Abstract

This paper demonstrates spatially selective sampling of the plasma membrane by the implementation of time-multiplexed holographic optical tweezers for Smart Droplet Microtools (SDMs). High speed (>1000fps) dynamical hologram generation was computed on the graphics processing unit of a standard display card and controlled by a user friendly LabView interface. Time multiplexed binary holograms were displayed in real time and mirrored to a ferroelectric Spatial Light Modulator. SDMs were manufactured with both liquid cores (as previously described) and solid cores, which confer significant advantages in terms of stability, polydispersity and ease of use. These were coated with a number of detergents, the most successful based upon lipids doped with transfection reagents. In order to validate these, trapped SDMs were maneuvered up to the plasma membrane of giant vesicles containing Nile Red and human biliary epithelial (BE) colon cancer cells with green fluorescent labeled protein (GFP)-labeled CAAX (a motif belonging to the Ras protein). Bright field and fluorescence images showed that successful trapping and manipulation of multiple SDMs in x, y, z was achieved with success rates of 30-50% and that subsequent membrane-SDM interactions led to the uptake of Nile Red or GFP-CAAX into the SDM.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Svoboda and S. M. Block, “Biological applications of optical forces,” Annu. Rev. Biophys. Biomol. Struct. 23(1), 247–285 (1994).
    [CrossRef] [PubMed]
  2. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11(5), 288–290 (1986).
    [CrossRef] [PubMed]
  3. E. Fällman and O. Axner, “Design for fully steerable dual-trap optical tweezers,” Appl. Opt. 36(10), 2107–2113 (1997).
    [CrossRef] [PubMed]
  4. W. M. Lee, P. J. Reece, R. F. Marchington, N. K. Metzger, and K. Dholakia, “Construction and calibration of an optical trap on a fluorescence optical microscope,” Nat. Protoc. 2(12), 3226–3238 (2007).
    [CrossRef] [PubMed]
  5. K. Visscher, G. J. Brakenhoff, and J. J. Krol, “Micromanipulation by “multiple” optical traps created by a single fast scanning trap integrated with the bilateral confocal scanning laser microscope,” Cytometry 14(2), 105–114 (1993).
    [CrossRef] [PubMed]
  6. M. Reicherter, S. Zwick, T. Haist, C. Kohler, H. Tiziani, and W. Osten, “Fast digital hologram generation and adaptive force measurement in liquid-crystal-display-based holographic tweezers,” Appl. Opt. 45(5), 888–896 (2006).
    [CrossRef] [PubMed]
  7. J. W. Goodman, “Wavefront modulation,” in Introduction to Fourier Optics, 3rd ed. (Roberts & Co., 2004), Chap. 7.
  8. J. Leach, K. Wulff, G. Sinclair, P. Jordan, J. Courtial, L. Thomson, G. Gibson, K. Karunwi, J. Cooper, Z. J. Laczik, and M. Padgett, “Interactive approach to optical tweezers control,” Appl. Opt. 45(5), 897–903 (2006).
    [CrossRef] [PubMed]
  9. A. Lafong, W. J. Hossack, J. Arlt, T. J. Nowakowski, and N. D. Read, “Time-Multiplexed Laguerre-Gaussian holographic optical tweezers for biological applications,” Opt. Express 14(7), 3065–3072 (2006).
    [CrossRef] [PubMed]
  10. T. Haist, M. Reicherter, M. Wu, and L. Seifert, “Using graphics boards to compute holograms,” Comput. Sci. Eng. 8(1), 8–13 (2006).
    [CrossRef]
  11. R. J. Rost, OpenGL Shading Language (Addison-Wesley, 2008).
  12. National Instruments Corporation, “LabView 8.2.1” (2007), http://www.ni.com/labview/ .
  13. R. H. Templer and O. Ces, “New frontiers in single-cell analysis,” J. R. Soc. Interface 5(Suppl 2), S111–S112 (2008).
    [CrossRef] [PubMed]
  14. P. M. P. Lanigan, K. Chan, T. Ninkovic, R. H. Templer, P. M. W. French, A. J. de Mello, K. R. Willison, P. J. Parker, M. A. A. Neil, O. Ces, and D. R. Klug, “Spatially selective sampling of single cells using optically trapped fusogenic emulsion droplets: a new single-cell proteomic tool,” J. R. Soc. Interface 5(Suppl 2), S161–S168 (2008).
    [CrossRef] [PubMed]
  15. P. M. P. Lanigan, T. Ninkovic, K. Chan, A. J. de Mello, K. R. Willison, D. R. Klug, R. H. Templer, M. A. A. Neil, and O. Ces, “A microfluidic platform for probing single cell plasma membranes using optically trapped Smart Droplet Microtools (SDMs),” Lab Chip 9(8), 1096–1101 (2009).
    [CrossRef] [PubMed]
  16. A. Salehi-Reyhani, J. Kaplinsky, E. Burgin, M. Novakova, A. J. deMello, R. H. Templer, P. Parker, M. A. A. Neil, O. Ces, P. French, K. R. Willison, and D. Klug, “A first step towards practical single cell proteomics: a microfluidic antibody capture chip with TIRF detection,” Lab Chip 11(7), 1256–1261 (2011).
    [CrossRef] [PubMed]
  17. NVidia, “GeForce 8600” (2009), http://www.nvidia.com/object/geforce_8600.html .
  18. Apple, “Working with Quartz Composer” (2009), http://developer.apple.com/graphicsimaging/quartz/quartzcomposer.html .
  19. NVidia, “FX Composer 2.5” (2009), http://developer.nvidia.com/object/fx_composer_home.html .
  20. University of Glasgow School of Physics and Astronomy, “Optical tweezers software” (2010), http://www.gla.ac.uk/schools/physics/research/groups/optics/research/opticaltweezers/software/ .
  21. B. R. Boruah and M. A. A. Neil, “Susceptibility to and correction of azimuthal aberrations in singular light beams,” Opt. Express 14(22), 10377–10385 (2006).
    [CrossRef] [PubMed]
  22. M. A. A. Neil, M. J. Booth, and T. Wilson, “New modal wave-front sensor: a theoretical analysis,” J. Opt. Soc. Am. A 17(6), 1098–1107 (2000).
    [CrossRef] [PubMed]
  23. B. Fowle, “Setting up OpenGL in an MFC control” (2006), http://www.codeguru.com .
  24. M. Angelova, S. Soléau, P. Méléard, F. Faucon, and P. Bothorel, “Preparation of giant vesicles by external AC electric fields. Kinetics and applications,” in Trends in Colloid and Interface Science VI, C. Helm, M. Lösche, and H. Möhwald, eds. (Springer, Berlin, 1992), pp. 127–131.
  25. beepa, “Fraps real-time video capture and benchmarking” (2009), http://www.fraps.com .

2011 (1)

A. Salehi-Reyhani, J. Kaplinsky, E. Burgin, M. Novakova, A. J. deMello, R. H. Templer, P. Parker, M. A. A. Neil, O. Ces, P. French, K. R. Willison, and D. Klug, “A first step towards practical single cell proteomics: a microfluidic antibody capture chip with TIRF detection,” Lab Chip 11(7), 1256–1261 (2011).
[CrossRef] [PubMed]

2009 (1)

P. M. P. Lanigan, T. Ninkovic, K. Chan, A. J. de Mello, K. R. Willison, D. R. Klug, R. H. Templer, M. A. A. Neil, and O. Ces, “A microfluidic platform for probing single cell plasma membranes using optically trapped Smart Droplet Microtools (SDMs),” Lab Chip 9(8), 1096–1101 (2009).
[CrossRef] [PubMed]

2008 (2)

R. H. Templer and O. Ces, “New frontiers in single-cell analysis,” J. R. Soc. Interface 5(Suppl 2), S111–S112 (2008).
[CrossRef] [PubMed]

P. M. P. Lanigan, K. Chan, T. Ninkovic, R. H. Templer, P. M. W. French, A. J. de Mello, K. R. Willison, P. J. Parker, M. A. A. Neil, O. Ces, and D. R. Klug, “Spatially selective sampling of single cells using optically trapped fusogenic emulsion droplets: a new single-cell proteomic tool,” J. R. Soc. Interface 5(Suppl 2), S161–S168 (2008).
[CrossRef] [PubMed]

2007 (1)

W. M. Lee, P. J. Reece, R. F. Marchington, N. K. Metzger, and K. Dholakia, “Construction and calibration of an optical trap on a fluorescence optical microscope,” Nat. Protoc. 2(12), 3226–3238 (2007).
[CrossRef] [PubMed]

2006 (5)

2000 (1)

1997 (1)

1994 (1)

K. Svoboda and S. M. Block, “Biological applications of optical forces,” Annu. Rev. Biophys. Biomol. Struct. 23(1), 247–285 (1994).
[CrossRef] [PubMed]

1993 (1)

K. Visscher, G. J. Brakenhoff, and J. J. Krol, “Micromanipulation by “multiple” optical traps created by a single fast scanning trap integrated with the bilateral confocal scanning laser microscope,” Cytometry 14(2), 105–114 (1993).
[CrossRef] [PubMed]

1986 (1)

Arlt, J.

Ashkin, A.

Axner, O.

Bjorkholm, J. E.

Block, S. M.

K. Svoboda and S. M. Block, “Biological applications of optical forces,” Annu. Rev. Biophys. Biomol. Struct. 23(1), 247–285 (1994).
[CrossRef] [PubMed]

Booth, M. J.

Boruah, B. R.

Brakenhoff, G. J.

K. Visscher, G. J. Brakenhoff, and J. J. Krol, “Micromanipulation by “multiple” optical traps created by a single fast scanning trap integrated with the bilateral confocal scanning laser microscope,” Cytometry 14(2), 105–114 (1993).
[CrossRef] [PubMed]

Burgin, E.

A. Salehi-Reyhani, J. Kaplinsky, E. Burgin, M. Novakova, A. J. deMello, R. H. Templer, P. Parker, M. A. A. Neil, O. Ces, P. French, K. R. Willison, and D. Klug, “A first step towards practical single cell proteomics: a microfluidic antibody capture chip with TIRF detection,” Lab Chip 11(7), 1256–1261 (2011).
[CrossRef] [PubMed]

Ces, O.

A. Salehi-Reyhani, J. Kaplinsky, E. Burgin, M. Novakova, A. J. deMello, R. H. Templer, P. Parker, M. A. A. Neil, O. Ces, P. French, K. R. Willison, and D. Klug, “A first step towards practical single cell proteomics: a microfluidic antibody capture chip with TIRF detection,” Lab Chip 11(7), 1256–1261 (2011).
[CrossRef] [PubMed]

P. M. P. Lanigan, T. Ninkovic, K. Chan, A. J. de Mello, K. R. Willison, D. R. Klug, R. H. Templer, M. A. A. Neil, and O. Ces, “A microfluidic platform for probing single cell plasma membranes using optically trapped Smart Droplet Microtools (SDMs),” Lab Chip 9(8), 1096–1101 (2009).
[CrossRef] [PubMed]

R. H. Templer and O. Ces, “New frontiers in single-cell analysis,” J. R. Soc. Interface 5(Suppl 2), S111–S112 (2008).
[CrossRef] [PubMed]

P. M. P. Lanigan, K. Chan, T. Ninkovic, R. H. Templer, P. M. W. French, A. J. de Mello, K. R. Willison, P. J. Parker, M. A. A. Neil, O. Ces, and D. R. Klug, “Spatially selective sampling of single cells using optically trapped fusogenic emulsion droplets: a new single-cell proteomic tool,” J. R. Soc. Interface 5(Suppl 2), S161–S168 (2008).
[CrossRef] [PubMed]

Chan, K.

P. M. P. Lanigan, T. Ninkovic, K. Chan, A. J. de Mello, K. R. Willison, D. R. Klug, R. H. Templer, M. A. A. Neil, and O. Ces, “A microfluidic platform for probing single cell plasma membranes using optically trapped Smart Droplet Microtools (SDMs),” Lab Chip 9(8), 1096–1101 (2009).
[CrossRef] [PubMed]

P. M. P. Lanigan, K. Chan, T. Ninkovic, R. H. Templer, P. M. W. French, A. J. de Mello, K. R. Willison, P. J. Parker, M. A. A. Neil, O. Ces, and D. R. Klug, “Spatially selective sampling of single cells using optically trapped fusogenic emulsion droplets: a new single-cell proteomic tool,” J. R. Soc. Interface 5(Suppl 2), S161–S168 (2008).
[CrossRef] [PubMed]

Chu, S.

Cooper, J.

Courtial, J.

de Mello, A. J.

P. M. P. Lanigan, T. Ninkovic, K. Chan, A. J. de Mello, K. R. Willison, D. R. Klug, R. H. Templer, M. A. A. Neil, and O. Ces, “A microfluidic platform for probing single cell plasma membranes using optically trapped Smart Droplet Microtools (SDMs),” Lab Chip 9(8), 1096–1101 (2009).
[CrossRef] [PubMed]

P. M. P. Lanigan, K. Chan, T. Ninkovic, R. H. Templer, P. M. W. French, A. J. de Mello, K. R. Willison, P. J. Parker, M. A. A. Neil, O. Ces, and D. R. Klug, “Spatially selective sampling of single cells using optically trapped fusogenic emulsion droplets: a new single-cell proteomic tool,” J. R. Soc. Interface 5(Suppl 2), S161–S168 (2008).
[CrossRef] [PubMed]

deMello, A. J.

A. Salehi-Reyhani, J. Kaplinsky, E. Burgin, M. Novakova, A. J. deMello, R. H. Templer, P. Parker, M. A. A. Neil, O. Ces, P. French, K. R. Willison, and D. Klug, “A first step towards practical single cell proteomics: a microfluidic antibody capture chip with TIRF detection,” Lab Chip 11(7), 1256–1261 (2011).
[CrossRef] [PubMed]

Dholakia, K.

W. M. Lee, P. J. Reece, R. F. Marchington, N. K. Metzger, and K. Dholakia, “Construction and calibration of an optical trap on a fluorescence optical microscope,” Nat. Protoc. 2(12), 3226–3238 (2007).
[CrossRef] [PubMed]

Dziedzic, J. M.

Fällman, E.

French, P.

A. Salehi-Reyhani, J. Kaplinsky, E. Burgin, M. Novakova, A. J. deMello, R. H. Templer, P. Parker, M. A. A. Neil, O. Ces, P. French, K. R. Willison, and D. Klug, “A first step towards practical single cell proteomics: a microfluidic antibody capture chip with TIRF detection,” Lab Chip 11(7), 1256–1261 (2011).
[CrossRef] [PubMed]

French, P. M. W.

P. M. P. Lanigan, K. Chan, T. Ninkovic, R. H. Templer, P. M. W. French, A. J. de Mello, K. R. Willison, P. J. Parker, M. A. A. Neil, O. Ces, and D. R. Klug, “Spatially selective sampling of single cells using optically trapped fusogenic emulsion droplets: a new single-cell proteomic tool,” J. R. Soc. Interface 5(Suppl 2), S161–S168 (2008).
[CrossRef] [PubMed]

Gibson, G.

Haist, T.

Hossack, W. J.

Jordan, P.

Kaplinsky, J.

A. Salehi-Reyhani, J. Kaplinsky, E. Burgin, M. Novakova, A. J. deMello, R. H. Templer, P. Parker, M. A. A. Neil, O. Ces, P. French, K. R. Willison, and D. Klug, “A first step towards practical single cell proteomics: a microfluidic antibody capture chip with TIRF detection,” Lab Chip 11(7), 1256–1261 (2011).
[CrossRef] [PubMed]

Karunwi, K.

Klug, D.

A. Salehi-Reyhani, J. Kaplinsky, E. Burgin, M. Novakova, A. J. deMello, R. H. Templer, P. Parker, M. A. A. Neil, O. Ces, P. French, K. R. Willison, and D. Klug, “A first step towards practical single cell proteomics: a microfluidic antibody capture chip with TIRF detection,” Lab Chip 11(7), 1256–1261 (2011).
[CrossRef] [PubMed]

Klug, D. R.

P. M. P. Lanigan, T. Ninkovic, K. Chan, A. J. de Mello, K. R. Willison, D. R. Klug, R. H. Templer, M. A. A. Neil, and O. Ces, “A microfluidic platform for probing single cell plasma membranes using optically trapped Smart Droplet Microtools (SDMs),” Lab Chip 9(8), 1096–1101 (2009).
[CrossRef] [PubMed]

P. M. P. Lanigan, K. Chan, T. Ninkovic, R. H. Templer, P. M. W. French, A. J. de Mello, K. R. Willison, P. J. Parker, M. A. A. Neil, O. Ces, and D. R. Klug, “Spatially selective sampling of single cells using optically trapped fusogenic emulsion droplets: a new single-cell proteomic tool,” J. R. Soc. Interface 5(Suppl 2), S161–S168 (2008).
[CrossRef] [PubMed]

Kohler, C.

Krol, J. J.

K. Visscher, G. J. Brakenhoff, and J. J. Krol, “Micromanipulation by “multiple” optical traps created by a single fast scanning trap integrated with the bilateral confocal scanning laser microscope,” Cytometry 14(2), 105–114 (1993).
[CrossRef] [PubMed]

Laczik, Z. J.

Lafong, A.

Lanigan, P. M. P.

P. M. P. Lanigan, T. Ninkovic, K. Chan, A. J. de Mello, K. R. Willison, D. R. Klug, R. H. Templer, M. A. A. Neil, and O. Ces, “A microfluidic platform for probing single cell plasma membranes using optically trapped Smart Droplet Microtools (SDMs),” Lab Chip 9(8), 1096–1101 (2009).
[CrossRef] [PubMed]

P. M. P. Lanigan, K. Chan, T. Ninkovic, R. H. Templer, P. M. W. French, A. J. de Mello, K. R. Willison, P. J. Parker, M. A. A. Neil, O. Ces, and D. R. Klug, “Spatially selective sampling of single cells using optically trapped fusogenic emulsion droplets: a new single-cell proteomic tool,” J. R. Soc. Interface 5(Suppl 2), S161–S168 (2008).
[CrossRef] [PubMed]

Leach, J.

Lee, W. M.

W. M. Lee, P. J. Reece, R. F. Marchington, N. K. Metzger, and K. Dholakia, “Construction and calibration of an optical trap on a fluorescence optical microscope,” Nat. Protoc. 2(12), 3226–3238 (2007).
[CrossRef] [PubMed]

Marchington, R. F.

W. M. Lee, P. J. Reece, R. F. Marchington, N. K. Metzger, and K. Dholakia, “Construction and calibration of an optical trap on a fluorescence optical microscope,” Nat. Protoc. 2(12), 3226–3238 (2007).
[CrossRef] [PubMed]

Metzger, N. K.

W. M. Lee, P. J. Reece, R. F. Marchington, N. K. Metzger, and K. Dholakia, “Construction and calibration of an optical trap on a fluorescence optical microscope,” Nat. Protoc. 2(12), 3226–3238 (2007).
[CrossRef] [PubMed]

Neil, M. A. A.

A. Salehi-Reyhani, J. Kaplinsky, E. Burgin, M. Novakova, A. J. deMello, R. H. Templer, P. Parker, M. A. A. Neil, O. Ces, P. French, K. R. Willison, and D. Klug, “A first step towards practical single cell proteomics: a microfluidic antibody capture chip with TIRF detection,” Lab Chip 11(7), 1256–1261 (2011).
[CrossRef] [PubMed]

P. M. P. Lanigan, T. Ninkovic, K. Chan, A. J. de Mello, K. R. Willison, D. R. Klug, R. H. Templer, M. A. A. Neil, and O. Ces, “A microfluidic platform for probing single cell plasma membranes using optically trapped Smart Droplet Microtools (SDMs),” Lab Chip 9(8), 1096–1101 (2009).
[CrossRef] [PubMed]

P. M. P. Lanigan, K. Chan, T. Ninkovic, R. H. Templer, P. M. W. French, A. J. de Mello, K. R. Willison, P. J. Parker, M. A. A. Neil, O. Ces, and D. R. Klug, “Spatially selective sampling of single cells using optically trapped fusogenic emulsion droplets: a new single-cell proteomic tool,” J. R. Soc. Interface 5(Suppl 2), S161–S168 (2008).
[CrossRef] [PubMed]

B. R. Boruah and M. A. A. Neil, “Susceptibility to and correction of azimuthal aberrations in singular light beams,” Opt. Express 14(22), 10377–10385 (2006).
[CrossRef] [PubMed]

M. A. A. Neil, M. J. Booth, and T. Wilson, “New modal wave-front sensor: a theoretical analysis,” J. Opt. Soc. Am. A 17(6), 1098–1107 (2000).
[CrossRef] [PubMed]

Ninkovic, T.

P. M. P. Lanigan, T. Ninkovic, K. Chan, A. J. de Mello, K. R. Willison, D. R. Klug, R. H. Templer, M. A. A. Neil, and O. Ces, “A microfluidic platform for probing single cell plasma membranes using optically trapped Smart Droplet Microtools (SDMs),” Lab Chip 9(8), 1096–1101 (2009).
[CrossRef] [PubMed]

P. M. P. Lanigan, K. Chan, T. Ninkovic, R. H. Templer, P. M. W. French, A. J. de Mello, K. R. Willison, P. J. Parker, M. A. A. Neil, O. Ces, and D. R. Klug, “Spatially selective sampling of single cells using optically trapped fusogenic emulsion droplets: a new single-cell proteomic tool,” J. R. Soc. Interface 5(Suppl 2), S161–S168 (2008).
[CrossRef] [PubMed]

Novakova, M.

A. Salehi-Reyhani, J. Kaplinsky, E. Burgin, M. Novakova, A. J. deMello, R. H. Templer, P. Parker, M. A. A. Neil, O. Ces, P. French, K. R. Willison, and D. Klug, “A first step towards practical single cell proteomics: a microfluidic antibody capture chip with TIRF detection,” Lab Chip 11(7), 1256–1261 (2011).
[CrossRef] [PubMed]

Nowakowski, T. J.

Osten, W.

Padgett, M.

Parker, P.

A. Salehi-Reyhani, J. Kaplinsky, E. Burgin, M. Novakova, A. J. deMello, R. H. Templer, P. Parker, M. A. A. Neil, O. Ces, P. French, K. R. Willison, and D. Klug, “A first step towards practical single cell proteomics: a microfluidic antibody capture chip with TIRF detection,” Lab Chip 11(7), 1256–1261 (2011).
[CrossRef] [PubMed]

Parker, P. J.

P. M. P. Lanigan, K. Chan, T. Ninkovic, R. H. Templer, P. M. W. French, A. J. de Mello, K. R. Willison, P. J. Parker, M. A. A. Neil, O. Ces, and D. R. Klug, “Spatially selective sampling of single cells using optically trapped fusogenic emulsion droplets: a new single-cell proteomic tool,” J. R. Soc. Interface 5(Suppl 2), S161–S168 (2008).
[CrossRef] [PubMed]

Read, N. D.

Reece, P. J.

W. M. Lee, P. J. Reece, R. F. Marchington, N. K. Metzger, and K. Dholakia, “Construction and calibration of an optical trap on a fluorescence optical microscope,” Nat. Protoc. 2(12), 3226–3238 (2007).
[CrossRef] [PubMed]

Reicherter, M.

Salehi-Reyhani, A.

A. Salehi-Reyhani, J. Kaplinsky, E. Burgin, M. Novakova, A. J. deMello, R. H. Templer, P. Parker, M. A. A. Neil, O. Ces, P. French, K. R. Willison, and D. Klug, “A first step towards practical single cell proteomics: a microfluidic antibody capture chip with TIRF detection,” Lab Chip 11(7), 1256–1261 (2011).
[CrossRef] [PubMed]

Seifert, L.

T. Haist, M. Reicherter, M. Wu, and L. Seifert, “Using graphics boards to compute holograms,” Comput. Sci. Eng. 8(1), 8–13 (2006).
[CrossRef]

Sinclair, G.

Svoboda, K.

K. Svoboda and S. M. Block, “Biological applications of optical forces,” Annu. Rev. Biophys. Biomol. Struct. 23(1), 247–285 (1994).
[CrossRef] [PubMed]

Templer, R. H.

A. Salehi-Reyhani, J. Kaplinsky, E. Burgin, M. Novakova, A. J. deMello, R. H. Templer, P. Parker, M. A. A. Neil, O. Ces, P. French, K. R. Willison, and D. Klug, “A first step towards practical single cell proteomics: a microfluidic antibody capture chip with TIRF detection,” Lab Chip 11(7), 1256–1261 (2011).
[CrossRef] [PubMed]

P. M. P. Lanigan, T. Ninkovic, K. Chan, A. J. de Mello, K. R. Willison, D. R. Klug, R. H. Templer, M. A. A. Neil, and O. Ces, “A microfluidic platform for probing single cell plasma membranes using optically trapped Smart Droplet Microtools (SDMs),” Lab Chip 9(8), 1096–1101 (2009).
[CrossRef] [PubMed]

R. H. Templer and O. Ces, “New frontiers in single-cell analysis,” J. R. Soc. Interface 5(Suppl 2), S111–S112 (2008).
[CrossRef] [PubMed]

P. M. P. Lanigan, K. Chan, T. Ninkovic, R. H. Templer, P. M. W. French, A. J. de Mello, K. R. Willison, P. J. Parker, M. A. A. Neil, O. Ces, and D. R. Klug, “Spatially selective sampling of single cells using optically trapped fusogenic emulsion droplets: a new single-cell proteomic tool,” J. R. Soc. Interface 5(Suppl 2), S161–S168 (2008).
[CrossRef] [PubMed]

Thomson, L.

Tiziani, H.

Visscher, K.

K. Visscher, G. J. Brakenhoff, and J. J. Krol, “Micromanipulation by “multiple” optical traps created by a single fast scanning trap integrated with the bilateral confocal scanning laser microscope,” Cytometry 14(2), 105–114 (1993).
[CrossRef] [PubMed]

Willison, K. R.

A. Salehi-Reyhani, J. Kaplinsky, E. Burgin, M. Novakova, A. J. deMello, R. H. Templer, P. Parker, M. A. A. Neil, O. Ces, P. French, K. R. Willison, and D. Klug, “A first step towards practical single cell proteomics: a microfluidic antibody capture chip with TIRF detection,” Lab Chip 11(7), 1256–1261 (2011).
[CrossRef] [PubMed]

P. M. P. Lanigan, T. Ninkovic, K. Chan, A. J. de Mello, K. R. Willison, D. R. Klug, R. H. Templer, M. A. A. Neil, and O. Ces, “A microfluidic platform for probing single cell plasma membranes using optically trapped Smart Droplet Microtools (SDMs),” Lab Chip 9(8), 1096–1101 (2009).
[CrossRef] [PubMed]

P. M. P. Lanigan, K. Chan, T. Ninkovic, R. H. Templer, P. M. W. French, A. J. de Mello, K. R. Willison, P. J. Parker, M. A. A. Neil, O. Ces, and D. R. Klug, “Spatially selective sampling of single cells using optically trapped fusogenic emulsion droplets: a new single-cell proteomic tool,” J. R. Soc. Interface 5(Suppl 2), S161–S168 (2008).
[CrossRef] [PubMed]

Wilson, T.

Wu, M.

T. Haist, M. Reicherter, M. Wu, and L. Seifert, “Using graphics boards to compute holograms,” Comput. Sci. Eng. 8(1), 8–13 (2006).
[CrossRef]

Wulff, K.

Zwick, S.

Annu. Rev. Biophys. Biomol. Struct. (1)

K. Svoboda and S. M. Block, “Biological applications of optical forces,” Annu. Rev. Biophys. Biomol. Struct. 23(1), 247–285 (1994).
[CrossRef] [PubMed]

Appl. Opt. (3)

Comput. Sci. Eng. (1)

T. Haist, M. Reicherter, M. Wu, and L. Seifert, “Using graphics boards to compute holograms,” Comput. Sci. Eng. 8(1), 8–13 (2006).
[CrossRef]

Cytometry (1)

K. Visscher, G. J. Brakenhoff, and J. J. Krol, “Micromanipulation by “multiple” optical traps created by a single fast scanning trap integrated with the bilateral confocal scanning laser microscope,” Cytometry 14(2), 105–114 (1993).
[CrossRef] [PubMed]

J. Opt. Soc. Am. A (1)

J. R. Soc. Interface (2)

R. H. Templer and O. Ces, “New frontiers in single-cell analysis,” J. R. Soc. Interface 5(Suppl 2), S111–S112 (2008).
[CrossRef] [PubMed]

P. M. P. Lanigan, K. Chan, T. Ninkovic, R. H. Templer, P. M. W. French, A. J. de Mello, K. R. Willison, P. J. Parker, M. A. A. Neil, O. Ces, and D. R. Klug, “Spatially selective sampling of single cells using optically trapped fusogenic emulsion droplets: a new single-cell proteomic tool,” J. R. Soc. Interface 5(Suppl 2), S161–S168 (2008).
[CrossRef] [PubMed]

Lab Chip (2)

P. M. P. Lanigan, T. Ninkovic, K. Chan, A. J. de Mello, K. R. Willison, D. R. Klug, R. H. Templer, M. A. A. Neil, and O. Ces, “A microfluidic platform for probing single cell plasma membranes using optically trapped Smart Droplet Microtools (SDMs),” Lab Chip 9(8), 1096–1101 (2009).
[CrossRef] [PubMed]

A. Salehi-Reyhani, J. Kaplinsky, E. Burgin, M. Novakova, A. J. deMello, R. H. Templer, P. Parker, M. A. A. Neil, O. Ces, P. French, K. R. Willison, and D. Klug, “A first step towards practical single cell proteomics: a microfluidic antibody capture chip with TIRF detection,” Lab Chip 11(7), 1256–1261 (2011).
[CrossRef] [PubMed]

Nat. Protoc. (1)

W. M. Lee, P. J. Reece, R. F. Marchington, N. K. Metzger, and K. Dholakia, “Construction and calibration of an optical trap on a fluorescence optical microscope,” Nat. Protoc. 2(12), 3226–3238 (2007).
[CrossRef] [PubMed]

Opt. Express (2)

Opt. Lett. (1)

Other (10)

J. W. Goodman, “Wavefront modulation,” in Introduction to Fourier Optics, 3rd ed. (Roberts & Co., 2004), Chap. 7.

NVidia, “GeForce 8600” (2009), http://www.nvidia.com/object/geforce_8600.html .

Apple, “Working with Quartz Composer” (2009), http://developer.apple.com/graphicsimaging/quartz/quartzcomposer.html .

NVidia, “FX Composer 2.5” (2009), http://developer.nvidia.com/object/fx_composer_home.html .

University of Glasgow School of Physics and Astronomy, “Optical tweezers software” (2010), http://www.gla.ac.uk/schools/physics/research/groups/optics/research/opticaltweezers/software/ .

R. J. Rost, OpenGL Shading Language (Addison-Wesley, 2008).

National Instruments Corporation, “LabView 8.2.1” (2007), http://www.ni.com/labview/ .

B. Fowle, “Setting up OpenGL in an MFC control” (2006), http://www.codeguru.com .

M. Angelova, S. Soléau, P. Méléard, F. Faucon, and P. Bothorel, “Preparation of giant vesicles by external AC electric fields. Kinetics and applications,” in Trends in Colloid and Interface Science VI, C. Helm, M. Lösche, and H. Möhwald, eds. (Springer, Berlin, 1992), pp. 127–131.

beepa, “Fraps real-time video capture and benchmarking” (2009), http://www.fraps.com .

Supplementary Material (15)

» Media 1: MOV (1117 KB)     
» Media 2: MOV (1506 KB)     
» Media 3: MOV (2776 KB)     
» Media 4: MOV (2239 KB)     
» Media 5: MOV (228 KB)     
» Media 6: MOV (537 KB)     
» Media 7: MOV (24 KB)     
» Media 8: MOV (10 KB)     
» Media 9: MOV (278 KB)     
» Media 10: MOV (236 KB)     
» Media 11: MOV (61 KB)     
» Media 12: MOV (403 KB)     
» Media 13: MOV (46 KB)     
» Media 14: MOV (632 KB)     
» Media 15: MOV (176 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Basic idea behind GPU pipeline, (a) user primitives define an object to be manipulated and rendered, (b) the object is transformed by the vertex shader (c) the object is rendered by the fragment shader.

Fig. 2
Fig. 2

Shows LabView user interface for dynamical hologram generation and trap manipulation. Two displays were used, monitor 1 (17-inch 1280 × 1024 pixels) for the OpenGL window for displaying the shaded 24 bit holograms and monitor 2 (24-inch 1920 × 1200 pixels) for the number of traps selection, defocus, aberration correction and camera acquisition controls.

Fig. 3
Fig. 3

Showing optical trapping setup, the IR laser source was expanded onto the SLM, which was then imaged onto the back aperture of the microscope objective lens. The half-wave plates and polarizing beamsplitter selected out the phase modulated diffracted beam from the unmodulated dc component.

Fig. 4
Fig. 4

Screen shots showing dynamical (a) aberrations (Media 1), (b) single spot scanning (Media 2), (c) 3 spot scanning (Media 3) and (d) one spot scanning from a 12 spot time-multiplexed hologram (Media 4).

Fig. 5
Fig. 5

Shows (a) x, y, manipulation of donut beams (Media 5), (b) independent z manipulation of donut beams (Media 6), (c) manual aberration correction (Media 7) and (d) donut beams with increasing topological charge (Media 8).

Fig. 6
Fig. 6

Shows test trapping on (a-c) Triton –X100 (Media 9, Media 10, and Media 11), (d,e) DOPE/DOPC coated fluid SDMs (Media 12, Media 13) and DOPC/DMDTAB-coated silica SDMs (Media 14, Media 15): (a) x, y manipulation of 6 trapped SDMs, (b) stage scanning with 4 trapped SDMs, (c) z manipulation of 4 trapped SDMs, (d-e) x, y manipulation of 8 and 6 SDMs respectively, (f) stage scanning with 6 Si SDMs and (g) x, y manipulation of 6 Si SDMs.

Fig. 7
Fig. 7

Bright-field (a) and fluorescence (b) images showing SDM-cell interactions at multiple sites on BE-cell surface. Brightness of SDMs 1 and 2 has been increased for clarity; SDM 3 is clearly visible without amplification. This clearly demonstrates different levels of either protein expression or sampling efficiency across the surface of the cell membrane. Sampling was significantly simpler from giant vesicles, shown in bright-field (c) and fluorescence (d) channels.

Metrics