Abstract

Nonlinear optical microscopy with sub-30 fs pulses from an Yb-fiber laser, approximately three times shorter than typical fiber laser pulses, leads to an order of magnitude brighter third harmonic generation imaging. Multiphoton fluorescence, second and third harmonic generation modalities are compared on stained microspheres and unstained biological tissues.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science248(4951), 73–76 (1990).
    [CrossRef] [PubMed]
  2. W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol.21(11), 1369–1377 (2003).
    [CrossRef] [PubMed]
  3. K. König, “Multiphoton microscopy in life sciences,” J. Microsc.200(2), 83–104 (2000).
    [CrossRef] [PubMed]
  4. S. Maiti, J. B. Shear, R. M. Williams, W. R. Zipfel, and W. W. Webb, “Measuring serotonin distribution in live cells with three-photon excitation,” Science275(5299), 530–532 (1997).
    [CrossRef] [PubMed]
  5. Y. Barad, H. Eisenberg, M. Horowitz, and Y. Silberberg, “Nonlinear scanning laser microscopy by third harmonic generation,” Appl. Phys. Lett.70(8), 922–924 (1997).
    [CrossRef]
  6. J. A. Squier, M. Muller, G. J. Brakenhoff, and K. R. Wilson, “Third harmonic generation microscopy,” Opt. Express3(9), 315–324 (1998).
    [CrossRef] [PubMed]
  7. P. Xi, Y. Andegeko, D. Pestov, V. V. Lovozoy, and M. Dantus, “Two-photon imaging using adaptive phase compensated ultrashort laser pulses,” J. Biomed. Opt.14(1), 014002 (2009).
    [CrossRef] [PubMed]
  8. D. Yelin, D. Oron, E. Korkotian, M. Segal, and Y. Silberberg, “Third-harmonic microscopy with a titanium-sapphire laser,” Appl. Phys. B74(9), S97–S101 (2002).
    [CrossRef]
  9. C. K. Sun, S. W. Chu, S. P. Tai, S. Keller, U. K. Mishra, and S. P. DenBaars, “Scanning second-harmonic/third-harmonic generation microscopy of gallium nitride,” Appl. Phys. Lett.77(15), 2331–2333 (2000).
    [CrossRef]
  10. A. Chong, J. Buckley, W. Renninger, and F. Wise, “All-normal-dispersion femtosecond fiber laser,” Opt. Express14(21), 10095–10100 (2006).
    [CrossRef] [PubMed]
  11. W. H. Renninger, A. Chong, and F. W. Wise, “Self-similar pulse evolution in an all-normal-dispersion laser,” Phys. Rev. A82(2), 021805 (2010).
    [CrossRef] [PubMed]
  12. B. Nie, D. Pestov, F. W. Wise, and M. Dantus, “Generation of 42-fs and 10-nJ pulses from a fiber laser with self-similar evolution in the gain segment,” Opt. Express19(13), 12074–12080 (2011).
    [CrossRef] [PubMed]
  13. A. C. Millard, P. W. Wiseman, D. N. Fittinghoff, K. R. Wilson, J. A. Squier, and M. Müller, “Third-harmonic generation microscopy by use of a compact, femtosecond fiber laser source,” Appl. Opt.38(36), 7393–7397 (1999).
    [CrossRef] [PubMed]
  14. G. J. Liu, K. Kieu, F. W. Wise, and Z. P. Chen, “Multiphoton microscopy system with a compact fiber-based femtosecond-pulse laser and handheld probe,” J Biophotonics4(1-2), 34–39 (2011).
    [CrossRef] [PubMed]
  15. A. Besaratinia, J. I. Yoon, C. Schroeder, S. E. Bradforth, M. Cockburn, and G. P. Pfeifer, “Wavelength dependence of ultraviolet radiation-induced DNA damage as determined by laser irradiation suggests that cyclobutane pyrimidine dimers are the principal DNA lesions produced by terrestrial sunlight,” FASEB J.25(9), 3079–3091 (2011).
    [CrossRef] [PubMed]
  16. D. Kobat, M. E. Durst, N. Nishimura, A. W. Wong, C. B. Schaffer, and C. Xu, “Deep tissue multiphoton microscopy using longer wavelength excitation,” Opt. Express17(16), 13354–13364 (2009).
    [CrossRef] [PubMed]
  17. A. Chong, H. Liu, B. Nie, B. G. Bale, S. Wabnitz, W. H. Renninger, M. Dantus, and F. W. Wise, “Pulse generation without gain-bandwidth limitation in a laser with self-similar evolution,” Opt. Express20(13), 14213 –14220 (2012).
    [CrossRef]
  18. V. V. Lozovoy, I. Pastirk, and M. Dantus, “Multiphoton intrapulse interference. IV. Ultrashort laser pulse spectral phase characterization and compensation,” Opt. Lett.29(7), 775–777 (2004).
    [CrossRef] [PubMed]
  19. B. Xu, J. M. Gunn, J. M. D. Cruz, V. V. Lozovoy, and M. Dantus, “Quantitative investigation of the multiphoton intrapulse interference phase scan method for simultaneous phase measurement and compensation of femtosecond laser pulses,” J. Opt. Soc. Am. B23(4), 750–759 (2006).
    [CrossRef]
  20. D. Pestov, V. V. Lozovoy, and M. Dantus, “Multiple Independent Comb Shaping (MICS): phase-only generation of optical pulse sequences,” Opt. Express17(16), 14351–14361 (2009).
    [CrossRef] [PubMed]
  21. M. M. Wefers and K. A. Nelson, “Space-time profiles of shaped ultrafast optical waveforms,” IEEE J. Quantum Electron.32(1), 161–172 (1996).
    [CrossRef]
  22. F. Frei, A. Galler, and T. Feurer, “Space-time coupling in femtosecond pulse shaping and its effects on coherent control,” J. Chem. Phys.130(3), 034302 (2009).
    [CrossRef] [PubMed]
  23. D. Brinks, F. D. Stefani, and N. F. Hulst, “Nanoscale spatial effects of pulse shaping,” Ultrafast Phenomena XVI92, 890–892 (2009).
    [CrossRef]
  24. N. Krebs, R. A. Probst, and E. Riedle, “Sub-20 fs pulses shaped directly in the UV by an acousto-optic programmable dispersive filter,” Opt. Express18(6), 6164–6171 (2010).
    [CrossRef] [PubMed]

2012 (1)

2011 (3)

G. J. Liu, K. Kieu, F. W. Wise, and Z. P. Chen, “Multiphoton microscopy system with a compact fiber-based femtosecond-pulse laser and handheld probe,” J Biophotonics4(1-2), 34–39 (2011).
[CrossRef] [PubMed]

A. Besaratinia, J. I. Yoon, C. Schroeder, S. E. Bradforth, M. Cockburn, and G. P. Pfeifer, “Wavelength dependence of ultraviolet radiation-induced DNA damage as determined by laser irradiation suggests that cyclobutane pyrimidine dimers are the principal DNA lesions produced by terrestrial sunlight,” FASEB J.25(9), 3079–3091 (2011).
[CrossRef] [PubMed]

B. Nie, D. Pestov, F. W. Wise, and M. Dantus, “Generation of 42-fs and 10-nJ pulses from a fiber laser with self-similar evolution in the gain segment,” Opt. Express19(13), 12074–12080 (2011).
[CrossRef] [PubMed]

2010 (2)

W. H. Renninger, A. Chong, and F. W. Wise, “Self-similar pulse evolution in an all-normal-dispersion laser,” Phys. Rev. A82(2), 021805 (2010).
[CrossRef] [PubMed]

N. Krebs, R. A. Probst, and E. Riedle, “Sub-20 fs pulses shaped directly in the UV by an acousto-optic programmable dispersive filter,” Opt. Express18(6), 6164–6171 (2010).
[CrossRef] [PubMed]

2009 (5)

D. Pestov, V. V. Lozovoy, and M. Dantus, “Multiple Independent Comb Shaping (MICS): phase-only generation of optical pulse sequences,” Opt. Express17(16), 14351–14361 (2009).
[CrossRef] [PubMed]

F. Frei, A. Galler, and T. Feurer, “Space-time coupling in femtosecond pulse shaping and its effects on coherent control,” J. Chem. Phys.130(3), 034302 (2009).
[CrossRef] [PubMed]

D. Brinks, F. D. Stefani, and N. F. Hulst, “Nanoscale spatial effects of pulse shaping,” Ultrafast Phenomena XVI92, 890–892 (2009).
[CrossRef]

D. Kobat, M. E. Durst, N. Nishimura, A. W. Wong, C. B. Schaffer, and C. Xu, “Deep tissue multiphoton microscopy using longer wavelength excitation,” Opt. Express17(16), 13354–13364 (2009).
[CrossRef] [PubMed]

P. Xi, Y. Andegeko, D. Pestov, V. V. Lovozoy, and M. Dantus, “Two-photon imaging using adaptive phase compensated ultrashort laser pulses,” J. Biomed. Opt.14(1), 014002 (2009).
[CrossRef] [PubMed]

2006 (2)

2004 (1)

2003 (1)

W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol.21(11), 1369–1377 (2003).
[CrossRef] [PubMed]

2002 (1)

D. Yelin, D. Oron, E. Korkotian, M. Segal, and Y. Silberberg, “Third-harmonic microscopy with a titanium-sapphire laser,” Appl. Phys. B74(9), S97–S101 (2002).
[CrossRef]

2000 (2)

C. K. Sun, S. W. Chu, S. P. Tai, S. Keller, U. K. Mishra, and S. P. DenBaars, “Scanning second-harmonic/third-harmonic generation microscopy of gallium nitride,” Appl. Phys. Lett.77(15), 2331–2333 (2000).
[CrossRef]

K. König, “Multiphoton microscopy in life sciences,” J. Microsc.200(2), 83–104 (2000).
[CrossRef] [PubMed]

1999 (1)

1998 (1)

1997 (2)

S. Maiti, J. B. Shear, R. M. Williams, W. R. Zipfel, and W. W. Webb, “Measuring serotonin distribution in live cells with three-photon excitation,” Science275(5299), 530–532 (1997).
[CrossRef] [PubMed]

Y. Barad, H. Eisenberg, M. Horowitz, and Y. Silberberg, “Nonlinear scanning laser microscopy by third harmonic generation,” Appl. Phys. Lett.70(8), 922–924 (1997).
[CrossRef]

1996 (1)

M. M. Wefers and K. A. Nelson, “Space-time profiles of shaped ultrafast optical waveforms,” IEEE J. Quantum Electron.32(1), 161–172 (1996).
[CrossRef]

1990 (1)

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science248(4951), 73–76 (1990).
[CrossRef] [PubMed]

Andegeko, Y.

P. Xi, Y. Andegeko, D. Pestov, V. V. Lovozoy, and M. Dantus, “Two-photon imaging using adaptive phase compensated ultrashort laser pulses,” J. Biomed. Opt.14(1), 014002 (2009).
[CrossRef] [PubMed]

Bale, B. G.

Barad, Y.

Y. Barad, H. Eisenberg, M. Horowitz, and Y. Silberberg, “Nonlinear scanning laser microscopy by third harmonic generation,” Appl. Phys. Lett.70(8), 922–924 (1997).
[CrossRef]

Besaratinia, A.

A. Besaratinia, J. I. Yoon, C. Schroeder, S. E. Bradforth, M. Cockburn, and G. P. Pfeifer, “Wavelength dependence of ultraviolet radiation-induced DNA damage as determined by laser irradiation suggests that cyclobutane pyrimidine dimers are the principal DNA lesions produced by terrestrial sunlight,” FASEB J.25(9), 3079–3091 (2011).
[CrossRef] [PubMed]

Bradforth, S. E.

A. Besaratinia, J. I. Yoon, C. Schroeder, S. E. Bradforth, M. Cockburn, and G. P. Pfeifer, “Wavelength dependence of ultraviolet radiation-induced DNA damage as determined by laser irradiation suggests that cyclobutane pyrimidine dimers are the principal DNA lesions produced by terrestrial sunlight,” FASEB J.25(9), 3079–3091 (2011).
[CrossRef] [PubMed]

Brakenhoff, G. J.

Brinks, D.

D. Brinks, F. D. Stefani, and N. F. Hulst, “Nanoscale spatial effects of pulse shaping,” Ultrafast Phenomena XVI92, 890–892 (2009).
[CrossRef]

Buckley, J.

Chen, Z. P.

G. J. Liu, K. Kieu, F. W. Wise, and Z. P. Chen, “Multiphoton microscopy system with a compact fiber-based femtosecond-pulse laser and handheld probe,” J Biophotonics4(1-2), 34–39 (2011).
[CrossRef] [PubMed]

Chong, A.

Chu, S. W.

C. K. Sun, S. W. Chu, S. P. Tai, S. Keller, U. K. Mishra, and S. P. DenBaars, “Scanning second-harmonic/third-harmonic generation microscopy of gallium nitride,” Appl. Phys. Lett.77(15), 2331–2333 (2000).
[CrossRef]

Cockburn, M.

A. Besaratinia, J. I. Yoon, C. Schroeder, S. E. Bradforth, M. Cockburn, and G. P. Pfeifer, “Wavelength dependence of ultraviolet radiation-induced DNA damage as determined by laser irradiation suggests that cyclobutane pyrimidine dimers are the principal DNA lesions produced by terrestrial sunlight,” FASEB J.25(9), 3079–3091 (2011).
[CrossRef] [PubMed]

Cruz, J. M. D.

Dantus, M.

DenBaars, S. P.

C. K. Sun, S. W. Chu, S. P. Tai, S. Keller, U. K. Mishra, and S. P. DenBaars, “Scanning second-harmonic/third-harmonic generation microscopy of gallium nitride,” Appl. Phys. Lett.77(15), 2331–2333 (2000).
[CrossRef]

Denk, W.

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science248(4951), 73–76 (1990).
[CrossRef] [PubMed]

Durst, M. E.

Eisenberg, H.

Y. Barad, H. Eisenberg, M. Horowitz, and Y. Silberberg, “Nonlinear scanning laser microscopy by third harmonic generation,” Appl. Phys. Lett.70(8), 922–924 (1997).
[CrossRef]

Feurer, T.

F. Frei, A. Galler, and T. Feurer, “Space-time coupling in femtosecond pulse shaping and its effects on coherent control,” J. Chem. Phys.130(3), 034302 (2009).
[CrossRef] [PubMed]

Fittinghoff, D. N.

Frei, F.

F. Frei, A. Galler, and T. Feurer, “Space-time coupling in femtosecond pulse shaping and its effects on coherent control,” J. Chem. Phys.130(3), 034302 (2009).
[CrossRef] [PubMed]

Galler, A.

F. Frei, A. Galler, and T. Feurer, “Space-time coupling in femtosecond pulse shaping and its effects on coherent control,” J. Chem. Phys.130(3), 034302 (2009).
[CrossRef] [PubMed]

Gunn, J. M.

Horowitz, M.

Y. Barad, H. Eisenberg, M. Horowitz, and Y. Silberberg, “Nonlinear scanning laser microscopy by third harmonic generation,” Appl. Phys. Lett.70(8), 922–924 (1997).
[CrossRef]

Hulst, N. F.

D. Brinks, F. D. Stefani, and N. F. Hulst, “Nanoscale spatial effects of pulse shaping,” Ultrafast Phenomena XVI92, 890–892 (2009).
[CrossRef]

Keller, S.

C. K. Sun, S. W. Chu, S. P. Tai, S. Keller, U. K. Mishra, and S. P. DenBaars, “Scanning second-harmonic/third-harmonic generation microscopy of gallium nitride,” Appl. Phys. Lett.77(15), 2331–2333 (2000).
[CrossRef]

Kieu, K.

G. J. Liu, K. Kieu, F. W. Wise, and Z. P. Chen, “Multiphoton microscopy system with a compact fiber-based femtosecond-pulse laser and handheld probe,” J Biophotonics4(1-2), 34–39 (2011).
[CrossRef] [PubMed]

Kobat, D.

König, K.

K. König, “Multiphoton microscopy in life sciences,” J. Microsc.200(2), 83–104 (2000).
[CrossRef] [PubMed]

Korkotian, E.

D. Yelin, D. Oron, E. Korkotian, M. Segal, and Y. Silberberg, “Third-harmonic microscopy with a titanium-sapphire laser,” Appl. Phys. B74(9), S97–S101 (2002).
[CrossRef]

Krebs, N.

Liu, G. J.

G. J. Liu, K. Kieu, F. W. Wise, and Z. P. Chen, “Multiphoton microscopy system with a compact fiber-based femtosecond-pulse laser and handheld probe,” J Biophotonics4(1-2), 34–39 (2011).
[CrossRef] [PubMed]

Liu, H.

Lovozoy, V. V.

P. Xi, Y. Andegeko, D. Pestov, V. V. Lovozoy, and M. Dantus, “Two-photon imaging using adaptive phase compensated ultrashort laser pulses,” J. Biomed. Opt.14(1), 014002 (2009).
[CrossRef] [PubMed]

Lozovoy, V. V.

Maiti, S.

S. Maiti, J. B. Shear, R. M. Williams, W. R. Zipfel, and W. W. Webb, “Measuring serotonin distribution in live cells with three-photon excitation,” Science275(5299), 530–532 (1997).
[CrossRef] [PubMed]

Millard, A. C.

Mishra, U. K.

C. K. Sun, S. W. Chu, S. P. Tai, S. Keller, U. K. Mishra, and S. P. DenBaars, “Scanning second-harmonic/third-harmonic generation microscopy of gallium nitride,” Appl. Phys. Lett.77(15), 2331–2333 (2000).
[CrossRef]

Muller, M.

Müller, M.

Nelson, K. A.

M. M. Wefers and K. A. Nelson, “Space-time profiles of shaped ultrafast optical waveforms,” IEEE J. Quantum Electron.32(1), 161–172 (1996).
[CrossRef]

Nie, B.

Nishimura, N.

Oron, D.

D. Yelin, D. Oron, E. Korkotian, M. Segal, and Y. Silberberg, “Third-harmonic microscopy with a titanium-sapphire laser,” Appl. Phys. B74(9), S97–S101 (2002).
[CrossRef]

Pastirk, I.

Pestov, D.

Pfeifer, G. P.

A. Besaratinia, J. I. Yoon, C. Schroeder, S. E. Bradforth, M. Cockburn, and G. P. Pfeifer, “Wavelength dependence of ultraviolet radiation-induced DNA damage as determined by laser irradiation suggests that cyclobutane pyrimidine dimers are the principal DNA lesions produced by terrestrial sunlight,” FASEB J.25(9), 3079–3091 (2011).
[CrossRef] [PubMed]

Probst, R. A.

Renninger, W.

Renninger, W. H.

Riedle, E.

Schaffer, C. B.

Schroeder, C.

A. Besaratinia, J. I. Yoon, C. Schroeder, S. E. Bradforth, M. Cockburn, and G. P. Pfeifer, “Wavelength dependence of ultraviolet radiation-induced DNA damage as determined by laser irradiation suggests that cyclobutane pyrimidine dimers are the principal DNA lesions produced by terrestrial sunlight,” FASEB J.25(9), 3079–3091 (2011).
[CrossRef] [PubMed]

Segal, M.

D. Yelin, D. Oron, E. Korkotian, M. Segal, and Y. Silberberg, “Third-harmonic microscopy with a titanium-sapphire laser,” Appl. Phys. B74(9), S97–S101 (2002).
[CrossRef]

Shear, J. B.

S. Maiti, J. B. Shear, R. M. Williams, W. R. Zipfel, and W. W. Webb, “Measuring serotonin distribution in live cells with three-photon excitation,” Science275(5299), 530–532 (1997).
[CrossRef] [PubMed]

Silberberg, Y.

D. Yelin, D. Oron, E. Korkotian, M. Segal, and Y. Silberberg, “Third-harmonic microscopy with a titanium-sapphire laser,” Appl. Phys. B74(9), S97–S101 (2002).
[CrossRef]

Y. Barad, H. Eisenberg, M. Horowitz, and Y. Silberberg, “Nonlinear scanning laser microscopy by third harmonic generation,” Appl. Phys. Lett.70(8), 922–924 (1997).
[CrossRef]

Squier, J. A.

Stefani, F. D.

D. Brinks, F. D. Stefani, and N. F. Hulst, “Nanoscale spatial effects of pulse shaping,” Ultrafast Phenomena XVI92, 890–892 (2009).
[CrossRef]

Strickler, J. H.

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science248(4951), 73–76 (1990).
[CrossRef] [PubMed]

Sun, C. K.

C. K. Sun, S. W. Chu, S. P. Tai, S. Keller, U. K. Mishra, and S. P. DenBaars, “Scanning second-harmonic/third-harmonic generation microscopy of gallium nitride,” Appl. Phys. Lett.77(15), 2331–2333 (2000).
[CrossRef]

Tai, S. P.

C. K. Sun, S. W. Chu, S. P. Tai, S. Keller, U. K. Mishra, and S. P. DenBaars, “Scanning second-harmonic/third-harmonic generation microscopy of gallium nitride,” Appl. Phys. Lett.77(15), 2331–2333 (2000).
[CrossRef]

Wabnitz, S.

Webb, W. W.

W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol.21(11), 1369–1377 (2003).
[CrossRef] [PubMed]

S. Maiti, J. B. Shear, R. M. Williams, W. R. Zipfel, and W. W. Webb, “Measuring serotonin distribution in live cells with three-photon excitation,” Science275(5299), 530–532 (1997).
[CrossRef] [PubMed]

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science248(4951), 73–76 (1990).
[CrossRef] [PubMed]

Wefers, M. M.

M. M. Wefers and K. A. Nelson, “Space-time profiles of shaped ultrafast optical waveforms,” IEEE J. Quantum Electron.32(1), 161–172 (1996).
[CrossRef]

Williams, R. M.

W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol.21(11), 1369–1377 (2003).
[CrossRef] [PubMed]

S. Maiti, J. B. Shear, R. M. Williams, W. R. Zipfel, and W. W. Webb, “Measuring serotonin distribution in live cells with three-photon excitation,” Science275(5299), 530–532 (1997).
[CrossRef] [PubMed]

Wilson, K. R.

Wise, F.

Wise, F. W.

A. Chong, H. Liu, B. Nie, B. G. Bale, S. Wabnitz, W. H. Renninger, M. Dantus, and F. W. Wise, “Pulse generation without gain-bandwidth limitation in a laser with self-similar evolution,” Opt. Express20(13), 14213 –14220 (2012).
[CrossRef]

B. Nie, D. Pestov, F. W. Wise, and M. Dantus, “Generation of 42-fs and 10-nJ pulses from a fiber laser with self-similar evolution in the gain segment,” Opt. Express19(13), 12074–12080 (2011).
[CrossRef] [PubMed]

G. J. Liu, K. Kieu, F. W. Wise, and Z. P. Chen, “Multiphoton microscopy system with a compact fiber-based femtosecond-pulse laser and handheld probe,” J Biophotonics4(1-2), 34–39 (2011).
[CrossRef] [PubMed]

W. H. Renninger, A. Chong, and F. W. Wise, “Self-similar pulse evolution in an all-normal-dispersion laser,” Phys. Rev. A82(2), 021805 (2010).
[CrossRef] [PubMed]

Wiseman, P. W.

Wong, A. W.

Xi, P.

P. Xi, Y. Andegeko, D. Pestov, V. V. Lovozoy, and M. Dantus, “Two-photon imaging using adaptive phase compensated ultrashort laser pulses,” J. Biomed. Opt.14(1), 014002 (2009).
[CrossRef] [PubMed]

Xu, B.

Xu, C.

Yelin, D.

D. Yelin, D. Oron, E. Korkotian, M. Segal, and Y. Silberberg, “Third-harmonic microscopy with a titanium-sapphire laser,” Appl. Phys. B74(9), S97–S101 (2002).
[CrossRef]

Yoon, J. I.

A. Besaratinia, J. I. Yoon, C. Schroeder, S. E. Bradforth, M. Cockburn, and G. P. Pfeifer, “Wavelength dependence of ultraviolet radiation-induced DNA damage as determined by laser irradiation suggests that cyclobutane pyrimidine dimers are the principal DNA lesions produced by terrestrial sunlight,” FASEB J.25(9), 3079–3091 (2011).
[CrossRef] [PubMed]

Zipfel, W. R.

W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol.21(11), 1369–1377 (2003).
[CrossRef] [PubMed]

S. Maiti, J. B. Shear, R. M. Williams, W. R. Zipfel, and W. W. Webb, “Measuring serotonin distribution in live cells with three-photon excitation,” Science275(5299), 530–532 (1997).
[CrossRef] [PubMed]

Appl. Opt. (1)

Appl. Phys. B (1)

D. Yelin, D. Oron, E. Korkotian, M. Segal, and Y. Silberberg, “Third-harmonic microscopy with a titanium-sapphire laser,” Appl. Phys. B74(9), S97–S101 (2002).
[CrossRef]

Appl. Phys. Lett. (2)

C. K. Sun, S. W. Chu, S. P. Tai, S. Keller, U. K. Mishra, and S. P. DenBaars, “Scanning second-harmonic/third-harmonic generation microscopy of gallium nitride,” Appl. Phys. Lett.77(15), 2331–2333 (2000).
[CrossRef]

Y. Barad, H. Eisenberg, M. Horowitz, and Y. Silberberg, “Nonlinear scanning laser microscopy by third harmonic generation,” Appl. Phys. Lett.70(8), 922–924 (1997).
[CrossRef]

FASEB J. (1)

A. Besaratinia, J. I. Yoon, C. Schroeder, S. E. Bradforth, M. Cockburn, and G. P. Pfeifer, “Wavelength dependence of ultraviolet radiation-induced DNA damage as determined by laser irradiation suggests that cyclobutane pyrimidine dimers are the principal DNA lesions produced by terrestrial sunlight,” FASEB J.25(9), 3079–3091 (2011).
[CrossRef] [PubMed]

IEEE J. Quantum Electron. (1)

M. M. Wefers and K. A. Nelson, “Space-time profiles of shaped ultrafast optical waveforms,” IEEE J. Quantum Electron.32(1), 161–172 (1996).
[CrossRef]

J Biophotonics (1)

G. J. Liu, K. Kieu, F. W. Wise, and Z. P. Chen, “Multiphoton microscopy system with a compact fiber-based femtosecond-pulse laser and handheld probe,” J Biophotonics4(1-2), 34–39 (2011).
[CrossRef] [PubMed]

J. Biomed. Opt. (1)

P. Xi, Y. Andegeko, D. Pestov, V. V. Lovozoy, and M. Dantus, “Two-photon imaging using adaptive phase compensated ultrashort laser pulses,” J. Biomed. Opt.14(1), 014002 (2009).
[CrossRef] [PubMed]

J. Chem. Phys. (1)

F. Frei, A. Galler, and T. Feurer, “Space-time coupling in femtosecond pulse shaping and its effects on coherent control,” J. Chem. Phys.130(3), 034302 (2009).
[CrossRef] [PubMed]

J. Microsc. (1)

K. König, “Multiphoton microscopy in life sciences,” J. Microsc.200(2), 83–104 (2000).
[CrossRef] [PubMed]

J. Opt. Soc. Am. B (1)

Nat. Biotechnol. (1)

W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol.21(11), 1369–1377 (2003).
[CrossRef] [PubMed]

Opt. Express (7)

Opt. Lett. (1)

Phys. Rev. A (1)

W. H. Renninger, A. Chong, and F. W. Wise, “Self-similar pulse evolution in an all-normal-dispersion laser,” Phys. Rev. A82(2), 021805 (2010).
[CrossRef] [PubMed]

Science (2)

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science248(4951), 73–76 (1990).
[CrossRef] [PubMed]

S. Maiti, J. B. Shear, R. M. Williams, W. R. Zipfel, and W. W. Webb, “Measuring serotonin distribution in live cells with three-photon excitation,” Science275(5299), 530–532 (1997).
[CrossRef] [PubMed]

Ultrafast Phenomena XVI (1)

D. Brinks, F. D. Stefani, and N. F. Hulst, “Nanoscale spatial effects of pulse shaping,” Ultrafast Phenomena XVI92, 890–892 (2009).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic of imaging setup. (a) Fiber laser cavity layout. PCF: photonic crystal fiber; SMF: single mode fiber; WDM: wavelength-division multiplexer; HWP and QWP: half- and quarter-waveplate; PBS: polarization beam splitter. (b) 4f-folded pulse shaper. SLM: spatial light modulator; M: mirror. (c) Microscopy setup. AMP: amplifier; PMT: photomultiplier tube.

Fig. 2
Fig. 2

(a) Laser spectrum after the microscope objective. (b) Comparison of experimental (black) and calculated (red) SHG spectrum on linear scale. (c) Comparison of SHG spectrum on Log-10 scale. (d) Comparison of experimental (black) and calculated (red) interferometric autocorrelation trace. Insert: calculated temporal profile based on the measured laser spectrum (e) Dependence of intensity of SHG (green) and THG (blue) on laser pulse duration. Spots: experimental results; Lines: fitting of experimental data.

Fig. 3
Fig. 3

Multiphoton microscopy images of polystyrene microspheres. (a) Two-photon excited fluorescence (TPEF) image (b) THG image (c) THG image of single bead.

Fig. 4
Fig. 4

Multiphoton microscopy images of live tissues. (False color) Top line: images of a guppy fish (Poecilia reticulata) tail. (a) SHG image (green) (b) THG image (blue) (c) Composition of SHG and THG images. (d) Bright-field microscope image. Bottom line: images of fruit fly (Drosophila melanogaster) wings. (e) SHG image (false color, red) (f) THG image (false color, Cyan) (g) Composition of SHG and THG images. (h) Bright-field microscope image.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

ΔΩ( σ ω /N)(2 w 0 SLM /Δ x p ).

Metrics