRef] [PubMed]

T. M. Jørgensen, J. Thomadsen, U. Christensen, W. Soliman, and B. Sander, “Enhancing the signal-to-noise ratio in ophthalmic optical coherence tomography by image registration—method and clinical examples,” J. Biomed. Opt.12(4), 041208 (2007).
[CrossRef] [PubMed]

R. J. Zawadzki, A. R. Fuller, S. S. Choi, D. F. Wiley, B. Hamann, and J. S. Werner, “Correction of motion artifacts and scanning beam distortions in 3D ophthalmic optical coherence tomography imaging,” Proc. SPIE6426, 642607 (2007).
[CrossRef]

2005 (2)

R. A. McLaughlin, J. Hipwell, D. J. Hawkes, J. A. Noble, J. V. Byrne, and T. C. Cox, “A comparison of a similarity-based and a feature-based 2-D-3-D registration method for neurointerventional use,” IEEE Trans. Med. Imaging24(8), 1058–1066 (2005).
[CrossRef] [PubMed]

T. Gambichler, B. Künzlberger, V. Paech, A. Kreuter, S. Boms, A. Bader, G. Moussa, M. Sand, P. Altmeyer, and K. Hoffmann, “UVA1 and UVB irradiated skin investigated by optical coherence tomography in vivo: a preliminary study,” Clin. Exp. Dermatol.30(1), 79–82 (2005).
[CrossRef] [PubMed]

2003 (3)

R. Steiner, K. Kunzi-Rapp, and K. Scharffetter-Kochanek, “Optical coherence tomography: clinical applications in dermatology,” Med. Laser Appl.18(3), 249–259 (2003).
[CrossRef]

A. Bayat, D. A. McGrouther, and M. W. J. Ferguson, “Skin scarring,” BMJ326(7380), 88–92 (2003).
[CrossRef] [PubMed]

T. Amadeu, A. Braune, C. Mandarim-de-Lacerda, L. C. Porto, A. Desmoulière, and A. Costa, “Vascularization pattern in hypertrophic scars and keloids: a stereological analysis,” Pathol. Res. Pract.199(7), 469–473 (2003).
[CrossRef] [PubMed]

2001 (1)

D. L. G. Hill, P. G. Batchelor, M. Holden, and D. J. Hawkes, “Medical image registration,” Phys. Med. Biol.46(3), R1–R45 (2001).
[CrossRef] [PubMed]

1999 (1)

R. M. Lewis and V. Torczon, “Pattern search algorithms for bound constrained minimization,” SIAM J. Optim.9(4), 1082–1099 (1999).
[CrossRef]

1998 (1)

G. P. Penney, J. Weese, J. A. Little, P. Desmedt, D. L. G. Hill, and D. J. Hawkes, “A comparison of similarity measures for use in 2-D-3-D medical image registration,” IEEE Trans. Med. Imaging17(4), 586–595 (1998).
[CrossRef] [PubMed]

1997 (1)

J. Welzel, E. Lankenau, R. Birngruber, and R. Engelhardt, “Optical coherence tomography of the human skin,” J. Am. Acad. Dermatol.37(6), 958–963 (1997).
[CrossRef] [PubMed]

1972 (1)

R. O. Duda and P. E. Hart, “Use of the Hough transformation to detect lines and curves in pictures,” Commun. ACM15(1), 11–15 (1972).
[CrossRef]

Abràmoff, M. D.

Aldroubi, A.

G. K. Rohde, A. Aldroubi, and D. M. Healy., “Interpolation artifacts in sub-pixel image registration,” IEEE Trans. Image Process.18(2), 333–345 (2009).
[CrossRef] [PubMed]

Alex, A.

E. Z. Zhang, B. Povazay, J. Laufer, A. Alex, B. Hofer, B. Pedley, C. Glittenberg, B. Treeby, B. Cox, P. Beard, and W. Drexler, “Multimodal photoacoustic and optical coherence tomography scanner using an all optical detection scheme for 3D morphological skin imaging,” Biomed. Opt. Express2(8), 2202–2215 (2011).
[CrossRef] [PubMed]

S. A. Coulman, J. C. Birchall, A. Alex, M. Pearton, B. Hofer, C. O’Mahony, W. Drexler, and B. Považay, “In vivo, in situ imaging of microneedle insertion into the skin of human volunteers using optical coherence tomography,” Pharm. Res.28(1), 66–81 (2011).
[CrossRef] [PubMed]

A. Alex, B. Povazay, B. Hofer, S. Popov, C. Glittenberg, S. Binder, and W. Drexler, “Multispectral in vivo three-dimensional optical coherence tomography of human skin,” J. Biomed. Opt.15(2), 026025 (2010).
[CrossRef] [PubMed]

Altmeyer, P.

T. Gambichler, B. Künzlberger, V. Paech, A. Kreuter, S. Boms, A. Bader, G. Moussa, M. Sand, P. Altmeyer, and K. Hoffmann, “UVA1 and UVB irradiated skin investigated by optical coherence tomography in vivo: a preliminary study,” Clin. Exp. Dermatol.30(1), 79–82 (2005).
[CrossRef] [PubMed]

Amadeu, T.

T. Amadeu, A. Braune, C. Mandarim-de-Lacerda, L. C. Porto, A. Desmoulière, and A. Costa, “Vascularization pattern in hypertrophic scars and keloids: a stereological analysis,” Pathol. Res. Pract.199(7), 469–473 (2003).
[CrossRef] [PubMed]

Andersen, P. E.

M. Mogensen, L. Thrane, T. M. Joergensen, P. E. Andersen, and G. B. E. Jemec, “Optical coherence tomography for imaging of skin and skin diseases,” Semin. Cutan. Med. Surg.28(3), 196–202 (2009).
[CrossRef] [PubMed]

Antony, B.

Armstrong, J. J.

Bader, A.

T. Gambichler, B. Künzlberger, V. Paech, A. Kreuter, S. Boms, A. Bader, G. Moussa, M. Sand, P. Altmeyer, and K. Hoffmann, “UVA1 and UVB irradiated skin investigated by optical coherence tomography in vivo: a preliminary study,” Clin. Exp. Dermatol.30(1), 79–82 (2005).
[CrossRef] [PubMed]

Balkizas, T.

S. Golemati, J. Stoitsis, E. G. Sifakis, T. Balkizas, and K. S. Nikita, “Using the Hough transform to segment ultrasound images of longitudinal and transverse sections of the carotid artery,” Ultrasound Med. Biol.33(12), 1918–1932 (2007).
[CrossRef] [PubMed]

Basavanhally, A. N.

M. W. Jenkins, O. Q. Chughtai, A. N. Basavanhally, M. Watanabe, and A. M. Rollins, “In vivo gated 4D imaging of the embryonic heart using optical coherence tomography,” J. Biomed. Opt.12(3), 030505 (2007).
[CrossRef] [PubMed]

Batchelor, P. G.

D. L. G. Hill, P. G. Batchelor, M. Holden, and D. J. Hawkes, “Medical image registration,” Phys. Med. Biol.46(3), R1–R45 (2001).
[CrossRef] [PubMed]

Baumann, B.

Bayat, A.

A. Bayat, D. A. McGrouther, and M. W. J. Ferguson, “Skin scarring,” BMJ326(7380), 88–92 (2003).
[CrossRef] [PubMed]

Beard, P.

Becker, S.

Behrendt, N.

H. Morsy, S. Kamp, L. Thrane, N. Behrendt, B. Saunder, H. Zayan, E. A. Elmagid, and G. B. Jemec, “Optical coherence tomography imaging of psoriasis vulgaris: correlation with histology and disease severity,” Arch. Dermatol. Res.302(2), 105–111 (2010).
[CrossRef] [PubMed]

Biedermann, B. R.

Binder, S.

A. Alex, B. Povazay, B. Hofer, S. Popov, C. Glittenberg, S. Binder, and W. Drexler, “Multispectral in vivo three-dimensional optical coherence tomography of human skin,” J. Biomed. Opt.15(2), 026025 (2010).
[CrossRef] [PubMed]

Birchall, J. C.

S. A. Coulman, J. C. Birchall, A. Alex, M. Pearton, B. Hofer, C. O’Mahony, W. Drexler, and B. Považay, “In vivo, in situ imaging of microneedle insertion into the skin of human volunteers using optical coherence tomography,” Pharm. Res.28(1), 66–81 (2011).
[CrossRef] [PubMed]

Birngruber, R.

J. Welzel, E. Lankenau, R. Birngruber, and R. Engelhardt, “Optical coherence tomography of the human skin,” J. Am. Acad. Dermatol.37(6), 958–963 (1997).
[CrossRef] [PubMed]

Bock, R.

Boms, S.

T. Gambichler, B. Künzlberger, V. Paech, A. Kreuter, S. Boms, A. Bader, G. Moussa, M. Sand, P. Altmeyer, and K. Hoffmann, “UVA1 and UVB irradiated skin investigated by optical coherence tomography in vivo: a preliminary study,” Clin. Exp. Dermatol.30(1), 79–82 (2005).
[CrossRef] [PubMed]

Braune, A.

T. Amadeu, A. Braune, C. Mandarim-de-Lacerda, L. C. Porto, A. Desmoulière, and A. Costa, “Vascularization pattern in hypertrophic scars and keloids: a stereological analysis,” Pathol. Res. Pract.199(7), 469–473 (2003).
[CrossRef] [PubMed]

Byrne, J. V.

R. A. McLaughlin, J. Hipwell, D. J. Hawkes, J. A. Noble, J. V. Byrne, and T. C. Cox, “A comparison of a similarity-based and a feature-based 2-D-3-D registration method for neurointerventional use,” IEEE Trans. Med. Imaging24(8), 1058–1066 (2005).
[CrossRef] [PubMed]

Cappetti, A.

C. Salvini, D. Massi, A. Cappetti, M. Stante, P. Cappugi, P. Fabbri, and P. Carli, “Application of optical coherence tomography in non-invasive characterization of skin vascular lesions,” Skin Res. Technol.14(1), 89–92 (2008).
[PubMed]

Cappugi, P.

C. Salvini, D. Massi, A. Cappetti, M. Stante, P. Cappugi, P. Fabbri, and P. Carli, “Application of optical coherence tomography in non-invasive characterization of skin vascular lesions,” Skin Res. Technol.14(1), 89–92 (2008).
[PubMed]

Carli, P.

C. Salvini, D. Massi, A. Cappetti, M. Stante, P. Cappugi, P. Fabbri, and P. Carli, “Application of optical coherence tomography in non-invasive characterization of skin vascular lesions,” Skin Res. Technol.14(1), 89–92 (2008).
[PubMed]

Carstea, E. M.

A. M. Forsea, E. M. Carstea, L. Ghervase, C. Giurcaneanu, and G. Pavelescu, “Clinical application of optical coherence tomography for the imaging of non-melanocytic cutaneous tumors: a pilot multi-modal study,” J. Med. Life3(4), 381–389 (2010).
[PubMed]

Chak, A.

Choi, S. S.

R. J. Zawadzki, A. R. Fuller, S. S. Choi, D. F. Wiley, B. Hamann, and J. S. Werner, “Correction of motion artifacts and scanning beam distortions in 3D ophthalmic optical coherence tomography imaging,” Proc. SPIE6426, 642607 (2007).
[CrossRef]

Christensen, U.

T. M. Jørgensen, J. Thomadsen, U. Christensen, W. Soliman, and B. Sander, “Enhancing the signal-to-noise ratio in ophthalmic optical coherence tomography by image registration—method and clinical examples,” J. Biomed. Opt.12(4), 041208 (2007).
[CrossRef] [PubMed]

Chughtai, O. Q.

M. W. Jenkins, O. Q. Chughtai, A. N. Basavanhally, M. Watanabe, and A. M. Rollins, “In vivo gated 4D imaging of the embryonic heart using optical coherence tomography,” J. Biomed. Opt.12(3), 030505 (2007).
[CrossRef] [PubMed]

Cochoff, S. M.

Y. M. Zhu, S. M. Cochoff, and R. Sukalac, “Automatic patient table removal in CT images,” J. Digit. Imaging (2012), 6 pages, online first.
[PubMed]

Costa, A.

T. Amadeu, A. Braune, C. Mandarim-de-Lacerda, L. C. Porto, A. Desmoulière, and A. Costa, “Vascularization pattern in hypertrophic scars and keloids: a stereological analysis,” Pathol. Res. Pract.199(7), 469–473 (2003).
[CrossRef] [PubMed]

Coulman, S. A.

S. A. Coulman, J. C. Birchall, A. Alex, M. Pearton, B. Hofer, C. O’Mahony, W. Drexler, and B. Považay, “In vivo, in situ imaging of microneedle insertion into the skin of human volunteers using optical coherence tomography,” Pharm. Res.28(1), 66–81 (2011).
[CrossRef] [PubMed]

Cox, B.

Cox, T. C.

R. A. McLaughlin, J. Hipwell, D. J. Hawkes, J. A. Noble, J. V. Byrne, and T. C. Cox, “A comparison of a similarity-based and a feature-based 2-D-3-D registration method for neurointerventional use,” IEEE Trans. Med. Imaging24(8), 1058–1066 (2005).
[CrossRef] [PubMed]

Desmedt, P.

G. P. Penney, J. Weese, J. A. Little, P. Desmedt, D. L. G. Hill, and D. J. Hawkes, “A comparison of similarity measures for use in 2-D-3-D medical image registration,” IEEE Trans. Med. Imaging17(4), 586–595 (1998).
[CrossRef] [PubMed]

Desmoulière, A.

T. Amadeu, A. Braune, C. Mandarim-de-Lacerda, L. C. Porto, A. Desmoulière, and A. Costa, “Vascularization pattern in hypertrophic scars and keloids: a stereological analysis,” Pathol. Res. Pract.199(7), 469–473 (2003).
[CrossRef] [PubMed]

Drexler, W.

E. Z. Zhang, B. Povazay, J. Laufer, A. Alex, B. Hofer, B. Pedley, C. Glittenberg, B. Treeby, B. Cox, P. Beard, and W. Drexler, “Multimodal photoacoustic and optical coherence tomography scanner using an all optical detection scheme for 3D morphological skin imaging,” Biomed. Opt. Express2(8), 2202–2215 (2011).
[CrossRef] [PubMed]

S. A. Coulman, J. C. Birchall, A. Alex, M. Pearton, B. Hofer, C. O’Mahony, W. Drexler, and B. Považay, “In vivo, in situ imaging of microneedle insertion into the skin of human volunteers using optical coherence tomography,” Pharm. Res.28(1), 66–81 (2011).
[CrossRef] [PubMed]

A. Alex, B. Povazay, B. Hofer, S. Popov, C. Glittenberg, S. Binder, and W. Drexler, “Multispectral in vivo three-dimensional optical coherence tomography of human skin,” J. Biomed. Opt.15(2), 026025 (2010).
[CrossRef] [PubMed]

Duda, R. O.

R. O. Duda and P. E. Hart, “Use of the Hough transformation to detect lines and curves in pictures,” Commun. ACM15(1), 11–15 (1972).
[CrossRef]

Eastwood, P. R.

Ehler, L. K.

T. Hinz, L. K. Ehler, H. Voth, I. Fortmeier, T. Hoeller, T. Hornung, and M. H. Schmid-Wendtner, “Assessment of tumor thickness in melanocytic skin lesions: comparison of optical coherence tomography, 20-MHz ultrasound and histopathology,” Dermatology223(2), 161–168 (2011).
[CrossRef] [PubMed]

Eigenwillig, C. M.

Elmagid, E. A.

H. Morsy, S. Kamp, L. Thrane, N. Behrendt, B. Saunder, H. Zayan, E. A. Elmagid, and G. B. Jemec, “Optical coherence tomography imaging of psoriasis vulgaris: correlation with histology and disease severity,” Arch. Dermatol. Res.302(2), 105–111 (2010).
[CrossRef] [PubMed]

Enfield, J.

Engelhardt, R.

J. Welzel, E. Lankenau, R. Birngruber, and R. Engelhardt, “Optical coherence tomography of the human skin,” J. Am. Acad. Dermatol.37(6), 958–963 (1997).
[CrossRef] [PubMed]

Fabbri, P.

C. Salvini, D. Massi, A. Cappetti, M. Stante, P. Cappugi, P. Fabbri, and P. Carli, “Application of optical coherence tomography in non-invasive characterization of skin vascular lesions,” Skin Res. Technol.14(1), 89–92 (2008).
[PubMed]

Ferguson, M. W. J.

A. Bayat, D. A. McGrouther, and M. W. J. Ferguson, “Skin scarring,” BMJ326(7380), 88–92 (2003).
[CrossRef] [PubMed]

Forman, J. L.

M. Mogensen, B. M. Nürnberg, J. L. Forman, J. B. Thomsen, L. Thrane, and G. B. Jemec, “In vivo thickness measurement of basal cell carcinoma and actinic keratosis with optical coherence tomography and 20-MHz ultrasound,” Br. J. Dermatol.160(5), 1026–1033 (2009).
[CrossRef] [PubMed]

Forsea, A. M.

A. M. Forsea, E. M. Carstea, L. Ghervase, C. Giurcaneanu, and G. Pavelescu, “Clinical application of optical coherence tomography for the imaging of non-melanocytic cutaneous tumors: a pilot multi-modal study,” J. Med. Life3(4), 381–389 (2010).
[PubMed]

Fortmeier, I.

T. Hinz, L. K. Ehler, H. Voth, I. Fortmeier, T. Hoeller, T. Hornung, and M. H. Schmid-Wendtner, “Assessment of tumor thickness in melanocytic skin lesions: comparison of optical coherence tomography, 20-MHz ultrasound and histopathology,” Dermatology223(2), 161–168 (2011).
[CrossRef] [PubMed]

Fujimoto, J. G.

Fuller, A. R.

R. J. Zawadzki, A. R. Fuller, S. S. Choi, D. F. Wiley, B. Hamann, and J. S. Werner, “Correction of motion artifacts and scanning beam distortions in 3D ophthalmic optical coherence tomography imaging,” Proc. SPIE6426, 642607 (2007).
[CrossRef]

Gambichler, T.

T. Gambichler, V. Jaedicke, and S. Terras, “Optical coherence tomography in dermatology: technical and clinical aspects,” Arch. Dermatol. Res.303(7), 457–473 (2011).
[CrossRef] [PubMed]

T. Gambichler, B. Künzlberger, V. Paech, A. Kreuter, S. Boms, A. Bader, G. Moussa, M. Sand, P. Altmeyer, and K. Hoffmann, “UVA1 and UVB irradiated skin investigated by optical coherence tomography in vivo: a preliminary study,” Clin. Exp. Dermatol.30(1), 79–82 (2005).
[CrossRef] [PubMed]

Garvin, M. K.

Ghervase, L.

A. M. Forsea, E. M. Carstea, L. Ghervase, C. Giurcaneanu, and G. Pavelescu, “Clinical application of optical coherence tomography for the imaging of non-melanocytic cutaneous tumors: a pilot multi-modal study,” J. Med. Life3(4), 381–389 (2010).
[PubMed]

Giurcaneanu, C.

A. M. Forsea, E. M. Carstea, L. Ghervase, C. Giurcaneanu, and G. Pavelescu, “Clinical application of optical coherence tomography for the imaging of non-melanocytic cutaneous tumors: a pilot multi-modal study,” J. Med. Life3(4), 381–389 (2010).
[PubMed]

Glittenberg, C.

Golemati, S.

S. Golemati, J. Stoitsis, E. G. Sifakis, T. Balkizas, and K. S. Nikita, “Using the Hough transform to segment ultrasound images of longitudinal and transverse sections of the carotid artery,” Ultrasound Med. Biol.33(12), 1918–1932 (2007).
[CrossRef] [PubMed]

Gregori, G.

Hamann, B.

R. J. Zawadzki, A. R. Fuller, S. S. Choi, D. F. Wiley, B. Hamann, and J. S. Werner, “Correction of motion artifacts and scanning beam distortions in 3D ophthalmic optical coherence tomography imaging,” Proc. SPIE6426, 642607 (2007).
[CrossRef]

Hart, P. E.

R. O. Duda and P. E. Hart, “Use of the Hough transformation to detect lines and curves in pictures,” Commun. ACM15(1), 11–15 (1972).
[CrossRef]

Hawkes, D. J.

R. A. McLaughlin, J. Hipwell, D. J. Hawkes, J. A. Noble, J. V. Byrne, and T. C. Cox, “A comparison of a similarity-based and a feature-based 2-D-3-D registration method for neurointerventional use,” IEEE Trans. Med. Imaging24(8), 1058–1066 (2005).
[CrossRef] [PubMed]

D. L. G. Hill, P. G. Batchelor, M. Holden, and D. J. Hawkes, “Medical image registration,” Phys. Med. Biol.46(3), R1–R45 (2001).
[CrossRef] [PubMed]

G. P. Penney, J. Weese, J. A. Little, P. Desmedt, D. L. G. Hill, and D. J. Hawkes, “A comparison of similarity measures for use in 2-D-3-D medical image registration,” IEEE Trans. Med. Imaging17(4), 586–595 (1998).
[CrossRef] [PubMed]

Healy, D. M.

G. K. Rohde, A. Aldroubi, and D. M. Healy., “Interpolation artifacts in sub-pixel image registration,” IEEE Trans. Image Process.18(2), 333–345 (2009).
[CrossRef] [PubMed]

Hill, D. L. G.

D. L. G. Hill, P. G. Batchelor, M. Holden, and D. J. Hawkes, “Medical image registration,” Phys. Med. Biol.46(3), R1–R45 (2001).
[CrossRef] [PubMed]

G. P. Penney, J. Weese, J. A. Little, P. Desmedt, D. L. G. Hill, and D. J. Hawkes, “A comparison of similarity measures for use in 2-D-3-D medical image registration,” IEEE Trans. Med. Imaging17(4), 586–595 (1998).
[CrossRef] [PubMed]

Hillman, D. R.

Hinz, T.

T. Hinz, L. K. Ehler, H. Voth, I. Fortmeier, T. Hoeller, T. Hornung, and M. H. Schmid-Wendtner, “Assessment of tumor thickness in melanocytic skin lesions: comparison of optical coherence tomography, 20-MHz ultrasound and histopathology,” Dermatology223(2), 161–168 (2011).
[CrossRef] [PubMed]

Hipwell, J.

R. A. McLaughlin, J. Hipwell, D. J. Hawkes, J. A. Noble, J. V. Byrne, and T. C. Cox, “A comparison of a similarity-based and a feature-based 2-D-3-D registration method for neurointerventional use,” IEEE Trans. Med. Imaging24(8), 1058–1066 (2005).
[CrossRef] [PubMed]

Hoeller, T.

T. Hinz, L. K. Ehler, H. Voth, I. Fortmeier, T. Hoeller, T. Hornung, and M. H. Schmid-Wendtner, “Assessment of tumor thickness in melanocytic skin lesions: comparison of optical coherence tomography, 20-MHz ultrasound and histopathology,” Dermatology223(2), 161–168 (2011).
[CrossRef] [PubMed]

Hofer, B.

S. A. Coulman, J. C. Birchall, A. Alex, M. Pearton, B. Hofer, C. O’Mahony, W. Drexler, and B. Považay, “In vivo, in situ imaging of microneedle insertion into the skin of human volunteers using optical coherence tomography,” Pharm. Res.28(1), 66–81 (2011).
[CrossRef] [PubMed]

E. Z. Zhang, B. Povazay, J. Laufer, A. Alex, B. Hofer, B. Pedley, C. Glittenberg, B. Treeby, B. Cox, P. Beard, and W. Drexler, “Multimodal photoacoustic and optical coherence tomography scanner using an all optical detection scheme for 3D morphological skin imaging,” Biomed. Opt. Express2(8), 2202–2215 (2011).
[CrossRef] [PubMed]

A. Alex, B. Povazay, B. Hofer, S. Popov, C. Glittenberg, S. Binder, and W. Drexler, “Multispectral in vivo three-dimensional optical coherence tomography of human skin,” J. Biomed. Opt.15(2), 026025 (2010).
[CrossRef] [PubMed]

Hoffmann, K.

T. Gambichler, B. Künzlberger, V. Paech, A. Kreuter, S. Boms, A. Bader, G. Moussa, M. Sand, P. Altmeyer, and K. Hoffmann, “UVA1 and UVB irradiated skin investigated by optical coherence tomography in vivo: a preliminary study,” Clin. Exp. Dermatol.30(1), 79–82 (2005).
[CrossRef] [PubMed]

Holden, M.

D. L. G. Hill, P. G. Batchelor, M. Holden, and D. J. Hawkes, “Medical image registration,” Phys. Med. Biol.46(3), R1–R45 (2001).
[CrossRef] [PubMed]

Hornegger, J.

Hornung, T.

T. Hinz, L. K. Ehler, H. Voth, I. Fortmeier, T. Hoeller, T. Hornung, and M. H. Schmid-Wendtner, “Assessment of tumor thickness in melanocytic skin lesions: comparison of optical coherence tomography, 20-MHz ultrasound and histopathology,” Dermatology223(2), 161–168 (2011).
[CrossRef] [PubMed]

Huber, R.

Isenberg, G. A.

Jaedicke, V.

T. Gambichler, V. Jaedicke, and S. Terras, “Optical coherence tomography in dermatology: technical and clinical aspects,” Arch. Dermatol. Res.303(7), 457–473 (2011).
[CrossRef] [PubMed]

Jain, A.

Jansonius, N. M.

Jemec, G. B.

H. Morsy, S. Kamp, L. Thrane, N. Behrendt, B. Saunder, H. Zayan, E. A. Elmagid, and G. B. Jemec, “Optical coherence tomography imaging of psoriasis vulgaris: correlation with histology and disease severity,” Arch. Dermatol. Res.302(2), 105–111 (2010).
[CrossRef] [PubMed]

M. Mogensen, B. M. Nürnberg, J. L. Forman, J. B. Thomsen, L. Thrane, and G. B. Jemec, “In vivo thickness measurement of basal cell carcinoma and actinic keratosis with optical coherence tomography and 20-MHz ultrasound,” Br. J. Dermatol.160(5), 1026–1033 (2009).
[CrossRef] [PubMed]

Jemec, G. B. E.

M. Mogensen, L. Thrane, T. M. Joergensen, P. E. Andersen, and G. B. E. Jemec, “Optical coherence tomography for imaging of skin and skin diseases,” Semin. Cutan. Med. Surg.28(3), 196–202 (2009).
[CrossRef] [PubMed]

M. Mogensen, T. M. Joergensen, B. M. Nürnberg, H. A. Morsy, J. B. Thomsen, L. Thrane, and G. B. E. Jemec, “Assessment of optical coherence tomography imaging in the diagnosis of non-melanoma skin cancer and benign lesions versus normal skin: observer-blinded evaluation by dermatologists and pathologists,” Dermatol. Surg.35(6), 965–972 (2009).
[CrossRef] [PubMed]

M. Mogensen, H. A. Morsy, L. Thrane, and G. B. E. Jemec, “Morphology and epidermal thickness of normal skin imaged by optical coherence tomography,” Dermatology217(1), 14–20 (2008).
[CrossRef] [PubMed]

Jenkins, M. W.

W. Kang, H. Wang, Z. Wang, M. W. Jenkins, G. A. Isenberg, A. Chak, and A. M. Rollins, “Motion artifacts associated with in vivo endoscopic OCT images of the esophagus,” Opt. Express19(21), 20722–20735 (2011).
[CrossRef] [PubMed]

M. W. Jenkins, O. Q. Chughtai, A. N. Basavanhally, M. Watanabe, and A. M. Rollins, “In vivo gated 4D imaging of the embryonic heart using optical coherence tomography,” J. Biomed. Opt.12(3), 030505 (2007).
[CrossRef] [PubMed]

Joergensen, T. M.

M. Mogensen, T. M. Joergensen, B. M. Nürnberg, H. A. Morsy, J. B. Thomsen, L. Thrane, and G. B. E. Jemec, “Assessment of optical coherence tomography imaging in the diagnosis of non-melanoma skin cancer and benign lesions versus normal skin: observer-blinded evaluation by dermatologists and pathologists,” Dermatol. Surg.35(6), 965–972 (2009).
[CrossRef] [PubMed]

M. Mogensen, L. Thrane, T. M. Joergensen, P. E. Andersen, and G. B. E. Jemec, “Optical coherence tomography for imaging of skin and skin diseases,” Semin. Cutan. Med. Surg.28(3), 196–202 (2009).
[CrossRef] [PubMed]

Jonathan, E.

Jørgensen, T. M.

T. M. Jørgensen, J. Thomadsen, U. Christensen, W. Soliman, and B. Sander, “Enhancing the signal-to-noise ratio in ophthalmic optical coherence tomography by image registration—method and clinical examples,” J. Biomed. Opt.12(4), 041208 (2007).
[CrossRef] [PubMed]

Kamp, S.

H. Morsy, S. Kamp, L. Thrane, N. Behrendt, B. Saunder, H. Zayan, E. A. Elmagid, and G. B. Jemec, “Optical coherence tomography imaging of psoriasis vulgaris: correlation with histology and disease severity,” Arch. Dermatol. Res.302(2), 105–111 (2010).
[CrossRef] [PubMed]

Kang, W.

Kawabata, K.

S. Sakai, M. Yamanari, A. Miyazawa, M. Matsumoto, N. Nakagawa, T. Sugawara, K. Kawabata, T. Yatagai, and Y. Yasuno, “In vivo three-dimensional birefringence analysis shows collagen differences between young and old photo-aged human skin,” J. Invest. Dermatol.128(7), 1641–1647 (2008).
[CrossRef] [PubMed]

Klein, T.

Knighton, R. W.

Kraus, M. F.

Kreuter, A.

T. Gambichler, B. Künzlberger, V. Paech, A. Kreuter, S. Boms, A. Bader, G. Moussa, M. Sand, P. Altmeyer, and K. Hoffmann, “UVA1 and UVB irradiated skin investigated by optical coherence tomography in vivo: a preliminary study,” Clin. Exp. Dermatol.30(1), 79–82 (2005).
[CrossRef] [PubMed]

Kunzi-Rapp, K.

R. Steiner, K. Kunzi-Rapp, and K. Scharffetter-Kochanek, “Optical coherence tomography: clinical applications in dermatology,” Med. Laser Appl.18(3), 249–259 (2003).
[CrossRef]

Künzlberger, B.

T. Gambichler, B. Künzlberger, V. Paech, A. Kreuter, S. Boms, A. Bader, G. Moussa, M. Sand, P. Altmeyer, and K. Hoffmann, “UVA1 and UVB irradiated skin investigated by optical coherence tomography in vivo: a preliminary study,” Clin. Exp. Dermatol.30(1), 79–82 (2005).
[CrossRef] [PubMed]

Kwon, Y. H.

Lankenau, E.

J. Welzel, E. Lankenau, R. Birngruber, and R. Engelhardt, “Optical coherence tomography of the human skin,” J. Am. Acad. Dermatol.37(6), 958–963 (1997).
[CrossRef] [PubMed]

Laufer, J.

Leahy, M.

Lee, K.

Lewis, R. M.

R. M. Lewis and V. Torczon, “Pattern search algorithms for bound constrained minimization,” SIAM J. Optim.9(4), 1082–1099 (1999).
[CrossRef]

Li, Y.

Liew, Y. M.

Y. M. Liew, R. A. McLaughlin, F. M. Wood, and D. D. Sampson, “Reduction of image artifacts in three-dimensional optical coherence tomography of skin in vivo,” J. Biomed. Opt.16(11), 116018 (2011).
[CrossRef] [PubMed]

Little, J. A.

G. P. Penney, J. Weese, J. A. Little, P. Desmedt, D. L. G. Hill, and D. J. Hawkes, “A comparison of similarity measures for use in 2-D-3-D medical image registration,” IEEE Trans. Med. Imaging17(4), 586–595 (1998).
[CrossRef] [PubMed]

Liu, J. J.

Lujan, B. J.

Mandarim-de-Lacerda, C.

T. Amadeu, A. Braune, C. Mandarim-de-Lacerda, L. C. Porto, A. Desmoulière, and A. Costa, “Vascularization pattern in hypertrophic scars and keloids: a stereological analysis,” Pathol. Res. Pract.199(7), 469–473 (2003).
[CrossRef] [PubMed]

Massi, D.

C. Salvini, D. Massi, A. Cappetti, M. Stante, P. Cappugi, P. Fabbri, and P. Carli, “Application of optical coherence tomography in non-invasive characterization of skin vascular lesions,” Skin Res. Technol.14(1), 89–92 (2008).
[PubMed]

Matsumoto, M.

S. Sakai, M. Yamanari, A. Miyazawa, M. Matsumoto, N. Nakagawa, T. Sugawara, K. Kawabata, T. Yatagai, and Y. Yasuno, “In vivo three-dimensional birefringence analysis shows collagen differences between young and old photo-aged human skin,” J. Invest. Dermatol.128(7), 1641–1647 (2008).
[CrossRef] [PubMed]

Mayer, M. A.

McGrouther, D. A.

A. Bayat, D. A. McGrouther, and M. W. J. Ferguson, “Skin scarring,” BMJ326(7380), 88–92 (2003).
[CrossRef] [PubMed]

McLaughlin, R. A.

Y. M. Liew, R. A. McLaughlin, F. M. Wood, and D. D. Sampson, “Reduction of image artifacts in three-dimensional optical coherence tomography of skin in vivo,” J. Biomed. Opt.16(11), 116018 (2011).
[CrossRef] [PubMed]

R. A. McLaughlin, J. J. Armstrong, S. Becker, J. H. Walsh, A. Jain, D. R. Hillman, P. R. Eastwood, and D. D. Sampson, “Respiratory gating of anatomical optical coherence tomography images of the human airway,” Opt. Express17(8), 6568–6577 (2009).
[CrossRef] [PubMed]

R. A. McLaughlin, J. Hipwell, D. J. Hawkes, J. A. Noble, J. V. Byrne, and T. C. Cox, “A comparison of a similarity-based and a feature-based 2-D-3-D registration method for neurointerventional use,” IEEE Trans. Med. Imaging24(8), 1058–1066 (2005).
[CrossRef] [PubMed]

Miyazawa, A.

S. Sakai, M. Yamanari, A. Miyazawa, M. Matsumoto, N. Nakagawa, T. Sugawara, K. Kawabata, T. Yatagai, and Y. Yasuno, “In vivo three-dimensional birefringence analysis shows collagen differences between young and old photo-aged human skin,” J. Invest. Dermatol.128(7), 1641–1647 (2008).
[CrossRef] [PubMed]

Mogensen, M.

M. Mogensen, L. Thrane, T. M. Joergensen, P. E. Andersen, and G. B. E. Jemec, “Optical coherence tomography for imaging of skin and skin diseases,” Semin. Cutan. Med. Surg.28(3), 196–202 (2009).
[CrossRef] [PubMed]

M. Mogensen, B. M. Nürnberg, J. L. Forman, J. B. Thomsen, L. Thrane, and G. B. Jemec, “In vivo thickness measurement of basal cell carcinoma and actinic keratosis with optical coherence tomography and 20-MHz ultrasound,” Br. J. Dermatol.160(5), 1026–1033 (2009).
[CrossRef] [PubMed]

M. Mogensen, T. M. Joergensen, B. M. Nürnberg, H. A. Morsy, J. B. Thomsen, L. Thrane, and G. B. E. Jemec, “Assessment of optical coherence tomography imaging in the diagnosis of non-melanoma skin cancer and benign lesions versus normal skin: observer-blinded evaluation by dermatologists and pathologists,” Dermatol. Surg.35(6), 965–972 (2009).
[CrossRef] [PubMed]

M. Mogensen, H. A. Morsy, L. Thrane, and G. B. E. Jemec, “Morphology and epidermal thickness of normal skin imaged by optical coherence tomography,” Dermatology217(1), 14–20 (2008).
[CrossRef] [PubMed]

Morsy, H.

H. Morsy, S. Kamp, L. Thrane, N. Behrendt, B. Saunder, H. Zayan, E. A. Elmagid, and G. B. Jemec, “Optical coherence tomography imaging of psoriasis vulgaris: correlation with histology and disease severity,” Arch. Dermatol. Res.302(2), 105–111 (2010).
[CrossRef] [PubMed]

Morsy, H. A.

M. Mogensen, T. M. Joergensen, B. M. Nürnberg, H. A. Morsy, J. B. Thomsen, L. Thrane, and G. B. E. Jemec, “Assessment of optical coherence tomography imaging in the diagnosis of non-melanoma skin cancer and benign lesions versus normal skin: observer-blinded evaluation by dermatologists and pathologists,” Dermatol. Surg.35(6), 965–972 (2009).
[CrossRef] [PubMed]

M. Mogensen, H. A. Morsy, L. Thrane, and G. B. E. Jemec, “Morphology and epidermal thickness of normal skin imaged by optical coherence tomography,” Dermatology217(1), 14–20 (2008).
[CrossRef] [PubMed]

Moussa, G.

T. Gambichler, B. Künzlberger, V. Paech, A. Kreuter, S. Boms, A. Bader, G. Moussa, M. Sand, P. Altmeyer, and K. Hoffmann, “UVA1 and UVB irradiated skin investigated by optical coherence tomography in vivo: a preliminary study,” Clin. Exp. Dermatol.30(1), 79–82 (2005).
[CrossRef] [PubMed]

Nakagawa, N.

S. Sakai, M. Yamanari, A. Miyazawa, M. Matsumoto, N. Nakagawa, T. Sugawara, K. Kawabata, T. Yatagai, and Y. Yasuno, “In vivo three-dimensional birefringence analysis shows collagen differences between young and old photo-aged human skin,” J. Invest. Dermatol.128(7), 1641–1647 (2008).
[CrossRef] [PubMed]

Nikita, K. S.

S. Golemati, J. Stoitsis, E. G. Sifakis, T. Balkizas, and K. S. Nikita, “Using the Hough transform to segment ultrasound images of longitudinal and transverse sections of the carotid artery,” Ultrasound Med. Biol.33(12), 1918–1932 (2007).
[CrossRef] [PubMed]

Noble, J. A.

R. A. McLaughlin, J. Hipwell, D. J. Hawkes, J. A. Noble, J. V. Byrne, and T. C. Cox, “A comparison of a similarity-based and a feature-based 2-D-3-D registration method for neurointerventional use,” IEEE Trans. Med. Imaging24(8), 1058–1066 (2005).
[CrossRef] [PubMed]

Nürnberg, B. M.

M. Mogensen, B. M. Nürnberg, J. L. Forman, J. B. Thomsen, L. Thrane, and G. B. Jemec, “In vivo thickness measurement of basal cell carcinoma and actinic keratosis with optical coherence tomography and 20-MHz ultrasound,” Br. J. Dermatol.160(5), 1026–1033 (2009).
[CrossRef] [PubMed]

M. Mogensen, T. M. Joergensen, B. M. Nürnberg, H. A. Morsy, J. B. Thomsen, L. Thrane, and G. B. E. Jemec, “Assessment of optical coherence tomography imaging in the diagnosis of non-melanoma skin cancer and benign lesions versus normal skin: observer-blinded evaluation by dermatologists and pathologists,” Dermatol. Surg.35(6), 965–972 (2009).
[CrossRef] [PubMed]

O’Mahony, C.

S. A. Coulman, J. C. Birchall, A. Alex, M. Pearton, B. Hofer, C. O’Mahony, W. Drexler, and B. Považay, “In vivo, in situ imaging of microneedle insertion into the skin of human volunteers using optical coherence tomography,” Pharm. Res.28(1), 66–81 (2011).
[CrossRef] [PubMed]

Paech, V.

T. Gambichler, B. Künzlberger, V. Paech, A. Kreuter, S. Boms, A. Bader, G. Moussa, M. Sand, P. Altmeyer, and K. Hoffmann, “UVA1 and UVB irradiated skin investigated by optical coherence tomography in vivo: a preliminary study,” Clin. Exp. Dermatol.30(1), 79–82 (2005).
[CrossRef] [PubMed]

Pavelescu, G.

A. M. Forsea, E. M. Carstea, L. Ghervase, C. Giurcaneanu, and G. Pavelescu, “Clinical application of optical coherence tomography for the imaging of non-melanocytic cutaneous tumors: a pilot multi-modal study,” J. Med. Life3(4), 381–389 (2010).
[PubMed]

Pearton, M.

S. A. Coulman, J. C. Birchall, A. Alex, M. Pearton, B. Hofer, C. O’Mahony, W. Drexler, and B. Považay, “In vivo, in situ imaging of microneedle insertion into the skin of human volunteers using optical coherence tomography,” Pharm. Res.28(1), 66–81 (2011).
[CrossRef] [PubMed]

Pedley, B.

Penney, G. P.

G. P. Penney, J. Weese, J. A. Little, P. Desmedt, D. L. G. Hill, and D. J. Hawkes, “A comparison of similarity measures for use in 2-D-3-D medical image registration,” IEEE Trans. Med. Imaging17(4), 586–595 (1998).
[CrossRef] [PubMed]

Popov, S.

A. Alex, B. Povazay, B. Hofer, S. Popov, C. Glittenberg, S. Binder, and W. Drexler, “Multispectral in vivo three-dimensional optical coherence tomography of human skin,” J. Biomed. Opt.15(2), 026025 (2010).
[CrossRef] [PubMed]

Porto, L. C.

T. Amadeu, A. Braune, C. Mandarim-de-Lacerda, L. C. Porto, A. Desmoulière, and A. Costa, “Vascularization pattern in hypertrophic scars and keloids: a stereological analysis,” Pathol. Res. Pract.199(7), 469–473 (2003).
[CrossRef] [PubMed]

Potsaid, B.

Povazay, B.

Považay, B.

S. A. Coulman, J. C. Birchall, A. Alex, M. Pearton, B. Hofer, C. O’Mahony, W. Drexler, and B. Považay, “In vivo, in situ imaging of microneedle insertion into the skin of human volunteers using optical coherence tomography,” Pharm. Res.28(1), 66–81 (2011).
[CrossRef] [PubMed]

Ramdas, W. D.

Rohde, G. K.

G. K. Rohde, A. Aldroubi, and D. M. Healy., “Interpolation artifacts in sub-pixel image registration,” IEEE Trans. Image Process.18(2), 333–345 (2009).
[CrossRef] [PubMed]

Rollins, A. M.

W. Kang, H. Wang, Z. Wang, M. W. Jenkins, G. A. Isenberg, A. Chak, and A. M. Rollins, “Motion artifacts associated with in vivo endoscopic OCT images of the esophagus,” Opt. Express19(21), 20722–20735 (2011).
[CrossRef] [PubMed]

M. W. Jenkins, O. Q. Chughtai, A. N. Basavanhally, M. Watanabe, and A. M. Rollins, “In vivo gated 4D imaging of the embryonic heart using optical coherence tomography,” J. Biomed. Opt.12(3), 030505 (2007).
[CrossRef] [PubMed]

Rosenfeld, P. J.

Sakai, S.

S. Sakai, M. Yamanari, A. Miyazawa, M. Matsumoto, N. Nakagawa, T. Sugawara, K. Kawabata, T. Yatagai, and Y. Yasuno, “In vivo three-dimensional birefringence analysis shows collagen differences between young and old photo-aged human skin,” J. Invest. Dermatol.128(7), 1641–1647 (2008).
[CrossRef] [PubMed]

Salvini, C.

C. Salvini, D. Massi, A. Cappetti, M. Stante, P. Cappugi, P. Fabbri, and P. Carli, “Application of optical coherence tomography in non-invasive characterization of skin vascular lesions,” Skin Res. Technol.14(1), 89–92 (2008).
[PubMed]

Sampson, D. D.

Y. M. Liew, R. A. McLaughlin, F. M. Wood, and D. D. Sampson, “Reduction of image artifacts in three-dimensional optical coherence tomography of skin in vivo,” J. Biomed. Opt.16(11), 116018 (2011).
[CrossRef] [PubMed]

R. A. McLaughlin, J. J. Armstrong, S. Becker, J. H. Walsh, A. Jain, D. R. Hillman, P. R. Eastwood, and D. D. Sampson, “Respiratory gating of anatomical optical coherence tomography images of the human airway,” Opt. Express17(8), 6568–6577 (2009).
[CrossRef] [PubMed]

Sand, M.

T. Gambichler, B. Künzlberger, V. Paech, A. Kreuter, S. Boms, A. Bader, G. Moussa, M. Sand, P. Altmeyer, and K. Hoffmann, “UVA1 and UVB irradiated skin investigated by optical coherence tomography in vivo: a preliminary study,” Clin. Exp. Dermatol.30(1), 79–82 (2005).
[CrossRef] [PubMed]

Sander, B.

T. M. Jørgensen, J. Thomadsen, U. Christensen, W. Soliman, and B. Sander, “Enhancing the signal-to-noise ratio in ophthalmic optical coherence tomography by image registration—method and clinical examples,” J. Biomed. Opt.12(4), 041208 (2007).
[CrossRef] [PubMed]

Saunder, B.

H. Morsy, S. Kamp, L. Thrane, N. Behrendt, B. Saunder, H. Zayan, E. A. Elmagid, and G. B. Jemec, “Optical coherence tomography imaging of psoriasis vulgaris: correlation with histology and disease severity,” Arch. Dermatol. Res.302(2), 105–111 (2010).
[CrossRef] [PubMed]

Scharffetter-Kochanek, K.

R. Steiner, K. Kunzi-Rapp, and K. Scharffetter-Kochanek, “Optical coherence tomography: clinical applications in dermatology,” Med. Laser Appl.18(3), 249–259 (2003).
[CrossRef]

Schmid-Wendtner, M. H.

T. Hinz, L. K. Ehler, H. Voth, I. Fortmeier, T. Hoeller, T. Hornung, and M. H. Schmid-Wendtner, “Assessment of tumor thickness in melanocytic skin lesions: comparison of optical coherence tomography, 20-MHz ultrasound and histopathology,” Dermatology223(2), 161–168 (2011).
[CrossRef] [PubMed]

Sifakis, E. G.

S. Golemati, J. Stoitsis, E. G. Sifakis, T. Balkizas, and K. S. Nikita, “Using the Hough transform to segment ultrasound images of longitudinal and transverse sections of the carotid artery,” Ultrasound Med. Biol.33(12), 1918–1932 (2007).
[CrossRef] [PubMed]

Soliman, W.

T. M. Jørgensen, J. Thomadsen, U. Christensen, W. Soliman, and B. Sander, “Enhancing the signal-to-noise ratio in ophthalmic optical coherence tomography by image registration—method and clinical examples,” J. Biomed. Opt.12(4), 041208 (2007).
[CrossRef] [PubMed]

Sonka, M.

Stante, M.

C. Salvini, D. Massi, A. Cappetti, M. Stante, P. Cappugi, P. Fabbri, and P. Carli, “Application of optical coherence tomography in non-invasive characterization of skin vascular lesions,” Skin Res. Technol.14(1), 89–92 (2008).
[PubMed]

Steiner, R.

R. Steiner, K. Kunzi-Rapp, and K. Scharffetter-Kochanek, “Optical coherence tomography: clinical applications in dermatology,” Med. Laser Appl.18(3), 249–259 (2003).
[CrossRef]

Stoitsis, J.

S. Golemati, J. Stoitsis, E. G. Sifakis, T. Balkizas, and K. S. Nikita, “Using the Hough transform to segment ultrasound images of longitudinal and transverse sections of the carotid artery,” Ultrasound Med. Biol.33(12), 1918–1932 (2007).
[CrossRef] [PubMed]

Sugawara, T.

S. Sakai, M. Yamanari, A. Miyazawa, M. Matsumoto, N. Nakagawa, T. Sugawara, K. Kawabata, T. Yatagai, and Y. Yasuno, “In vivo three-dimensional birefringence analysis shows collagen differences between young and old photo-aged human skin,” J. Invest. Dermatol.128(7), 1641–1647 (2008).
[CrossRef] [PubMed]

Sukalac, R.

Y. M. Zhu, S. M. Cochoff, and R. Sukalac, “Automatic patient table removal in CT images,” J. Digit. Imaging (2012), 6 pages, online first.
[PubMed]

Tang, L.

Terras, S.

T. Gambichler, V. Jaedicke, and S. Terras, “Optical coherence tomography in dermatology: technical and clinical aspects,” Arch. Dermatol. Res.303(7), 457–473 (2011).
[CrossRef] [PubMed]

Thomadsen, J.

T. M. Jørgensen, J. Thomadsen, U. Christensen, W. Soliman, and B. Sander, “Enhancing the signal-to-noise ratio in ophthalmic optical coherence tomography by image registration—method and clinical examples,” J. Biomed. Opt.12(4), 041208 (2007).
[CrossRef] [PubMed]

Thomsen, J. B.

M. Mogensen, T. M. Joergensen, B. M. Nürnberg, H. A. Morsy, J. B. Thomsen, L. Thrane, and G. B. E. Jemec, “Assessment of optical coherence tomography imaging in the diagnosis of non-melanoma skin cancer and benign lesions versus normal skin: observer-blinded evaluation by dermatologists and pathologists,” Dermatol. Surg.35(6), 965–972 (2009).
[CrossRef] [PubMed]

M. Mogensen, B. M. Nürnberg, J. L. Forman, J. B. Thomsen, L. Thrane, and G. B. Jemec, “In vivo thickness measurement of basal cell carcinoma and actinic keratosis with optical coherence tomography and 20-MHz ultrasound,” Br. J. Dermatol.160(5), 1026–1033 (2009).
[CrossRef] [PubMed]

Thrane, L.

H. Morsy, S. Kamp, L. Thrane, N. Behrendt, B. Saunder, H. Zayan, E. A. Elmagid, and G. B. Jemec, “Optical coherence tomography imaging of psoriasis vulgaris: correlation with histology and disease severity,” Arch. Dermatol. Res.302(2), 105–111 (2010).
[CrossRef] [PubMed]

M. Mogensen, B. M. Nürnberg, J. L. Forman, J. B. Thomsen, L. Thrane, and G. B. Jemec, “In vivo thickness measurement of basal cell carcinoma and actinic keratosis with optical coherence tomography and 20-MHz ultrasound,” Br. J. Dermatol.160(5), 1026–1033 (2009).
[CrossRef] [PubMed]

M. Mogensen, L. Thrane, T. M. Joergensen, P. E. Andersen, and G. B. E. Jemec, “Optical coherence tomography for imaging of skin and skin diseases,” Semin. Cutan. Med. Surg.28(3), 196–202 (2009).
[CrossRef] [PubMed]

M. Mogensen, T. M. Joergensen, B. M. Nürnberg, H. A. Morsy, J. B. Thomsen, L. Thrane, and G. B. E. Jemec, “Assessment of optical coherence tomography imaging in the diagnosis of non-melanoma skin cancer and benign lesions versus normal skin: observer-blinded evaluation by dermatologists and pathologists,” Dermatol. Surg.35(6), 965–972 (2009).
[CrossRef] [PubMed]

M. Mogensen, H. A. Morsy, L. Thrane, and G. B. E. Jemec, “Morphology and epidermal thickness of normal skin imaged by optical coherence tomography,” Dermatology217(1), 14–20 (2008).
[CrossRef] [PubMed]

Torczon, V.

R. M. Lewis and V. Torczon, “Pattern search algorithms for bound constrained minimization,” SIAM J. Optim.9(4), 1082–1099 (1999).
[CrossRef]

Treeby, B.

Vingerling, J. R.

Voth, H.

T. Hinz, L. K. Ehler, H. Voth, I. Fortmeier, T. Hoeller, T. Hornung, and M. H. Schmid-Wendtner, “Assessment of tumor thickness in melanocytic skin lesions: comparison of optical coherence tomography, 20-MHz ultrasound and histopathology,” Dermatology223(2), 161–168 (2011).
[CrossRef] [PubMed]

Walsh, J. H.

Wang, H.

Wang, Z.

Watanabe, M.

M. W. Jenkins, O. Q. Chughtai, A. N. Basavanhally, M. Watanabe, and A. M. Rollins, “In vivo gated 4D imaging of the embryonic heart using optical coherence tomography,” J. Biomed. Opt.12(3), 030505 (2007).
[CrossRef] [PubMed]

Weese, J.

G. P. Penney, J. Weese, J. A. Little, P. Desmedt, D. L. G. Hill, and D. J. Hawkes, “A comparison of similarity measures for use in 2-D-3-D medical image registration,” IEEE Trans. Med. Imaging17(4), 586–595 (1998).
[CrossRef] [PubMed]

Welzel, J.

J. Welzel, E. Lankenau, R. Birngruber, and R. Engelhardt, “Optical coherence tomography of the human skin,” J. Am. Acad. Dermatol.37(6), 958–963 (1997).
[CrossRef] [PubMed]

Werner, J. S.

R. J. Zawadzki, A. R. Fuller, S. S. Choi, D. F. Wiley, B. Hamann, and J. S. Werner, “Correction of motion artifacts and scanning beam distortions in 3D ophthalmic optical coherence tomography imaging,” Proc. SPIE6426, 642607 (2007).
[CrossRef]

Wieser, W.

Wiley, D. F.

R. J. Zawadzki, A. R. Fuller, S. S. Choi, D. F. Wiley, B. Hamann, and J. S. Werner, “Correction of motion artifacts and scanning beam distortions in 3D ophthalmic optical coherence tomography imaging,” Proc. SPIE6426, 642607 (2007).
[CrossRef]

Wood, F. M.

Y. M. Liew, R. A. McLaughlin, F. M. Wood, and D. D. Sampson, “Reduction of image artifacts in three-dimensional optical coherence tomography of skin in vivo,” J. Biomed. Opt.16(11), 116018 (2011).
[CrossRef] [PubMed]

Yamanari, M.

S. Sakai, M. Yamanari, A. Miyazawa, M. Matsumoto, N. Nakagawa, T. Sugawara, K. Kawabata, T. Yatagai, and Y. Yasuno, “In vivo three-dimensional birefringence analysis shows collagen differences between young and old photo-aged human skin,” J. Invest. Dermatol.128(7), 1641–1647 (2008).
[CrossRef] [PubMed]

Yasuno, Y.

S. Sakai, M. Yamanari, A. Miyazawa, M. Matsumoto, N. Nakagawa, T. Sugawara, K. Kawabata, T. Yatagai, and Y. Yasuno, “In vivo three-dimensional birefringence analysis shows collagen differences between young and old photo-aged human skin,” J. Invest. Dermatol.128(7), 1641–1647 (2008).
[CrossRef] [PubMed]

Yatagai, T.

S. Sakai, M. Yamanari, A. Miyazawa, M. Matsumoto, N. Nakagawa, T. Sugawara, K. Kawabata, T. Yatagai, and Y. Yasuno, “In vivo three-dimensional birefringence analysis shows collagen differences between young and old photo-aged human skin,” J. Invest. Dermatol.128(7), 1641–1647 (2008).
[CrossRef] [PubMed]

Zawadzki, R. J.

R. J. Zawadzki, A. R. Fuller, S. S. Choi, D. F. Wiley, B. Hamann, and J. S. Werner, “Correction of motion artifacts and scanning beam distortions in 3D ophthalmic optical coherence tomography imaging,” Proc. SPIE6426, 642607 (2007).
[CrossRef]

Zayan, H.

H. Morsy, S. Kamp, L. Thrane, N. Behrendt, B. Saunder, H. Zayan, E. A. Elmagid, and G. B. Jemec, “Optical coherence tomography imaging of psoriasis vulgaris: correlation with histology and disease severity,” Arch. Dermatol. Res.302(2), 105–111 (2010).
[CrossRef] [PubMed]

Zhang, E. Z.

Zhu, Y. M.

Y. M. Zhu, S. M. Cochoff, and R. Sukalac, “Automatic patient table removal in CT images,” J. Digit. Imaging (2012), 6 pages, online first.
[PubMed]

Arch. Dermatol. Res. (2)

T. Gambichler, V. Jaedicke, and S. Terras, “Optical coherence tomography in dermatology: technical and clinical aspects,” Arch. Dermatol. Res.303(7), 457–473 (2011).
[CrossRef] [PubMed]

H. Morsy, S. Kamp, L. Thrane, N. Behrendt, B. Saunder, H. Zayan, E. A. Elmagid, and G. B. Jemec, “Optical coherence tomography imaging of psoriasis vulgaris: correlation with histology and disease severity,” Arch. Dermatol. Res.302(2), 105–111 (2010).
[CrossRef] [PubMed]

Biomed. Opt. Express (4)

BMJ (1)

A. Bayat, D. A. McGrouther, and M. W. J. Ferguson, “Skin scarring,” BMJ326(7380), 88–92 (2003).
[CrossRef] [PubMed]

Br. J. Dermatol. (1)

M. Mogensen, B. M. Nürnberg, J. L. Forman, J. B. Thomsen, L. Thrane, and G. B. Jemec, “In vivo thickness measurement of basal cell carcinoma and actinic keratosis with optical coherence tomography and 20-MHz ultrasound,” Br. J. Dermatol.160(5), 1026–1033 (2009).
[CrossRef] [PubMed]

Clin. Exp. Dermatol. (1)

T. Gambichler, B. Künzlberger, V. Paech, A. Kreuter, S. Boms, A. Bader, G. Moussa, M. Sand, P. Altmeyer, and K. Hoffmann, “UVA1 and UVB irradiated skin investigated by optical coherence tomography in vivo: a preliminary study,” Clin. Exp. Dermatol.30(1), 79–82 (2005).
[CrossRef] [PubMed]

Commun. ACM (1)

R. O. Duda and P. E. Hart, “Use of the Hough transformation to detect lines and curves in pictures,” Commun. ACM15(1), 11–15 (1972).
[CrossRef]

Dermatol. Surg. (1)

M. Mogensen, T. M. Joergensen, B. M. Nürnberg, H. A. Morsy, J. B. Thomsen, L. Thrane, and G. B. E. Jemec, “Assessment of optical coherence tomography imaging in the diagnosis of non-melanoma skin cancer and benign lesions versus normal skin: observer-blinded evaluation by dermatologists and pathologists,” Dermatol. Surg.35(6), 965–972 (2009).
[CrossRef] [PubMed]

Dermatology (2)

T. Hinz, L. K. Ehler, H. Voth, I. Fortmeier, T. Hoeller, T. Hornung, and M. H. Schmid-Wendtner, “Assessment of tumor thickness in melanocytic skin lesions: comparison of optical coherence tomography, 20-MHz ultrasound and histopathology,” Dermatology223(2), 161–168 (2011).
[CrossRef] [PubMed]

M. Mogensen, H. A. Morsy, L. Thrane, and G. B. E. Jemec, “Morphology and epidermal thickness of normal skin imaged by optical coherence tomography,” Dermatology217(1), 14–20 (2008).
[CrossRef] [PubMed]

IEEE Trans. Image Process. (1)

G. K. Rohde, A. Aldroubi, and D. M. Healy., “Interpolation artifacts in sub-pixel image registration,” IEEE Trans. Image Process.18(2), 333–345 (2009).
[CrossRef] [PubMed]

IEEE Trans. Med. Imaging (2)

G. P. Penney, J. Weese, J. A. Little, P. Desmedt, D. L. G. Hill, and D. J. Hawkes, “A comparison of similarity measures for use in 2-D-3-D medical image registration,” IEEE Trans. Med. Imaging17(4), 586–595 (1998).
[CrossRef] [PubMed]

R. A. McLaughlin, J. Hipwell, D. J. Hawkes, J. A. Noble, J. V. Byrne, and T. C. Cox, “A comparison of a similarity-based and a feature-based 2-D-3-D registration method for neurointerventional use,” IEEE Trans. Med. Imaging24(8), 1058–1066 (2005).
[CrossRef] [PubMed]

J. Am. Acad. Dermatol. (1)

J. Welzel, E. Lankenau, R. Birngruber, and R. Engelhardt, “Optical coherence tomography of the human skin,” J. Am. Acad. Dermatol.37(6), 958–963 (1997).
[CrossRef] [PubMed]

J. Biomed. Opt. (4)

A. Alex, B. Povazay, B. Hofer, S. Popov, C. Glittenberg, S. Binder, and W. Drexler, “Multispectral in vivo three-dimensional optical coherence tomography of human skin,” J. Biomed. Opt.15(2), 026025 (2010).
[CrossRef] [PubMed]

M. W. Jenkins, O. Q. Chughtai, A. N. Basavanhally, M. Watanabe, and A. M. Rollins, “In vivo gated 4D imaging of the embryonic heart using optical coherence tomography,” J. Biomed. Opt.12(3), 030505 (2007).
[CrossRef] [PubMed]

T. M. Jørgensen, J. Thomadsen, U. Christensen, W. Soliman, and B. Sander, “Enhancing the signal-to-noise ratio in ophthalmic optical coherence tomography by image registration—method and clinical examples,” J. Biomed. Opt.12(4), 041208 (2007).
[CrossRef] [PubMed]

Y. M. Liew, R. A. McLaughlin, F. M. Wood, and D. D. Sampson, “Reduction of image artifacts in three-dimensional optical coherence tomography of skin in vivo,” J. Biomed. Opt.16(11), 116018 (2011).
[CrossRef] [PubMed]

J. Digit. Imaging (1)

Y. M. Zhu, S. M. Cochoff, and R. Sukalac, “Automatic patient table removal in CT images,” J. Digit. Imaging (2012), 6 pages, online first.
[PubMed]

J. Invest. Dermatol. (1)

S. Sakai, M. Yamanari, A. Miyazawa, M. Matsumoto, N. Nakagawa, T. Sugawara, K. Kawabata, T. Yatagai, and Y. Yasuno, “In vivo three-dimensional birefringence analysis shows collagen differences between young and old photo-aged human skin,” J. Invest. Dermatol.128(7), 1641–1647 (2008).
[CrossRef] [PubMed]

J. Med. Life (1)

A. M. Forsea, E. M. Carstea, L. Ghervase, C. Giurcaneanu, and G. Pavelescu, “Clinical application of optical coherence tomography for the imaging of non-melanocytic cutaneous tumors: a pilot multi-modal study,” J. Med. Life3(4), 381–389 (2010).
[PubMed]

Med. Laser Appl. (1)

R. Steiner, K. Kunzi-Rapp, and K. Scharffetter-Kochanek, “Optical coherence tomography: clinical applications in dermatology,” Med. Laser Appl.18(3), 249–259 (2003).
[CrossRef]

Opt. Express (4)

Pathol. Res. Pract. (1)

T. Amadeu, A. Braune, C. Mandarim-de-Lacerda, L. C. Porto, A. Desmoulière, and A. Costa, “Vascularization pattern in hypertrophic scars and keloids: a stereological analysis,” Pathol. Res. Pract.199(7), 469–473 (2003).
[CrossRef] [PubMed]

Pharm. Res. (1)

S. A. Coulman, J. C. Birchall, A. Alex, M. Pearton, B. Hofer, C. O’Mahony, W. Drexler, and B. Považay, “In vivo, in situ imaging of microneedle insertion into the skin of human volunteers using optical coherence tomography,” Pharm. Res.28(1), 66–81 (2011).
[CrossRef] [PubMed]

Phys. Med. Biol. (1)

D. L. G. Hill, P. G. Batchelor, M. Holden, and D. J. Hawkes, “Medical image registration,” Phys. Med. Biol.46(3), R1–R45 (2001).
[CrossRef] [PubMed]

Proc. SPIE (1)

R. J. Zawadzki, A. R. Fuller, S. S. Choi, D. F. Wiley, B. Hamann, and J. S. Werner, “Correction of motion artifacts and scanning beam distortions in 3D ophthalmic optical coherence tomography imaging,” Proc. SPIE6426, 642607 (2007).
[CrossRef]

Semin. Cutan. Med. Surg. (1)

M. Mogensen, L. Thrane, T. M. Joergensen, P. E. Andersen, and G. B. E. Jemec, “Optical coherence tomography for imaging of skin and skin diseases,” Semin. Cutan. Med. Surg.28(3), 196–202 (2009).
[CrossRef] [PubMed]

SIAM J. Optim. (1)

R. M. Lewis and V. Torczon, “Pattern search algorithms for bound constrained minimization,” SIAM J. Optim.9(4), 1082–1099 (1999).
[CrossRef]

Skin Res. Technol. (1)

C. Salvini, D. Massi, A. Cappetti, M. Stante, P. Cappugi, P. Fabbri, and P. Carli, “Application of optical coherence tomography in non-invasive characterization of skin vascular lesions,” Skin Res. Technol.14(1), 89–92 (2008).
[PubMed]

Ultrasound Med. Biol. (1)

S. Golemati, J. Stoitsis, E. G. Sifakis, T. Balkizas, and K. S. Nikita, “Using the Hough transform to segment ultrasound images of longitudinal and transverse sections of the carotid artery,” Ultrasound Med. Biol.33(12), 1918–1932 (2007).
[CrossRef] [PubMed]

Other (2)

S. Ricco, M. Chen, H. Ishikawa, G. Wollstein, and J. Schuman, “Correcting motion artifacts in retinal spectral domain optical coherence tomography via image registration,” in Medical Image Computing and Computer-Assisted Intervention—MICCAI 2009 (Springer, 2009), pp. 100–107.

E. R. Davies, Machine Vision: Theory, Algorithms, Practicalities, 3rd ed. (Academic, 2005), Chap. 9.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Handheld SS-OCT probe and sample spacer setups for in vivo imaging of skin. (a) Photograph of the imaging probe setup showing interchangeable sample spacers. (b) Photograph of the handheld probe in use. (c) Schematic diagram of imaging protocol in air. (d) Schematic diagram of imaging protocol in RI-matching medium (ultrasound gel).

Fig. 2
Fig. 2

Flow diagram for the comparison of feature-based and intensity-based registration methods.

Fig. 3
Fig. 3

Typical results for an air-tissue data set: (a) before registration; (b) after feature-based registration; and (c) after intensity-based registration. For each of (a), (b), and (c): 3D solid render side view (Row 1) and top view (Row 2); a slow-axis B-scan across the scar (Row 3); and fiducial marker (Row 4) at positions indicated by the magenta and purple dot-dashed lines, respectively.

Fig. 4
Fig. 4

Typical results for a gel-tissue data set: (a) before registration; (b) after feature-based registration; and (c) after intensity-based registration. For each of (a), (b), and (c): 3D solid render side view (Row 1) and top view (Row 2); a slow-axis B-scan across the scar (Row 3) and fiducial marker (Row 4) at positions indicated by the magenta and purple dot-dashed lines, respectively. Yellow dashed boxes indicate the distortion of the scar features by motion in horizontal x direction. Arrows in Row 4: cyan – surface of the marker; pink – upper and lower interface of the glass cover slip; and orange – examples of artifacts caused by detector saturation.

Fig. 5
Fig. 5

Intensity-based image registrations on normal skin ((a) and (b)) and scarred skin ((c) and (d)) with an air-tissue ((a) and (c)) and gel-tissue ((b) and (d)) image protocol. (a) and (b) are co-located as are (c) and (d). Upper row: en face surface images. Lower row: OCT B-scans at location indicated by the red dotted line. Arrows: black - direction of fast-scanning axis; white - intensity artifacts.

Tables (2)

Tables Icon

Table 1 Registration accuracy and success rate for air-tissue and gel-tissue data sets

Tables Icon

Table 2 Intensity-based registration accuracy and success rate for normal skin and scar data sets

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

θ AB = tan 1 ( m A m B 1+ m A m B ),
( t x t z )=( x A z A )( cos θ AB sin θ AB sin θ AB cos θ AB )( x B z B ),
CC= x A Ω A,B T (A( x A ) A ¯ )( B T ( x A ) B ¯ ) x A Ω A,B T (A( x A ) A ¯ ) 2 x A Ω A,B T ( B T ( x A ) B ¯ ) 2 ,

Metrics