Abstract

We present a high-resolution three-dimensional position tracking method that allows an optical coherence tomography (OCT) needle probe to be scanned laterally by hand, providing the high degree of flexibility and freedom required in clinical usage. The method is based on a magnetic tracking system, which is augmented by cross-correlation-based resampling and a two-stage moving window average algorithm to improve upon the tracker's limited intrinsic spatial resolution, achieving 18 µm RMS position accuracy. A proof-of-principle system was developed, with successful image reconstruction demonstrated on phantoms and on ex vivo human breast tissue validated against histology. This freehand scanning method could contribute toward clinical implementation of OCT needle imaging.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. E. Bouma and G. J. Tearney, “Power-efficient nonreciprocal interferometer and linear-scanning fiber-optic catheter for optical coherence tomography,” Opt. Lett.24(8), 531–533 (1999).
    [CrossRef] [PubMed]
  2. P. R. Herz, Y. Chen, A. D. Aguirre, K. Schneider, P. Hsiung, J. G. Fujimoto, K. Madden, J. Schmitt, J. Goodnow, and C. Petersen, “Micromotor endoscope catheter for in vivo, ultrahigh-resolution optical coherence tomography,” Opt. Lett.29(19), 2261–2263 (2004).
    [CrossRef] [PubMed]
  3. P. H. Tran, D. S. Mukai, M. Brenner, and Z. Chen, “In vivo endoscopic optical coherence tomography by use of a rotational microelectromechanical system probe,” Opt. Lett.29(11), 1236–1238 (2004).
    [CrossRef] [PubMed]
  4. R. A. McLaughlin, J. P. Williamson, M. J. Phillips, J. J. Armstrong, S. Becker, D. R. Hillman, P. R. Eastwood, and D. D. Sampson, “Applying anatomical optical coherence tomography to quantitative 3D imaging of the lower airway,” Opt. Express16(22), 17521–17529 (2008).
    [CrossRef] [PubMed]
  5. J. G. Fujimoto, S. A. Boppart, G. J. Tearney, B. E. Bouma, C. Pitris, and M. E. Brezinski, “High resolution in vivo intra-arterial imaging with optical coherence tomography,” Heart82(2), 128–133 (1999).
    [PubMed]
  6. B. E. Bouma, G. J. Tearney, H. Yabushita, M. Shishkov, C. R. Kauffman, D. DeJoseph Gauthier, B. D. MacNeill, S. L. Houser, H. T. Aretz, E. F. Halpern, and I. K. Jang, “Evaluation of intracoronary stenting by intravascular optical coherence tomography,” Heart89(3), 317–320 (2003).
    [CrossRef] [PubMed]
  7. I. K. Jang, G. J. Tearney, B. MacNeill, M. Takano, F. Moselewski, N. Iftima, M. Shishkov, S. Houser, H. T. Aretz, E. F. Halpern, and B. E. Bouma, “In vivo characterization of coronary atherosclerotic plaque by use of optical coherence tomography,” Circulation111(12), 1551–1555 (2005).
    [CrossRef] [PubMed]
  8. J. Yin, H. C. Yang, X. Li, J. Zhang, Q. Zhou, C. Hu, K. K. Shung, and Z. Chen, “Integrated intravascular optical coherence tomography ultrasound imaging system,” J. Biomed. Opt.15(1), 010512 (2010).
    [CrossRef] [PubMed]
  9. X. D. Li, C. Chudoba, T. Ko, C. Pitris, and J. G. Fujimoto, “Imaging needle for optical coherence tomography,” Opt. Lett.25(20), 1520–1522 (2000).
    [CrossRef] [PubMed]
  10. V. X. D. Yang, Y. X. Mao, N. Munce, B. Standish, W. Kucharczyk, N. E. Marcon, B. C. Wilson, and I. A. Vitkin, “Interstitial Doppler optical coherence tomography,” Opt. Lett.30(14), 1791–1793 (2005).
    [CrossRef] [PubMed]
  11. Y. Wu, J. Xi, L. Huo, J. Padvorac, E. J. Shin, S. A. Giday, A. A. Lennon, M. I. F. Canto, J. H. Hwang, and X. Li, “Robust high-resolution fine OCT needle for side-viewing interstitial tissue imaging,” IEEE J. Sel. Top. Quantum Electron.16(4), 863–869 (2010).
    [CrossRef]
  12. D. Lorenser, X. Yang, R. W. Kirk, B. C. Quirk, R. A. McLaughlin, and D. D. Sampson, “Ultrathin side-viewing needle probe for optical coherence tomography,” Opt. Lett.36(19), 3894–3896 (2011).
    [CrossRef] [PubMed]
  13. B. C. Quirk, R. A. McLaughlin, A. Curatolo, R. W. Kirk, P. B. Noble, and D. D. Sampson, “In situ imaging of lung alveoli with an optical coherence tomography needle probe,” J. Biomed. Opt.16(3), 036009 (2011).
    [CrossRef] [PubMed]
  14. N. V. Iftimia, M. Mujat, T. Ustun, R. D. Ferguson, V. Danthu, and D. X. Hammer, “Spectral-domain low coherence interferometry/optical coherence tomography system for fine needle breast biopsy guidance,” Rev. Sci. Instrum.80(2), 024302 (2009).
    [CrossRef] [PubMed]
  15. R. A. McLaughlin, B. C. Quirk, A. Curatolo, R. W. Kirk, L. Scolaro, D. Lorenser, P. D. Robbins, B. A. Wood, C. M. Saunders, and D. D. Sampson, “Imaging of breast cancer with optical coherence tomography needle probes: feasibility and initial results,” IEEE J. Sel. Top. Quantum Electron. (2011), early access, http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6007038 .
  16. A. Curatolo, R. A. McLaughlin, B. C. Quirk, R. W. Kirk, A. G. Bourke, B. A. Wood, P. D. Robbins, C. M. Saunders, and D. D. Sampson, “Ultrasound-guided optical coherence tomography needle probe for the assessment of breast cancer tumor margins,” AJR Am. J. Roentgenol. (to be published).
  17. J. Ren, J. G. Wu, E. J. McDowell, and C. H. Yang, “Manual-scanning optical coherence tomography probe based on position tracking,” Opt. Lett.34(21), 3400–3402 (2009).
    [CrossRef] [PubMed]
  18. A. Ahmad, S. G. Adie, E. J. Chaney, U. Sharma, and S. A. Boppart, “Cross-correlation-based image acquisition technique for manually-scanned optical coherence tomography,” Opt. Express17(10), 8125–8136 (2009).
    [CrossRef] [PubMed]
  19. N. Weiss, T. G. van Leeuwen, and J. Kalkman, “Doppler-based lateral motion tracking for optical coherence tomography,” Opt. Lett. doc. ID 164900 (posted 19 April 2012, to be published).
    [PubMed]
  20. D. F. Leotta, P. R. Detmer, and R. W. Martin, “Performance of a miniature magnetic position sensor for three-dimensional ultrasound imaging,” Ultrasound Med. Biol.23(4), 597–609 (1997).
    [CrossRef] [PubMed]
  21. O. Suess, S. Suess, S. Mularski, B. Kühn, T. Picht, S. Hammersen, R. Stendel, M. Brock, and T. Kombos, “Study on the clinical application of pulsed DC magnetic technology for tracking of intraoperative head motion during frameless stereotaxy,” Head Face Med.2(1), 10 (2006).
    [CrossRef] [PubMed]
  22. C. A. Buckner, A. Venkatesan, J. K. Locklin, and B. J. Wood, “Real-time sonography with electromagnetic tracking navigation for biopsy of a hepatic neoplasm seen only on arterial phase computed tomography,” J. Ultrasound Med.30(2), 253–256 (2011).
    [PubMed]
  23. J. Kuipers, “Object tracking and orientation determination means, system and process,” U. S. Patent 3,868,565 (Feb. 25, 1975).
  24. F. H. Raab, E. B. Blood, T. O. Steiner, and H. R. Jones, “Magnetic position and orientation tracking system,” IEEE Trans. Aerosp. Electron. Syst.AES-15(5), 709–718 (1979).
    [CrossRef]
  25. B. Lau, R. A. McLaughlin, A. Curatolo, R. W. Kirk, D. K. Gerstmann, and D. D. Sampson, “Imaging true 3D endoscopic anatomy by incorporating magnetic tracking with optical coherence tomography: proof-of-principle for airways,” Opt. Express18(26), 27173–27180 (2010).
    [CrossRef] [PubMed]
  26. R. W. Prager, A. Gee, and L. Berman, “Stradx: real-time acquisition and visualization of freehand three-dimensional ultrasound,” Med. Image Anal.3(2), 129–140 (1999).
    [CrossRef] [PubMed]
  27. H. Boonstra, J. W. Oosterhuis, A. M. Oosterhuis, and G. J. Fleuren, “Cervical tissue shrinkage by formaldehyde fixation, paraffin wax embedding, section cutting and mounting,” Virchows Arch. A Pathol. Anat. Histopathol.402(2), 195–201 (1983).
    [CrossRef] [PubMed]
  28. B. Pritt, J. J. Tessitore, D. L. Weaver, and H. Blaszyk, “The effect of tissue fixation and processing on breast cancer size,” Hum. Pathol.36(7), 756–760 (2005).
    [CrossRef] [PubMed]
  29. B. H. Yeap, S. Muniandy, S. K. Lee, S. Sabaratnam, and M. Singh, “Specimen shrinkage and its influence on margin assessment in breast cancer,” Asian J. Surg.30(3), 183–187 (2007).
    [CrossRef] [PubMed]
  30. B. T. Sitzman and D. R. Uncles, “The effects of needle type, gauge, and tip bend on spinal needle deflection,” Anesth. Analg.82(2), 297–301 (1996).
    [PubMed]
  31. R. J. Webster, J. S. Kim, N. J. Cowan, G. S. Chirikjian, and A. M. Okamura, “Nonholonomic modeling of needle steering,” Int. J. Robot. Res.25(5-6), 509–525 (2006).
    [CrossRef]
  32. N. Abolhassani, R. V. Patel, and F. Ayazi, “Minimization of needle deflection in robot-assisted percutaneous therapy,” Int. J. Med. Robot.3(2), 140–148 (2007).
    [CrossRef] [PubMed]
  33. P. M. Bloomfield, T. J. Spinks, J. Reed, L. Schnorr, A. M. Westrip, L. Livieratos, R. Fulton, and T. Jones, “The design and implementation of a motion correction scheme for neurological PET,” Phys. Med. Biol.48(8), 959–978 (2003).
    [CrossRef] [PubMed]
  34. E. B. Blood, “Device for quantitatively measuring the relative position and orientation of two bodies in the presence of metals utilizing direct current magnetic fields,” U. S. Patent 4,945,305 (July 31, 1990).
  35. M. A. Nixon, B. C. McCallum, W. R. Fright, and N. B. Price, “The effects of metals and interfering fields on electromagnetic trackers,” Presence (Camb. Mass.)7(2), 204–218 (1998).
    [CrossRef]
  36. W. Birkfellner, F. Watzinger, F. Wanschitz, R. Ewers, and H. Bergmann, “Calibration of tracking systems in a surgical environment,” IEEE Trans. Med. Imaging17(5), 737–742 (1998).
    [CrossRef] [PubMed]
  37. V. Kindratenko, “A survey of electromagnetic position tracker calibration techniques,” Virtual Real. (Walth. Cross)5(3), 169–182 (2000).
    [CrossRef]
  38. W. Ashe, “Magnetic position measurement system with field containment means,” U. S. Patent 6,528,991 B2 (March 4, 2003).
  39. D. Stoianovici, A. Patriciu, D. Petrisor, D. Mazilu, and L. Kavoussi, “A new type of motor: pneumatic step motor,” IEEE/ASME Trans. Mechatron.12(1), 98–106 (2007).
    [CrossRef] [PubMed]

2011 (3)

B. C. Quirk, R. A. McLaughlin, A. Curatolo, R. W. Kirk, P. B. Noble, and D. D. Sampson, “In situ imaging of lung alveoli with an optical coherence tomography needle probe,” J. Biomed. Opt.16(3), 036009 (2011).
[CrossRef] [PubMed]

C. A. Buckner, A. Venkatesan, J. K. Locklin, and B. J. Wood, “Real-time sonography with electromagnetic tracking navigation for biopsy of a hepatic neoplasm seen only on arterial phase computed tomography,” J. Ultrasound Med.30(2), 253–256 (2011).
[PubMed]

D. Lorenser, X. Yang, R. W. Kirk, B. C. Quirk, R. A. McLaughlin, and D. D. Sampson, “Ultrathin side-viewing needle probe for optical coherence tomography,” Opt. Lett.36(19), 3894–3896 (2011).
[CrossRef] [PubMed]

2010 (3)

B. Lau, R. A. McLaughlin, A. Curatolo, R. W. Kirk, D. K. Gerstmann, and D. D. Sampson, “Imaging true 3D endoscopic anatomy by incorporating magnetic tracking with optical coherence tomography: proof-of-principle for airways,” Opt. Express18(26), 27173–27180 (2010).
[CrossRef] [PubMed]

J. Yin, H. C. Yang, X. Li, J. Zhang, Q. Zhou, C. Hu, K. K. Shung, and Z. Chen, “Integrated intravascular optical coherence tomography ultrasound imaging system,” J. Biomed. Opt.15(1), 010512 (2010).
[CrossRef] [PubMed]

Y. Wu, J. Xi, L. Huo, J. Padvorac, E. J. Shin, S. A. Giday, A. A. Lennon, M. I. F. Canto, J. H. Hwang, and X. Li, “Robust high-resolution fine OCT needle for side-viewing interstitial tissue imaging,” IEEE J. Sel. Top. Quantum Electron.16(4), 863–869 (2010).
[CrossRef]

2009 (3)

2008 (1)

2007 (3)

N. Abolhassani, R. V. Patel, and F. Ayazi, “Minimization of needle deflection in robot-assisted percutaneous therapy,” Int. J. Med. Robot.3(2), 140–148 (2007).
[CrossRef] [PubMed]

D. Stoianovici, A. Patriciu, D. Petrisor, D. Mazilu, and L. Kavoussi, “A new type of motor: pneumatic step motor,” IEEE/ASME Trans. Mechatron.12(1), 98–106 (2007).
[CrossRef] [PubMed]

B. H. Yeap, S. Muniandy, S. K. Lee, S. Sabaratnam, and M. Singh, “Specimen shrinkage and its influence on margin assessment in breast cancer,” Asian J. Surg.30(3), 183–187 (2007).
[CrossRef] [PubMed]

2006 (2)

R. J. Webster, J. S. Kim, N. J. Cowan, G. S. Chirikjian, and A. M. Okamura, “Nonholonomic modeling of needle steering,” Int. J. Robot. Res.25(5-6), 509–525 (2006).
[CrossRef]

O. Suess, S. Suess, S. Mularski, B. Kühn, T. Picht, S. Hammersen, R. Stendel, M. Brock, and T. Kombos, “Study on the clinical application of pulsed DC magnetic technology for tracking of intraoperative head motion during frameless stereotaxy,” Head Face Med.2(1), 10 (2006).
[CrossRef] [PubMed]

2005 (3)

I. K. Jang, G. J. Tearney, B. MacNeill, M. Takano, F. Moselewski, N. Iftima, M. Shishkov, S. Houser, H. T. Aretz, E. F. Halpern, and B. E. Bouma, “In vivo characterization of coronary atherosclerotic plaque by use of optical coherence tomography,” Circulation111(12), 1551–1555 (2005).
[CrossRef] [PubMed]

B. Pritt, J. J. Tessitore, D. L. Weaver, and H. Blaszyk, “The effect of tissue fixation and processing on breast cancer size,” Hum. Pathol.36(7), 756–760 (2005).
[CrossRef] [PubMed]

V. X. D. Yang, Y. X. Mao, N. Munce, B. Standish, W. Kucharczyk, N. E. Marcon, B. C. Wilson, and I. A. Vitkin, “Interstitial Doppler optical coherence tomography,” Opt. Lett.30(14), 1791–1793 (2005).
[CrossRef] [PubMed]

2004 (2)

2003 (2)

P. M. Bloomfield, T. J. Spinks, J. Reed, L. Schnorr, A. M. Westrip, L. Livieratos, R. Fulton, and T. Jones, “The design and implementation of a motion correction scheme for neurological PET,” Phys. Med. Biol.48(8), 959–978 (2003).
[CrossRef] [PubMed]

B. E. Bouma, G. J. Tearney, H. Yabushita, M. Shishkov, C. R. Kauffman, D. DeJoseph Gauthier, B. D. MacNeill, S. L. Houser, H. T. Aretz, E. F. Halpern, and I. K. Jang, “Evaluation of intracoronary stenting by intravascular optical coherence tomography,” Heart89(3), 317–320 (2003).
[CrossRef] [PubMed]

2000 (2)

V. Kindratenko, “A survey of electromagnetic position tracker calibration techniques,” Virtual Real. (Walth. Cross)5(3), 169–182 (2000).
[CrossRef]

X. D. Li, C. Chudoba, T. Ko, C. Pitris, and J. G. Fujimoto, “Imaging needle for optical coherence tomography,” Opt. Lett.25(20), 1520–1522 (2000).
[CrossRef] [PubMed]

1999 (3)

B. E. Bouma and G. J. Tearney, “Power-efficient nonreciprocal interferometer and linear-scanning fiber-optic catheter for optical coherence tomography,” Opt. Lett.24(8), 531–533 (1999).
[CrossRef] [PubMed]

J. G. Fujimoto, S. A. Boppart, G. J. Tearney, B. E. Bouma, C. Pitris, and M. E. Brezinski, “High resolution in vivo intra-arterial imaging with optical coherence tomography,” Heart82(2), 128–133 (1999).
[PubMed]

R. W. Prager, A. Gee, and L. Berman, “Stradx: real-time acquisition and visualization of freehand three-dimensional ultrasound,” Med. Image Anal.3(2), 129–140 (1999).
[CrossRef] [PubMed]

1998 (2)

M. A. Nixon, B. C. McCallum, W. R. Fright, and N. B. Price, “The effects of metals and interfering fields on electromagnetic trackers,” Presence (Camb. Mass.)7(2), 204–218 (1998).
[CrossRef]

W. Birkfellner, F. Watzinger, F. Wanschitz, R. Ewers, and H. Bergmann, “Calibration of tracking systems in a surgical environment,” IEEE Trans. Med. Imaging17(5), 737–742 (1998).
[CrossRef] [PubMed]

1997 (1)

D. F. Leotta, P. R. Detmer, and R. W. Martin, “Performance of a miniature magnetic position sensor for three-dimensional ultrasound imaging,” Ultrasound Med. Biol.23(4), 597–609 (1997).
[CrossRef] [PubMed]

1996 (1)

B. T. Sitzman and D. R. Uncles, “The effects of needle type, gauge, and tip bend on spinal needle deflection,” Anesth. Analg.82(2), 297–301 (1996).
[PubMed]

1983 (1)

H. Boonstra, J. W. Oosterhuis, A. M. Oosterhuis, and G. J. Fleuren, “Cervical tissue shrinkage by formaldehyde fixation, paraffin wax embedding, section cutting and mounting,” Virchows Arch. A Pathol. Anat. Histopathol.402(2), 195–201 (1983).
[CrossRef] [PubMed]

1979 (1)

F. H. Raab, E. B. Blood, T. O. Steiner, and H. R. Jones, “Magnetic position and orientation tracking system,” IEEE Trans. Aerosp. Electron. Syst.AES-15(5), 709–718 (1979).
[CrossRef]

Abolhassani, N.

N. Abolhassani, R. V. Patel, and F. Ayazi, “Minimization of needle deflection in robot-assisted percutaneous therapy,” Int. J. Med. Robot.3(2), 140–148 (2007).
[CrossRef] [PubMed]

Adie, S. G.

Aguirre, A. D.

Ahmad, A.

Aretz, H. T.

I. K. Jang, G. J. Tearney, B. MacNeill, M. Takano, F. Moselewski, N. Iftima, M. Shishkov, S. Houser, H. T. Aretz, E. F. Halpern, and B. E. Bouma, “In vivo characterization of coronary atherosclerotic plaque by use of optical coherence tomography,” Circulation111(12), 1551–1555 (2005).
[CrossRef] [PubMed]

B. E. Bouma, G. J. Tearney, H. Yabushita, M. Shishkov, C. R. Kauffman, D. DeJoseph Gauthier, B. D. MacNeill, S. L. Houser, H. T. Aretz, E. F. Halpern, and I. K. Jang, “Evaluation of intracoronary stenting by intravascular optical coherence tomography,” Heart89(3), 317–320 (2003).
[CrossRef] [PubMed]

Armstrong, J. J.

Ayazi, F.

N. Abolhassani, R. V. Patel, and F. Ayazi, “Minimization of needle deflection in robot-assisted percutaneous therapy,” Int. J. Med. Robot.3(2), 140–148 (2007).
[CrossRef] [PubMed]

Becker, S.

Bergmann, H.

W. Birkfellner, F. Watzinger, F. Wanschitz, R. Ewers, and H. Bergmann, “Calibration of tracking systems in a surgical environment,” IEEE Trans. Med. Imaging17(5), 737–742 (1998).
[CrossRef] [PubMed]

Berman, L.

R. W. Prager, A. Gee, and L. Berman, “Stradx: real-time acquisition and visualization of freehand three-dimensional ultrasound,” Med. Image Anal.3(2), 129–140 (1999).
[CrossRef] [PubMed]

Birkfellner, W.

W. Birkfellner, F. Watzinger, F. Wanschitz, R. Ewers, and H. Bergmann, “Calibration of tracking systems in a surgical environment,” IEEE Trans. Med. Imaging17(5), 737–742 (1998).
[CrossRef] [PubMed]

Blaszyk, H.

B. Pritt, J. J. Tessitore, D. L. Weaver, and H. Blaszyk, “The effect of tissue fixation and processing on breast cancer size,” Hum. Pathol.36(7), 756–760 (2005).
[CrossRef] [PubMed]

Blood, E. B.

F. H. Raab, E. B. Blood, T. O. Steiner, and H. R. Jones, “Magnetic position and orientation tracking system,” IEEE Trans. Aerosp. Electron. Syst.AES-15(5), 709–718 (1979).
[CrossRef]

Bloomfield, P. M.

P. M. Bloomfield, T. J. Spinks, J. Reed, L. Schnorr, A. M. Westrip, L. Livieratos, R. Fulton, and T. Jones, “The design and implementation of a motion correction scheme for neurological PET,” Phys. Med. Biol.48(8), 959–978 (2003).
[CrossRef] [PubMed]

Boonstra, H.

H. Boonstra, J. W. Oosterhuis, A. M. Oosterhuis, and G. J. Fleuren, “Cervical tissue shrinkage by formaldehyde fixation, paraffin wax embedding, section cutting and mounting,” Virchows Arch. A Pathol. Anat. Histopathol.402(2), 195–201 (1983).
[CrossRef] [PubMed]

Boppart, S. A.

A. Ahmad, S. G. Adie, E. J. Chaney, U. Sharma, and S. A. Boppart, “Cross-correlation-based image acquisition technique for manually-scanned optical coherence tomography,” Opt. Express17(10), 8125–8136 (2009).
[CrossRef] [PubMed]

J. G. Fujimoto, S. A. Boppart, G. J. Tearney, B. E. Bouma, C. Pitris, and M. E. Brezinski, “High resolution in vivo intra-arterial imaging with optical coherence tomography,” Heart82(2), 128–133 (1999).
[PubMed]

Bouma, B. E.

I. K. Jang, G. J. Tearney, B. MacNeill, M. Takano, F. Moselewski, N. Iftima, M. Shishkov, S. Houser, H. T. Aretz, E. F. Halpern, and B. E. Bouma, “In vivo characterization of coronary atherosclerotic plaque by use of optical coherence tomography,” Circulation111(12), 1551–1555 (2005).
[CrossRef] [PubMed]

B. E. Bouma, G. J. Tearney, H. Yabushita, M. Shishkov, C. R. Kauffman, D. DeJoseph Gauthier, B. D. MacNeill, S. L. Houser, H. T. Aretz, E. F. Halpern, and I. K. Jang, “Evaluation of intracoronary stenting by intravascular optical coherence tomography,” Heart89(3), 317–320 (2003).
[CrossRef] [PubMed]

J. G. Fujimoto, S. A. Boppart, G. J. Tearney, B. E. Bouma, C. Pitris, and M. E. Brezinski, “High resolution in vivo intra-arterial imaging with optical coherence tomography,” Heart82(2), 128–133 (1999).
[PubMed]

B. E. Bouma and G. J. Tearney, “Power-efficient nonreciprocal interferometer and linear-scanning fiber-optic catheter for optical coherence tomography,” Opt. Lett.24(8), 531–533 (1999).
[CrossRef] [PubMed]

Bourke, A. G.

A. Curatolo, R. A. McLaughlin, B. C. Quirk, R. W. Kirk, A. G. Bourke, B. A. Wood, P. D. Robbins, C. M. Saunders, and D. D. Sampson, “Ultrasound-guided optical coherence tomography needle probe for the assessment of breast cancer tumor margins,” AJR Am. J. Roentgenol. (to be published).

Brenner, M.

Brezinski, M. E.

J. G. Fujimoto, S. A. Boppart, G. J. Tearney, B. E. Bouma, C. Pitris, and M. E. Brezinski, “High resolution in vivo intra-arterial imaging with optical coherence tomography,” Heart82(2), 128–133 (1999).
[PubMed]

Brock, M.

O. Suess, S. Suess, S. Mularski, B. Kühn, T. Picht, S. Hammersen, R. Stendel, M. Brock, and T. Kombos, “Study on the clinical application of pulsed DC magnetic technology for tracking of intraoperative head motion during frameless stereotaxy,” Head Face Med.2(1), 10 (2006).
[CrossRef] [PubMed]

Buckner, C. A.

C. A. Buckner, A. Venkatesan, J. K. Locklin, and B. J. Wood, “Real-time sonography with electromagnetic tracking navigation for biopsy of a hepatic neoplasm seen only on arterial phase computed tomography,” J. Ultrasound Med.30(2), 253–256 (2011).
[PubMed]

Canto, M. I. F.

Y. Wu, J. Xi, L. Huo, J. Padvorac, E. J. Shin, S. A. Giday, A. A. Lennon, M. I. F. Canto, J. H. Hwang, and X. Li, “Robust high-resolution fine OCT needle for side-viewing interstitial tissue imaging,” IEEE J. Sel. Top. Quantum Electron.16(4), 863–869 (2010).
[CrossRef]

Chaney, E. J.

Chen, Y.

Chen, Z.

J. Yin, H. C. Yang, X. Li, J. Zhang, Q. Zhou, C. Hu, K. K. Shung, and Z. Chen, “Integrated intravascular optical coherence tomography ultrasound imaging system,” J. Biomed. Opt.15(1), 010512 (2010).
[CrossRef] [PubMed]

P. H. Tran, D. S. Mukai, M. Brenner, and Z. Chen, “In vivo endoscopic optical coherence tomography by use of a rotational microelectromechanical system probe,” Opt. Lett.29(11), 1236–1238 (2004).
[CrossRef] [PubMed]

Chirikjian, G. S.

R. J. Webster, J. S. Kim, N. J. Cowan, G. S. Chirikjian, and A. M. Okamura, “Nonholonomic modeling of needle steering,” Int. J. Robot. Res.25(5-6), 509–525 (2006).
[CrossRef]

Chudoba, C.

Cowan, N. J.

R. J. Webster, J. S. Kim, N. J. Cowan, G. S. Chirikjian, and A. M. Okamura, “Nonholonomic modeling of needle steering,” Int. J. Robot. Res.25(5-6), 509–525 (2006).
[CrossRef]

Curatolo, A.

B. C. Quirk, R. A. McLaughlin, A. Curatolo, R. W. Kirk, P. B. Noble, and D. D. Sampson, “In situ imaging of lung alveoli with an optical coherence tomography needle probe,” J. Biomed. Opt.16(3), 036009 (2011).
[CrossRef] [PubMed]

B. Lau, R. A. McLaughlin, A. Curatolo, R. W. Kirk, D. K. Gerstmann, and D. D. Sampson, “Imaging true 3D endoscopic anatomy by incorporating magnetic tracking with optical coherence tomography: proof-of-principle for airways,” Opt. Express18(26), 27173–27180 (2010).
[CrossRef] [PubMed]

A. Curatolo, R. A. McLaughlin, B. C. Quirk, R. W. Kirk, A. G. Bourke, B. A. Wood, P. D. Robbins, C. M. Saunders, and D. D. Sampson, “Ultrasound-guided optical coherence tomography needle probe for the assessment of breast cancer tumor margins,” AJR Am. J. Roentgenol. (to be published).

Danthu, V.

N. V. Iftimia, M. Mujat, T. Ustun, R. D. Ferguson, V. Danthu, and D. X. Hammer, “Spectral-domain low coherence interferometry/optical coherence tomography system for fine needle breast biopsy guidance,” Rev. Sci. Instrum.80(2), 024302 (2009).
[CrossRef] [PubMed]

DeJoseph Gauthier, D.

B. E. Bouma, G. J. Tearney, H. Yabushita, M. Shishkov, C. R. Kauffman, D. DeJoseph Gauthier, B. D. MacNeill, S. L. Houser, H. T. Aretz, E. F. Halpern, and I. K. Jang, “Evaluation of intracoronary stenting by intravascular optical coherence tomography,” Heart89(3), 317–320 (2003).
[CrossRef] [PubMed]

Detmer, P. R.

D. F. Leotta, P. R. Detmer, and R. W. Martin, “Performance of a miniature magnetic position sensor for three-dimensional ultrasound imaging,” Ultrasound Med. Biol.23(4), 597–609 (1997).
[CrossRef] [PubMed]

Eastwood, P. R.

Ewers, R.

W. Birkfellner, F. Watzinger, F. Wanschitz, R. Ewers, and H. Bergmann, “Calibration of tracking systems in a surgical environment,” IEEE Trans. Med. Imaging17(5), 737–742 (1998).
[CrossRef] [PubMed]

Ferguson, R. D.

N. V. Iftimia, M. Mujat, T. Ustun, R. D. Ferguson, V. Danthu, and D. X. Hammer, “Spectral-domain low coherence interferometry/optical coherence tomography system for fine needle breast biopsy guidance,” Rev. Sci. Instrum.80(2), 024302 (2009).
[CrossRef] [PubMed]

Fleuren, G. J.

H. Boonstra, J. W. Oosterhuis, A. M. Oosterhuis, and G. J. Fleuren, “Cervical tissue shrinkage by formaldehyde fixation, paraffin wax embedding, section cutting and mounting,” Virchows Arch. A Pathol. Anat. Histopathol.402(2), 195–201 (1983).
[CrossRef] [PubMed]

Fright, W. R.

M. A. Nixon, B. C. McCallum, W. R. Fright, and N. B. Price, “The effects of metals and interfering fields on electromagnetic trackers,” Presence (Camb. Mass.)7(2), 204–218 (1998).
[CrossRef]

Fujimoto, J. G.

Fulton, R.

P. M. Bloomfield, T. J. Spinks, J. Reed, L. Schnorr, A. M. Westrip, L. Livieratos, R. Fulton, and T. Jones, “The design and implementation of a motion correction scheme for neurological PET,” Phys. Med. Biol.48(8), 959–978 (2003).
[CrossRef] [PubMed]

Gee, A.

R. W. Prager, A. Gee, and L. Berman, “Stradx: real-time acquisition and visualization of freehand three-dimensional ultrasound,” Med. Image Anal.3(2), 129–140 (1999).
[CrossRef] [PubMed]

Gerstmann, D. K.

Giday, S. A.

Y. Wu, J. Xi, L. Huo, J. Padvorac, E. J. Shin, S. A. Giday, A. A. Lennon, M. I. F. Canto, J. H. Hwang, and X. Li, “Robust high-resolution fine OCT needle for side-viewing interstitial tissue imaging,” IEEE J. Sel. Top. Quantum Electron.16(4), 863–869 (2010).
[CrossRef]

Goodnow, J.

Halpern, E. F.

I. K. Jang, G. J. Tearney, B. MacNeill, M. Takano, F. Moselewski, N. Iftima, M. Shishkov, S. Houser, H. T. Aretz, E. F. Halpern, and B. E. Bouma, “In vivo characterization of coronary atherosclerotic plaque by use of optical coherence tomography,” Circulation111(12), 1551–1555 (2005).
[CrossRef] [PubMed]

B. E. Bouma, G. J. Tearney, H. Yabushita, M. Shishkov, C. R. Kauffman, D. DeJoseph Gauthier, B. D. MacNeill, S. L. Houser, H. T. Aretz, E. F. Halpern, and I. K. Jang, “Evaluation of intracoronary stenting by intravascular optical coherence tomography,” Heart89(3), 317–320 (2003).
[CrossRef] [PubMed]

Hammer, D. X.

N. V. Iftimia, M. Mujat, T. Ustun, R. D. Ferguson, V. Danthu, and D. X. Hammer, “Spectral-domain low coherence interferometry/optical coherence tomography system for fine needle breast biopsy guidance,” Rev. Sci. Instrum.80(2), 024302 (2009).
[CrossRef] [PubMed]

Hammersen, S.

O. Suess, S. Suess, S. Mularski, B. Kühn, T. Picht, S. Hammersen, R. Stendel, M. Brock, and T. Kombos, “Study on the clinical application of pulsed DC magnetic technology for tracking of intraoperative head motion during frameless stereotaxy,” Head Face Med.2(1), 10 (2006).
[CrossRef] [PubMed]

Herz, P. R.

Hillman, D. R.

Houser, S.

I. K. Jang, G. J. Tearney, B. MacNeill, M. Takano, F. Moselewski, N. Iftima, M. Shishkov, S. Houser, H. T. Aretz, E. F. Halpern, and B. E. Bouma, “In vivo characterization of coronary atherosclerotic plaque by use of optical coherence tomography,” Circulation111(12), 1551–1555 (2005).
[CrossRef] [PubMed]

Houser, S. L.

B. E. Bouma, G. J. Tearney, H. Yabushita, M. Shishkov, C. R. Kauffman, D. DeJoseph Gauthier, B. D. MacNeill, S. L. Houser, H. T. Aretz, E. F. Halpern, and I. K. Jang, “Evaluation of intracoronary stenting by intravascular optical coherence tomography,” Heart89(3), 317–320 (2003).
[CrossRef] [PubMed]

Hsiung, P.

Hu, C.

J. Yin, H. C. Yang, X. Li, J. Zhang, Q. Zhou, C. Hu, K. K. Shung, and Z. Chen, “Integrated intravascular optical coherence tomography ultrasound imaging system,” J. Biomed. Opt.15(1), 010512 (2010).
[CrossRef] [PubMed]

Huo, L.

Y. Wu, J. Xi, L. Huo, J. Padvorac, E. J. Shin, S. A. Giday, A. A. Lennon, M. I. F. Canto, J. H. Hwang, and X. Li, “Robust high-resolution fine OCT needle for side-viewing interstitial tissue imaging,” IEEE J. Sel. Top. Quantum Electron.16(4), 863–869 (2010).
[CrossRef]

Hwang, J. H.

Y. Wu, J. Xi, L. Huo, J. Padvorac, E. J. Shin, S. A. Giday, A. A. Lennon, M. I. F. Canto, J. H. Hwang, and X. Li, “Robust high-resolution fine OCT needle for side-viewing interstitial tissue imaging,” IEEE J. Sel. Top. Quantum Electron.16(4), 863–869 (2010).
[CrossRef]

Iftima, N.

I. K. Jang, G. J. Tearney, B. MacNeill, M. Takano, F. Moselewski, N. Iftima, M. Shishkov, S. Houser, H. T. Aretz, E. F. Halpern, and B. E. Bouma, “In vivo characterization of coronary atherosclerotic plaque by use of optical coherence tomography,” Circulation111(12), 1551–1555 (2005).
[CrossRef] [PubMed]

Iftimia, N. V.

N. V. Iftimia, M. Mujat, T. Ustun, R. D. Ferguson, V. Danthu, and D. X. Hammer, “Spectral-domain low coherence interferometry/optical coherence tomography system for fine needle breast biopsy guidance,” Rev. Sci. Instrum.80(2), 024302 (2009).
[CrossRef] [PubMed]

Jang, I. K.

I. K. Jang, G. J. Tearney, B. MacNeill, M. Takano, F. Moselewski, N. Iftima, M. Shishkov, S. Houser, H. T. Aretz, E. F. Halpern, and B. E. Bouma, “In vivo characterization of coronary atherosclerotic plaque by use of optical coherence tomography,” Circulation111(12), 1551–1555 (2005).
[CrossRef] [PubMed]

B. E. Bouma, G. J. Tearney, H. Yabushita, M. Shishkov, C. R. Kauffman, D. DeJoseph Gauthier, B. D. MacNeill, S. L. Houser, H. T. Aretz, E. F. Halpern, and I. K. Jang, “Evaluation of intracoronary stenting by intravascular optical coherence tomography,” Heart89(3), 317–320 (2003).
[CrossRef] [PubMed]

Jones, H. R.

F. H. Raab, E. B. Blood, T. O. Steiner, and H. R. Jones, “Magnetic position and orientation tracking system,” IEEE Trans. Aerosp. Electron. Syst.AES-15(5), 709–718 (1979).
[CrossRef]

Jones, T.

P. M. Bloomfield, T. J. Spinks, J. Reed, L. Schnorr, A. M. Westrip, L. Livieratos, R. Fulton, and T. Jones, “The design and implementation of a motion correction scheme for neurological PET,” Phys. Med. Biol.48(8), 959–978 (2003).
[CrossRef] [PubMed]

Kalkman, J.

N. Weiss, T. G. van Leeuwen, and J. Kalkman, “Doppler-based lateral motion tracking for optical coherence tomography,” Opt. Lett. doc. ID 164900 (posted 19 April 2012, to be published).
[PubMed]

Kauffman, C. R.

B. E. Bouma, G. J. Tearney, H. Yabushita, M. Shishkov, C. R. Kauffman, D. DeJoseph Gauthier, B. D. MacNeill, S. L. Houser, H. T. Aretz, E. F. Halpern, and I. K. Jang, “Evaluation of intracoronary stenting by intravascular optical coherence tomography,” Heart89(3), 317–320 (2003).
[CrossRef] [PubMed]

Kavoussi, L.

D. Stoianovici, A. Patriciu, D. Petrisor, D. Mazilu, and L. Kavoussi, “A new type of motor: pneumatic step motor,” IEEE/ASME Trans. Mechatron.12(1), 98–106 (2007).
[CrossRef] [PubMed]

Kim, J. S.

R. J. Webster, J. S. Kim, N. J. Cowan, G. S. Chirikjian, and A. M. Okamura, “Nonholonomic modeling of needle steering,” Int. J. Robot. Res.25(5-6), 509–525 (2006).
[CrossRef]

Kindratenko, V.

V. Kindratenko, “A survey of electromagnetic position tracker calibration techniques,” Virtual Real. (Walth. Cross)5(3), 169–182 (2000).
[CrossRef]

Kirk, R. W.

B. C. Quirk, R. A. McLaughlin, A. Curatolo, R. W. Kirk, P. B. Noble, and D. D. Sampson, “In situ imaging of lung alveoli with an optical coherence tomography needle probe,” J. Biomed. Opt.16(3), 036009 (2011).
[CrossRef] [PubMed]

D. Lorenser, X. Yang, R. W. Kirk, B. C. Quirk, R. A. McLaughlin, and D. D. Sampson, “Ultrathin side-viewing needle probe for optical coherence tomography,” Opt. Lett.36(19), 3894–3896 (2011).
[CrossRef] [PubMed]

B. Lau, R. A. McLaughlin, A. Curatolo, R. W. Kirk, D. K. Gerstmann, and D. D. Sampson, “Imaging true 3D endoscopic anatomy by incorporating magnetic tracking with optical coherence tomography: proof-of-principle for airways,” Opt. Express18(26), 27173–27180 (2010).
[CrossRef] [PubMed]

A. Curatolo, R. A. McLaughlin, B. C. Quirk, R. W. Kirk, A. G. Bourke, B. A. Wood, P. D. Robbins, C. M. Saunders, and D. D. Sampson, “Ultrasound-guided optical coherence tomography needle probe for the assessment of breast cancer tumor margins,” AJR Am. J. Roentgenol. (to be published).

Ko, T.

Kombos, T.

O. Suess, S. Suess, S. Mularski, B. Kühn, T. Picht, S. Hammersen, R. Stendel, M. Brock, and T. Kombos, “Study on the clinical application of pulsed DC magnetic technology for tracking of intraoperative head motion during frameless stereotaxy,” Head Face Med.2(1), 10 (2006).
[CrossRef] [PubMed]

Kucharczyk, W.

Kühn, B.

O. Suess, S. Suess, S. Mularski, B. Kühn, T. Picht, S. Hammersen, R. Stendel, M. Brock, and T. Kombos, “Study on the clinical application of pulsed DC magnetic technology for tracking of intraoperative head motion during frameless stereotaxy,” Head Face Med.2(1), 10 (2006).
[CrossRef] [PubMed]

Lau, B.

Lee, S. K.

B. H. Yeap, S. Muniandy, S. K. Lee, S. Sabaratnam, and M. Singh, “Specimen shrinkage and its influence on margin assessment in breast cancer,” Asian J. Surg.30(3), 183–187 (2007).
[CrossRef] [PubMed]

Lennon, A. A.

Y. Wu, J. Xi, L. Huo, J. Padvorac, E. J. Shin, S. A. Giday, A. A. Lennon, M. I. F. Canto, J. H. Hwang, and X. Li, “Robust high-resolution fine OCT needle for side-viewing interstitial tissue imaging,” IEEE J. Sel. Top. Quantum Electron.16(4), 863–869 (2010).
[CrossRef]

Leotta, D. F.

D. F. Leotta, P. R. Detmer, and R. W. Martin, “Performance of a miniature magnetic position sensor for three-dimensional ultrasound imaging,” Ultrasound Med. Biol.23(4), 597–609 (1997).
[CrossRef] [PubMed]

Li, X.

Y. Wu, J. Xi, L. Huo, J. Padvorac, E. J. Shin, S. A. Giday, A. A. Lennon, M. I. F. Canto, J. H. Hwang, and X. Li, “Robust high-resolution fine OCT needle for side-viewing interstitial tissue imaging,” IEEE J. Sel. Top. Quantum Electron.16(4), 863–869 (2010).
[CrossRef]

J. Yin, H. C. Yang, X. Li, J. Zhang, Q. Zhou, C. Hu, K. K. Shung, and Z. Chen, “Integrated intravascular optical coherence tomography ultrasound imaging system,” J. Biomed. Opt.15(1), 010512 (2010).
[CrossRef] [PubMed]

Li, X. D.

Livieratos, L.

P. M. Bloomfield, T. J. Spinks, J. Reed, L. Schnorr, A. M. Westrip, L. Livieratos, R. Fulton, and T. Jones, “The design and implementation of a motion correction scheme for neurological PET,” Phys. Med. Biol.48(8), 959–978 (2003).
[CrossRef] [PubMed]

Locklin, J. K.

C. A. Buckner, A. Venkatesan, J. K. Locklin, and B. J. Wood, “Real-time sonography with electromagnetic tracking navigation for biopsy of a hepatic neoplasm seen only on arterial phase computed tomography,” J. Ultrasound Med.30(2), 253–256 (2011).
[PubMed]

Lorenser, D.

MacNeill, B.

I. K. Jang, G. J. Tearney, B. MacNeill, M. Takano, F. Moselewski, N. Iftima, M. Shishkov, S. Houser, H. T. Aretz, E. F. Halpern, and B. E. Bouma, “In vivo characterization of coronary atherosclerotic plaque by use of optical coherence tomography,” Circulation111(12), 1551–1555 (2005).
[CrossRef] [PubMed]

MacNeill, B. D.

B. E. Bouma, G. J. Tearney, H. Yabushita, M. Shishkov, C. R. Kauffman, D. DeJoseph Gauthier, B. D. MacNeill, S. L. Houser, H. T. Aretz, E. F. Halpern, and I. K. Jang, “Evaluation of intracoronary stenting by intravascular optical coherence tomography,” Heart89(3), 317–320 (2003).
[CrossRef] [PubMed]

Madden, K.

Mao, Y. X.

Marcon, N. E.

Martin, R. W.

D. F. Leotta, P. R. Detmer, and R. W. Martin, “Performance of a miniature magnetic position sensor for three-dimensional ultrasound imaging,” Ultrasound Med. Biol.23(4), 597–609 (1997).
[CrossRef] [PubMed]

Mazilu, D.

D. Stoianovici, A. Patriciu, D. Petrisor, D. Mazilu, and L. Kavoussi, “A new type of motor: pneumatic step motor,” IEEE/ASME Trans. Mechatron.12(1), 98–106 (2007).
[CrossRef] [PubMed]

McCallum, B. C.

M. A. Nixon, B. C. McCallum, W. R. Fright, and N. B. Price, “The effects of metals and interfering fields on electromagnetic trackers,” Presence (Camb. Mass.)7(2), 204–218 (1998).
[CrossRef]

McDowell, E. J.

McLaughlin, R. A.

Moselewski, F.

I. K. Jang, G. J. Tearney, B. MacNeill, M. Takano, F. Moselewski, N. Iftima, M. Shishkov, S. Houser, H. T. Aretz, E. F. Halpern, and B. E. Bouma, “In vivo characterization of coronary atherosclerotic plaque by use of optical coherence tomography,” Circulation111(12), 1551–1555 (2005).
[CrossRef] [PubMed]

Mujat, M.

N. V. Iftimia, M. Mujat, T. Ustun, R. D. Ferguson, V. Danthu, and D. X. Hammer, “Spectral-domain low coherence interferometry/optical coherence tomography system for fine needle breast biopsy guidance,” Rev. Sci. Instrum.80(2), 024302 (2009).
[CrossRef] [PubMed]

Mukai, D. S.

Mularski, S.

O. Suess, S. Suess, S. Mularski, B. Kühn, T. Picht, S. Hammersen, R. Stendel, M. Brock, and T. Kombos, “Study on the clinical application of pulsed DC magnetic technology for tracking of intraoperative head motion during frameless stereotaxy,” Head Face Med.2(1), 10 (2006).
[CrossRef] [PubMed]

Munce, N.

Muniandy, S.

B. H. Yeap, S. Muniandy, S. K. Lee, S. Sabaratnam, and M. Singh, “Specimen shrinkage and its influence on margin assessment in breast cancer,” Asian J. Surg.30(3), 183–187 (2007).
[CrossRef] [PubMed]

Nixon, M. A.

M. A. Nixon, B. C. McCallum, W. R. Fright, and N. B. Price, “The effects of metals and interfering fields on electromagnetic trackers,” Presence (Camb. Mass.)7(2), 204–218 (1998).
[CrossRef]

Noble, P. B.

B. C. Quirk, R. A. McLaughlin, A. Curatolo, R. W. Kirk, P. B. Noble, and D. D. Sampson, “In situ imaging of lung alveoli with an optical coherence tomography needle probe,” J. Biomed. Opt.16(3), 036009 (2011).
[CrossRef] [PubMed]

Okamura, A. M.

R. J. Webster, J. S. Kim, N. J. Cowan, G. S. Chirikjian, and A. M. Okamura, “Nonholonomic modeling of needle steering,” Int. J. Robot. Res.25(5-6), 509–525 (2006).
[CrossRef]

Oosterhuis, A. M.

H. Boonstra, J. W. Oosterhuis, A. M. Oosterhuis, and G. J. Fleuren, “Cervical tissue shrinkage by formaldehyde fixation, paraffin wax embedding, section cutting and mounting,” Virchows Arch. A Pathol. Anat. Histopathol.402(2), 195–201 (1983).
[CrossRef] [PubMed]

Oosterhuis, J. W.

H. Boonstra, J. W. Oosterhuis, A. M. Oosterhuis, and G. J. Fleuren, “Cervical tissue shrinkage by formaldehyde fixation, paraffin wax embedding, section cutting and mounting,” Virchows Arch. A Pathol. Anat. Histopathol.402(2), 195–201 (1983).
[CrossRef] [PubMed]

Padvorac, J.

Y. Wu, J. Xi, L. Huo, J. Padvorac, E. J. Shin, S. A. Giday, A. A. Lennon, M. I. F. Canto, J. H. Hwang, and X. Li, “Robust high-resolution fine OCT needle for side-viewing interstitial tissue imaging,” IEEE J. Sel. Top. Quantum Electron.16(4), 863–869 (2010).
[CrossRef]

Patel, R. V.

N. Abolhassani, R. V. Patel, and F. Ayazi, “Minimization of needle deflection in robot-assisted percutaneous therapy,” Int. J. Med. Robot.3(2), 140–148 (2007).
[CrossRef] [PubMed]

Patriciu, A.

D. Stoianovici, A. Patriciu, D. Petrisor, D. Mazilu, and L. Kavoussi, “A new type of motor: pneumatic step motor,” IEEE/ASME Trans. Mechatron.12(1), 98–106 (2007).
[CrossRef] [PubMed]

Petersen, C.

Petrisor, D.

D. Stoianovici, A. Patriciu, D. Petrisor, D. Mazilu, and L. Kavoussi, “A new type of motor: pneumatic step motor,” IEEE/ASME Trans. Mechatron.12(1), 98–106 (2007).
[CrossRef] [PubMed]

Phillips, M. J.

Picht, T.

O. Suess, S. Suess, S. Mularski, B. Kühn, T. Picht, S. Hammersen, R. Stendel, M. Brock, and T. Kombos, “Study on the clinical application of pulsed DC magnetic technology for tracking of intraoperative head motion during frameless stereotaxy,” Head Face Med.2(1), 10 (2006).
[CrossRef] [PubMed]

Pitris, C.

X. D. Li, C. Chudoba, T. Ko, C. Pitris, and J. G. Fujimoto, “Imaging needle for optical coherence tomography,” Opt. Lett.25(20), 1520–1522 (2000).
[CrossRef] [PubMed]

J. G. Fujimoto, S. A. Boppart, G. J. Tearney, B. E. Bouma, C. Pitris, and M. E. Brezinski, “High resolution in vivo intra-arterial imaging with optical coherence tomography,” Heart82(2), 128–133 (1999).
[PubMed]

Prager, R. W.

R. W. Prager, A. Gee, and L. Berman, “Stradx: real-time acquisition and visualization of freehand three-dimensional ultrasound,” Med. Image Anal.3(2), 129–140 (1999).
[CrossRef] [PubMed]

Price, N. B.

M. A. Nixon, B. C. McCallum, W. R. Fright, and N. B. Price, “The effects of metals and interfering fields on electromagnetic trackers,” Presence (Camb. Mass.)7(2), 204–218 (1998).
[CrossRef]

Pritt, B.

B. Pritt, J. J. Tessitore, D. L. Weaver, and H. Blaszyk, “The effect of tissue fixation and processing on breast cancer size,” Hum. Pathol.36(7), 756–760 (2005).
[CrossRef] [PubMed]

Quirk, B. C.

B. C. Quirk, R. A. McLaughlin, A. Curatolo, R. W. Kirk, P. B. Noble, and D. D. Sampson, “In situ imaging of lung alveoli with an optical coherence tomography needle probe,” J. Biomed. Opt.16(3), 036009 (2011).
[CrossRef] [PubMed]

D. Lorenser, X. Yang, R. W. Kirk, B. C. Quirk, R. A. McLaughlin, and D. D. Sampson, “Ultrathin side-viewing needle probe for optical coherence tomography,” Opt. Lett.36(19), 3894–3896 (2011).
[CrossRef] [PubMed]

A. Curatolo, R. A. McLaughlin, B. C. Quirk, R. W. Kirk, A. G. Bourke, B. A. Wood, P. D. Robbins, C. M. Saunders, and D. D. Sampson, “Ultrasound-guided optical coherence tomography needle probe for the assessment of breast cancer tumor margins,” AJR Am. J. Roentgenol. (to be published).

Raab, F. H.

F. H. Raab, E. B. Blood, T. O. Steiner, and H. R. Jones, “Magnetic position and orientation tracking system,” IEEE Trans. Aerosp. Electron. Syst.AES-15(5), 709–718 (1979).
[CrossRef]

Reed, J.

P. M. Bloomfield, T. J. Spinks, J. Reed, L. Schnorr, A. M. Westrip, L. Livieratos, R. Fulton, and T. Jones, “The design and implementation of a motion correction scheme for neurological PET,” Phys. Med. Biol.48(8), 959–978 (2003).
[CrossRef] [PubMed]

Ren, J.

Robbins, P. D.

A. Curatolo, R. A. McLaughlin, B. C. Quirk, R. W. Kirk, A. G. Bourke, B. A. Wood, P. D. Robbins, C. M. Saunders, and D. D. Sampson, “Ultrasound-guided optical coherence tomography needle probe for the assessment of breast cancer tumor margins,” AJR Am. J. Roentgenol. (to be published).

Sabaratnam, S.

B. H. Yeap, S. Muniandy, S. K. Lee, S. Sabaratnam, and M. Singh, “Specimen shrinkage and its influence on margin assessment in breast cancer,” Asian J. Surg.30(3), 183–187 (2007).
[CrossRef] [PubMed]

Sampson, D. D.

Saunders, C. M.

A. Curatolo, R. A. McLaughlin, B. C. Quirk, R. W. Kirk, A. G. Bourke, B. A. Wood, P. D. Robbins, C. M. Saunders, and D. D. Sampson, “Ultrasound-guided optical coherence tomography needle probe for the assessment of breast cancer tumor margins,” AJR Am. J. Roentgenol. (to be published).

Schmitt, J.

Schneider, K.

Schnorr, L.

P. M. Bloomfield, T. J. Spinks, J. Reed, L. Schnorr, A. M. Westrip, L. Livieratos, R. Fulton, and T. Jones, “The design and implementation of a motion correction scheme for neurological PET,” Phys. Med. Biol.48(8), 959–978 (2003).
[CrossRef] [PubMed]

Sharma, U.

Shin, E. J.

Y. Wu, J. Xi, L. Huo, J. Padvorac, E. J. Shin, S. A. Giday, A. A. Lennon, M. I. F. Canto, J. H. Hwang, and X. Li, “Robust high-resolution fine OCT needle for side-viewing interstitial tissue imaging,” IEEE J. Sel. Top. Quantum Electron.16(4), 863–869 (2010).
[CrossRef]

Shishkov, M.

I. K. Jang, G. J. Tearney, B. MacNeill, M. Takano, F. Moselewski, N. Iftima, M. Shishkov, S. Houser, H. T. Aretz, E. F. Halpern, and B. E. Bouma, “In vivo characterization of coronary atherosclerotic plaque by use of optical coherence tomography,” Circulation111(12), 1551–1555 (2005).
[CrossRef] [PubMed]

B. E. Bouma, G. J. Tearney, H. Yabushita, M. Shishkov, C. R. Kauffman, D. DeJoseph Gauthier, B. D. MacNeill, S. L. Houser, H. T. Aretz, E. F. Halpern, and I. K. Jang, “Evaluation of intracoronary stenting by intravascular optical coherence tomography,” Heart89(3), 317–320 (2003).
[CrossRef] [PubMed]

Shung, K. K.

J. Yin, H. C. Yang, X. Li, J. Zhang, Q. Zhou, C. Hu, K. K. Shung, and Z. Chen, “Integrated intravascular optical coherence tomography ultrasound imaging system,” J. Biomed. Opt.15(1), 010512 (2010).
[CrossRef] [PubMed]

Singh, M.

B. H. Yeap, S. Muniandy, S. K. Lee, S. Sabaratnam, and M. Singh, “Specimen shrinkage and its influence on margin assessment in breast cancer,” Asian J. Surg.30(3), 183–187 (2007).
[CrossRef] [PubMed]

Sitzman, B. T.

B. T. Sitzman and D. R. Uncles, “The effects of needle type, gauge, and tip bend on spinal needle deflection,” Anesth. Analg.82(2), 297–301 (1996).
[PubMed]

Spinks, T. J.

P. M. Bloomfield, T. J. Spinks, J. Reed, L. Schnorr, A. M. Westrip, L. Livieratos, R. Fulton, and T. Jones, “The design and implementation of a motion correction scheme for neurological PET,” Phys. Med. Biol.48(8), 959–978 (2003).
[CrossRef] [PubMed]

Standish, B.

Steiner, T. O.

F. H. Raab, E. B. Blood, T. O. Steiner, and H. R. Jones, “Magnetic position and orientation tracking system,” IEEE Trans. Aerosp. Electron. Syst.AES-15(5), 709–718 (1979).
[CrossRef]

Stendel, R.

O. Suess, S. Suess, S. Mularski, B. Kühn, T. Picht, S. Hammersen, R. Stendel, M. Brock, and T. Kombos, “Study on the clinical application of pulsed DC magnetic technology for tracking of intraoperative head motion during frameless stereotaxy,” Head Face Med.2(1), 10 (2006).
[CrossRef] [PubMed]

Stoianovici, D.

D. Stoianovici, A. Patriciu, D. Petrisor, D. Mazilu, and L. Kavoussi, “A new type of motor: pneumatic step motor,” IEEE/ASME Trans. Mechatron.12(1), 98–106 (2007).
[CrossRef] [PubMed]

Suess, O.

O. Suess, S. Suess, S. Mularski, B. Kühn, T. Picht, S. Hammersen, R. Stendel, M. Brock, and T. Kombos, “Study on the clinical application of pulsed DC magnetic technology for tracking of intraoperative head motion during frameless stereotaxy,” Head Face Med.2(1), 10 (2006).
[CrossRef] [PubMed]

Suess, S.

O. Suess, S. Suess, S. Mularski, B. Kühn, T. Picht, S. Hammersen, R. Stendel, M. Brock, and T. Kombos, “Study on the clinical application of pulsed DC magnetic technology for tracking of intraoperative head motion during frameless stereotaxy,” Head Face Med.2(1), 10 (2006).
[CrossRef] [PubMed]

Takano, M.

I. K. Jang, G. J. Tearney, B. MacNeill, M. Takano, F. Moselewski, N. Iftima, M. Shishkov, S. Houser, H. T. Aretz, E. F. Halpern, and B. E. Bouma, “In vivo characterization of coronary atherosclerotic plaque by use of optical coherence tomography,” Circulation111(12), 1551–1555 (2005).
[CrossRef] [PubMed]

Tearney, G. J.

I. K. Jang, G. J. Tearney, B. MacNeill, M. Takano, F. Moselewski, N. Iftima, M. Shishkov, S. Houser, H. T. Aretz, E. F. Halpern, and B. E. Bouma, “In vivo characterization of coronary atherosclerotic plaque by use of optical coherence tomography,” Circulation111(12), 1551–1555 (2005).
[CrossRef] [PubMed]

B. E. Bouma, G. J. Tearney, H. Yabushita, M. Shishkov, C. R. Kauffman, D. DeJoseph Gauthier, B. D. MacNeill, S. L. Houser, H. T. Aretz, E. F. Halpern, and I. K. Jang, “Evaluation of intracoronary stenting by intravascular optical coherence tomography,” Heart89(3), 317–320 (2003).
[CrossRef] [PubMed]

J. G. Fujimoto, S. A. Boppart, G. J. Tearney, B. E. Bouma, C. Pitris, and M. E. Brezinski, “High resolution in vivo intra-arterial imaging with optical coherence tomography,” Heart82(2), 128–133 (1999).
[PubMed]

B. E. Bouma and G. J. Tearney, “Power-efficient nonreciprocal interferometer and linear-scanning fiber-optic catheter for optical coherence tomography,” Opt. Lett.24(8), 531–533 (1999).
[CrossRef] [PubMed]

Tessitore, J. J.

B. Pritt, J. J. Tessitore, D. L. Weaver, and H. Blaszyk, “The effect of tissue fixation and processing on breast cancer size,” Hum. Pathol.36(7), 756–760 (2005).
[CrossRef] [PubMed]

Tran, P. H.

Uncles, D. R.

B. T. Sitzman and D. R. Uncles, “The effects of needle type, gauge, and tip bend on spinal needle deflection,” Anesth. Analg.82(2), 297–301 (1996).
[PubMed]

Ustun, T.

N. V. Iftimia, M. Mujat, T. Ustun, R. D. Ferguson, V. Danthu, and D. X. Hammer, “Spectral-domain low coherence interferometry/optical coherence tomography system for fine needle breast biopsy guidance,” Rev. Sci. Instrum.80(2), 024302 (2009).
[CrossRef] [PubMed]

van Leeuwen, T. G.

N. Weiss, T. G. van Leeuwen, and J. Kalkman, “Doppler-based lateral motion tracking for optical coherence tomography,” Opt. Lett. doc. ID 164900 (posted 19 April 2012, to be published).
[PubMed]

Venkatesan, A.

C. A. Buckner, A. Venkatesan, J. K. Locklin, and B. J. Wood, “Real-time sonography with electromagnetic tracking navigation for biopsy of a hepatic neoplasm seen only on arterial phase computed tomography,” J. Ultrasound Med.30(2), 253–256 (2011).
[PubMed]

Vitkin, I. A.

Wanschitz, F.

W. Birkfellner, F. Watzinger, F. Wanschitz, R. Ewers, and H. Bergmann, “Calibration of tracking systems in a surgical environment,” IEEE Trans. Med. Imaging17(5), 737–742 (1998).
[CrossRef] [PubMed]

Watzinger, F.

W. Birkfellner, F. Watzinger, F. Wanschitz, R. Ewers, and H. Bergmann, “Calibration of tracking systems in a surgical environment,” IEEE Trans. Med. Imaging17(5), 737–742 (1998).
[CrossRef] [PubMed]

Weaver, D. L.

B. Pritt, J. J. Tessitore, D. L. Weaver, and H. Blaszyk, “The effect of tissue fixation and processing on breast cancer size,” Hum. Pathol.36(7), 756–760 (2005).
[CrossRef] [PubMed]

Webster, R. J.

R. J. Webster, J. S. Kim, N. J. Cowan, G. S. Chirikjian, and A. M. Okamura, “Nonholonomic modeling of needle steering,” Int. J. Robot. Res.25(5-6), 509–525 (2006).
[CrossRef]

Weiss, N.

N. Weiss, T. G. van Leeuwen, and J. Kalkman, “Doppler-based lateral motion tracking for optical coherence tomography,” Opt. Lett. doc. ID 164900 (posted 19 April 2012, to be published).
[PubMed]

Westrip, A. M.

P. M. Bloomfield, T. J. Spinks, J. Reed, L. Schnorr, A. M. Westrip, L. Livieratos, R. Fulton, and T. Jones, “The design and implementation of a motion correction scheme for neurological PET,” Phys. Med. Biol.48(8), 959–978 (2003).
[CrossRef] [PubMed]

Williamson, J. P.

Wilson, B. C.

Wood, B. A.

A. Curatolo, R. A. McLaughlin, B. C. Quirk, R. W. Kirk, A. G. Bourke, B. A. Wood, P. D. Robbins, C. M. Saunders, and D. D. Sampson, “Ultrasound-guided optical coherence tomography needle probe for the assessment of breast cancer tumor margins,” AJR Am. J. Roentgenol. (to be published).

Wood, B. J.

C. A. Buckner, A. Venkatesan, J. K. Locklin, and B. J. Wood, “Real-time sonography with electromagnetic tracking navigation for biopsy of a hepatic neoplasm seen only on arterial phase computed tomography,” J. Ultrasound Med.30(2), 253–256 (2011).
[PubMed]

Wu, J. G.

Wu, Y.

Y. Wu, J. Xi, L. Huo, J. Padvorac, E. J. Shin, S. A. Giday, A. A. Lennon, M. I. F. Canto, J. H. Hwang, and X. Li, “Robust high-resolution fine OCT needle for side-viewing interstitial tissue imaging,” IEEE J. Sel. Top. Quantum Electron.16(4), 863–869 (2010).
[CrossRef]

Xi, J.

Y. Wu, J. Xi, L. Huo, J. Padvorac, E. J. Shin, S. A. Giday, A. A. Lennon, M. I. F. Canto, J. H. Hwang, and X. Li, “Robust high-resolution fine OCT needle for side-viewing interstitial tissue imaging,” IEEE J. Sel. Top. Quantum Electron.16(4), 863–869 (2010).
[CrossRef]

Yabushita, H.

B. E. Bouma, G. J. Tearney, H. Yabushita, M. Shishkov, C. R. Kauffman, D. DeJoseph Gauthier, B. D. MacNeill, S. L. Houser, H. T. Aretz, E. F. Halpern, and I. K. Jang, “Evaluation of intracoronary stenting by intravascular optical coherence tomography,” Heart89(3), 317–320 (2003).
[CrossRef] [PubMed]

Yang, C. H.

Yang, H. C.

J. Yin, H. C. Yang, X. Li, J. Zhang, Q. Zhou, C. Hu, K. K. Shung, and Z. Chen, “Integrated intravascular optical coherence tomography ultrasound imaging system,” J. Biomed. Opt.15(1), 010512 (2010).
[CrossRef] [PubMed]

Yang, V. X. D.

Yang, X.

Yeap, B. H.

B. H. Yeap, S. Muniandy, S. K. Lee, S. Sabaratnam, and M. Singh, “Specimen shrinkage and its influence on margin assessment in breast cancer,” Asian J. Surg.30(3), 183–187 (2007).
[CrossRef] [PubMed]

Yin, J.

J. Yin, H. C. Yang, X. Li, J. Zhang, Q. Zhou, C. Hu, K. K. Shung, and Z. Chen, “Integrated intravascular optical coherence tomography ultrasound imaging system,” J. Biomed. Opt.15(1), 010512 (2010).
[CrossRef] [PubMed]

Zhang, J.

J. Yin, H. C. Yang, X. Li, J. Zhang, Q. Zhou, C. Hu, K. K. Shung, and Z. Chen, “Integrated intravascular optical coherence tomography ultrasound imaging system,” J. Biomed. Opt.15(1), 010512 (2010).
[CrossRef] [PubMed]

Zhou, Q.

J. Yin, H. C. Yang, X. Li, J. Zhang, Q. Zhou, C. Hu, K. K. Shung, and Z. Chen, “Integrated intravascular optical coherence tomography ultrasound imaging system,” J. Biomed. Opt.15(1), 010512 (2010).
[CrossRef] [PubMed]

AJR Am. J. Roentgenol. (1)

A. Curatolo, R. A. McLaughlin, B. C. Quirk, R. W. Kirk, A. G. Bourke, B. A. Wood, P. D. Robbins, C. M. Saunders, and D. D. Sampson, “Ultrasound-guided optical coherence tomography needle probe for the assessment of breast cancer tumor margins,” AJR Am. J. Roentgenol. (to be published).

Anesth. Analg. (1)

B. T. Sitzman and D. R. Uncles, “The effects of needle type, gauge, and tip bend on spinal needle deflection,” Anesth. Analg.82(2), 297–301 (1996).
[PubMed]

Asian J. Surg. (1)

B. H. Yeap, S. Muniandy, S. K. Lee, S. Sabaratnam, and M. Singh, “Specimen shrinkage and its influence on margin assessment in breast cancer,” Asian J. Surg.30(3), 183–187 (2007).
[CrossRef] [PubMed]

Circulation (1)

I. K. Jang, G. J. Tearney, B. MacNeill, M. Takano, F. Moselewski, N. Iftima, M. Shishkov, S. Houser, H. T. Aretz, E. F. Halpern, and B. E. Bouma, “In vivo characterization of coronary atherosclerotic plaque by use of optical coherence tomography,” Circulation111(12), 1551–1555 (2005).
[CrossRef] [PubMed]

Head Face Med. (1)

O. Suess, S. Suess, S. Mularski, B. Kühn, T. Picht, S. Hammersen, R. Stendel, M. Brock, and T. Kombos, “Study on the clinical application of pulsed DC magnetic technology for tracking of intraoperative head motion during frameless stereotaxy,” Head Face Med.2(1), 10 (2006).
[CrossRef] [PubMed]

Heart (2)

J. G. Fujimoto, S. A. Boppart, G. J. Tearney, B. E. Bouma, C. Pitris, and M. E. Brezinski, “High resolution in vivo intra-arterial imaging with optical coherence tomography,” Heart82(2), 128–133 (1999).
[PubMed]

B. E. Bouma, G. J. Tearney, H. Yabushita, M. Shishkov, C. R. Kauffman, D. DeJoseph Gauthier, B. D. MacNeill, S. L. Houser, H. T. Aretz, E. F. Halpern, and I. K. Jang, “Evaluation of intracoronary stenting by intravascular optical coherence tomography,” Heart89(3), 317–320 (2003).
[CrossRef] [PubMed]

Hum. Pathol. (1)

B. Pritt, J. J. Tessitore, D. L. Weaver, and H. Blaszyk, “The effect of tissue fixation and processing on breast cancer size,” Hum. Pathol.36(7), 756–760 (2005).
[CrossRef] [PubMed]

IEEE J. Sel. Top. Quantum Electron. (1)

Y. Wu, J. Xi, L. Huo, J. Padvorac, E. J. Shin, S. A. Giday, A. A. Lennon, M. I. F. Canto, J. H. Hwang, and X. Li, “Robust high-resolution fine OCT needle for side-viewing interstitial tissue imaging,” IEEE J. Sel. Top. Quantum Electron.16(4), 863–869 (2010).
[CrossRef]

IEEE Trans. Aerosp. Electron. Syst. (1)

F. H. Raab, E. B. Blood, T. O. Steiner, and H. R. Jones, “Magnetic position and orientation tracking system,” IEEE Trans. Aerosp. Electron. Syst.AES-15(5), 709–718 (1979).
[CrossRef]

IEEE Trans. Med. Imaging (1)

W. Birkfellner, F. Watzinger, F. Wanschitz, R. Ewers, and H. Bergmann, “Calibration of tracking systems in a surgical environment,” IEEE Trans. Med. Imaging17(5), 737–742 (1998).
[CrossRef] [PubMed]

IEEE/ASME Trans. Mechatron. (1)

D. Stoianovici, A. Patriciu, D. Petrisor, D. Mazilu, and L. Kavoussi, “A new type of motor: pneumatic step motor,” IEEE/ASME Trans. Mechatron.12(1), 98–106 (2007).
[CrossRef] [PubMed]

Int. J. Med. Robot. (1)

N. Abolhassani, R. V. Patel, and F. Ayazi, “Minimization of needle deflection in robot-assisted percutaneous therapy,” Int. J. Med. Robot.3(2), 140–148 (2007).
[CrossRef] [PubMed]

Int. J. Robot. Res. (1)

R. J. Webster, J. S. Kim, N. J. Cowan, G. S. Chirikjian, and A. M. Okamura, “Nonholonomic modeling of needle steering,” Int. J. Robot. Res.25(5-6), 509–525 (2006).
[CrossRef]

J. Biomed. Opt. (2)

J. Yin, H. C. Yang, X. Li, J. Zhang, Q. Zhou, C. Hu, K. K. Shung, and Z. Chen, “Integrated intravascular optical coherence tomography ultrasound imaging system,” J. Biomed. Opt.15(1), 010512 (2010).
[CrossRef] [PubMed]

B. C. Quirk, R. A. McLaughlin, A. Curatolo, R. W. Kirk, P. B. Noble, and D. D. Sampson, “In situ imaging of lung alveoli with an optical coherence tomography needle probe,” J. Biomed. Opt.16(3), 036009 (2011).
[CrossRef] [PubMed]

J. Ultrasound Med. (1)

C. A. Buckner, A. Venkatesan, J. K. Locklin, and B. J. Wood, “Real-time sonography with electromagnetic tracking navigation for biopsy of a hepatic neoplasm seen only on arterial phase computed tomography,” J. Ultrasound Med.30(2), 253–256 (2011).
[PubMed]

Med. Image Anal. (1)

R. W. Prager, A. Gee, and L. Berman, “Stradx: real-time acquisition and visualization of freehand three-dimensional ultrasound,” Med. Image Anal.3(2), 129–140 (1999).
[CrossRef] [PubMed]

Opt. Express (3)

Opt. Lett. (8)

D. Lorenser, X. Yang, R. W. Kirk, B. C. Quirk, R. A. McLaughlin, and D. D. Sampson, “Ultrathin side-viewing needle probe for optical coherence tomography,” Opt. Lett.36(19), 3894–3896 (2011).
[CrossRef] [PubMed]

J. Ren, J. G. Wu, E. J. McDowell, and C. H. Yang, “Manual-scanning optical coherence tomography probe based on position tracking,” Opt. Lett.34(21), 3400–3402 (2009).
[CrossRef] [PubMed]

B. E. Bouma and G. J. Tearney, “Power-efficient nonreciprocal interferometer and linear-scanning fiber-optic catheter for optical coherence tomography,” Opt. Lett.24(8), 531–533 (1999).
[CrossRef] [PubMed]

X. D. Li, C. Chudoba, T. Ko, C. Pitris, and J. G. Fujimoto, “Imaging needle for optical coherence tomography,” Opt. Lett.25(20), 1520–1522 (2000).
[CrossRef] [PubMed]

P. H. Tran, D. S. Mukai, M. Brenner, and Z. Chen, “In vivo endoscopic optical coherence tomography by use of a rotational microelectromechanical system probe,” Opt. Lett.29(11), 1236–1238 (2004).
[CrossRef] [PubMed]

P. R. Herz, Y. Chen, A. D. Aguirre, K. Schneider, P. Hsiung, J. G. Fujimoto, K. Madden, J. Schmitt, J. Goodnow, and C. Petersen, “Micromotor endoscope catheter for in vivo, ultrahigh-resolution optical coherence tomography,” Opt. Lett.29(19), 2261–2263 (2004).
[CrossRef] [PubMed]

V. X. D. Yang, Y. X. Mao, N. Munce, B. Standish, W. Kucharczyk, N. E. Marcon, B. C. Wilson, and I. A. Vitkin, “Interstitial Doppler optical coherence tomography,” Opt. Lett.30(14), 1791–1793 (2005).
[CrossRef] [PubMed]

N. Weiss, T. G. van Leeuwen, and J. Kalkman, “Doppler-based lateral motion tracking for optical coherence tomography,” Opt. Lett. doc. ID 164900 (posted 19 April 2012, to be published).
[PubMed]

Phys. Med. Biol. (1)

P. M. Bloomfield, T. J. Spinks, J. Reed, L. Schnorr, A. M. Westrip, L. Livieratos, R. Fulton, and T. Jones, “The design and implementation of a motion correction scheme for neurological PET,” Phys. Med. Biol.48(8), 959–978 (2003).
[CrossRef] [PubMed]

Presence (Camb. Mass.) (1)

M. A. Nixon, B. C. McCallum, W. R. Fright, and N. B. Price, “The effects of metals and interfering fields on electromagnetic trackers,” Presence (Camb. Mass.)7(2), 204–218 (1998).
[CrossRef]

Rev. Sci. Instrum. (1)

N. V. Iftimia, M. Mujat, T. Ustun, R. D. Ferguson, V. Danthu, and D. X. Hammer, “Spectral-domain low coherence interferometry/optical coherence tomography system for fine needle breast biopsy guidance,” Rev. Sci. Instrum.80(2), 024302 (2009).
[CrossRef] [PubMed]

Ultrasound Med. Biol. (1)

D. F. Leotta, P. R. Detmer, and R. W. Martin, “Performance of a miniature magnetic position sensor for three-dimensional ultrasound imaging,” Ultrasound Med. Biol.23(4), 597–609 (1997).
[CrossRef] [PubMed]

Virchows Arch. A Pathol. Anat. Histopathol. (1)

H. Boonstra, J. W. Oosterhuis, A. M. Oosterhuis, and G. J. Fleuren, “Cervical tissue shrinkage by formaldehyde fixation, paraffin wax embedding, section cutting and mounting,” Virchows Arch. A Pathol. Anat. Histopathol.402(2), 195–201 (1983).
[CrossRef] [PubMed]

Virtual Real. (Walth. Cross) (1)

V. Kindratenko, “A survey of electromagnetic position tracker calibration techniques,” Virtual Real. (Walth. Cross)5(3), 169–182 (2000).
[CrossRef]

Other (4)

W. Ashe, “Magnetic position measurement system with field containment means,” U. S. Patent 6,528,991 B2 (March 4, 2003).

E. B. Blood, “Device for quantitatively measuring the relative position and orientation of two bodies in the presence of metals utilizing direct current magnetic fields,” U. S. Patent 4,945,305 (July 31, 1990).

J. Kuipers, “Object tracking and orientation determination means, system and process,” U. S. Patent 3,868,565 (Feb. 25, 1975).

R. A. McLaughlin, B. C. Quirk, A. Curatolo, R. W. Kirk, L. Scolaro, D. Lorenser, P. D. Robbins, B. A. Wood, C. M. Saunders, and D. D. Sampson, “Imaging of breast cancer with optical coherence tomography needle probes: feasibility and initial results,” IEEE J. Sel. Top. Quantum Electron. (2011), early access, http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6007038 .

Supplementary Material (1)

» Media 1: MOV (1969 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematics of (a) the optical design of our OCT needle probe, showing the light beam (in red), and (b) the assembly of the OCT needle probe and the magnetic sensor.

Fig. 2
Fig. 2

Plots illustrating the two-stage moving window average algorithm in a 2D example. (a) A moving window (blue) is centered on the A-scan position to be corrected, Pi (red). (b) PCA is performed on the subset of positions within the window, producing a least-squares best fit, denoted as v1, to the local trajectory. v2 fits the residuals orthogonal to the first line of best fit. (c) The positions are re-expressed as a linear combination of the PCA basis vectors. (d) A smaller window (green) is centered on Pi. (e) The data within this smaller window is projected (orange) onto v1, smoothing the noise in the minor direction of motion, v2. The average of the projected data is calculated as the corrected position (yellow). (f) An inverse transformation maps the corrected position onto the original coordinate frame. The corrected position is explicitly shown here relative to the original position, Pi.

Fig. 3
Fig. 3

(a) Displacement profile of a motorized translation stage showing acceleration during scanning. (b) Gold-standard reconstruction based on position data from the translation stage. (c) Untracked reconstruction assuming uniformly spaced A-scans. (d) Reconstruction based on the cross-correlation-based technique. (e) Reconstruction based on magnetic tracker with cross-correlation-based resampling and the two-stage moving window average algorithm. The yellow dotted lines provide a visual aid for comparing the positioning of the groove features. Scale bar = 500 µm for Parts (b)-(e).

Fig. 4
Fig. 4

Image reconstruction of a phantom with a curved surface. (a) Gold-standard image reconstructed from a motorized stage scan. Freehand scanning (with the needle probe traced along the curved surface) reconstructed using: (b) untracked; (c) cross-correlation-based; and (d) magnetic tracker methods. The magnetic tracker method reconstructed the 3D trajectory of the freehand scan (Media 1). Yellow dotted lines were drawn at the 2nd, 4th and 6th grooves for improved visual comparison. Scale bar = 500 µm for all figure parts.

Fig. 5
Fig. 5

(a) Histological image of a human breast tissue specimen in the vicinity of the OCT-scanned area. The guide needle track is indicated by arrows. The region scanned using the translation stage is delineated by a dashed rectangle. (b) A magnified view of the outlined region in (a), in which four features have been labeled: milk duct (D), blood vessel (V), adipose tissue (A), and connective tissue (C). (c) OCT gold-standard image reconstructed from translation stage scanning, showing features comparable to histology. (d) OCT freehand scanning reconstructed using the untracked method. Features are geometrically distorted due to variation in the scanning speed. (e) OCT freehand scanning reconstructed using the proposed magnetic tracker method. Blood vessels (V), adipose tissue (A) and connective tissue (C) are reconstructed with sizes and shapes similar to the gold-standard OCT image. Scale bars = 500 µm.

Tables (1)

Tables Icon

Table 1 Accuracy of Various Reconstruction Methods

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

R Total =[ cosψcosθ cosθsinψ sinθ cosψsinθsinφsinψcosφ cosψcosφ+sinψsinθsinφ cosθsinφ sinψsinφ+cosψcosφsinθ sinψcosφsinθcosψsinφ cosθcosφ ],
R x =[ 1 0 0 0 cosφ sinφ 0 sinφ cosφ ],   R y =[ cosθ 0 sinθ 0 1 0 sinθ 0 cosθ ],  and  R z =[ cosψ sinψ 0 sinψ cosψ 0 0 0 1 ].

Metrics