Abstract

Recently, the wavelength range around 1060 nm has become attractive for retinal imaging with optical coherence tomography (OCT), promising deep penetration into the retina and the choroid. The adjacent water absorption bands limit the useful bandwidth of broadband light sources, but until now, the actual limitation has not been quantified in detail. We have numerically investigated the impact of water absorption on the axial resolution and signal amplitude for a wide range of light source bandwidths and center wavelengths. Furthermore, we have calculated the sensitivity penalty for maintaining the optimal resolution by spectral shaping. As our results show, with currently available semiconductor-based light sources with up to 100–120 nm bandwidth centered close to 1060 nm, the resolution degradation caused by the water absorption spectrum is smaller than 10%, and it can be compensated by spectral shaping with negligible sensitivity penalty. With increasing bandwidth, the resolution degradation and signal attenuation become stronger, and the optimal operating point shifts towards shorter wavelengths. These relationships are important to take into account for the development of new broadband light sources for OCT.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254, 1178–1181 (1991).
    [CrossRef] [PubMed]
  2. S. Marschall, B. Sander, M. Mogensen, T. M. Jørgensen, and P. E. Andersen, “Optical coherence tomography—current technology and applications in clinical and biomedical research,” Anal. Bioanal. Chem.400, 2699–2720 (2011).
    [CrossRef] [PubMed]
  3. B. L. Danielson and C. Y. Boisrobert, “Absolute optical ranging using low coherence interferometry,” Appl. Opt.30, 2975–2979 (1991).
    [CrossRef] [PubMed]
  4. T. Hillman and D. Sampson, “The effect of water dispersion and absorption on axial resolution in ultrahigh-resolution optical coherence tomography,” Opt. Express13, 1860–1874 (2005).
    [CrossRef] [PubMed]
  5. S. Hariri, A. A. Moayed, A. Dracopoulos, C. Hyun, S. Boyd, and K. Bizheva, “Limiting factors to the OCT axial resolution for in-vivo imaging of human and rodent retina in the 1060nm wavelength range,” Opt. Express17, 24304–24316 (2009).
    [CrossRef]
  6. T. J. van den Berg and H. Spekreijse, “Near infrared light absorption in the human eye media,” Vis. Res.37, 249–253 (1997).
    [CrossRef] [PubMed]
  7. Y. Coello, B. Xu, T. L. Miller, V. V. Lozovoy, and M. Dantus, “Group-velocity dispersion measurements of water, seawater, and ocular components using multiphoton intrapulse interference phase scan,” Appl. Opt.46, 8394–8401 (2007).
    [CrossRef] [PubMed]
  8. W. Drexler and J. G. Fujimoto, “State-of-the-art retinal optical coherence tomography,” Prog. Retin. Eye Res.27, 45–88 (2008).
    [CrossRef]
  9. W. Drexler, U. Morgner, F. X. Kärtner, C. Pitris, S. A. Boppart, X. D. Li, E. P. Ippen, and J. G. Fujimoto, “In vivo ultrahigh-resolution optical coherence tomography,” Opt. Lett.24, 1221–1223 (1999).
    [CrossRef]
  10. B. Potsaid, I. Gorczynska, V. J. Srinivasan, Y. Chen, J. Jiang, A. Cable, and J. G. Fujimoto, “Ultrahigh speed spectral / Fourier domain OCT ophthalmic imaging at 70,000 to 312,500 axial scans per second,” Opt. Express16, 15149–15169 (2008).
    [CrossRef] [PubMed]
  11. B. Považay, K. Bizheva, B. Hermann, A. Unterhuber, H. Sattmann, A. F. Fercher, W. Drexler, C. Schubert, P. K. Ahnelt, M. Mei, R. Holzwarth, W. J. Wadsworth, J. C. Knight, and P. S. J. Russel, “Enhanced visualization of choroidal vessels using ultrahigh resolution ophthalmic OCT at 1050 nm,” Opt. Express11, 1980–1986 (2003).
    [CrossRef]
  12. A. Unterhuber, B. Považay, B. Hermann, H. Sattmann, A. Chavez-Pirson, and W. Drexler, “In vivo retinal optical coherence tomography at 1040 nm - enhanced penetration into the choroid,” Opt. Express13, 3252–3258 (2005).
    [CrossRef] [PubMed]
  13. Y. Yasuno, Y. Hong, S. Makita, M. Yamanari, M. Akiba, M. Miura, and T. Yatagai, “In vivo high-contrast imaging of deep posterior eye by 1-μm swept source optical coherence tomography and scattering optical coherence angiography,” Opt. Express15, 6121–6139 (2007).
    [CrossRef] [PubMed]
  14. M. L. Wolbarsht, A. W. Walsh, and G. George, “Melanin, a unique biological absorber,” Appl. Opt.20, 2184–2186 (1981).
    [CrossRef] [PubMed]
  15. A. W. Sainter, T. A. King, and M. R. Dickinson, “Effect of target biological tissue and choice of light source on penetration depth and resolution in optical coherence tomography,” J. Biomed. Opt.9, 193–199 (2004).
    [CrossRef] [PubMed]
  16. Y. Chen, D. L. Burnes, M. de Bruin, M. Mujat, and J. F. de Boer, “Three-dimensional pointwise comparison of human retinal optical property at 845 and 1060 nm using optical frequency domain imaging,” J. Biomed. Opt.14, 024016 (2009).
    [CrossRef] [PubMed]
  17. B. Považay, B. Hermann, A. Unterhuber, B. Hofer, H. Sattmann, F. Zeiler, J. E. Morgan, C. Falkner-Radler, C. Glittenberg, S. Blinder, and W. Drexler, “Three-dimensional optical coherence tomography at 1050 nm versus 800 nm in retinal pathologies: enhanced performance and choroidal penetration in cataract patients,” J. Biomed. Opt.12, 041211 (2007).
    [CrossRef]
  18. Y. Wang, J. S. Nelson, Z. Chen, B. J. Reiser, R. S. Chuck, and R. S. Windeler, “Optimal wavelength for ultrahigh-resolution optical coherence tomography,” Opt. Express11, 1411–1417 (2003).
    [CrossRef] [PubMed]
  19. B. Potsaid, B. Baumann, D. Huang, S. Barry, A. E. Cable, J. S. Schuman, J. S. Duker, and J. G. Fujimoto, “Ultrahigh speed 1050nm swept source / Fourier domain OCT retinal and anterior segment imaging at 100,000 to 400,000 axial scans per second,” Opt. Express18, 20029–20048 (2010).
    [CrossRef] [PubMed]
  20. C. Chong, T. Suzuki, K. Totsuka, A. Morosawa, and T. Sakai, “Large coherence length swept source for axial length measurement of the eye,” Appl. Opt.48, D144–50 (2009).
    [CrossRef] [PubMed]
  21. D. C. Adler, W. Wieser, F. Trepanier, J. M. Schmitt, and R. A. Huber, “Extended coherence length Fourier domain mode locked lasers at 1310 nm,” Opt. Express19, 20930–20939 (2011).
    [CrossRef] [PubMed]
  22. W. Wieser, B. R. Biedermann, T. Klein, C. M. Eigenwillig, and R. Huber, “Multi-megahertz OCT: High quality 3D imaging at 20 million A-scans and 4.5 Gvoxels per second,” Opt. Express18, 14685–14704 (2010).
    [CrossRef] [PubMed]
  23. T. Klein, W. Wieser, C. M. Eigenwillig, B. R. Biedermann, and R. Huber, “Megahertz OCT for ultrawide-field retinal imaging with a 1050 nm Fourier domain mode-locked laser,” Opt. Express19, 3044–3062 (2011).
    [CrossRef] [PubMed]
  24. S.-H. Yun, G. J. Tearney, J. F. de Boer, and B. E. Bouma, “Motion artifacts in optical coherence tomography with frequency-domain ranging,” Opt. Express12, 2977–2998 (2004).
    [CrossRef] [PubMed]
  25. R. Huber, D. C. Adler, V. J. Srinivasan, and J. G. Fujimoto, “Fourier domain mode locking at 1050 nm for ultra-high-speed optical coherence tomography of the human retina at 236,000 axial scans per second,” Opt. Lett.32, 2049–2051 (2007).
    [CrossRef] [PubMed]
  26. M. Kuznetsov, W. Atia, B. Johnson, and D. Flanders, “Compact ultrafast reflective Fabry-Perot tunable lasers for oct imaging applications,” Proc. SPIE7554, 75541F (2010).
  27. S. Marschall, T. Klein, W. Wieser, B. R. Biedermann, K. Hsu, K. P. Hansen, B. Sumpf, K.-H. Hasler, G. Erbert, O. B. Jensen, C. Pedersen, R. Huber, and P. E. Andersen, “Fourier domain mode-locked swept source at 1050 nm based on a tapered amplifier,” Opt. Express18, 15820–15831 (2010).
    [CrossRef] [PubMed]
  28. S. Marschall, T. Klein, W. Wieser, T. Torzicky, M. Pircher, B. R. Biedermann, C. Pedersen, C. K. Hitzenberger, R. Huber, and P. E. Andersen, “Broadband Fourier domain mode-locked laser for optical coherence tomography at 1060 nm,” Proc. SPIE8213, 82130R (2012).
    [CrossRef]
  29. M. K. Harduar, A. Mariampillai, B. Vuong, X. Gu, B. A. Standish, and V. X. D. Yang, “Dual-core ytterbium fiber amplifier for high-power 1060 nm swept source multichannel optical coherence tomography imaging,” Opt. Lett.36, 2976–2978 (2011).
    [CrossRef] [PubMed]
  30. K. F. Palmer and D. Williams, “Optical properties of water in the near infrared,” J. Opt. Soc. Am.64, 1107–1110 (1974).
    [CrossRef]
  31. American National Standards Institute, “American National Standard for Safe Use of Lasers,” ANSI Z 136-1.
  32. International Electrotechnical Commission, “Safety of laser products,” IEC 60825.
  33. B. R. Biedermann, W. Wieser, C. M. Eigenwillig, G. Palte, D. C. Adler, V. J. Srinivasan, J. G. Fujimoto, and R. Huber, “Real time en face Fourier-domain optical coherence tomography with direct hardware frequency demodulation,” Opt. Lett.33, 2556–2558 (2008).
    [CrossRef] [PubMed]
  34. M. P. Minneman, J. Ensher, M. Crawford, and D. Derickson, “All-semiconductor high-speed akinetic swept-source for OCT,” Proc. SPIE8311, 831116 (2011).
    [CrossRef]
  35. P. Schiebener, J. Straub, J. M. H. L. Sengers, and J. S. Gallagher, “Refractive index of water and steam as function of wavelength, temperature and density,” J. Phys. Chem. Ref. Data19, 677–717 (1990).
    [CrossRef]
  36. M. Wojtkowski, V. Srinivasan, T. Ko, J. Fujimoto, A. Kowalczyk, and J. Duker, “Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation,” Opt. Express12, 2404–2422 (2004).
    [CrossRef] [PubMed]

2012 (1)

S. Marschall, T. Klein, W. Wieser, T. Torzicky, M. Pircher, B. R. Biedermann, C. Pedersen, C. K. Hitzenberger, R. Huber, and P. E. Andersen, “Broadband Fourier domain mode-locked laser for optical coherence tomography at 1060 nm,” Proc. SPIE8213, 82130R (2012).
[CrossRef]

2011 (5)

2010 (4)

2009 (3)

2008 (3)

2007 (4)

2005 (2)

2004 (3)

2003 (2)

1999 (1)

1997 (1)

T. J. van den Berg and H. Spekreijse, “Near infrared light absorption in the human eye media,” Vis. Res.37, 249–253 (1997).
[CrossRef] [PubMed]

1991 (2)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254, 1178–1181 (1991).
[CrossRef] [PubMed]

B. L. Danielson and C. Y. Boisrobert, “Absolute optical ranging using low coherence interferometry,” Appl. Opt.30, 2975–2979 (1991).
[CrossRef] [PubMed]

1990 (1)

P. Schiebener, J. Straub, J. M. H. L. Sengers, and J. S. Gallagher, “Refractive index of water and steam as function of wavelength, temperature and density,” J. Phys. Chem. Ref. Data19, 677–717 (1990).
[CrossRef]

1981 (1)

1974 (1)

Adler, D. C.

Ahnelt, P. K.

Akiba, M.

Andersen, P. E.

S. Marschall, T. Klein, W. Wieser, T. Torzicky, M. Pircher, B. R. Biedermann, C. Pedersen, C. K. Hitzenberger, R. Huber, and P. E. Andersen, “Broadband Fourier domain mode-locked laser for optical coherence tomography at 1060 nm,” Proc. SPIE8213, 82130R (2012).
[CrossRef]

S. Marschall, B. Sander, M. Mogensen, T. M. Jørgensen, and P. E. Andersen, “Optical coherence tomography—current technology and applications in clinical and biomedical research,” Anal. Bioanal. Chem.400, 2699–2720 (2011).
[CrossRef] [PubMed]

S. Marschall, T. Klein, W. Wieser, B. R. Biedermann, K. Hsu, K. P. Hansen, B. Sumpf, K.-H. Hasler, G. Erbert, O. B. Jensen, C. Pedersen, R. Huber, and P. E. Andersen, “Fourier domain mode-locked swept source at 1050 nm based on a tapered amplifier,” Opt. Express18, 15820–15831 (2010).
[CrossRef] [PubMed]

Atia, W.

M. Kuznetsov, W. Atia, B. Johnson, and D. Flanders, “Compact ultrafast reflective Fabry-Perot tunable lasers for oct imaging applications,” Proc. SPIE7554, 75541F (2010).

Barry, S.

Baumann, B.

Biedermann, B. R.

Bizheva, K.

Blinder, S.

B. Považay, B. Hermann, A. Unterhuber, B. Hofer, H. Sattmann, F. Zeiler, J. E. Morgan, C. Falkner-Radler, C. Glittenberg, S. Blinder, and W. Drexler, “Three-dimensional optical coherence tomography at 1050 nm versus 800 nm in retinal pathologies: enhanced performance and choroidal penetration in cataract patients,” J. Biomed. Opt.12, 041211 (2007).
[CrossRef]

Boisrobert, C. Y.

Boppart, S. A.

Bouma, B. E.

Boyd, S.

Burnes, D. L.

Y. Chen, D. L. Burnes, M. de Bruin, M. Mujat, and J. F. de Boer, “Three-dimensional pointwise comparison of human retinal optical property at 845 and 1060 nm using optical frequency domain imaging,” J. Biomed. Opt.14, 024016 (2009).
[CrossRef] [PubMed]

Cable, A.

Cable, A. E.

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254, 1178–1181 (1991).
[CrossRef] [PubMed]

Chavez-Pirson, A.

Chen, Y.

Y. Chen, D. L. Burnes, M. de Bruin, M. Mujat, and J. F. de Boer, “Three-dimensional pointwise comparison of human retinal optical property at 845 and 1060 nm using optical frequency domain imaging,” J. Biomed. Opt.14, 024016 (2009).
[CrossRef] [PubMed]

B. Potsaid, I. Gorczynska, V. J. Srinivasan, Y. Chen, J. Jiang, A. Cable, and J. G. Fujimoto, “Ultrahigh speed spectral / Fourier domain OCT ophthalmic imaging at 70,000 to 312,500 axial scans per second,” Opt. Express16, 15149–15169 (2008).
[CrossRef] [PubMed]

Chen, Z.

Chong, C.

Chuck, R. S.

Coello, Y.

Crawford, M.

M. P. Minneman, J. Ensher, M. Crawford, and D. Derickson, “All-semiconductor high-speed akinetic swept-source for OCT,” Proc. SPIE8311, 831116 (2011).
[CrossRef]

Danielson, B. L.

Dantus, M.

de Boer, J. F.

Y. Chen, D. L. Burnes, M. de Bruin, M. Mujat, and J. F. de Boer, “Three-dimensional pointwise comparison of human retinal optical property at 845 and 1060 nm using optical frequency domain imaging,” J. Biomed. Opt.14, 024016 (2009).
[CrossRef] [PubMed]

S.-H. Yun, G. J. Tearney, J. F. de Boer, and B. E. Bouma, “Motion artifacts in optical coherence tomography with frequency-domain ranging,” Opt. Express12, 2977–2998 (2004).
[CrossRef] [PubMed]

de Bruin, M.

Y. Chen, D. L. Burnes, M. de Bruin, M. Mujat, and J. F. de Boer, “Three-dimensional pointwise comparison of human retinal optical property at 845 and 1060 nm using optical frequency domain imaging,” J. Biomed. Opt.14, 024016 (2009).
[CrossRef] [PubMed]

Derickson, D.

M. P. Minneman, J. Ensher, M. Crawford, and D. Derickson, “All-semiconductor high-speed akinetic swept-source for OCT,” Proc. SPIE8311, 831116 (2011).
[CrossRef]

Dickinson, M. R.

A. W. Sainter, T. A. King, and M. R. Dickinson, “Effect of target biological tissue and choice of light source on penetration depth and resolution in optical coherence tomography,” J. Biomed. Opt.9, 193–199 (2004).
[CrossRef] [PubMed]

Dracopoulos, A.

Drexler, W.

Duker, J.

Duker, J. S.

Eigenwillig, C. M.

Ensher, J.

M. P. Minneman, J. Ensher, M. Crawford, and D. Derickson, “All-semiconductor high-speed akinetic swept-source for OCT,” Proc. SPIE8311, 831116 (2011).
[CrossRef]

Erbert, G.

Falkner-Radler, C.

B. Považay, B. Hermann, A. Unterhuber, B. Hofer, H. Sattmann, F. Zeiler, J. E. Morgan, C. Falkner-Radler, C. Glittenberg, S. Blinder, and W. Drexler, “Three-dimensional optical coherence tomography at 1050 nm versus 800 nm in retinal pathologies: enhanced performance and choroidal penetration in cataract patients,” J. Biomed. Opt.12, 041211 (2007).
[CrossRef]

Fercher, A. F.

Flanders, D.

M. Kuznetsov, W. Atia, B. Johnson, and D. Flanders, “Compact ultrafast reflective Fabry-Perot tunable lasers for oct imaging applications,” Proc. SPIE7554, 75541F (2010).

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254, 1178–1181 (1991).
[CrossRef] [PubMed]

Fujimoto, J.

Fujimoto, J. G.

B. Potsaid, B. Baumann, D. Huang, S. Barry, A. E. Cable, J. S. Schuman, J. S. Duker, and J. G. Fujimoto, “Ultrahigh speed 1050nm swept source / Fourier domain OCT retinal and anterior segment imaging at 100,000 to 400,000 axial scans per second,” Opt. Express18, 20029–20048 (2010).
[CrossRef] [PubMed]

W. Drexler and J. G. Fujimoto, “State-of-the-art retinal optical coherence tomography,” Prog. Retin. Eye Res.27, 45–88 (2008).
[CrossRef]

B. Potsaid, I. Gorczynska, V. J. Srinivasan, Y. Chen, J. Jiang, A. Cable, and J. G. Fujimoto, “Ultrahigh speed spectral / Fourier domain OCT ophthalmic imaging at 70,000 to 312,500 axial scans per second,” Opt. Express16, 15149–15169 (2008).
[CrossRef] [PubMed]

B. R. Biedermann, W. Wieser, C. M. Eigenwillig, G. Palte, D. C. Adler, V. J. Srinivasan, J. G. Fujimoto, and R. Huber, “Real time en face Fourier-domain optical coherence tomography with direct hardware frequency demodulation,” Opt. Lett.33, 2556–2558 (2008).
[CrossRef] [PubMed]

R. Huber, D. C. Adler, V. J. Srinivasan, and J. G. Fujimoto, “Fourier domain mode locking at 1050 nm for ultra-high-speed optical coherence tomography of the human retina at 236,000 axial scans per second,” Opt. Lett.32, 2049–2051 (2007).
[CrossRef] [PubMed]

W. Drexler, U. Morgner, F. X. Kärtner, C. Pitris, S. A. Boppart, X. D. Li, E. P. Ippen, and J. G. Fujimoto, “In vivo ultrahigh-resolution optical coherence tomography,” Opt. Lett.24, 1221–1223 (1999).
[CrossRef]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254, 1178–1181 (1991).
[CrossRef] [PubMed]

Gallagher, J. S.

P. Schiebener, J. Straub, J. M. H. L. Sengers, and J. S. Gallagher, “Refractive index of water and steam as function of wavelength, temperature and density,” J. Phys. Chem. Ref. Data19, 677–717 (1990).
[CrossRef]

George, G.

Glittenberg, C.

B. Považay, B. Hermann, A. Unterhuber, B. Hofer, H. Sattmann, F. Zeiler, J. E. Morgan, C. Falkner-Radler, C. Glittenberg, S. Blinder, and W. Drexler, “Three-dimensional optical coherence tomography at 1050 nm versus 800 nm in retinal pathologies: enhanced performance and choroidal penetration in cataract patients,” J. Biomed. Opt.12, 041211 (2007).
[CrossRef]

Gorczynska, I.

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254, 1178–1181 (1991).
[CrossRef] [PubMed]

Gu, X.

Hansen, K. P.

Harduar, M. K.

Hariri, S.

Hasler, K.-H.

Hee, M. R.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254, 1178–1181 (1991).
[CrossRef] [PubMed]

Hermann, B.

Hillman, T.

Hitzenberger, C. K.

S. Marschall, T. Klein, W. Wieser, T. Torzicky, M. Pircher, B. R. Biedermann, C. Pedersen, C. K. Hitzenberger, R. Huber, and P. E. Andersen, “Broadband Fourier domain mode-locked laser for optical coherence tomography at 1060 nm,” Proc. SPIE8213, 82130R (2012).
[CrossRef]

Hofer, B.

B. Považay, B. Hermann, A. Unterhuber, B. Hofer, H. Sattmann, F. Zeiler, J. E. Morgan, C. Falkner-Radler, C. Glittenberg, S. Blinder, and W. Drexler, “Three-dimensional optical coherence tomography at 1050 nm versus 800 nm in retinal pathologies: enhanced performance and choroidal penetration in cataract patients,” J. Biomed. Opt.12, 041211 (2007).
[CrossRef]

Holzwarth, R.

Hong, Y.

Hsu, K.

Huang, D.

Huber, R.

S. Marschall, T. Klein, W. Wieser, T. Torzicky, M. Pircher, B. R. Biedermann, C. Pedersen, C. K. Hitzenberger, R. Huber, and P. E. Andersen, “Broadband Fourier domain mode-locked laser for optical coherence tomography at 1060 nm,” Proc. SPIE8213, 82130R (2012).
[CrossRef]

T. Klein, W. Wieser, C. M. Eigenwillig, B. R. Biedermann, and R. Huber, “Megahertz OCT for ultrawide-field retinal imaging with a 1050 nm Fourier domain mode-locked laser,” Opt. Express19, 3044–3062 (2011).
[CrossRef] [PubMed]

W. Wieser, B. R. Biedermann, T. Klein, C. M. Eigenwillig, and R. Huber, “Multi-megahertz OCT: High quality 3D imaging at 20 million A-scans and 4.5 Gvoxels per second,” Opt. Express18, 14685–14704 (2010).
[CrossRef] [PubMed]

S. Marschall, T. Klein, W. Wieser, B. R. Biedermann, K. Hsu, K. P. Hansen, B. Sumpf, K.-H. Hasler, G. Erbert, O. B. Jensen, C. Pedersen, R. Huber, and P. E. Andersen, “Fourier domain mode-locked swept source at 1050 nm based on a tapered amplifier,” Opt. Express18, 15820–15831 (2010).
[CrossRef] [PubMed]

B. R. Biedermann, W. Wieser, C. M. Eigenwillig, G. Palte, D. C. Adler, V. J. Srinivasan, J. G. Fujimoto, and R. Huber, “Real time en face Fourier-domain optical coherence tomography with direct hardware frequency demodulation,” Opt. Lett.33, 2556–2558 (2008).
[CrossRef] [PubMed]

R. Huber, D. C. Adler, V. J. Srinivasan, and J. G. Fujimoto, “Fourier domain mode locking at 1050 nm for ultra-high-speed optical coherence tomography of the human retina at 236,000 axial scans per second,” Opt. Lett.32, 2049–2051 (2007).
[CrossRef] [PubMed]

Huber, R. A.

Hyun, C.

Ippen, E. P.

Jensen, O. B.

Jiang, J.

Johnson, B.

M. Kuznetsov, W. Atia, B. Johnson, and D. Flanders, “Compact ultrafast reflective Fabry-Perot tunable lasers for oct imaging applications,” Proc. SPIE7554, 75541F (2010).

Jørgensen, T. M.

S. Marschall, B. Sander, M. Mogensen, T. M. Jørgensen, and P. E. Andersen, “Optical coherence tomography—current technology and applications in clinical and biomedical research,” Anal. Bioanal. Chem.400, 2699–2720 (2011).
[CrossRef] [PubMed]

Kärtner, F. X.

King, T. A.

A. W. Sainter, T. A. King, and M. R. Dickinson, “Effect of target biological tissue and choice of light source on penetration depth and resolution in optical coherence tomography,” J. Biomed. Opt.9, 193–199 (2004).
[CrossRef] [PubMed]

Klein, T.

Knight, J. C.

Ko, T.

Kowalczyk, A.

Kuznetsov, M.

M. Kuznetsov, W. Atia, B. Johnson, and D. Flanders, “Compact ultrafast reflective Fabry-Perot tunable lasers for oct imaging applications,” Proc. SPIE7554, 75541F (2010).

Li, X. D.

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254, 1178–1181 (1991).
[CrossRef] [PubMed]

Lozovoy, V. V.

Makita, S.

Mariampillai, A.

Marschall, S.

S. Marschall, T. Klein, W. Wieser, T. Torzicky, M. Pircher, B. R. Biedermann, C. Pedersen, C. K. Hitzenberger, R. Huber, and P. E. Andersen, “Broadband Fourier domain mode-locked laser for optical coherence tomography at 1060 nm,” Proc. SPIE8213, 82130R (2012).
[CrossRef]

S. Marschall, B. Sander, M. Mogensen, T. M. Jørgensen, and P. E. Andersen, “Optical coherence tomography—current technology and applications in clinical and biomedical research,” Anal. Bioanal. Chem.400, 2699–2720 (2011).
[CrossRef] [PubMed]

S. Marschall, T. Klein, W. Wieser, B. R. Biedermann, K. Hsu, K. P. Hansen, B. Sumpf, K.-H. Hasler, G. Erbert, O. B. Jensen, C. Pedersen, R. Huber, and P. E. Andersen, “Fourier domain mode-locked swept source at 1050 nm based on a tapered amplifier,” Opt. Express18, 15820–15831 (2010).
[CrossRef] [PubMed]

Mei, M.

Miller, T. L.

Minneman, M. P.

M. P. Minneman, J. Ensher, M. Crawford, and D. Derickson, “All-semiconductor high-speed akinetic swept-source for OCT,” Proc. SPIE8311, 831116 (2011).
[CrossRef]

Miura, M.

Moayed, A. A.

Mogensen, M.

S. Marschall, B. Sander, M. Mogensen, T. M. Jørgensen, and P. E. Andersen, “Optical coherence tomography—current technology and applications in clinical and biomedical research,” Anal. Bioanal. Chem.400, 2699–2720 (2011).
[CrossRef] [PubMed]

Morgan, J. E.

B. Považay, B. Hermann, A. Unterhuber, B. Hofer, H. Sattmann, F. Zeiler, J. E. Morgan, C. Falkner-Radler, C. Glittenberg, S. Blinder, and W. Drexler, “Three-dimensional optical coherence tomography at 1050 nm versus 800 nm in retinal pathologies: enhanced performance and choroidal penetration in cataract patients,” J. Biomed. Opt.12, 041211 (2007).
[CrossRef]

Morgner, U.

Morosawa, A.

Mujat, M.

Y. Chen, D. L. Burnes, M. de Bruin, M. Mujat, and J. F. de Boer, “Three-dimensional pointwise comparison of human retinal optical property at 845 and 1060 nm using optical frequency domain imaging,” J. Biomed. Opt.14, 024016 (2009).
[CrossRef] [PubMed]

Nelson, J. S.

Palmer, K. F.

Palte, G.

Pedersen, C.

S. Marschall, T. Klein, W. Wieser, T. Torzicky, M. Pircher, B. R. Biedermann, C. Pedersen, C. K. Hitzenberger, R. Huber, and P. E. Andersen, “Broadband Fourier domain mode-locked laser for optical coherence tomography at 1060 nm,” Proc. SPIE8213, 82130R (2012).
[CrossRef]

S. Marschall, T. Klein, W. Wieser, B. R. Biedermann, K. Hsu, K. P. Hansen, B. Sumpf, K.-H. Hasler, G. Erbert, O. B. Jensen, C. Pedersen, R. Huber, and P. E. Andersen, “Fourier domain mode-locked swept source at 1050 nm based on a tapered amplifier,” Opt. Express18, 15820–15831 (2010).
[CrossRef] [PubMed]

Pircher, M.

S. Marschall, T. Klein, W. Wieser, T. Torzicky, M. Pircher, B. R. Biedermann, C. Pedersen, C. K. Hitzenberger, R. Huber, and P. E. Andersen, “Broadband Fourier domain mode-locked laser for optical coherence tomography at 1060 nm,” Proc. SPIE8213, 82130R (2012).
[CrossRef]

Pitris, C.

Potsaid, B.

Považay, B.

Puliafito, C. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254, 1178–1181 (1991).
[CrossRef] [PubMed]

Reiser, B. J.

Russel, P. S. J.

Sainter, A. W.

A. W. Sainter, T. A. King, and M. R. Dickinson, “Effect of target biological tissue and choice of light source on penetration depth and resolution in optical coherence tomography,” J. Biomed. Opt.9, 193–199 (2004).
[CrossRef] [PubMed]

Sakai, T.

Sampson, D.

Sander, B.

S. Marschall, B. Sander, M. Mogensen, T. M. Jørgensen, and P. E. Andersen, “Optical coherence tomography—current technology and applications in clinical and biomedical research,” Anal. Bioanal. Chem.400, 2699–2720 (2011).
[CrossRef] [PubMed]

Sattmann, H.

Schiebener, P.

P. Schiebener, J. Straub, J. M. H. L. Sengers, and J. S. Gallagher, “Refractive index of water and steam as function of wavelength, temperature and density,” J. Phys. Chem. Ref. Data19, 677–717 (1990).
[CrossRef]

Schmitt, J. M.

Schubert, C.

Schuman, J. S.

Sengers, J. M. H. L.

P. Schiebener, J. Straub, J. M. H. L. Sengers, and J. S. Gallagher, “Refractive index of water and steam as function of wavelength, temperature and density,” J. Phys. Chem. Ref. Data19, 677–717 (1990).
[CrossRef]

Spekreijse, H.

T. J. van den Berg and H. Spekreijse, “Near infrared light absorption in the human eye media,” Vis. Res.37, 249–253 (1997).
[CrossRef] [PubMed]

Srinivasan, V.

Srinivasan, V. J.

Standish, B. A.

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254, 1178–1181 (1991).
[CrossRef] [PubMed]

Straub, J.

P. Schiebener, J. Straub, J. M. H. L. Sengers, and J. S. Gallagher, “Refractive index of water and steam as function of wavelength, temperature and density,” J. Phys. Chem. Ref. Data19, 677–717 (1990).
[CrossRef]

Sumpf, B.

Suzuki, T.

Swanson, E. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254, 1178–1181 (1991).
[CrossRef] [PubMed]

Tearney, G. J.

Torzicky, T.

S. Marschall, T. Klein, W. Wieser, T. Torzicky, M. Pircher, B. R. Biedermann, C. Pedersen, C. K. Hitzenberger, R. Huber, and P. E. Andersen, “Broadband Fourier domain mode-locked laser for optical coherence tomography at 1060 nm,” Proc. SPIE8213, 82130R (2012).
[CrossRef]

Totsuka, K.

Trepanier, F.

Unterhuber, A.

van den Berg, T. J.

T. J. van den Berg and H. Spekreijse, “Near infrared light absorption in the human eye media,” Vis. Res.37, 249–253 (1997).
[CrossRef] [PubMed]

Vuong, B.

Wadsworth, W. J.

Walsh, A. W.

Wang, Y.

Wieser, W.

S. Marschall, T. Klein, W. Wieser, T. Torzicky, M. Pircher, B. R. Biedermann, C. Pedersen, C. K. Hitzenberger, R. Huber, and P. E. Andersen, “Broadband Fourier domain mode-locked laser for optical coherence tomography at 1060 nm,” Proc. SPIE8213, 82130R (2012).
[CrossRef]

T. Klein, W. Wieser, C. M. Eigenwillig, B. R. Biedermann, and R. Huber, “Megahertz OCT for ultrawide-field retinal imaging with a 1050 nm Fourier domain mode-locked laser,” Opt. Express19, 3044–3062 (2011).
[CrossRef] [PubMed]

D. C. Adler, W. Wieser, F. Trepanier, J. M. Schmitt, and R. A. Huber, “Extended coherence length Fourier domain mode locked lasers at 1310 nm,” Opt. Express19, 20930–20939 (2011).
[CrossRef] [PubMed]

W. Wieser, B. R. Biedermann, T. Klein, C. M. Eigenwillig, and R. Huber, “Multi-megahertz OCT: High quality 3D imaging at 20 million A-scans and 4.5 Gvoxels per second,” Opt. Express18, 14685–14704 (2010).
[CrossRef] [PubMed]

S. Marschall, T. Klein, W. Wieser, B. R. Biedermann, K. Hsu, K. P. Hansen, B. Sumpf, K.-H. Hasler, G. Erbert, O. B. Jensen, C. Pedersen, R. Huber, and P. E. Andersen, “Fourier domain mode-locked swept source at 1050 nm based on a tapered amplifier,” Opt. Express18, 15820–15831 (2010).
[CrossRef] [PubMed]

B. R. Biedermann, W. Wieser, C. M. Eigenwillig, G. Palte, D. C. Adler, V. J. Srinivasan, J. G. Fujimoto, and R. Huber, “Real time en face Fourier-domain optical coherence tomography with direct hardware frequency demodulation,” Opt. Lett.33, 2556–2558 (2008).
[CrossRef] [PubMed]

Williams, D.

Windeler, R. S.

Wojtkowski, M.

Wolbarsht, M. L.

Xu, B.

Yamanari, M.

Yang, V. X. D.

Yasuno, Y.

Yatagai, T.

Yun, S.-H.

Zeiler, F.

B. Považay, B. Hermann, A. Unterhuber, B. Hofer, H. Sattmann, F. Zeiler, J. E. Morgan, C. Falkner-Radler, C. Glittenberg, S. Blinder, and W. Drexler, “Three-dimensional optical coherence tomography at 1050 nm versus 800 nm in retinal pathologies: enhanced performance and choroidal penetration in cataract patients,” J. Biomed. Opt.12, 041211 (2007).
[CrossRef]

Anal. Bioanal. Chem. (1)

S. Marschall, B. Sander, M. Mogensen, T. M. Jørgensen, and P. E. Andersen, “Optical coherence tomography—current technology and applications in clinical and biomedical research,” Anal. Bioanal. Chem.400, 2699–2720 (2011).
[CrossRef] [PubMed]

Appl. Opt. (4)

J. Biomed. Opt. (3)

A. W. Sainter, T. A. King, and M. R. Dickinson, “Effect of target biological tissue and choice of light source on penetration depth and resolution in optical coherence tomography,” J. Biomed. Opt.9, 193–199 (2004).
[CrossRef] [PubMed]

Y. Chen, D. L. Burnes, M. de Bruin, M. Mujat, and J. F. de Boer, “Three-dimensional pointwise comparison of human retinal optical property at 845 and 1060 nm using optical frequency domain imaging,” J. Biomed. Opt.14, 024016 (2009).
[CrossRef] [PubMed]

B. Považay, B. Hermann, A. Unterhuber, B. Hofer, H. Sattmann, F. Zeiler, J. E. Morgan, C. Falkner-Radler, C. Glittenberg, S. Blinder, and W. Drexler, “Three-dimensional optical coherence tomography at 1050 nm versus 800 nm in retinal pathologies: enhanced performance and choroidal penetration in cataract patients,” J. Biomed. Opt.12, 041211 (2007).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Phys. Chem. Ref. Data (1)

P. Schiebener, J. Straub, J. M. H. L. Sengers, and J. S. Gallagher, “Refractive index of water and steam as function of wavelength, temperature and density,” J. Phys. Chem. Ref. Data19, 677–717 (1990).
[CrossRef]

Opt. Express (14)

D. C. Adler, W. Wieser, F. Trepanier, J. M. Schmitt, and R. A. Huber, “Extended coherence length Fourier domain mode locked lasers at 1310 nm,” Opt. Express19, 20930–20939 (2011).
[CrossRef] [PubMed]

S. Hariri, A. A. Moayed, A. Dracopoulos, C. Hyun, S. Boyd, and K. Bizheva, “Limiting factors to the OCT axial resolution for in-vivo imaging of human and rodent retina in the 1060nm wavelength range,” Opt. Express17, 24304–24316 (2009).
[CrossRef]

W. Wieser, B. R. Biedermann, T. Klein, C. M. Eigenwillig, and R. Huber, “Multi-megahertz OCT: High quality 3D imaging at 20 million A-scans and 4.5 Gvoxels per second,” Opt. Express18, 14685–14704 (2010).
[CrossRef] [PubMed]

S. Marschall, T. Klein, W. Wieser, B. R. Biedermann, K. Hsu, K. P. Hansen, B. Sumpf, K.-H. Hasler, G. Erbert, O. B. Jensen, C. Pedersen, R. Huber, and P. E. Andersen, “Fourier domain mode-locked swept source at 1050 nm based on a tapered amplifier,” Opt. Express18, 15820–15831 (2010).
[CrossRef] [PubMed]

B. Potsaid, B. Baumann, D. Huang, S. Barry, A. E. Cable, J. S. Schuman, J. S. Duker, and J. G. Fujimoto, “Ultrahigh speed 1050nm swept source / Fourier domain OCT retinal and anterior segment imaging at 100,000 to 400,000 axial scans per second,” Opt. Express18, 20029–20048 (2010).
[CrossRef] [PubMed]

T. Klein, W. Wieser, C. M. Eigenwillig, B. R. Biedermann, and R. Huber, “Megahertz OCT for ultrawide-field retinal imaging with a 1050 nm Fourier domain mode-locked laser,” Opt. Express19, 3044–3062 (2011).
[CrossRef] [PubMed]

B. Potsaid, I. Gorczynska, V. J. Srinivasan, Y. Chen, J. Jiang, A. Cable, and J. G. Fujimoto, “Ultrahigh speed spectral / Fourier domain OCT ophthalmic imaging at 70,000 to 312,500 axial scans per second,” Opt. Express16, 15149–15169 (2008).
[CrossRef] [PubMed]

Y. Wang, J. S. Nelson, Z. Chen, B. J. Reiser, R. S. Chuck, and R. S. Windeler, “Optimal wavelength for ultrahigh-resolution optical coherence tomography,” Opt. Express11, 1411–1417 (2003).
[CrossRef] [PubMed]

B. Považay, K. Bizheva, B. Hermann, A. Unterhuber, H. Sattmann, A. F. Fercher, W. Drexler, C. Schubert, P. K. Ahnelt, M. Mei, R. Holzwarth, W. J. Wadsworth, J. C. Knight, and P. S. J. Russel, “Enhanced visualization of choroidal vessels using ultrahigh resolution ophthalmic OCT at 1050 nm,” Opt. Express11, 1980–1986 (2003).
[CrossRef]

M. Wojtkowski, V. Srinivasan, T. Ko, J. Fujimoto, A. Kowalczyk, and J. Duker, “Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation,” Opt. Express12, 2404–2422 (2004).
[CrossRef] [PubMed]

S.-H. Yun, G. J. Tearney, J. F. de Boer, and B. E. Bouma, “Motion artifacts in optical coherence tomography with frequency-domain ranging,” Opt. Express12, 2977–2998 (2004).
[CrossRef] [PubMed]

T. Hillman and D. Sampson, “The effect of water dispersion and absorption on axial resolution in ultrahigh-resolution optical coherence tomography,” Opt. Express13, 1860–1874 (2005).
[CrossRef] [PubMed]

A. Unterhuber, B. Považay, B. Hermann, H. Sattmann, A. Chavez-Pirson, and W. Drexler, “In vivo retinal optical coherence tomography at 1040 nm - enhanced penetration into the choroid,” Opt. Express13, 3252–3258 (2005).
[CrossRef] [PubMed]

Y. Yasuno, Y. Hong, S. Makita, M. Yamanari, M. Akiba, M. Miura, and T. Yatagai, “In vivo high-contrast imaging of deep posterior eye by 1-μm swept source optical coherence tomography and scattering optical coherence angiography,” Opt. Express15, 6121–6139 (2007).
[CrossRef] [PubMed]

Opt. Lett. (4)

Proc. SPIE (3)

M. P. Minneman, J. Ensher, M. Crawford, and D. Derickson, “All-semiconductor high-speed akinetic swept-source for OCT,” Proc. SPIE8311, 831116 (2011).
[CrossRef]

M. Kuznetsov, W. Atia, B. Johnson, and D. Flanders, “Compact ultrafast reflective Fabry-Perot tunable lasers for oct imaging applications,” Proc. SPIE7554, 75541F (2010).

S. Marschall, T. Klein, W. Wieser, T. Torzicky, M. Pircher, B. R. Biedermann, C. Pedersen, C. K. Hitzenberger, R. Huber, and P. E. Andersen, “Broadband Fourier domain mode-locked laser for optical coherence tomography at 1060 nm,” Proc. SPIE8213, 82130R (2012).
[CrossRef]

Prog. Retin. Eye Res. (1)

W. Drexler and J. G. Fujimoto, “State-of-the-art retinal optical coherence tomography,” Prog. Retin. Eye Res.27, 45–88 (2008).
[CrossRef]

Science (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254, 1178–1181 (1991).
[CrossRef] [PubMed]

Vis. Res. (1)

T. J. van den Berg and H. Spekreijse, “Near infrared light absorption in the human eye media,” Vis. Res.37, 249–253 (1997).
[CrossRef] [PubMed]

Other (2)

American National Standards Institute, “American National Standard for Safe Use of Lasers,” ANSI Z 136-1.

International Electrotechnical Commission, “Safety of laser products,” IEC 60825.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

In addition to the wavelength range below 950 nm, there is a minimum of the water absorption around 1060 nm, that permits in vivo OCT imaging of the human retina. For a length of 50 mm water—corresponding to a double pass through a human eye—this window has a 3 dB-width of approximately 100 nm. Calculated from data by Palmer and Williams [30].

Fig. 2
Fig. 2

Point spread functions (PSFs) calculated using a 1/e2-truncated Gaussian spectrum centered at 280 THz (∼1071 nm) with 60 THz total width (∼232 nm). (a) Key figures of the numerical investigation: PSF broadening and amplitude drop due to the water absorption compared to reference PSF, and additional amplitude drop due to compensation of the broadening by spectral shaping. Data points: calculated values; curves: fitted Gaussian. (b) Comparison of the broadening effects of absorption and dispersion. Refractive index data by Schiebener et al. [35].

Fig. 3
Fig. 3

The shape of a state-of-the-art broadband spectrum (left, Δν = 30 THz) changes only slightly due to water absorption, and compensation would require only a minor redistribution of power from the center to the edges. An ultra-broadband spectrum (right, Δν = 60 THz) gets strongly attenuated below 265 THz, and a large fraction of the total power is required to compensate for this. I0n and Icn are normalized to unity power.

Fig. 4
Fig. 4

(a) Calculated values for the axial resolution in air depending on the bandwidth at different center frequencies compared to the ideal reference case without water absorption. (b) The corresponding relative broadening ratios.

Fig. 5
Fig. 5

Drop of the point spread function amplitude due to water absorption as a function of the bandwidth at different center frequencies with and without compensation for the broadening.

Fig. 6
Fig. 6

(a) Relative broadening of the point spread function and (b, c) drop of the amplitude as a function of the center frequency for different bandwidths with and without compensation for the broadening.

Fig. 7
Fig. 7

(a) Relative broadening of the point spread function and (b, c) drop of the amplitude as a function of the bandwidth for different operating parameters with and without compensation for the broadening.

Equations (16)

Equations on this page are rendered with MathJax. Learn more.

δ z = 2 ln 2 π c n Δ ν 3 dB
2 ln 2 π λ c 2 n Δ λ 3 dB 0.44 λ c 2 n Δ λ 3 dB ,
I 0 ( ν ) { > 0 if | ν ν c | 1 2 Δ ν = 0 if | ν ν c | > 1 2 Δ ν ,
I = 1 τ s w 0 τ s w I ( ν l ( t ) ) d t .
I 0 n ( ν ) = I 0 ( ν ) I 0 .
I 0 a ( ν ) = I 0 n ( ν ) T ( ν ) = I 0 n ( ν ) exp [ μ a ( ν ) l ] .
V 0 n ( ν ) = α I 0 n ( ν ) cos ( 2 π c ν d ) , ( without absorption )
V 0 a ( ν ) = α I 0 n ( ν ) I 0 a ( ν ) cos ( 2 π c ν d ) = α T ( ν ) I 0 n ( ν ) cos ( 2 π c ν d ) , ( with absorption in one arm )
I c ( ν ) = I 0 ( ν ) T ( ν ) ,
I c n ( ν ) = I c ( ν ) I c .
V c a ( ν ) = α T ( ν ) I c n ( ν ) cos ( 2 π c ν d )
= α I 0 ( ν ) I c cos ( 2 π c ν d )
= V 0 n ( ν ) I 0 I c ,
I 0 , Gauss ( ν ) = { exp [ 8 ( ν ν c Δ ν ) 2 ] if | ν ν c | 1 2 Δ ν 0 if | ν ν c | > 1 2 Δ ν
ν l ( t ) = { 1 ν max + 1 2 ( 1 ν min 1 ν max ) [ 1 + sin ( 2 π t τ s w ) ] } 1 ,
I 0 , Hann ( ν ) = { 1 + cos ( 2 π ν ν c Δ ν ) if | ν ν c | 1 2 Δ ν 0 if | ν ν c | > 1 2 Δ ν ,

Metrics