Abstract

Abstract: Advances in swept source laser technology continues to increase the imaging speed of swept-source optical coherence tomography (SS-OCT) systems. These fast imaging speeds are ideal for microvascular detection schemes, such as speckle variance (SV), where interframe motion can cause severe imaging artifacts and loss of vascular contrast. However, full utilization of the laser scan speed has been hindered by the computationally intensive signal processing required by SS-OCT and SV calculations. Using a commercial graphics processing unit that has been optimized for parallel data processing, we report a complete high-speed SS-OCT platform capable of real-time data acquisition, processing, display, and saving at 108,000 lines per second. Subpixel image registration of structural images was performed in real-time prior to SV calculations in order to reduce decorrelation from stationary structures induced by the bulk tissue motion. The viability of the system was successfully demonstrated in a high bulk tissue motion scenario of human fingernail root imaging where SV images (512 × 512 pixels, n = 4) were displayed at 54 frames per second.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. E. Bouma, G. J. Tearney, H. Yabushita, M. Shishkov, C. R. Kauffman, D. DeJoseph Gauthier, B. D. MacNeill, S. L. Houser, H. T. Aretz, E. F. Halpern, and I.-K. Jang, “Evaluation of intracoronary stenting by intravascular optical coherence tomography,” Heart89(3), 317–320 (2003).
    [CrossRef] [PubMed]
  2. A. M. Zysk, F. T. Nguyen, A. L. Oldenburg, D. L. Marks, and S. A. Boppart, “Optical coherence tomography: a review of clinical development from bench to bedside,” J. Biomed. Opt.12(5), 051403 (2007).
    [CrossRef] [PubMed]
  3. W. Luo, F. T. Nguyen, A. M. Zysk, T. S. Ralston, J. Brockenbrough, D. L. Marks, A. L. Oldenburg, and S. A. Boppart, “Optical biopsy of lymph node morphology using optical coherence tomography,” Technol. Cancer Res. Treat.4(5), 539–548 (2005).
    [PubMed]
  4. S. Yun, G. Tearney, J. de Boer, N. Iftimia, and B. E. Bouma, “High-speed optical frequency-domain imaging,” Opt. Express11(22), 2953–2963 (2003).
    [CrossRef] [PubMed]
  5. W. Wieser, B. R. Biedermann, T. Klein, C. M. Eigenwillig, and R. Huber, “Multi-megahertz OCT: High quality 3D imaging at 20 million A-scans and 4.5 GVoxels per second,” Opt. Express18(14), 14685–14704 (2010).
    [CrossRef] [PubMed]
  6. A. Mariampillai, M. K. K. Leung, M. Jarvi, B. A. Standish, K. K. C. Lee, B. C. Wilson, A. Vitkin, and V. X. D. Yang, “Optimized speckle variance OCT imaging of microvasculature,” Opt. Lett.35(8), 1257–1259 (2010).
    [CrossRef] [PubMed]
  7. Y. Watanabe and T. Itagaki, “Real-time display on Fourier domain optical coherence tomography system using a graphics processing unit,” J. Biomed. Opt.14(6), 060506 (2009).
    [CrossRef] [PubMed]
  8. Y. Watanabe, “Real time processing of Fourier domain optical coherence tomography with fixed-pattern noise removal by partial median subtraction using a graphics processing unit,” J. Biomed. Opt.17(5), 050503 (2012).
    [CrossRef] [PubMed]
  9. K. Zhang and J. U. Kang, “Real-time 4D signal processing and visualization using graphics processing unit on a regular nonlinear-k Fourier-domain OCT system,” Opt. Express18(11), 11772–11784 (2010).
    [CrossRef] [PubMed]
  10. K. Zhang and J. U. Kang, “Real-time intraoperative 4D full-range FD-OCT based on the dual graphics processing units architecture for microsurgery guidance,” Biomed. Opt. Express2(4), 764–770 (2011).
    [CrossRef] [PubMed]
  11. K. Zhang and J. U. Kang, “Graphics processing unit accelerated non-uniform fast Fourier transform for ultrahigh-speed, real-time Fourier-domain OCT,” Opt. Express18(22), 23472–23487 (2010).
    [CrossRef] [PubMed]
  12. J. Li, P. Bloch, J. Xu, M. V. Sarunic, and L. Shannon, “Performance and scalability of Fourier domain optical coherence tomography acceleration using graphics processing units,” Appl. Opt.50(13), 1832–1838 (2011).
    [CrossRef] [PubMed]
  13. W.-Y. Oh, B. J. Vakoc, M. Shishkov, G. J. Tearney, and B. E. Bouma, “>400 kHz repetition rate wavelength-swept laser and application to high-speed optical frequency domain imaging,” Opt. Lett.35(17), 2919–2921 (2010).
    [CrossRef] [PubMed]
  14. A. Mariampillai, B. A. Standish, E. H. Moriyama, M. Khurana, N. R. Munce, M. K. Leung, J. Jiang, A. E. Cable, B. C. Wilson, I. A. Vitkin, and V. X. D. Yang, “Speckle variance detection of microvasculature using swept-source optical coherence tomography,” Opt. Lett.33(13), 1530–1532 (2008).
    [CrossRef] [PubMed]
  15. NVIDIA, “CUDA C Programming Guide Version 4.0,” May 2011.
  16. M. Guizar-Sicairos, S. T. Thurman, and J. R. Fienup, “Efficient subpixel image registration algorithms,” Opt. Lett.33(2), 156–158 (2008).
    [CrossRef] [PubMed]
  17. M. Cutolo, A. Sulli, M. E. Secchi, S. Paolino, and C. Pizzorni, “Nailfold capillaroscopy is useful for the diagnosis and follow-up of autoimmune rheumatic diseases. A future tool for the analysis of microvascular heart involvement?” Rheumatology (Oxford)45(4Suppl 4), iv43–iv46 (2006).
    [CrossRef] [PubMed]
  18. V. J. Srinivasan, S. Sakadzić, I. Gorczynska, S. Ruvinskaya, W. Wu, J. G. Fujimoto, and D. A. Boas, “Depth-resolved microscopy of cortical hemodynamics with optical coherence tomography,” Opt. Lett.34(20), 3086–3088 (2009).
    [CrossRef] [PubMed]
  19. M. A. Yaseen, V. J. Srinivasan, S. Sakadžić, H. Radhakrishnan, I. Gorczynska, W. Wu, J. G. Fujimoto, and D. A. Boas, “Microvascular oxygen tension and flow measurements in rodent cerebral cortex during baseline conditions and functional activation,” J. Cereb. Blood Flow Metab.31(4), 1051–1063 (2011).
    [CrossRef] [PubMed]
  20. L. An and R. K. Wang, “In vivo volumetric imaging of vascular perfusion within human retina and choroids with optical micro-angiography,” Opt. Express16(15), 11438–11452 (2008).
    [CrossRef] [PubMed]
  21. X. Liu, K. Zhang, Y. Huang, and J. U. Kang, “Spectroscopic-speckle variance OCT for microvasculature detection and analysis,” Biomed. Opt. Express2(11), 2995–3009 (2011).
    [CrossRef] [PubMed]
  22. P. Neri, C. Mariotti, I. Arapi, E. Bambini, and A. Giovannini, “Anti vascular endothelial growth factor sequential therapy for neovascular age-related macular degeneration: is this the new deal?” Curr. Med. Res. Opin.28(3), 395–400 (2012).
    [CrossRef] [PubMed]
  23. N. Ibrahim, Y. Yu, W. R. Walsh, and J.-L. Yang, “Molecular targeted therapies for cancer: sorafenib mono-therapy and its combination with other therapies (review),” Oncol. Rep.27(5), 1303–1311 (2012).
    [PubMed]
  24. B. A. Standish, K. K. C. Lee, X. Jin, A. Mariampillai, N. R. Munce, M. F. G. Wood, B. C. Wilson, I. A. Vitkin, and V. X. D. Yang, “Interstitial Doppler optical coherence tomography as a local tumor necrosis predictor in photodynamic therapy of prostatic carcinoma: an in vivo study,” Cancer Res.68(23), 9987–9995 (2008).
    [CrossRef] [PubMed]

2012

Y. Watanabe, “Real time processing of Fourier domain optical coherence tomography with fixed-pattern noise removal by partial median subtraction using a graphics processing unit,” J. Biomed. Opt.17(5), 050503 (2012).
[CrossRef] [PubMed]

P. Neri, C. Mariotti, I. Arapi, E. Bambini, and A. Giovannini, “Anti vascular endothelial growth factor sequential therapy for neovascular age-related macular degeneration: is this the new deal?” Curr. Med. Res. Opin.28(3), 395–400 (2012).
[CrossRef] [PubMed]

N. Ibrahim, Y. Yu, W. R. Walsh, and J.-L. Yang, “Molecular targeted therapies for cancer: sorafenib mono-therapy and its combination with other therapies (review),” Oncol. Rep.27(5), 1303–1311 (2012).
[PubMed]

2011

2010

2009

2008

2007

A. M. Zysk, F. T. Nguyen, A. L. Oldenburg, D. L. Marks, and S. A. Boppart, “Optical coherence tomography: a review of clinical development from bench to bedside,” J. Biomed. Opt.12(5), 051403 (2007).
[CrossRef] [PubMed]

2006

M. Cutolo, A. Sulli, M. E. Secchi, S. Paolino, and C. Pizzorni, “Nailfold capillaroscopy is useful for the diagnosis and follow-up of autoimmune rheumatic diseases. A future tool for the analysis of microvascular heart involvement?” Rheumatology (Oxford)45(4Suppl 4), iv43–iv46 (2006).
[CrossRef] [PubMed]

2005

W. Luo, F. T. Nguyen, A. M. Zysk, T. S. Ralston, J. Brockenbrough, D. L. Marks, A. L. Oldenburg, and S. A. Boppart, “Optical biopsy of lymph node morphology using optical coherence tomography,” Technol. Cancer Res. Treat.4(5), 539–548 (2005).
[PubMed]

2003

S. Yun, G. Tearney, J. de Boer, N. Iftimia, and B. E. Bouma, “High-speed optical frequency-domain imaging,” Opt. Express11(22), 2953–2963 (2003).
[CrossRef] [PubMed]

B. E. Bouma, G. J. Tearney, H. Yabushita, M. Shishkov, C. R. Kauffman, D. DeJoseph Gauthier, B. D. MacNeill, S. L. Houser, H. T. Aretz, E. F. Halpern, and I.-K. Jang, “Evaluation of intracoronary stenting by intravascular optical coherence tomography,” Heart89(3), 317–320 (2003).
[CrossRef] [PubMed]

An, L.

Arapi, I.

P. Neri, C. Mariotti, I. Arapi, E. Bambini, and A. Giovannini, “Anti vascular endothelial growth factor sequential therapy for neovascular age-related macular degeneration: is this the new deal?” Curr. Med. Res. Opin.28(3), 395–400 (2012).
[CrossRef] [PubMed]

Aretz, H. T.

B. E. Bouma, G. J. Tearney, H. Yabushita, M. Shishkov, C. R. Kauffman, D. DeJoseph Gauthier, B. D. MacNeill, S. L. Houser, H. T. Aretz, E. F. Halpern, and I.-K. Jang, “Evaluation of intracoronary stenting by intravascular optical coherence tomography,” Heart89(3), 317–320 (2003).
[CrossRef] [PubMed]

Bambini, E.

P. Neri, C. Mariotti, I. Arapi, E. Bambini, and A. Giovannini, “Anti vascular endothelial growth factor sequential therapy for neovascular age-related macular degeneration: is this the new deal?” Curr. Med. Res. Opin.28(3), 395–400 (2012).
[CrossRef] [PubMed]

Biedermann, B. R.

Bloch, P.

Boas, D. A.

M. A. Yaseen, V. J. Srinivasan, S. Sakadžić, H. Radhakrishnan, I. Gorczynska, W. Wu, J. G. Fujimoto, and D. A. Boas, “Microvascular oxygen tension and flow measurements in rodent cerebral cortex during baseline conditions and functional activation,” J. Cereb. Blood Flow Metab.31(4), 1051–1063 (2011).
[CrossRef] [PubMed]

V. J. Srinivasan, S. Sakadzić, I. Gorczynska, S. Ruvinskaya, W. Wu, J. G. Fujimoto, and D. A. Boas, “Depth-resolved microscopy of cortical hemodynamics with optical coherence tomography,” Opt. Lett.34(20), 3086–3088 (2009).
[CrossRef] [PubMed]

Boppart, S. A.

A. M. Zysk, F. T. Nguyen, A. L. Oldenburg, D. L. Marks, and S. A. Boppart, “Optical coherence tomography: a review of clinical development from bench to bedside,” J. Biomed. Opt.12(5), 051403 (2007).
[CrossRef] [PubMed]

W. Luo, F. T. Nguyen, A. M. Zysk, T. S. Ralston, J. Brockenbrough, D. L. Marks, A. L. Oldenburg, and S. A. Boppart, “Optical biopsy of lymph node morphology using optical coherence tomography,” Technol. Cancer Res. Treat.4(5), 539–548 (2005).
[PubMed]

Bouma, B. E.

W.-Y. Oh, B. J. Vakoc, M. Shishkov, G. J. Tearney, and B. E. Bouma, “>400 kHz repetition rate wavelength-swept laser and application to high-speed optical frequency domain imaging,” Opt. Lett.35(17), 2919–2921 (2010).
[CrossRef] [PubMed]

S. Yun, G. Tearney, J. de Boer, N. Iftimia, and B. E. Bouma, “High-speed optical frequency-domain imaging,” Opt. Express11(22), 2953–2963 (2003).
[CrossRef] [PubMed]

B. E. Bouma, G. J. Tearney, H. Yabushita, M. Shishkov, C. R. Kauffman, D. DeJoseph Gauthier, B. D. MacNeill, S. L. Houser, H. T. Aretz, E. F. Halpern, and I.-K. Jang, “Evaluation of intracoronary stenting by intravascular optical coherence tomography,” Heart89(3), 317–320 (2003).
[CrossRef] [PubMed]

Brockenbrough, J.

W. Luo, F. T. Nguyen, A. M. Zysk, T. S. Ralston, J. Brockenbrough, D. L. Marks, A. L. Oldenburg, and S. A. Boppart, “Optical biopsy of lymph node morphology using optical coherence tomography,” Technol. Cancer Res. Treat.4(5), 539–548 (2005).
[PubMed]

Cable, A. E.

Cutolo, M.

M. Cutolo, A. Sulli, M. E. Secchi, S. Paolino, and C. Pizzorni, “Nailfold capillaroscopy is useful for the diagnosis and follow-up of autoimmune rheumatic diseases. A future tool for the analysis of microvascular heart involvement?” Rheumatology (Oxford)45(4Suppl 4), iv43–iv46 (2006).
[CrossRef] [PubMed]

de Boer, J.

DeJoseph Gauthier, D.

B. E. Bouma, G. J. Tearney, H. Yabushita, M. Shishkov, C. R. Kauffman, D. DeJoseph Gauthier, B. D. MacNeill, S. L. Houser, H. T. Aretz, E. F. Halpern, and I.-K. Jang, “Evaluation of intracoronary stenting by intravascular optical coherence tomography,” Heart89(3), 317–320 (2003).
[CrossRef] [PubMed]

Eigenwillig, C. M.

Fienup, J. R.

Fujimoto, J. G.

M. A. Yaseen, V. J. Srinivasan, S. Sakadžić, H. Radhakrishnan, I. Gorczynska, W. Wu, J. G. Fujimoto, and D. A. Boas, “Microvascular oxygen tension and flow measurements in rodent cerebral cortex during baseline conditions and functional activation,” J. Cereb. Blood Flow Metab.31(4), 1051–1063 (2011).
[CrossRef] [PubMed]

V. J. Srinivasan, S. Sakadzić, I. Gorczynska, S. Ruvinskaya, W. Wu, J. G. Fujimoto, and D. A. Boas, “Depth-resolved microscopy of cortical hemodynamics with optical coherence tomography,” Opt. Lett.34(20), 3086–3088 (2009).
[CrossRef] [PubMed]

Giovannini, A.

P. Neri, C. Mariotti, I. Arapi, E. Bambini, and A. Giovannini, “Anti vascular endothelial growth factor sequential therapy for neovascular age-related macular degeneration: is this the new deal?” Curr. Med. Res. Opin.28(3), 395–400 (2012).
[CrossRef] [PubMed]

Gorczynska, I.

M. A. Yaseen, V. J. Srinivasan, S. Sakadžić, H. Radhakrishnan, I. Gorczynska, W. Wu, J. G. Fujimoto, and D. A. Boas, “Microvascular oxygen tension and flow measurements in rodent cerebral cortex during baseline conditions and functional activation,” J. Cereb. Blood Flow Metab.31(4), 1051–1063 (2011).
[CrossRef] [PubMed]

V. J. Srinivasan, S. Sakadzić, I. Gorczynska, S. Ruvinskaya, W. Wu, J. G. Fujimoto, and D. A. Boas, “Depth-resolved microscopy of cortical hemodynamics with optical coherence tomography,” Opt. Lett.34(20), 3086–3088 (2009).
[CrossRef] [PubMed]

Guizar-Sicairos, M.

Halpern, E. F.

B. E. Bouma, G. J. Tearney, H. Yabushita, M. Shishkov, C. R. Kauffman, D. DeJoseph Gauthier, B. D. MacNeill, S. L. Houser, H. T. Aretz, E. F. Halpern, and I.-K. Jang, “Evaluation of intracoronary stenting by intravascular optical coherence tomography,” Heart89(3), 317–320 (2003).
[CrossRef] [PubMed]

Houser, S. L.

B. E. Bouma, G. J. Tearney, H. Yabushita, M. Shishkov, C. R. Kauffman, D. DeJoseph Gauthier, B. D. MacNeill, S. L. Houser, H. T. Aretz, E. F. Halpern, and I.-K. Jang, “Evaluation of intracoronary stenting by intravascular optical coherence tomography,” Heart89(3), 317–320 (2003).
[CrossRef] [PubMed]

Huang, Y.

Huber, R.

Ibrahim, N.

N. Ibrahim, Y. Yu, W. R. Walsh, and J.-L. Yang, “Molecular targeted therapies for cancer: sorafenib mono-therapy and its combination with other therapies (review),” Oncol. Rep.27(5), 1303–1311 (2012).
[PubMed]

Iftimia, N.

Itagaki, T.

Y. Watanabe and T. Itagaki, “Real-time display on Fourier domain optical coherence tomography system using a graphics processing unit,” J. Biomed. Opt.14(6), 060506 (2009).
[CrossRef] [PubMed]

Jang, I.-K.

B. E. Bouma, G. J. Tearney, H. Yabushita, M. Shishkov, C. R. Kauffman, D. DeJoseph Gauthier, B. D. MacNeill, S. L. Houser, H. T. Aretz, E. F. Halpern, and I.-K. Jang, “Evaluation of intracoronary stenting by intravascular optical coherence tomography,” Heart89(3), 317–320 (2003).
[CrossRef] [PubMed]

Jarvi, M.

Jiang, J.

Jin, X.

B. A. Standish, K. K. C. Lee, X. Jin, A. Mariampillai, N. R. Munce, M. F. G. Wood, B. C. Wilson, I. A. Vitkin, and V. X. D. Yang, “Interstitial Doppler optical coherence tomography as a local tumor necrosis predictor in photodynamic therapy of prostatic carcinoma: an in vivo study,” Cancer Res.68(23), 9987–9995 (2008).
[CrossRef] [PubMed]

Kang, J. U.

Kauffman, C. R.

B. E. Bouma, G. J. Tearney, H. Yabushita, M. Shishkov, C. R. Kauffman, D. DeJoseph Gauthier, B. D. MacNeill, S. L. Houser, H. T. Aretz, E. F. Halpern, and I.-K. Jang, “Evaluation of intracoronary stenting by intravascular optical coherence tomography,” Heart89(3), 317–320 (2003).
[CrossRef] [PubMed]

Khurana, M.

Klein, T.

Lee, K. K. C.

A. Mariampillai, M. K. K. Leung, M. Jarvi, B. A. Standish, K. K. C. Lee, B. C. Wilson, A. Vitkin, and V. X. D. Yang, “Optimized speckle variance OCT imaging of microvasculature,” Opt. Lett.35(8), 1257–1259 (2010).
[CrossRef] [PubMed]

B. A. Standish, K. K. C. Lee, X. Jin, A. Mariampillai, N. R. Munce, M. F. G. Wood, B. C. Wilson, I. A. Vitkin, and V. X. D. Yang, “Interstitial Doppler optical coherence tomography as a local tumor necrosis predictor in photodynamic therapy of prostatic carcinoma: an in vivo study,” Cancer Res.68(23), 9987–9995 (2008).
[CrossRef] [PubMed]

Leung, M. K.

Leung, M. K. K.

Li, J.

Liu, X.

Luo, W.

W. Luo, F. T. Nguyen, A. M. Zysk, T. S. Ralston, J. Brockenbrough, D. L. Marks, A. L. Oldenburg, and S. A. Boppart, “Optical biopsy of lymph node morphology using optical coherence tomography,” Technol. Cancer Res. Treat.4(5), 539–548 (2005).
[PubMed]

MacNeill, B. D.

B. E. Bouma, G. J. Tearney, H. Yabushita, M. Shishkov, C. R. Kauffman, D. DeJoseph Gauthier, B. D. MacNeill, S. L. Houser, H. T. Aretz, E. F. Halpern, and I.-K. Jang, “Evaluation of intracoronary stenting by intravascular optical coherence tomography,” Heart89(3), 317–320 (2003).
[CrossRef] [PubMed]

Mariampillai, A.

Mariotti, C.

P. Neri, C. Mariotti, I. Arapi, E. Bambini, and A. Giovannini, “Anti vascular endothelial growth factor sequential therapy for neovascular age-related macular degeneration: is this the new deal?” Curr. Med. Res. Opin.28(3), 395–400 (2012).
[CrossRef] [PubMed]

Marks, D. L.

A. M. Zysk, F. T. Nguyen, A. L. Oldenburg, D. L. Marks, and S. A. Boppart, “Optical coherence tomography: a review of clinical development from bench to bedside,” J. Biomed. Opt.12(5), 051403 (2007).
[CrossRef] [PubMed]

W. Luo, F. T. Nguyen, A. M. Zysk, T. S. Ralston, J. Brockenbrough, D. L. Marks, A. L. Oldenburg, and S. A. Boppart, “Optical biopsy of lymph node morphology using optical coherence tomography,” Technol. Cancer Res. Treat.4(5), 539–548 (2005).
[PubMed]

Moriyama, E. H.

Munce, N. R.

A. Mariampillai, B. A. Standish, E. H. Moriyama, M. Khurana, N. R. Munce, M. K. Leung, J. Jiang, A. E. Cable, B. C. Wilson, I. A. Vitkin, and V. X. D. Yang, “Speckle variance detection of microvasculature using swept-source optical coherence tomography,” Opt. Lett.33(13), 1530–1532 (2008).
[CrossRef] [PubMed]

B. A. Standish, K. K. C. Lee, X. Jin, A. Mariampillai, N. R. Munce, M. F. G. Wood, B. C. Wilson, I. A. Vitkin, and V. X. D. Yang, “Interstitial Doppler optical coherence tomography as a local tumor necrosis predictor in photodynamic therapy of prostatic carcinoma: an in vivo study,” Cancer Res.68(23), 9987–9995 (2008).
[CrossRef] [PubMed]

Neri, P.

P. Neri, C. Mariotti, I. Arapi, E. Bambini, and A. Giovannini, “Anti vascular endothelial growth factor sequential therapy for neovascular age-related macular degeneration: is this the new deal?” Curr. Med. Res. Opin.28(3), 395–400 (2012).
[CrossRef] [PubMed]

Nguyen, F. T.

A. M. Zysk, F. T. Nguyen, A. L. Oldenburg, D. L. Marks, and S. A. Boppart, “Optical coherence tomography: a review of clinical development from bench to bedside,” J. Biomed. Opt.12(5), 051403 (2007).
[CrossRef] [PubMed]

W. Luo, F. T. Nguyen, A. M. Zysk, T. S. Ralston, J. Brockenbrough, D. L. Marks, A. L. Oldenburg, and S. A. Boppart, “Optical biopsy of lymph node morphology using optical coherence tomography,” Technol. Cancer Res. Treat.4(5), 539–548 (2005).
[PubMed]

Oh, W.-Y.

Oldenburg, A. L.

A. M. Zysk, F. T. Nguyen, A. L. Oldenburg, D. L. Marks, and S. A. Boppart, “Optical coherence tomography: a review of clinical development from bench to bedside,” J. Biomed. Opt.12(5), 051403 (2007).
[CrossRef] [PubMed]

W. Luo, F. T. Nguyen, A. M. Zysk, T. S. Ralston, J. Brockenbrough, D. L. Marks, A. L. Oldenburg, and S. A. Boppart, “Optical biopsy of lymph node morphology using optical coherence tomography,” Technol. Cancer Res. Treat.4(5), 539–548 (2005).
[PubMed]

Paolino, S.

M. Cutolo, A. Sulli, M. E. Secchi, S. Paolino, and C. Pizzorni, “Nailfold capillaroscopy is useful for the diagnosis and follow-up of autoimmune rheumatic diseases. A future tool for the analysis of microvascular heart involvement?” Rheumatology (Oxford)45(4Suppl 4), iv43–iv46 (2006).
[CrossRef] [PubMed]

Pizzorni, C.

M. Cutolo, A. Sulli, M. E. Secchi, S. Paolino, and C. Pizzorni, “Nailfold capillaroscopy is useful for the diagnosis and follow-up of autoimmune rheumatic diseases. A future tool for the analysis of microvascular heart involvement?” Rheumatology (Oxford)45(4Suppl 4), iv43–iv46 (2006).
[CrossRef] [PubMed]

Radhakrishnan, H.

M. A. Yaseen, V. J. Srinivasan, S. Sakadžić, H. Radhakrishnan, I. Gorczynska, W. Wu, J. G. Fujimoto, and D. A. Boas, “Microvascular oxygen tension and flow measurements in rodent cerebral cortex during baseline conditions and functional activation,” J. Cereb. Blood Flow Metab.31(4), 1051–1063 (2011).
[CrossRef] [PubMed]

Ralston, T. S.

W. Luo, F. T. Nguyen, A. M. Zysk, T. S. Ralston, J. Brockenbrough, D. L. Marks, A. L. Oldenburg, and S. A. Boppart, “Optical biopsy of lymph node morphology using optical coherence tomography,” Technol. Cancer Res. Treat.4(5), 539–548 (2005).
[PubMed]

Ruvinskaya, S.

Sakadzic, S.

Sakadžic, S.

M. A. Yaseen, V. J. Srinivasan, S. Sakadžić, H. Radhakrishnan, I. Gorczynska, W. Wu, J. G. Fujimoto, and D. A. Boas, “Microvascular oxygen tension and flow measurements in rodent cerebral cortex during baseline conditions and functional activation,” J. Cereb. Blood Flow Metab.31(4), 1051–1063 (2011).
[CrossRef] [PubMed]

Sarunic, M. V.

Secchi, M. E.

M. Cutolo, A. Sulli, M. E. Secchi, S. Paolino, and C. Pizzorni, “Nailfold capillaroscopy is useful for the diagnosis and follow-up of autoimmune rheumatic diseases. A future tool for the analysis of microvascular heart involvement?” Rheumatology (Oxford)45(4Suppl 4), iv43–iv46 (2006).
[CrossRef] [PubMed]

Shannon, L.

Shishkov, M.

W.-Y. Oh, B. J. Vakoc, M. Shishkov, G. J. Tearney, and B. E. Bouma, “>400 kHz repetition rate wavelength-swept laser and application to high-speed optical frequency domain imaging,” Opt. Lett.35(17), 2919–2921 (2010).
[CrossRef] [PubMed]

B. E. Bouma, G. J. Tearney, H. Yabushita, M. Shishkov, C. R. Kauffman, D. DeJoseph Gauthier, B. D. MacNeill, S. L. Houser, H. T. Aretz, E. F. Halpern, and I.-K. Jang, “Evaluation of intracoronary stenting by intravascular optical coherence tomography,” Heart89(3), 317–320 (2003).
[CrossRef] [PubMed]

Srinivasan, V. J.

M. A. Yaseen, V. J. Srinivasan, S. Sakadžić, H. Radhakrishnan, I. Gorczynska, W. Wu, J. G. Fujimoto, and D. A. Boas, “Microvascular oxygen tension and flow measurements in rodent cerebral cortex during baseline conditions and functional activation,” J. Cereb. Blood Flow Metab.31(4), 1051–1063 (2011).
[CrossRef] [PubMed]

V. J. Srinivasan, S. Sakadzić, I. Gorczynska, S. Ruvinskaya, W. Wu, J. G. Fujimoto, and D. A. Boas, “Depth-resolved microscopy of cortical hemodynamics with optical coherence tomography,” Opt. Lett.34(20), 3086–3088 (2009).
[CrossRef] [PubMed]

Standish, B. A.

Sulli, A.

M. Cutolo, A. Sulli, M. E. Secchi, S. Paolino, and C. Pizzorni, “Nailfold capillaroscopy is useful for the diagnosis and follow-up of autoimmune rheumatic diseases. A future tool for the analysis of microvascular heart involvement?” Rheumatology (Oxford)45(4Suppl 4), iv43–iv46 (2006).
[CrossRef] [PubMed]

Tearney, G.

Tearney, G. J.

W.-Y. Oh, B. J. Vakoc, M. Shishkov, G. J. Tearney, and B. E. Bouma, “>400 kHz repetition rate wavelength-swept laser and application to high-speed optical frequency domain imaging,” Opt. Lett.35(17), 2919–2921 (2010).
[CrossRef] [PubMed]

B. E. Bouma, G. J. Tearney, H. Yabushita, M. Shishkov, C. R. Kauffman, D. DeJoseph Gauthier, B. D. MacNeill, S. L. Houser, H. T. Aretz, E. F. Halpern, and I.-K. Jang, “Evaluation of intracoronary stenting by intravascular optical coherence tomography,” Heart89(3), 317–320 (2003).
[CrossRef] [PubMed]

Thurman, S. T.

Vakoc, B. J.

Vitkin, A.

Vitkin, I. A.

A. Mariampillai, B. A. Standish, E. H. Moriyama, M. Khurana, N. R. Munce, M. K. Leung, J. Jiang, A. E. Cable, B. C. Wilson, I. A. Vitkin, and V. X. D. Yang, “Speckle variance detection of microvasculature using swept-source optical coherence tomography,” Opt. Lett.33(13), 1530–1532 (2008).
[CrossRef] [PubMed]

B. A. Standish, K. K. C. Lee, X. Jin, A. Mariampillai, N. R. Munce, M. F. G. Wood, B. C. Wilson, I. A. Vitkin, and V. X. D. Yang, “Interstitial Doppler optical coherence tomography as a local tumor necrosis predictor in photodynamic therapy of prostatic carcinoma: an in vivo study,” Cancer Res.68(23), 9987–9995 (2008).
[CrossRef] [PubMed]

Walsh, W. R.

N. Ibrahim, Y. Yu, W. R. Walsh, and J.-L. Yang, “Molecular targeted therapies for cancer: sorafenib mono-therapy and its combination with other therapies (review),” Oncol. Rep.27(5), 1303–1311 (2012).
[PubMed]

Wang, R. K.

Watanabe, Y.

Y. Watanabe, “Real time processing of Fourier domain optical coherence tomography with fixed-pattern noise removal by partial median subtraction using a graphics processing unit,” J. Biomed. Opt.17(5), 050503 (2012).
[CrossRef] [PubMed]

Y. Watanabe and T. Itagaki, “Real-time display on Fourier domain optical coherence tomography system using a graphics processing unit,” J. Biomed. Opt.14(6), 060506 (2009).
[CrossRef] [PubMed]

Wieser, W.

Wilson, B. C.

Wood, M. F. G.

B. A. Standish, K. K. C. Lee, X. Jin, A. Mariampillai, N. R. Munce, M. F. G. Wood, B. C. Wilson, I. A. Vitkin, and V. X. D. Yang, “Interstitial Doppler optical coherence tomography as a local tumor necrosis predictor in photodynamic therapy of prostatic carcinoma: an in vivo study,” Cancer Res.68(23), 9987–9995 (2008).
[CrossRef] [PubMed]

Wu, W.

M. A. Yaseen, V. J. Srinivasan, S. Sakadžić, H. Radhakrishnan, I. Gorczynska, W. Wu, J. G. Fujimoto, and D. A. Boas, “Microvascular oxygen tension and flow measurements in rodent cerebral cortex during baseline conditions and functional activation,” J. Cereb. Blood Flow Metab.31(4), 1051–1063 (2011).
[CrossRef] [PubMed]

V. J. Srinivasan, S. Sakadzić, I. Gorczynska, S. Ruvinskaya, W. Wu, J. G. Fujimoto, and D. A. Boas, “Depth-resolved microscopy of cortical hemodynamics with optical coherence tomography,” Opt. Lett.34(20), 3086–3088 (2009).
[CrossRef] [PubMed]

Xu, J.

Yabushita, H.

B. E. Bouma, G. J. Tearney, H. Yabushita, M. Shishkov, C. R. Kauffman, D. DeJoseph Gauthier, B. D. MacNeill, S. L. Houser, H. T. Aretz, E. F. Halpern, and I.-K. Jang, “Evaluation of intracoronary stenting by intravascular optical coherence tomography,” Heart89(3), 317–320 (2003).
[CrossRef] [PubMed]

Yang, J.-L.

N. Ibrahim, Y. Yu, W. R. Walsh, and J.-L. Yang, “Molecular targeted therapies for cancer: sorafenib mono-therapy and its combination with other therapies (review),” Oncol. Rep.27(5), 1303–1311 (2012).
[PubMed]

Yang, V. X. D.

Yaseen, M. A.

M. A. Yaseen, V. J. Srinivasan, S. Sakadžić, H. Radhakrishnan, I. Gorczynska, W. Wu, J. G. Fujimoto, and D. A. Boas, “Microvascular oxygen tension and flow measurements in rodent cerebral cortex during baseline conditions and functional activation,” J. Cereb. Blood Flow Metab.31(4), 1051–1063 (2011).
[CrossRef] [PubMed]

Yu, Y.

N. Ibrahim, Y. Yu, W. R. Walsh, and J.-L. Yang, “Molecular targeted therapies for cancer: sorafenib mono-therapy and its combination with other therapies (review),” Oncol. Rep.27(5), 1303–1311 (2012).
[PubMed]

Yun, S.

Zhang, K.

Zysk, A. M.

A. M. Zysk, F. T. Nguyen, A. L. Oldenburg, D. L. Marks, and S. A. Boppart, “Optical coherence tomography: a review of clinical development from bench to bedside,” J. Biomed. Opt.12(5), 051403 (2007).
[CrossRef] [PubMed]

W. Luo, F. T. Nguyen, A. M. Zysk, T. S. Ralston, J. Brockenbrough, D. L. Marks, A. L. Oldenburg, and S. A. Boppart, “Optical biopsy of lymph node morphology using optical coherence tomography,” Technol. Cancer Res. Treat.4(5), 539–548 (2005).
[PubMed]

Appl. Opt.

Biomed. Opt. Express

Cancer Res.

B. A. Standish, K. K. C. Lee, X. Jin, A. Mariampillai, N. R. Munce, M. F. G. Wood, B. C. Wilson, I. A. Vitkin, and V. X. D. Yang, “Interstitial Doppler optical coherence tomography as a local tumor necrosis predictor in photodynamic therapy of prostatic carcinoma: an in vivo study,” Cancer Res.68(23), 9987–9995 (2008).
[CrossRef] [PubMed]

Curr. Med. Res. Opin.

P. Neri, C. Mariotti, I. Arapi, E. Bambini, and A. Giovannini, “Anti vascular endothelial growth factor sequential therapy for neovascular age-related macular degeneration: is this the new deal?” Curr. Med. Res. Opin.28(3), 395–400 (2012).
[CrossRef] [PubMed]

Heart

B. E. Bouma, G. J. Tearney, H. Yabushita, M. Shishkov, C. R. Kauffman, D. DeJoseph Gauthier, B. D. MacNeill, S. L. Houser, H. T. Aretz, E. F. Halpern, and I.-K. Jang, “Evaluation of intracoronary stenting by intravascular optical coherence tomography,” Heart89(3), 317–320 (2003).
[CrossRef] [PubMed]

J. Biomed. Opt.

A. M. Zysk, F. T. Nguyen, A. L. Oldenburg, D. L. Marks, and S. A. Boppart, “Optical coherence tomography: a review of clinical development from bench to bedside,” J. Biomed. Opt.12(5), 051403 (2007).
[CrossRef] [PubMed]

Y. Watanabe and T. Itagaki, “Real-time display on Fourier domain optical coherence tomography system using a graphics processing unit,” J. Biomed. Opt.14(6), 060506 (2009).
[CrossRef] [PubMed]

Y. Watanabe, “Real time processing of Fourier domain optical coherence tomography with fixed-pattern noise removal by partial median subtraction using a graphics processing unit,” J. Biomed. Opt.17(5), 050503 (2012).
[CrossRef] [PubMed]

J. Cereb. Blood Flow Metab.

M. A. Yaseen, V. J. Srinivasan, S. Sakadžić, H. Radhakrishnan, I. Gorczynska, W. Wu, J. G. Fujimoto, and D. A. Boas, “Microvascular oxygen tension and flow measurements in rodent cerebral cortex during baseline conditions and functional activation,” J. Cereb. Blood Flow Metab.31(4), 1051–1063 (2011).
[CrossRef] [PubMed]

Oncol. Rep.

N. Ibrahim, Y. Yu, W. R. Walsh, and J.-L. Yang, “Molecular targeted therapies for cancer: sorafenib mono-therapy and its combination with other therapies (review),” Oncol. Rep.27(5), 1303–1311 (2012).
[PubMed]

Opt. Express

Opt. Lett.

Rheumatology (Oxford)

M. Cutolo, A. Sulli, M. E. Secchi, S. Paolino, and C. Pizzorni, “Nailfold capillaroscopy is useful for the diagnosis and follow-up of autoimmune rheumatic diseases. A future tool for the analysis of microvascular heart involvement?” Rheumatology (Oxford)45(4Suppl 4), iv43–iv46 (2006).
[CrossRef] [PubMed]

Technol. Cancer Res. Treat.

W. Luo, F. T. Nguyen, A. M. Zysk, T. S. Ralston, J. Brockenbrough, D. L. Marks, A. L. Oldenburg, and S. A. Boppart, “Optical biopsy of lymph node morphology using optical coherence tomography,” Technol. Cancer Res. Treat.4(5), 539–548 (2005).
[PubMed]

Other

NVIDIA, “CUDA C Programming Guide Version 4.0,” May 2011.

Supplementary Material (2)

» Media 1: AVI (2487 KB)     
» Media 2: AVI (2131 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

System configuration consists of a polygon filter based swept source OCT system and a custom-built personal computer, showing the bus interface between all essential hardware components to the computer motherboard. SOA: semiconductor optical amplifier; PC: polarization controller; CIR: optical circulator; C: collimator; L: lenses; FBG: fiber Bragg gratings; D: photodetector, BD: balanced detector; GVS: galvanometer pair; AO: analog output card; DAQ: data acquisition card; GPU: graphics processing unit; SSD: solid-state drive.

Fig. 2
Fig. 2

Signal processing flow chart, where the dashed arrows indicate thread triggering and solid arrows illustrate the data flow through each hardware or processing kernel. Thread 1 to 4 corresponds to data acquisition, processing and saving, display and galvanometer control thread, respectively.

Fig. 3
Fig. 3

B-mode SV image (a) without (Media 1) and (b) with (Media 2) subpixel image registration realignment displayed at 54fps during human fingernail fold imaging. (c) Corresponding real-time structural OCT image. (d) Structural image overlaid with SV image (b) in post-processing. Different layers of tissue can be delineated easily in the structural image, while microvasculature can be clearly visualized in the SV image. SC: stratum corneum; SS: stratum spinosum; DP: dermal papillae. Scale bar is 500μm.

Fig. 4
Fig. 4

Time expenditure of each processing step preformed on the GPU in the order of execution as shown in Thread 2 of Fig. 2. The total average processing time was 3.02ms for each SV image (512 × 512 pixels, n = 4) with registration image size of 256 × 256. memcpyHtoD and memcpyDtoH are data transfer to and from the GPU, respectively.

Fig. 5
Fig. 5

2D SV projection image (a) without and (b) with structural image realignment using subpixel image registration algorithm. Motions during imaging appeared as periodic horizontal striations (indicated by the white arrows on left hand side) that increased the noise floor, while lowering the vascular contrast and overall image quality. The image registration algorithm reduced these effects, while improving the overall image quality. Scale bar is 500μm.

Metrics