Abstract

CARS holography captures both the amplitude and the phase of a complex anti-Stokes field, and can perform three-dimensional imaging by digitally focusing onto different depths inside a specimen. The application of CARS holography for bio-imaging is demonstrated. It is shown that holographic CARS imaging of sub-cellular components in live HeLa cells can be achieved.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. E. Ludman, H. J. Caulfield, and J. Riccobono, Holography for the New Millennium (Springer Verlag, 2002).
  2. Y. Pu, M. Centurion, and D. Psaltis, “Harmonic holography: a new holographic principle,” Appl. Opt.47(4), A103–A110 (2008).
    [CrossRef] [PubMed]
  3. C. L. Hsieh, R. Grange, Y. Pu, and D. Psaltis, “Three-dimensional harmonic holographic microcopy using nanoparticles as probes for cell imaging,” Opt. Express17(4), 2880–2891 (2009).
    [CrossRef] [PubMed]
  4. E. Shaffer, C. Moratal, P. Magistretti, P. Marquet, and C. Depeursinge, “Label-free second-harmonic phase imaging of biological specimen by digital holographic microscopy,” Opt. Lett.35(24), 4102–4104 (2010).
    [CrossRef] [PubMed]
  5. O. Masihzadeh, P. Schlup, and R. A. Bartels, “Label-free second harmonic generation holographic microscopy of biological specimens,” Opt. Express18(10), 9840–9851 (2010).
    [CrossRef] [PubMed]
  6. K. B. Shi, H. F. Li, Q. Xu, D. Psaltis, and Z. W. Liu, “Coherent anti-Stokes Raman holography for chemically selective single-shot nonscanning 3D imaging,” Phys. Rev. Lett.104(9), 093902 (2010).
    [CrossRef] [PubMed]
  7. Q. Xu, K. Shi, H. Li, K. Choi, R. Horisaki, D. Brady, D. Psaltis, and Z. Liu, “Inline holographic coherent anti-Stokes Raman microscopy,” Opt. Express18(8), 8213–8219 (2010).
    [CrossRef] [PubMed]
  8. R. F. Begley, A. B. Harvey, and R. L. Byer, “Coherent anti-stokes raman-spectroscopy,” Appl. Phys. Lett.25(7), 387–390 (1974).
    [CrossRef]
  9. A. Yariv, “Phase conjugate optics and real-time holography,” IEEE J. Quantum Electron.14(9), 650–660 (1978).
    [CrossRef]
  10. Y. R. Shen, The Principles of Nonlinear Optics (Wiley-Interscience, New York, 1984).
  11. G. W. Burr, “Volume holographic storage using the 90 geometry,” Ph.D. dissertation (California Institute of Technology, 1996).
  12. M. Born, E. Wolf, and A. B. Bhatia, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Cambridge University Press, 1999).
  13. A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-dimensional vibrational imaging by coherent anti-stokes raman scattering,” Phys. Rev. Lett.82(20), 4142–4145 (1999).
    [CrossRef]
  14. D. J. Brady, K. Choi, D. L. Marks, R. Horisaki, and S. Lim, “Compressive holography,” Opt. Express17(15), 13040–13049 (2009).
    [CrossRef] [PubMed]
  15. J. X. Cheng, A. Volkmer, L. D. Book, and X. S. Xie, “Multiplex coherent anti-stokes raman scattering microspectroscopy and study of lipid vesicles,” J. Phys. Chem. B106(34), 8493–8498 (2002).
    [CrossRef]
  16. C. Heinrich, A. Hofer, A. Ritsch, C. Ciardi, S. Bernet, and M. Ritsch-Marte, “Selective imaging of saturated and unsaturated lipids by wide-field CARS-microscopy,” Opt. Express16(4), 2699–2708 (2008).
    [CrossRef] [PubMed]

2010 (4)

2009 (2)

2008 (2)

2002 (1)

J. X. Cheng, A. Volkmer, L. D. Book, and X. S. Xie, “Multiplex coherent anti-stokes raman scattering microspectroscopy and study of lipid vesicles,” J. Phys. Chem. B106(34), 8493–8498 (2002).
[CrossRef]

1999 (1)

A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-dimensional vibrational imaging by coherent anti-stokes raman scattering,” Phys. Rev. Lett.82(20), 4142–4145 (1999).
[CrossRef]

1978 (1)

A. Yariv, “Phase conjugate optics and real-time holography,” IEEE J. Quantum Electron.14(9), 650–660 (1978).
[CrossRef]

1974 (1)

R. F. Begley, A. B. Harvey, and R. L. Byer, “Coherent anti-stokes raman-spectroscopy,” Appl. Phys. Lett.25(7), 387–390 (1974).
[CrossRef]

Bartels, R. A.

Begley, R. F.

R. F. Begley, A. B. Harvey, and R. L. Byer, “Coherent anti-stokes raman-spectroscopy,” Appl. Phys. Lett.25(7), 387–390 (1974).
[CrossRef]

Bernet, S.

Book, L. D.

J. X. Cheng, A. Volkmer, L. D. Book, and X. S. Xie, “Multiplex coherent anti-stokes raman scattering microspectroscopy and study of lipid vesicles,” J. Phys. Chem. B106(34), 8493–8498 (2002).
[CrossRef]

Brady, D.

Brady, D. J.

Byer, R. L.

R. F. Begley, A. B. Harvey, and R. L. Byer, “Coherent anti-stokes raman-spectroscopy,” Appl. Phys. Lett.25(7), 387–390 (1974).
[CrossRef]

Centurion, M.

Cheng, J. X.

J. X. Cheng, A. Volkmer, L. D. Book, and X. S. Xie, “Multiplex coherent anti-stokes raman scattering microspectroscopy and study of lipid vesicles,” J. Phys. Chem. B106(34), 8493–8498 (2002).
[CrossRef]

Choi, K.

Ciardi, C.

Depeursinge, C.

Grange, R.

Harvey, A. B.

R. F. Begley, A. B. Harvey, and R. L. Byer, “Coherent anti-stokes raman-spectroscopy,” Appl. Phys. Lett.25(7), 387–390 (1974).
[CrossRef]

Heinrich, C.

Hofer, A.

Holtom, G. R.

A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-dimensional vibrational imaging by coherent anti-stokes raman scattering,” Phys. Rev. Lett.82(20), 4142–4145 (1999).
[CrossRef]

Horisaki, R.

Hsieh, C. L.

Li, H.

Li, H. F.

K. B. Shi, H. F. Li, Q. Xu, D. Psaltis, and Z. W. Liu, “Coherent anti-Stokes Raman holography for chemically selective single-shot nonscanning 3D imaging,” Phys. Rev. Lett.104(9), 093902 (2010).
[CrossRef] [PubMed]

Lim, S.

Liu, Z.

Liu, Z. W.

K. B. Shi, H. F. Li, Q. Xu, D. Psaltis, and Z. W. Liu, “Coherent anti-Stokes Raman holography for chemically selective single-shot nonscanning 3D imaging,” Phys. Rev. Lett.104(9), 093902 (2010).
[CrossRef] [PubMed]

Magistretti, P.

Marks, D. L.

Marquet, P.

Masihzadeh, O.

Moratal, C.

Psaltis, D.

Pu, Y.

Ritsch, A.

Ritsch-Marte, M.

Schlup, P.

Shaffer, E.

Shi, K.

Shi, K. B.

K. B. Shi, H. F. Li, Q. Xu, D. Psaltis, and Z. W. Liu, “Coherent anti-Stokes Raman holography for chemically selective single-shot nonscanning 3D imaging,” Phys. Rev. Lett.104(9), 093902 (2010).
[CrossRef] [PubMed]

Volkmer, A.

J. X. Cheng, A. Volkmer, L. D. Book, and X. S. Xie, “Multiplex coherent anti-stokes raman scattering microspectroscopy and study of lipid vesicles,” J. Phys. Chem. B106(34), 8493–8498 (2002).
[CrossRef]

Xie, X. S.

J. X. Cheng, A. Volkmer, L. D. Book, and X. S. Xie, “Multiplex coherent anti-stokes raman scattering microspectroscopy and study of lipid vesicles,” J. Phys. Chem. B106(34), 8493–8498 (2002).
[CrossRef]

A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-dimensional vibrational imaging by coherent anti-stokes raman scattering,” Phys. Rev. Lett.82(20), 4142–4145 (1999).
[CrossRef]

Xu, Q.

Q. Xu, K. Shi, H. Li, K. Choi, R. Horisaki, D. Brady, D. Psaltis, and Z. Liu, “Inline holographic coherent anti-Stokes Raman microscopy,” Opt. Express18(8), 8213–8219 (2010).
[CrossRef] [PubMed]

K. B. Shi, H. F. Li, Q. Xu, D. Psaltis, and Z. W. Liu, “Coherent anti-Stokes Raman holography for chemically selective single-shot nonscanning 3D imaging,” Phys. Rev. Lett.104(9), 093902 (2010).
[CrossRef] [PubMed]

Yariv, A.

A. Yariv, “Phase conjugate optics and real-time holography,” IEEE J. Quantum Electron.14(9), 650–660 (1978).
[CrossRef]

Zumbusch, A.

A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-dimensional vibrational imaging by coherent anti-stokes raman scattering,” Phys. Rev. Lett.82(20), 4142–4145 (1999).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

R. F. Begley, A. B. Harvey, and R. L. Byer, “Coherent anti-stokes raman-spectroscopy,” Appl. Phys. Lett.25(7), 387–390 (1974).
[CrossRef]

IEEE J. Quantum Electron. (1)

A. Yariv, “Phase conjugate optics and real-time holography,” IEEE J. Quantum Electron.14(9), 650–660 (1978).
[CrossRef]

J. Phys. Chem. B (1)

J. X. Cheng, A. Volkmer, L. D. Book, and X. S. Xie, “Multiplex coherent anti-stokes raman scattering microspectroscopy and study of lipid vesicles,” J. Phys. Chem. B106(34), 8493–8498 (2002).
[CrossRef]

Opt. Express (5)

Opt. Lett. (1)

Phys. Rev. Lett. (2)

K. B. Shi, H. F. Li, Q. Xu, D. Psaltis, and Z. W. Liu, “Coherent anti-Stokes Raman holography for chemically selective single-shot nonscanning 3D imaging,” Phys. Rev. Lett.104(9), 093902 (2010).
[CrossRef] [PubMed]

A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-dimensional vibrational imaging by coherent anti-stokes raman scattering,” Phys. Rev. Lett.82(20), 4142–4145 (1999).
[CrossRef]

Other (4)

J. E. Ludman, H. J. Caulfield, and J. Riccobono, Holography for the New Millennium (Springer Verlag, 2002).

Y. R. Shen, The Principles of Nonlinear Optics (Wiley-Interscience, New York, 1984).

G. W. Burr, “Volume holographic storage using the 90 geometry,” Ph.D. dissertation (California Institute of Technology, 1996).

M. Born, E. Wolf, and A. B. Bhatia, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Cambridge University Press, 1999).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Experimental setup of CARS holography. The fundamental beam with angular frequency of ω p from the nanosecond laser was used as the pump and the probe for generating CARS or four wave mixing (FWM) signal. The frequency-doubled laser beam ( 2 ω p ) was used to pump the OPO to produce an idler beam at ω s , which was utilized as the Stokes, and a signal beam at 2 ω p ω s , which was used as the reference for recording CARS holograms. Note that the frequency of the reference beam automatically matches that of the CARS or FWM signal as the Stokes wavelength is tuned.

Fig. 2
Fig. 2

Wide-field CARS images of HeLa cells around the resonant mode at 2913 cm−1 recorded by tuning the Stokes wavelength. CARS images (a) at 2905 cm−1, (b) at 2913 cm−1, (c) at 2921 cm−1

Fig. 3
Fig. 3

3D CARS holographic imaging of live HeLa cells. (a) Recorded CARS hologram. (b) Reconstructed field amplitude. (c) Reconstructed phase. (d) Micrograph of the three HeLa cells that were imaged. (e)-(h) Sequence of reconstructed CARS images at different depth positions in the sample volume, where the sub-cellular components at different depth levels can be brought into focus sequentially

Fig. 4
Fig. 4

Comparison of holographic CARS imaging (upper) and wide-field CARS imaging (bottom, with manual focusing) of HeLa cells at different depth positions (z: relative positions) demonstrating the equivalence of digital and analogue focusing. (a)-(e) Series of holographically reconstructed CARS images of HeLa cells at different depth positions by using digital propagation. (f)-(j) Corresponding manually focused wide-field CARS images. multiple-shot exposure was employed in the wide-field imaging scheme to increase the signal strength while single shot exposure was used in CARS holography.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

( 2 + ω as 2 c 2 n 2 ) E as = 4π ω as 2 c 2 χ (3) (x,y,z)( E p E s * ) E pr
( 2 + ω 2 c 2 n ¯ 2 ) E d =2 ω 2 c 2 n ¯ Δn E inc

Metrics