Abstract

The hybrid nature of optoacoustic imaging might impose limitations on concurrent placement of optical and ultrasonic detection components, especially in high resolution microscopic applications that require dense arrangements and miniaturization of components. This hinders optimal deployment of the optical excitation and ultrasonic detection paths, leading to reduction of imaging speed and spatial resolution performance. We suggest a compact coaxial design for optoacoustic microscopy that allows optimizing both the light illumination and ultrasonic detection parameters of the imaging system. System performance is showcased in phantoms and in vivo imaging of microvasculature, achieving real time operation in two dimensions and penetration of 6 mm into optically dense human tissues.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Razansky, M. Distel, C. Vinegoni, R. Ma, N. Perrimon, R. W. Köster, and V. Ntziachristos, “Multi-spectral optoacoustic tomography of deep-seated fluorescent proteins in-vivo,” Nat. Photonics3(7), 412–417 (2009).
    [CrossRef]
  2. D. Razansky, A. Buehler, and V. Ntziachristos, “Volumetric real-time multispectral optoacoustic tomography of biomarkers,” Nat. Protoc.6(8), 1121–1129 (2011).
    [CrossRef] [PubMed]
  3. J. Gamelin, A. Aguirre, A. Maurudis, F. Huang, D. Castillo, L. V. Wang, and Q. Zhu, “Curved array photoacoustic tomographic system for small animal imaging,” J. Biomed. Opt.13(2), 024007 (2008).
    [CrossRef] [PubMed]
  4. L. Song, K. Maslov, K. K. Shung, and L. V. Wang, “Ultrasound-array-based real-time photoacoustic microscopy of human pulsatile dynamics in vivo,” J. Biomed. Opt.15(2), 021303 (2010).
    [CrossRef] [PubMed]
  5. R. J. Zemp, L. Song, R. Bitton, K. K. Shung, and L. V. Wang, “Realtime photoacoustic microscopy of murine cardiovascular dynamics,” Opt. Express16(22), 18551–18556 (2008).
    [CrossRef] [PubMed]
  6. H. F. Zhang, K. Maslov, and L. V. Wang, “In vivo imaging of subcutaneous structures using functional photoacoustic microscopy,” Nat. Protoc.2(4), 797–804 (2007).
    [CrossRef] [PubMed]
  7. Z. Xie, S.-L. Chen, T. Ling, L. J. Guo, P. L. Carson, and X. Wang, “Pure optical photoacoustic microscopy,” Opt. Express19(10), 9027–9034 (2011).
    [CrossRef] [PubMed]
  8. E. Z. Zhang, J. G. Laufer, R. B. Pedley, and P. C. Beard, “In vivo high-resolution 3D photoacoustic imaging of superficial vascular anatomy,” Phys. Med. Biol.54(4), 1035–1046 (2009).
    [CrossRef] [PubMed]
  9. L. Wang, K. Maslov, J. Yao, B. Rao, and L. V. Wang, “Fast voice-coil scanning optical-resolution photoacoustic microscopy,” Opt. Lett.36(2), 139–141 (2011).
    [CrossRef] [PubMed]
  10. Z. Xie, S. Jiao, H. F. Zhang, and C. A. Puliafito, “Laser-scanning optical-resolution photoacoustic microscopy,” Opt. Lett.34(12), 1771–1773 (2009).
    [CrossRef] [PubMed]
  11. C. Zhang, K. Maslov, S. Hu, R. Chen, Q. Zhou, K. K. Shung, and L. V. Wang, “Reflection-mode submicron-resolution in vivo photoacoustic microscopy,” J. Biomed. Opt.17(2), 020501 (2012).
    [CrossRef] [PubMed]
  12. M. L. Li, H. E. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Improved in vivo photoacoustic microscopy based on a virtual-detector concept,” Opt. Lett.31(4), 474–476 (2006).
    [CrossRef] [PubMed]
  13. C. P. Favazza, L. A. Cornelius, and L. V. Wang, “In vivo functional photoacoustic microscopy of cutaneous microvasculature in human skin,” J. Biomed. Opt.16(2), 026004 (2011).
    [CrossRef] [PubMed]
  14. E. W. Stein, K. Maslov, and L. V. Wang, “Noninvasive, in vivo imaging of blood-oxygenation dynamics within the mouse brain using photoacoustic microscopy,” J. Biomed. Opt.14(2), 020502 (2009).
    [CrossRef] [PubMed]
  15. M. Cutolo, A. Sulli, M. E. Secchi, S. Paolino, and C. Pizzorni, “Nailfold capillaroscopy is useful for the diagnosis and follow-up of autoimmune rheumatic diseases. a future tool for the analysis of microvascular heart involvement?” Rheumatol.45(Supplement 4), 43–46 (2006).
    [CrossRef]
  16. P.-C. Wu, M.-N. Huang, S.-C. Hsieh, and C.-L. Yu, “Diagnostic value of nailfold capillaroscopy to systemic sclerosis with Raynaud's phenomenon: a preliminary study,” Formosan J. Rheumatol.23, 37–42 (2009).

2012

C. Zhang, K. Maslov, S. Hu, R. Chen, Q. Zhou, K. K. Shung, and L. V. Wang, “Reflection-mode submicron-resolution in vivo photoacoustic microscopy,” J. Biomed. Opt.17(2), 020501 (2012).
[CrossRef] [PubMed]

2011

L. Wang, K. Maslov, J. Yao, B. Rao, and L. V. Wang, “Fast voice-coil scanning optical-resolution photoacoustic microscopy,” Opt. Lett.36(2), 139–141 (2011).
[CrossRef] [PubMed]

Z. Xie, S.-L. Chen, T. Ling, L. J. Guo, P. L. Carson, and X. Wang, “Pure optical photoacoustic microscopy,” Opt. Express19(10), 9027–9034 (2011).
[CrossRef] [PubMed]

D. Razansky, A. Buehler, and V. Ntziachristos, “Volumetric real-time multispectral optoacoustic tomography of biomarkers,” Nat. Protoc.6(8), 1121–1129 (2011).
[CrossRef] [PubMed]

C. P. Favazza, L. A. Cornelius, and L. V. Wang, “In vivo functional photoacoustic microscopy of cutaneous microvasculature in human skin,” J. Biomed. Opt.16(2), 026004 (2011).
[CrossRef] [PubMed]

2010

L. Song, K. Maslov, K. K. Shung, and L. V. Wang, “Ultrasound-array-based real-time photoacoustic microscopy of human pulsatile dynamics in vivo,” J. Biomed. Opt.15(2), 021303 (2010).
[CrossRef] [PubMed]

2009

E. W. Stein, K. Maslov, and L. V. Wang, “Noninvasive, in vivo imaging of blood-oxygenation dynamics within the mouse brain using photoacoustic microscopy,” J. Biomed. Opt.14(2), 020502 (2009).
[CrossRef] [PubMed]

D. Razansky, M. Distel, C. Vinegoni, R. Ma, N. Perrimon, R. W. Köster, and V. Ntziachristos, “Multi-spectral optoacoustic tomography of deep-seated fluorescent proteins in-vivo,” Nat. Photonics3(7), 412–417 (2009).
[CrossRef]

E. Z. Zhang, J. G. Laufer, R. B. Pedley, and P. C. Beard, “In vivo high-resolution 3D photoacoustic imaging of superficial vascular anatomy,” Phys. Med. Biol.54(4), 1035–1046 (2009).
[CrossRef] [PubMed]

Z. Xie, S. Jiao, H. F. Zhang, and C. A. Puliafito, “Laser-scanning optical-resolution photoacoustic microscopy,” Opt. Lett.34(12), 1771–1773 (2009).
[CrossRef] [PubMed]

P.-C. Wu, M.-N. Huang, S.-C. Hsieh, and C.-L. Yu, “Diagnostic value of nailfold capillaroscopy to systemic sclerosis with Raynaud's phenomenon: a preliminary study,” Formosan J. Rheumatol.23, 37–42 (2009).

2008

R. J. Zemp, L. Song, R. Bitton, K. K. Shung, and L. V. Wang, “Realtime photoacoustic microscopy of murine cardiovascular dynamics,” Opt. Express16(22), 18551–18556 (2008).
[CrossRef] [PubMed]

J. Gamelin, A. Aguirre, A. Maurudis, F. Huang, D. Castillo, L. V. Wang, and Q. Zhu, “Curved array photoacoustic tomographic system for small animal imaging,” J. Biomed. Opt.13(2), 024007 (2008).
[CrossRef] [PubMed]

2007

H. F. Zhang, K. Maslov, and L. V. Wang, “In vivo imaging of subcutaneous structures using functional photoacoustic microscopy,” Nat. Protoc.2(4), 797–804 (2007).
[CrossRef] [PubMed]

2006

M. Cutolo, A. Sulli, M. E. Secchi, S. Paolino, and C. Pizzorni, “Nailfold capillaroscopy is useful for the diagnosis and follow-up of autoimmune rheumatic diseases. a future tool for the analysis of microvascular heart involvement?” Rheumatol.45(Supplement 4), 43–46 (2006).
[CrossRef]

M. L. Li, H. E. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Improved in vivo photoacoustic microscopy based on a virtual-detector concept,” Opt. Lett.31(4), 474–476 (2006).
[CrossRef] [PubMed]

Aguirre, A.

J. Gamelin, A. Aguirre, A. Maurudis, F. Huang, D. Castillo, L. V. Wang, and Q. Zhu, “Curved array photoacoustic tomographic system for small animal imaging,” J. Biomed. Opt.13(2), 024007 (2008).
[CrossRef] [PubMed]

Beard, P. C.

E. Z. Zhang, J. G. Laufer, R. B. Pedley, and P. C. Beard, “In vivo high-resolution 3D photoacoustic imaging of superficial vascular anatomy,” Phys. Med. Biol.54(4), 1035–1046 (2009).
[CrossRef] [PubMed]

Bitton, R.

Buehler, A.

D. Razansky, A. Buehler, and V. Ntziachristos, “Volumetric real-time multispectral optoacoustic tomography of biomarkers,” Nat. Protoc.6(8), 1121–1129 (2011).
[CrossRef] [PubMed]

Carson, P. L.

Castillo, D.

J. Gamelin, A. Aguirre, A. Maurudis, F. Huang, D. Castillo, L. V. Wang, and Q. Zhu, “Curved array photoacoustic tomographic system for small animal imaging,” J. Biomed. Opt.13(2), 024007 (2008).
[CrossRef] [PubMed]

Chen, R.

C. Zhang, K. Maslov, S. Hu, R. Chen, Q. Zhou, K. K. Shung, and L. V. Wang, “Reflection-mode submicron-resolution in vivo photoacoustic microscopy,” J. Biomed. Opt.17(2), 020501 (2012).
[CrossRef] [PubMed]

Chen, S.-L.

Cornelius, L. A.

C. P. Favazza, L. A. Cornelius, and L. V. Wang, “In vivo functional photoacoustic microscopy of cutaneous microvasculature in human skin,” J. Biomed. Opt.16(2), 026004 (2011).
[CrossRef] [PubMed]

Cutolo, M.

M. Cutolo, A. Sulli, M. E. Secchi, S. Paolino, and C. Pizzorni, “Nailfold capillaroscopy is useful for the diagnosis and follow-up of autoimmune rheumatic diseases. a future tool for the analysis of microvascular heart involvement?” Rheumatol.45(Supplement 4), 43–46 (2006).
[CrossRef]

Distel, M.

D. Razansky, M. Distel, C. Vinegoni, R. Ma, N. Perrimon, R. W. Köster, and V. Ntziachristos, “Multi-spectral optoacoustic tomography of deep-seated fluorescent proteins in-vivo,” Nat. Photonics3(7), 412–417 (2009).
[CrossRef]

Favazza, C. P.

C. P. Favazza, L. A. Cornelius, and L. V. Wang, “In vivo functional photoacoustic microscopy of cutaneous microvasculature in human skin,” J. Biomed. Opt.16(2), 026004 (2011).
[CrossRef] [PubMed]

Gamelin, J.

J. Gamelin, A. Aguirre, A. Maurudis, F. Huang, D. Castillo, L. V. Wang, and Q. Zhu, “Curved array photoacoustic tomographic system for small animal imaging,” J. Biomed. Opt.13(2), 024007 (2008).
[CrossRef] [PubMed]

Guo, L. J.

Hsieh, S.-C.

P.-C. Wu, M.-N. Huang, S.-C. Hsieh, and C.-L. Yu, “Diagnostic value of nailfold capillaroscopy to systemic sclerosis with Raynaud's phenomenon: a preliminary study,” Formosan J. Rheumatol.23, 37–42 (2009).

Hu, S.

C. Zhang, K. Maslov, S. Hu, R. Chen, Q. Zhou, K. K. Shung, and L. V. Wang, “Reflection-mode submicron-resolution in vivo photoacoustic microscopy,” J. Biomed. Opt.17(2), 020501 (2012).
[CrossRef] [PubMed]

Huang, F.

J. Gamelin, A. Aguirre, A. Maurudis, F. Huang, D. Castillo, L. V. Wang, and Q. Zhu, “Curved array photoacoustic tomographic system for small animal imaging,” J. Biomed. Opt.13(2), 024007 (2008).
[CrossRef] [PubMed]

Huang, M.-N.

P.-C. Wu, M.-N. Huang, S.-C. Hsieh, and C.-L. Yu, “Diagnostic value of nailfold capillaroscopy to systemic sclerosis with Raynaud's phenomenon: a preliminary study,” Formosan J. Rheumatol.23, 37–42 (2009).

Jiao, S.

Köster, R. W.

D. Razansky, M. Distel, C. Vinegoni, R. Ma, N. Perrimon, R. W. Köster, and V. Ntziachristos, “Multi-spectral optoacoustic tomography of deep-seated fluorescent proteins in-vivo,” Nat. Photonics3(7), 412–417 (2009).
[CrossRef]

Laufer, J. G.

E. Z. Zhang, J. G. Laufer, R. B. Pedley, and P. C. Beard, “In vivo high-resolution 3D photoacoustic imaging of superficial vascular anatomy,” Phys. Med. Biol.54(4), 1035–1046 (2009).
[CrossRef] [PubMed]

Li, M. L.

Ling, T.

Ma, R.

D. Razansky, M. Distel, C. Vinegoni, R. Ma, N. Perrimon, R. W. Köster, and V. Ntziachristos, “Multi-spectral optoacoustic tomography of deep-seated fluorescent proteins in-vivo,” Nat. Photonics3(7), 412–417 (2009).
[CrossRef]

Maslov, K.

C. Zhang, K. Maslov, S. Hu, R. Chen, Q. Zhou, K. K. Shung, and L. V. Wang, “Reflection-mode submicron-resolution in vivo photoacoustic microscopy,” J. Biomed. Opt.17(2), 020501 (2012).
[CrossRef] [PubMed]

L. Wang, K. Maslov, J. Yao, B. Rao, and L. V. Wang, “Fast voice-coil scanning optical-resolution photoacoustic microscopy,” Opt. Lett.36(2), 139–141 (2011).
[CrossRef] [PubMed]

L. Song, K. Maslov, K. K. Shung, and L. V. Wang, “Ultrasound-array-based real-time photoacoustic microscopy of human pulsatile dynamics in vivo,” J. Biomed. Opt.15(2), 021303 (2010).
[CrossRef] [PubMed]

E. W. Stein, K. Maslov, and L. V. Wang, “Noninvasive, in vivo imaging of blood-oxygenation dynamics within the mouse brain using photoacoustic microscopy,” J. Biomed. Opt.14(2), 020502 (2009).
[CrossRef] [PubMed]

H. F. Zhang, K. Maslov, and L. V. Wang, “In vivo imaging of subcutaneous structures using functional photoacoustic microscopy,” Nat. Protoc.2(4), 797–804 (2007).
[CrossRef] [PubMed]

M. L. Li, H. E. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Improved in vivo photoacoustic microscopy based on a virtual-detector concept,” Opt. Lett.31(4), 474–476 (2006).
[CrossRef] [PubMed]

Maurudis, A.

J. Gamelin, A. Aguirre, A. Maurudis, F. Huang, D. Castillo, L. V. Wang, and Q. Zhu, “Curved array photoacoustic tomographic system for small animal imaging,” J. Biomed. Opt.13(2), 024007 (2008).
[CrossRef] [PubMed]

Ntziachristos, V.

D. Razansky, A. Buehler, and V. Ntziachristos, “Volumetric real-time multispectral optoacoustic tomography of biomarkers,” Nat. Protoc.6(8), 1121–1129 (2011).
[CrossRef] [PubMed]

D. Razansky, M. Distel, C. Vinegoni, R. Ma, N. Perrimon, R. W. Köster, and V. Ntziachristos, “Multi-spectral optoacoustic tomography of deep-seated fluorescent proteins in-vivo,” Nat. Photonics3(7), 412–417 (2009).
[CrossRef]

Paolino, S.

M. Cutolo, A. Sulli, M. E. Secchi, S. Paolino, and C. Pizzorni, “Nailfold capillaroscopy is useful for the diagnosis and follow-up of autoimmune rheumatic diseases. a future tool for the analysis of microvascular heart involvement?” Rheumatol.45(Supplement 4), 43–46 (2006).
[CrossRef]

Pedley, R. B.

E. Z. Zhang, J. G. Laufer, R. B. Pedley, and P. C. Beard, “In vivo high-resolution 3D photoacoustic imaging of superficial vascular anatomy,” Phys. Med. Biol.54(4), 1035–1046 (2009).
[CrossRef] [PubMed]

Perrimon, N.

D. Razansky, M. Distel, C. Vinegoni, R. Ma, N. Perrimon, R. W. Köster, and V. Ntziachristos, “Multi-spectral optoacoustic tomography of deep-seated fluorescent proteins in-vivo,” Nat. Photonics3(7), 412–417 (2009).
[CrossRef]

Pizzorni, C.

M. Cutolo, A. Sulli, M. E. Secchi, S. Paolino, and C. Pizzorni, “Nailfold capillaroscopy is useful for the diagnosis and follow-up of autoimmune rheumatic diseases. a future tool for the analysis of microvascular heart involvement?” Rheumatol.45(Supplement 4), 43–46 (2006).
[CrossRef]

Puliafito, C. A.

Rao, B.

Razansky, D.

D. Razansky, A. Buehler, and V. Ntziachristos, “Volumetric real-time multispectral optoacoustic tomography of biomarkers,” Nat. Protoc.6(8), 1121–1129 (2011).
[CrossRef] [PubMed]

D. Razansky, M. Distel, C. Vinegoni, R. Ma, N. Perrimon, R. W. Köster, and V. Ntziachristos, “Multi-spectral optoacoustic tomography of deep-seated fluorescent proteins in-vivo,” Nat. Photonics3(7), 412–417 (2009).
[CrossRef]

Secchi, M. E.

M. Cutolo, A. Sulli, M. E. Secchi, S. Paolino, and C. Pizzorni, “Nailfold capillaroscopy is useful for the diagnosis and follow-up of autoimmune rheumatic diseases. a future tool for the analysis of microvascular heart involvement?” Rheumatol.45(Supplement 4), 43–46 (2006).
[CrossRef]

Shung, K. K.

C. Zhang, K. Maslov, S. Hu, R. Chen, Q. Zhou, K. K. Shung, and L. V. Wang, “Reflection-mode submicron-resolution in vivo photoacoustic microscopy,” J. Biomed. Opt.17(2), 020501 (2012).
[CrossRef] [PubMed]

L. Song, K. Maslov, K. K. Shung, and L. V. Wang, “Ultrasound-array-based real-time photoacoustic microscopy of human pulsatile dynamics in vivo,” J. Biomed. Opt.15(2), 021303 (2010).
[CrossRef] [PubMed]

R. J. Zemp, L. Song, R. Bitton, K. K. Shung, and L. V. Wang, “Realtime photoacoustic microscopy of murine cardiovascular dynamics,” Opt. Express16(22), 18551–18556 (2008).
[CrossRef] [PubMed]

Song, L.

L. Song, K. Maslov, K. K. Shung, and L. V. Wang, “Ultrasound-array-based real-time photoacoustic microscopy of human pulsatile dynamics in vivo,” J. Biomed. Opt.15(2), 021303 (2010).
[CrossRef] [PubMed]

R. J. Zemp, L. Song, R. Bitton, K. K. Shung, and L. V. Wang, “Realtime photoacoustic microscopy of murine cardiovascular dynamics,” Opt. Express16(22), 18551–18556 (2008).
[CrossRef] [PubMed]

Stein, E. W.

E. W. Stein, K. Maslov, and L. V. Wang, “Noninvasive, in vivo imaging of blood-oxygenation dynamics within the mouse brain using photoacoustic microscopy,” J. Biomed. Opt.14(2), 020502 (2009).
[CrossRef] [PubMed]

Stoica, G.

Sulli, A.

M. Cutolo, A. Sulli, M. E. Secchi, S. Paolino, and C. Pizzorni, “Nailfold capillaroscopy is useful for the diagnosis and follow-up of autoimmune rheumatic diseases. a future tool for the analysis of microvascular heart involvement?” Rheumatol.45(Supplement 4), 43–46 (2006).
[CrossRef]

Vinegoni, C.

D. Razansky, M. Distel, C. Vinegoni, R. Ma, N. Perrimon, R. W. Köster, and V. Ntziachristos, “Multi-spectral optoacoustic tomography of deep-seated fluorescent proteins in-vivo,” Nat. Photonics3(7), 412–417 (2009).
[CrossRef]

Wang, L.

Wang, L. V.

C. Zhang, K. Maslov, S. Hu, R. Chen, Q. Zhou, K. K. Shung, and L. V. Wang, “Reflection-mode submicron-resolution in vivo photoacoustic microscopy,” J. Biomed. Opt.17(2), 020501 (2012).
[CrossRef] [PubMed]

L. Wang, K. Maslov, J. Yao, B. Rao, and L. V. Wang, “Fast voice-coil scanning optical-resolution photoacoustic microscopy,” Opt. Lett.36(2), 139–141 (2011).
[CrossRef] [PubMed]

C. P. Favazza, L. A. Cornelius, and L. V. Wang, “In vivo functional photoacoustic microscopy of cutaneous microvasculature in human skin,” J. Biomed. Opt.16(2), 026004 (2011).
[CrossRef] [PubMed]

L. Song, K. Maslov, K. K. Shung, and L. V. Wang, “Ultrasound-array-based real-time photoacoustic microscopy of human pulsatile dynamics in vivo,” J. Biomed. Opt.15(2), 021303 (2010).
[CrossRef] [PubMed]

E. W. Stein, K. Maslov, and L. V. Wang, “Noninvasive, in vivo imaging of blood-oxygenation dynamics within the mouse brain using photoacoustic microscopy,” J. Biomed. Opt.14(2), 020502 (2009).
[CrossRef] [PubMed]

J. Gamelin, A. Aguirre, A. Maurudis, F. Huang, D. Castillo, L. V. Wang, and Q. Zhu, “Curved array photoacoustic tomographic system for small animal imaging,” J. Biomed. Opt.13(2), 024007 (2008).
[CrossRef] [PubMed]

R. J. Zemp, L. Song, R. Bitton, K. K. Shung, and L. V. Wang, “Realtime photoacoustic microscopy of murine cardiovascular dynamics,” Opt. Express16(22), 18551–18556 (2008).
[CrossRef] [PubMed]

H. F. Zhang, K. Maslov, and L. V. Wang, “In vivo imaging of subcutaneous structures using functional photoacoustic microscopy,” Nat. Protoc.2(4), 797–804 (2007).
[CrossRef] [PubMed]

M. L. Li, H. E. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Improved in vivo photoacoustic microscopy based on a virtual-detector concept,” Opt. Lett.31(4), 474–476 (2006).
[CrossRef] [PubMed]

Wang, X.

Wu, P.-C.

P.-C. Wu, M.-N. Huang, S.-C. Hsieh, and C.-L. Yu, “Diagnostic value of nailfold capillaroscopy to systemic sclerosis with Raynaud's phenomenon: a preliminary study,” Formosan J. Rheumatol.23, 37–42 (2009).

Xie, Z.

Yao, J.

Yu, C.-L.

P.-C. Wu, M.-N. Huang, S.-C. Hsieh, and C.-L. Yu, “Diagnostic value of nailfold capillaroscopy to systemic sclerosis with Raynaud's phenomenon: a preliminary study,” Formosan J. Rheumatol.23, 37–42 (2009).

Zemp, R. J.

Zhang, C.

C. Zhang, K. Maslov, S. Hu, R. Chen, Q. Zhou, K. K. Shung, and L. V. Wang, “Reflection-mode submicron-resolution in vivo photoacoustic microscopy,” J. Biomed. Opt.17(2), 020501 (2012).
[CrossRef] [PubMed]

Zhang, E. Z.

E. Z. Zhang, J. G. Laufer, R. B. Pedley, and P. C. Beard, “In vivo high-resolution 3D photoacoustic imaging of superficial vascular anatomy,” Phys. Med. Biol.54(4), 1035–1046 (2009).
[CrossRef] [PubMed]

Zhang, H. E.

Zhang, H. F.

Z. Xie, S. Jiao, H. F. Zhang, and C. A. Puliafito, “Laser-scanning optical-resolution photoacoustic microscopy,” Opt. Lett.34(12), 1771–1773 (2009).
[CrossRef] [PubMed]

H. F. Zhang, K. Maslov, and L. V. Wang, “In vivo imaging of subcutaneous structures using functional photoacoustic microscopy,” Nat. Protoc.2(4), 797–804 (2007).
[CrossRef] [PubMed]

Zhou, Q.

C. Zhang, K. Maslov, S. Hu, R. Chen, Q. Zhou, K. K. Shung, and L. V. Wang, “Reflection-mode submicron-resolution in vivo photoacoustic microscopy,” J. Biomed. Opt.17(2), 020501 (2012).
[CrossRef] [PubMed]

Zhu, Q.

J. Gamelin, A. Aguirre, A. Maurudis, F. Huang, D. Castillo, L. V. Wang, and Q. Zhu, “Curved array photoacoustic tomographic system for small animal imaging,” J. Biomed. Opt.13(2), 024007 (2008).
[CrossRef] [PubMed]

Formosan J. Rheumatol.

P.-C. Wu, M.-N. Huang, S.-C. Hsieh, and C.-L. Yu, “Diagnostic value of nailfold capillaroscopy to systemic sclerosis with Raynaud's phenomenon: a preliminary study,” Formosan J. Rheumatol.23, 37–42 (2009).

J. Biomed. Opt.

C. Zhang, K. Maslov, S. Hu, R. Chen, Q. Zhou, K. K. Shung, and L. V. Wang, “Reflection-mode submicron-resolution in vivo photoacoustic microscopy,” J. Biomed. Opt.17(2), 020501 (2012).
[CrossRef] [PubMed]

J. Gamelin, A. Aguirre, A. Maurudis, F. Huang, D. Castillo, L. V. Wang, and Q. Zhu, “Curved array photoacoustic tomographic system for small animal imaging,” J. Biomed. Opt.13(2), 024007 (2008).
[CrossRef] [PubMed]

L. Song, K. Maslov, K. K. Shung, and L. V. Wang, “Ultrasound-array-based real-time photoacoustic microscopy of human pulsatile dynamics in vivo,” J. Biomed. Opt.15(2), 021303 (2010).
[CrossRef] [PubMed]

C. P. Favazza, L. A. Cornelius, and L. V. Wang, “In vivo functional photoacoustic microscopy of cutaneous microvasculature in human skin,” J. Biomed. Opt.16(2), 026004 (2011).
[CrossRef] [PubMed]

E. W. Stein, K. Maslov, and L. V. Wang, “Noninvasive, in vivo imaging of blood-oxygenation dynamics within the mouse brain using photoacoustic microscopy,” J. Biomed. Opt.14(2), 020502 (2009).
[CrossRef] [PubMed]

Nat. Photonics

D. Razansky, M. Distel, C. Vinegoni, R. Ma, N. Perrimon, R. W. Köster, and V. Ntziachristos, “Multi-spectral optoacoustic tomography of deep-seated fluorescent proteins in-vivo,” Nat. Photonics3(7), 412–417 (2009).
[CrossRef]

Nat. Protoc.

D. Razansky, A. Buehler, and V. Ntziachristos, “Volumetric real-time multispectral optoacoustic tomography of biomarkers,” Nat. Protoc.6(8), 1121–1129 (2011).
[CrossRef] [PubMed]

H. F. Zhang, K. Maslov, and L. V. Wang, “In vivo imaging of subcutaneous structures using functional photoacoustic microscopy,” Nat. Protoc.2(4), 797–804 (2007).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

Phys. Med. Biol.

E. Z. Zhang, J. G. Laufer, R. B. Pedley, and P. C. Beard, “In vivo high-resolution 3D photoacoustic imaging of superficial vascular anatomy,” Phys. Med. Biol.54(4), 1035–1046 (2009).
[CrossRef] [PubMed]

Rheumatol.

M. Cutolo, A. Sulli, M. E. Secchi, S. Paolino, and C. Pizzorni, “Nailfold capillaroscopy is useful for the diagnosis and follow-up of autoimmune rheumatic diseases. a future tool for the analysis of microvascular heart involvement?” Rheumatol.45(Supplement 4), 43–46 (2006).
[CrossRef]

Supplementary Material (2)

» Media 1: MPG (1738 KB)     
» Media 2: MPG (2753 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Illustration of the fast scanning coaxial optoacoustic microscope.

Fig. 2
Fig. 2

(a) Calibration of the system resolution at the focal point of a spherically focused transducer (50 MHz center frequency) using a 10 µm black-dyed polystyrene microsphere. Scale bar corresponds to 100 µm; (b) Photograph of the imaged printed letters; (c) Raw MAP optoacoustic image of the letters; (d) The MAP image corrected using the SAFT method. Scale bar in (b)-(d) corresponds to 500 µm.

Fig. 3
Fig. 3

(Media 1) Real-time monitoring of ink injection through a tube embedded into chicken phantom. Scale bar: 2 mm.

Fig. 4
Fig. 4

Imaging of white mouse post mortem in the breast area. Total field of view: 8 mm X 18 mm. (a) Raw MAP optoacosutic image; (b) MAP after applying the SAFT; (c) Combination of (a) and (b). Black arrows point at blood vessels that do not show in the raw image and blue arrows point at places where image quality improves after applying SAFT. Scale bar corresponds to 2 mm.

Fig. 5
Fig. 5

Imaging of a fixed mouse ear embedded in agar. Total (a) A color photograph of the ear; (b) MAP of the 3D reconstructed optoacoustic image of mouse ear. Scale bar: 1 mm. 3D rendering can be found in Media 2.

Fig. 6
Fig. 6

Imaging of a human palm. (a) 2D optoacoustic imaging of human palm. Above the dot-dash line shows an imaging depth of 3.2 mm; (b) A picture of the imaged palm with black frame indicating the area that was used for later on 3D optoacoustic imaging. Abbreviations: sc - stratum corneum; e - epidermis; d - dermis; sp - subpapillary plexus; pp - princeps pollicis; cp - cutaneous plexus; pb - pollicis brevis. Application of skin removal algorithm for deep tissue contrast enhancement is shown in (c)-(f). MAP optoacoustic image of the entire imaged area without removing signals from the skin is shown in (c). Panels (d)-(f) show the corresponding MAP images after removing signals up to a depths of 330 µm, 420 µm, and 540 µm, respectively. Scale bars: 1mm.

Fig. 7
Fig. 7

Optoacoustic images of the author's left index finger at different positions are shown in panels (a)-(d). (e) Optoacoustic image acquired from the back of the left palm (opisthenar). The region tagged with a red-rectangle is enlarged in the inset and presented on a logarithmic scale to enhance contrast from deep tissues; (f) A picture of the left opisthenar. A black dashed line indicates the image location. Scale bar: 1mm.

Metrics