Abstract

We describe novel imaging protocols that allow detection of small cancer cell colonies deep inside tissue phantoms with high sensitivity and specificity. We compare fluorescence excited in Styryl-9M molecules by femtosecond pulses at near IR wavelengths, where Styryl-9M shows the largest dependence of the two-photon absorption (2PA) cross section on the local environment. We show that by calculating the normalized ratio of the two-photon excited fluorescence (2PEF) intensity at 1200 nm and 1100 nm excitation wavelengths we can achieve high sensitivity and specificity for determining the location of cancer cells surrounded by normal cells. The 2PEF results showed a positive correlation with the levels of MDR1 proteins expressed by the cells, and, for high MDR1 expressors, as few as ten cancer cells could be detected. Similar high sensitivity is also demonstrated for tumor colonies induced in mouse external ears. This technique could be useful in early cancer detection, and, perhaps, also in monitoring dormant cancer deposits.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Solomon, Y. Liu, M. Y. Berezin, and S. Achilefu, “Optical imaging in cancer research: basic principles, tumor detection, and therapeutic monitoring,” Med. Princ. Pract.20(5), 397–415 (2011).
    [CrossRef] [PubMed]
  2. J. M. Song, R. Jagannathan, D. L. Stokes, P. M. Kasili, M. Panjehpour, M. N. Phan, B. F. Overholt, R. C. DeNovo, X. Pan, R. J. Lee, and T. Vo-Dinh, “Development of a fluorescence detection system using optical parametric oscillator (OPO) laser excitation for in vivo diagnosis,” Technol. Cancer Res. Treat.2(6), 515–523 (2003).
    [PubMed]
  3. P. S. Adusumilli, D. P. Eisenberg, Y. S. Chun, K. W. Ryu, L. Ben-Porat, K. J. Hendershott, M. K. Chan, R. Huq, C. C. Riedl, and Y. Fong, “Virally directed fluorescent imaging improves diagnostic sensitivity in the detection of minimal residual disease after potentially curative cytoreductive surgery,” J. Gastrointest. Surg.9(8), 1138–1147 (2005).
    [CrossRef] [PubMed]
  4. M. T. Weigel and M. Dowsett, “Current and emerging biomarkers in breast cancer: prognosis and prediction,” Endocr. Relat. Cancer17(4), R245–R262 (2010).
    [CrossRef] [PubMed]
  5. K. Licha, C. Hessenius, A. Becker, P. Henklein, M. Bauer, S. Wisniewski, B. Wiedenmann, and W. Semmler, “Synthesis, characterization, and biological properties of cyanine-labeled somatostatin analogues as receptor-targeted fluorescent probes,” Bioconjug. Chem.12(1), 44–50 (2001).
    [CrossRef] [PubMed]
  6. S. Achilefu, “Lighting up tumors with receptor-specific optical molecular probes,” Technol. Cancer Res. Treat.3(4), 393–409 (2004).
    [PubMed]
  7. S. Kukreti, A. E. Cerussi, W. Tanamai, D. Hsiang, B. J. Tromberg, and E. Gratton, “Characterization of metabolic differences between benign and malignant tumors: high-spectral-resolution diffuse optical spectroscopy,” Radiology254(1), 277–284 (2010).
    [CrossRef] [PubMed]
  8. J. E. Bugaj, S. Achilefu, R. B. Dorshow, and R. Rajagopalan, “Novel fluorescent contrast agents for optical imaging of in vivo tumors based on a receptor-targeted dye-peptide conjugate platform,” J. Biomed. Opt.6(2), 122–133 (2001).
    [CrossRef] [PubMed]
  9. S. Achilefu, R. B. Dorshow, J. E. Bugaj, and R. Rajagopalan, “Novel receptor-targeted fluorescent contrast agents for in vivo tumor imaging,” Invest. Radiol.35(8), 479–485 (2000).
    [CrossRef] [PubMed]
  10. L. Josephson, M. F. Kircher, U. Mahmood, Y. Tang, and R. Weissleder, “Near-infrared fluorescent nanoparticles as combined MR/optical imaging probes,” Bioconjug. Chem.13(3), 554–560 (2002).
    [CrossRef] [PubMed]
  11. F. B. Haeussinger, S. Heinzel, T. Hahn, M. Schecklmann, A. C. Ehlis, and A. J. Fallgatter, “Simulation of near-infrared light absorption considering individual head and prefrontal cortex anatomy: implications for optical neuroimaging,” PLoS ONE6(10), e26377 (2011).
    [CrossRef] [PubMed]
  12. C. G. Hadjipanayis, H. Jiang, D. W. Roberts, and L. Yang, “Current and future clinical applications for optical imaging of cancer: from intraoperative surgical guidance to cancer screening,” Semin. Oncol.38(1), 109–118 (2011).
    [CrossRef] [PubMed]
  13. N. Almog, “Molecular mechanisms underlying tumor dormancy,” Cancer Lett.294(2), 139–146 (2010).
    [CrossRef] [PubMed]
  14. O. A. Oredipe, R. F. Barth, S. E. Tuttle, D. M. Adams, I. Sautins, D. M. Bucci, C. M. Mojzisik, G. H. Hinkle, S. Jewell, Z. Steplewski, M. O. Thurston, and E. W. Martin, “Limits of sensitivity for the radioimmunodetection of colon cancer by means of a hand held gamma probe” Int. J. Rad. Appl. Instrum. Part B. Nucl. Med. Biol.15, 595–603 (1988).
  15. P. O. Brown and C. Palmer, “The preclinical natural history of serous ovarian cancer: defining the target for early detection,” PLoS Med.6(7), e1000114 (2009).
    [CrossRef] [PubMed]
  16. H. Hayashi, K. Ashizawa, M. Uetani, S. Futagawa, A. Fukushima, K. Minami, S. Honda, and K. Hayashi, “Detectability of peripheral lung cancer on chest radiographs: effect of the size, location and extent of ground-glass opacity,” Br. J. Radiol.82(976), 272–278 (2009).
    [CrossRef] [PubMed]
  17. A. Bozzini, G. Renne, L. Meneghetti, G. Bandi, G. Santos, A. R. Vento, S. Menna, S. Andrighetto, G. Viale, E. Cassano, and M. Bellomi, “Sensitivity of imaging for multifocal-multicentric breast carcinoma,” BMC Cancer8(1), 275 (2008).
    [CrossRef] [PubMed]
  18. M. Mancini, E. Vergara, G. Salvatore, A. Greco, G. Troncone, A. Affuso, R. Liuzzi, P. Salerno, M. Scotto di Santolo, M. Santoro, A. Brunetti, and M. Salvatore, “Morphological ultrasound microimaging of thyroid in living mice,” Endocrinology150(10), 4810–4815 (2009).
    [CrossRef] [PubMed]
  19. N. A. Shkumat, A. Springer, C. M. Walker, E. M. Rohren, W. T. Yang, B. E. Adrada, E. Arribas, S. Carkaci, H. H. Chuang, L. Santiago, and O. R. Mawlawi, “Investigating the limit of detectability of a positron emission mammography device: a phantom study,” Med. Phys.38(9), 5176–5185 (2011).
    [CrossRef] [PubMed]
  20. C. Tang, P. J. Russell, R. Martiniello-Wilks, J. E. Rasko, and A. Khatri, “Concise review: Nanoparticles and cellular carriers-allies in cancer imaging and cellular gene therapy?” Stem Cells28(9), 1686–1702 (2010).
    [CrossRef] [PubMed]
  21. N. S. Makarov, M. Drobizhev, and A. Rebane, “Two-photon absorption standards in the 550-1600 nm excitation wavelength range,” Opt. Express16(6), 4029–4047 (2008).
    [CrossRef] [PubMed]
  22. N. S. Makarov, E. Beuerman, M. Drobizhev, J. Starkey, and A. Rebane, “Environment-sensitive two-photon dye,” Proc. SPIE7049, 70490Y (2008).
    [CrossRef]
  23. A. Rebane, M. A. Drobizhev, N. S. Makarov, E. Beuerman, C. Nacke, and J. Pahapill, “Modeling non-Lorentzian two-photon absprption line shape in dipolar chromophores,” J. Lumin.130(6), 1055–1059 (2010).
    [CrossRef]
  24. V. P. Tokar, M. Y. Losytskyy, V. B. Kovalska, D. V. Kryvorotenko, A. O. Balanda, V. M. Prokopets, M. P. Galak, I. M. Dmytruk, V. M. Yashchuk, and S. M. Yarmoluk, “Fluorescence of styryl dyes-DNA complexes induced by single- and two-photon excitation,” J. Fluoresc.16(6), 783–791 (2006).
    [CrossRef] [PubMed]
  25. R. Ramadass and J. Bereiter-Hahn, ““Photophysical properties of DASPMI as revealed by spectrally resolved fluorescence decays,” J. Phys. B111(26), 7681–7690 (2007).
    [CrossRef]
  26. R. B. Owens, H. S. Smith, and A. J. Hackett, “Epithelial cell cultures from normal glandular tissue of mice,” J. Natl. Cancer Inst.53(1), 261–269 (1974).
    [PubMed]
  27. K. G. Danielson, L. W. Anderson, and H. L. Hosick, “Selection and characterization in culture of mammary tumor cells with distinctive growth properties in vivo,” Cancer Res.40(6), 1812–1819 (1980).
    [PubMed]
  28. L. W. Anderson, K. G. Danielson, and H. L. Hosick, “Metastatic potential of hyperplastic alveolar nodule derived mouse mammary tumor cells following intravenous inoculation,” Eur. J. Cancer Clin. Oncol.17(9), 1001–1008 (1981).
    [CrossRef] [PubMed]
  29. S. L. Schor, “Cell proliferation and migration on collagen substrata in vitro,” J. Cell Sci.41, 159–175 (1980).
    [PubMed]
  30. H. Birkedal-Hansen and K. Danø, “A sensitive collagenase assay using [3H] collagen labeled by reaction with pyridoxal phosphate and [3H] borohydride,” Anal. Biochem.115(1), 18–26 (1981).
    [CrossRef] [PubMed]
  31. R. C. Hallowes, E. S. Bone, and W. Jones, “A new dimension in the culture of human breast,” in Tissue Culture in Medical Research II, R. J. Richards and K. T. Rajan, eds. (Pergamon, Oxford, 1980), pp. 213-220.
  32. N. P. Robertson, J. R. Starkey, S. Hamner, and G. G. Meadows, “Tumor cell invasion of three-dimensional matrices of defined composition: evidence for a specific role for heparan sulfate in rodent cell lines,” Cancer Res.49(7), 1816–1823 (1989).
    [PubMed]
  33. W. Jones and H. L. Hosick, “Collagen concentration as a significant variable for growth and morphology of mouse mammary parenchyma in collagen matrix culture,” Cell Biol. Int. Rep.10(4), 277–286 (1986).
    [CrossRef] [PubMed]
  34. M. R. Lugo and F. J. Sharom, “Interaction of LDS-751 with P-glycoprotein and mapping of the location of the R drug binding site,” Biochemistry44(2), 643–655 (2005).
    [CrossRef] [PubMed]
  35. “Primer3,” http://frodo.wi.mit.edu/primer3/input.htm .
  36. “ImageJ,” http://rsbweb.nih.gov/ij/
  37. C. D. M. Fletcher, ed., Diagnostic Histopathology of Tumors (Churchill Livingstone, 2007).
  38. P. D. Eckford and F. J. Sharom, “P-glycoprotein (ABCB1) interacts directly with lipid-based anti-cancer drugs and platelet-activating factors,” Biochem. Cell Biol.84(6), 1022–1033 (2006).
    [CrossRef] [PubMed]

2011 (4)

M. Solomon, Y. Liu, M. Y. Berezin, and S. Achilefu, “Optical imaging in cancer research: basic principles, tumor detection, and therapeutic monitoring,” Med. Princ. Pract.20(5), 397–415 (2011).
[CrossRef] [PubMed]

F. B. Haeussinger, S. Heinzel, T. Hahn, M. Schecklmann, A. C. Ehlis, and A. J. Fallgatter, “Simulation of near-infrared light absorption considering individual head and prefrontal cortex anatomy: implications for optical neuroimaging,” PLoS ONE6(10), e26377 (2011).
[CrossRef] [PubMed]

C. G. Hadjipanayis, H. Jiang, D. W. Roberts, and L. Yang, “Current and future clinical applications for optical imaging of cancer: from intraoperative surgical guidance to cancer screening,” Semin. Oncol.38(1), 109–118 (2011).
[CrossRef] [PubMed]

N. A. Shkumat, A. Springer, C. M. Walker, E. M. Rohren, W. T. Yang, B. E. Adrada, E. Arribas, S. Carkaci, H. H. Chuang, L. Santiago, and O. R. Mawlawi, “Investigating the limit of detectability of a positron emission mammography device: a phantom study,” Med. Phys.38(9), 5176–5185 (2011).
[CrossRef] [PubMed]

2010 (5)

C. Tang, P. J. Russell, R. Martiniello-Wilks, J. E. Rasko, and A. Khatri, “Concise review: Nanoparticles and cellular carriers-allies in cancer imaging and cellular gene therapy?” Stem Cells28(9), 1686–1702 (2010).
[CrossRef] [PubMed]

A. Rebane, M. A. Drobizhev, N. S. Makarov, E. Beuerman, C. Nacke, and J. Pahapill, “Modeling non-Lorentzian two-photon absprption line shape in dipolar chromophores,” J. Lumin.130(6), 1055–1059 (2010).
[CrossRef]

N. Almog, “Molecular mechanisms underlying tumor dormancy,” Cancer Lett.294(2), 139–146 (2010).
[CrossRef] [PubMed]

M. T. Weigel and M. Dowsett, “Current and emerging biomarkers in breast cancer: prognosis and prediction,” Endocr. Relat. Cancer17(4), R245–R262 (2010).
[CrossRef] [PubMed]

S. Kukreti, A. E. Cerussi, W. Tanamai, D. Hsiang, B. J. Tromberg, and E. Gratton, “Characterization of metabolic differences between benign and malignant tumors: high-spectral-resolution diffuse optical spectroscopy,” Radiology254(1), 277–284 (2010).
[CrossRef] [PubMed]

2009 (3)

P. O. Brown and C. Palmer, “The preclinical natural history of serous ovarian cancer: defining the target for early detection,” PLoS Med.6(7), e1000114 (2009).
[CrossRef] [PubMed]

H. Hayashi, K. Ashizawa, M. Uetani, S. Futagawa, A. Fukushima, K. Minami, S. Honda, and K. Hayashi, “Detectability of peripheral lung cancer on chest radiographs: effect of the size, location and extent of ground-glass opacity,” Br. J. Radiol.82(976), 272–278 (2009).
[CrossRef] [PubMed]

M. Mancini, E. Vergara, G. Salvatore, A. Greco, G. Troncone, A. Affuso, R. Liuzzi, P. Salerno, M. Scotto di Santolo, M. Santoro, A. Brunetti, and M. Salvatore, “Morphological ultrasound microimaging of thyroid in living mice,” Endocrinology150(10), 4810–4815 (2009).
[CrossRef] [PubMed]

2008 (3)

A. Bozzini, G. Renne, L. Meneghetti, G. Bandi, G. Santos, A. R. Vento, S. Menna, S. Andrighetto, G. Viale, E. Cassano, and M. Bellomi, “Sensitivity of imaging for multifocal-multicentric breast carcinoma,” BMC Cancer8(1), 275 (2008).
[CrossRef] [PubMed]

N. S. Makarov, M. Drobizhev, and A. Rebane, “Two-photon absorption standards in the 550-1600 nm excitation wavelength range,” Opt. Express16(6), 4029–4047 (2008).
[CrossRef] [PubMed]

N. S. Makarov, E. Beuerman, M. Drobizhev, J. Starkey, and A. Rebane, “Environment-sensitive two-photon dye,” Proc. SPIE7049, 70490Y (2008).
[CrossRef]

2007 (1)

R. Ramadass and J. Bereiter-Hahn, ““Photophysical properties of DASPMI as revealed by spectrally resolved fluorescence decays,” J. Phys. B111(26), 7681–7690 (2007).
[CrossRef]

2006 (2)

V. P. Tokar, M. Y. Losytskyy, V. B. Kovalska, D. V. Kryvorotenko, A. O. Balanda, V. M. Prokopets, M. P. Galak, I. M. Dmytruk, V. M. Yashchuk, and S. M. Yarmoluk, “Fluorescence of styryl dyes-DNA complexes induced by single- and two-photon excitation,” J. Fluoresc.16(6), 783–791 (2006).
[CrossRef] [PubMed]

P. D. Eckford and F. J. Sharom, “P-glycoprotein (ABCB1) interacts directly with lipid-based anti-cancer drugs and platelet-activating factors,” Biochem. Cell Biol.84(6), 1022–1033 (2006).
[CrossRef] [PubMed]

2005 (2)

M. R. Lugo and F. J. Sharom, “Interaction of LDS-751 with P-glycoprotein and mapping of the location of the R drug binding site,” Biochemistry44(2), 643–655 (2005).
[CrossRef] [PubMed]

P. S. Adusumilli, D. P. Eisenberg, Y. S. Chun, K. W. Ryu, L. Ben-Porat, K. J. Hendershott, M. K. Chan, R. Huq, C. C. Riedl, and Y. Fong, “Virally directed fluorescent imaging improves diagnostic sensitivity in the detection of minimal residual disease after potentially curative cytoreductive surgery,” J. Gastrointest. Surg.9(8), 1138–1147 (2005).
[CrossRef] [PubMed]

2004 (1)

S. Achilefu, “Lighting up tumors with receptor-specific optical molecular probes,” Technol. Cancer Res. Treat.3(4), 393–409 (2004).
[PubMed]

2003 (1)

J. M. Song, R. Jagannathan, D. L. Stokes, P. M. Kasili, M. Panjehpour, M. N. Phan, B. F. Overholt, R. C. DeNovo, X. Pan, R. J. Lee, and T. Vo-Dinh, “Development of a fluorescence detection system using optical parametric oscillator (OPO) laser excitation for in vivo diagnosis,” Technol. Cancer Res. Treat.2(6), 515–523 (2003).
[PubMed]

2002 (1)

L. Josephson, M. F. Kircher, U. Mahmood, Y. Tang, and R. Weissleder, “Near-infrared fluorescent nanoparticles as combined MR/optical imaging probes,” Bioconjug. Chem.13(3), 554–560 (2002).
[CrossRef] [PubMed]

2001 (2)

K. Licha, C. Hessenius, A. Becker, P. Henklein, M. Bauer, S. Wisniewski, B. Wiedenmann, and W. Semmler, “Synthesis, characterization, and biological properties of cyanine-labeled somatostatin analogues as receptor-targeted fluorescent probes,” Bioconjug. Chem.12(1), 44–50 (2001).
[CrossRef] [PubMed]

J. E. Bugaj, S. Achilefu, R. B. Dorshow, and R. Rajagopalan, “Novel fluorescent contrast agents for optical imaging of in vivo tumors based on a receptor-targeted dye-peptide conjugate platform,” J. Biomed. Opt.6(2), 122–133 (2001).
[CrossRef] [PubMed]

2000 (1)

S. Achilefu, R. B. Dorshow, J. E. Bugaj, and R. Rajagopalan, “Novel receptor-targeted fluorescent contrast agents for in vivo tumor imaging,” Invest. Radiol.35(8), 479–485 (2000).
[CrossRef] [PubMed]

1989 (1)

N. P. Robertson, J. R. Starkey, S. Hamner, and G. G. Meadows, “Tumor cell invasion of three-dimensional matrices of defined composition: evidence for a specific role for heparan sulfate in rodent cell lines,” Cancer Res.49(7), 1816–1823 (1989).
[PubMed]

1988 (1)

O. A. Oredipe, R. F. Barth, S. E. Tuttle, D. M. Adams, I. Sautins, D. M. Bucci, C. M. Mojzisik, G. H. Hinkle, S. Jewell, Z. Steplewski, M. O. Thurston, and E. W. Martin, “Limits of sensitivity for the radioimmunodetection of colon cancer by means of a hand held gamma probe” Int. J. Rad. Appl. Instrum. Part B. Nucl. Med. Biol.15, 595–603 (1988).

1986 (1)

W. Jones and H. L. Hosick, “Collagen concentration as a significant variable for growth and morphology of mouse mammary parenchyma in collagen matrix culture,” Cell Biol. Int. Rep.10(4), 277–286 (1986).
[CrossRef] [PubMed]

1981 (2)

L. W. Anderson, K. G. Danielson, and H. L. Hosick, “Metastatic potential of hyperplastic alveolar nodule derived mouse mammary tumor cells following intravenous inoculation,” Eur. J. Cancer Clin. Oncol.17(9), 1001–1008 (1981).
[CrossRef] [PubMed]

H. Birkedal-Hansen and K. Danø, “A sensitive collagenase assay using [3H] collagen labeled by reaction with pyridoxal phosphate and [3H] borohydride,” Anal. Biochem.115(1), 18–26 (1981).
[CrossRef] [PubMed]

1980 (2)

K. G. Danielson, L. W. Anderson, and H. L. Hosick, “Selection and characterization in culture of mammary tumor cells with distinctive growth properties in vivo,” Cancer Res.40(6), 1812–1819 (1980).
[PubMed]

S. L. Schor, “Cell proliferation and migration on collagen substrata in vitro,” J. Cell Sci.41, 159–175 (1980).
[PubMed]

1974 (1)

R. B. Owens, H. S. Smith, and A. J. Hackett, “Epithelial cell cultures from normal glandular tissue of mice,” J. Natl. Cancer Inst.53(1), 261–269 (1974).
[PubMed]

Achilefu, S.

M. Solomon, Y. Liu, M. Y. Berezin, and S. Achilefu, “Optical imaging in cancer research: basic principles, tumor detection, and therapeutic monitoring,” Med. Princ. Pract.20(5), 397–415 (2011).
[CrossRef] [PubMed]

S. Achilefu, “Lighting up tumors with receptor-specific optical molecular probes,” Technol. Cancer Res. Treat.3(4), 393–409 (2004).
[PubMed]

J. E. Bugaj, S. Achilefu, R. B. Dorshow, and R. Rajagopalan, “Novel fluorescent contrast agents for optical imaging of in vivo tumors based on a receptor-targeted dye-peptide conjugate platform,” J. Biomed. Opt.6(2), 122–133 (2001).
[CrossRef] [PubMed]

S. Achilefu, R. B. Dorshow, J. E. Bugaj, and R. Rajagopalan, “Novel receptor-targeted fluorescent contrast agents for in vivo tumor imaging,” Invest. Radiol.35(8), 479–485 (2000).
[CrossRef] [PubMed]

Adams, D. M.

O. A. Oredipe, R. F. Barth, S. E. Tuttle, D. M. Adams, I. Sautins, D. M. Bucci, C. M. Mojzisik, G. H. Hinkle, S. Jewell, Z. Steplewski, M. O. Thurston, and E. W. Martin, “Limits of sensitivity for the radioimmunodetection of colon cancer by means of a hand held gamma probe” Int. J. Rad. Appl. Instrum. Part B. Nucl. Med. Biol.15, 595–603 (1988).

Adrada, B. E.

N. A. Shkumat, A. Springer, C. M. Walker, E. M. Rohren, W. T. Yang, B. E. Adrada, E. Arribas, S. Carkaci, H. H. Chuang, L. Santiago, and O. R. Mawlawi, “Investigating the limit of detectability of a positron emission mammography device: a phantom study,” Med. Phys.38(9), 5176–5185 (2011).
[CrossRef] [PubMed]

Adusumilli, P. S.

P. S. Adusumilli, D. P. Eisenberg, Y. S. Chun, K. W. Ryu, L. Ben-Porat, K. J. Hendershott, M. K. Chan, R. Huq, C. C. Riedl, and Y. Fong, “Virally directed fluorescent imaging improves diagnostic sensitivity in the detection of minimal residual disease after potentially curative cytoreductive surgery,” J. Gastrointest. Surg.9(8), 1138–1147 (2005).
[CrossRef] [PubMed]

Affuso, A.

M. Mancini, E. Vergara, G. Salvatore, A. Greco, G. Troncone, A. Affuso, R. Liuzzi, P. Salerno, M. Scotto di Santolo, M. Santoro, A. Brunetti, and M. Salvatore, “Morphological ultrasound microimaging of thyroid in living mice,” Endocrinology150(10), 4810–4815 (2009).
[CrossRef] [PubMed]

Almog, N.

N. Almog, “Molecular mechanisms underlying tumor dormancy,” Cancer Lett.294(2), 139–146 (2010).
[CrossRef] [PubMed]

Anderson, L. W.

L. W. Anderson, K. G. Danielson, and H. L. Hosick, “Metastatic potential of hyperplastic alveolar nodule derived mouse mammary tumor cells following intravenous inoculation,” Eur. J. Cancer Clin. Oncol.17(9), 1001–1008 (1981).
[CrossRef] [PubMed]

K. G. Danielson, L. W. Anderson, and H. L. Hosick, “Selection and characterization in culture of mammary tumor cells with distinctive growth properties in vivo,” Cancer Res.40(6), 1812–1819 (1980).
[PubMed]

Andrighetto, S.

A. Bozzini, G. Renne, L. Meneghetti, G. Bandi, G. Santos, A. R. Vento, S. Menna, S. Andrighetto, G. Viale, E. Cassano, and M. Bellomi, “Sensitivity of imaging for multifocal-multicentric breast carcinoma,” BMC Cancer8(1), 275 (2008).
[CrossRef] [PubMed]

Arribas, E.

N. A. Shkumat, A. Springer, C. M. Walker, E. M. Rohren, W. T. Yang, B. E. Adrada, E. Arribas, S. Carkaci, H. H. Chuang, L. Santiago, and O. R. Mawlawi, “Investigating the limit of detectability of a positron emission mammography device: a phantom study,” Med. Phys.38(9), 5176–5185 (2011).
[CrossRef] [PubMed]

Ashizawa, K.

H. Hayashi, K. Ashizawa, M. Uetani, S. Futagawa, A. Fukushima, K. Minami, S. Honda, and K. Hayashi, “Detectability of peripheral lung cancer on chest radiographs: effect of the size, location and extent of ground-glass opacity,” Br. J. Radiol.82(976), 272–278 (2009).
[CrossRef] [PubMed]

Balanda, A. O.

V. P. Tokar, M. Y. Losytskyy, V. B. Kovalska, D. V. Kryvorotenko, A. O. Balanda, V. M. Prokopets, M. P. Galak, I. M. Dmytruk, V. M. Yashchuk, and S. M. Yarmoluk, “Fluorescence of styryl dyes-DNA complexes induced by single- and two-photon excitation,” J. Fluoresc.16(6), 783–791 (2006).
[CrossRef] [PubMed]

Bandi, G.

A. Bozzini, G. Renne, L. Meneghetti, G. Bandi, G. Santos, A. R. Vento, S. Menna, S. Andrighetto, G. Viale, E. Cassano, and M. Bellomi, “Sensitivity of imaging for multifocal-multicentric breast carcinoma,” BMC Cancer8(1), 275 (2008).
[CrossRef] [PubMed]

Barth, R. F.

O. A. Oredipe, R. F. Barth, S. E. Tuttle, D. M. Adams, I. Sautins, D. M. Bucci, C. M. Mojzisik, G. H. Hinkle, S. Jewell, Z. Steplewski, M. O. Thurston, and E. W. Martin, “Limits of sensitivity for the radioimmunodetection of colon cancer by means of a hand held gamma probe” Int. J. Rad. Appl. Instrum. Part B. Nucl. Med. Biol.15, 595–603 (1988).

Bauer, M.

K. Licha, C. Hessenius, A. Becker, P. Henklein, M. Bauer, S. Wisniewski, B. Wiedenmann, and W. Semmler, “Synthesis, characterization, and biological properties of cyanine-labeled somatostatin analogues as receptor-targeted fluorescent probes,” Bioconjug. Chem.12(1), 44–50 (2001).
[CrossRef] [PubMed]

Becker, A.

K. Licha, C. Hessenius, A. Becker, P. Henklein, M. Bauer, S. Wisniewski, B. Wiedenmann, and W. Semmler, “Synthesis, characterization, and biological properties of cyanine-labeled somatostatin analogues as receptor-targeted fluorescent probes,” Bioconjug. Chem.12(1), 44–50 (2001).
[CrossRef] [PubMed]

Bellomi, M.

A. Bozzini, G. Renne, L. Meneghetti, G. Bandi, G. Santos, A. R. Vento, S. Menna, S. Andrighetto, G. Viale, E. Cassano, and M. Bellomi, “Sensitivity of imaging for multifocal-multicentric breast carcinoma,” BMC Cancer8(1), 275 (2008).
[CrossRef] [PubMed]

Ben-Porat, L.

P. S. Adusumilli, D. P. Eisenberg, Y. S. Chun, K. W. Ryu, L. Ben-Porat, K. J. Hendershott, M. K. Chan, R. Huq, C. C. Riedl, and Y. Fong, “Virally directed fluorescent imaging improves diagnostic sensitivity in the detection of minimal residual disease after potentially curative cytoreductive surgery,” J. Gastrointest. Surg.9(8), 1138–1147 (2005).
[CrossRef] [PubMed]

Bereiter-Hahn, J.

R. Ramadass and J. Bereiter-Hahn, ““Photophysical properties of DASPMI as revealed by spectrally resolved fluorescence decays,” J. Phys. B111(26), 7681–7690 (2007).
[CrossRef]

Berezin, M. Y.

M. Solomon, Y. Liu, M. Y. Berezin, and S. Achilefu, “Optical imaging in cancer research: basic principles, tumor detection, and therapeutic monitoring,” Med. Princ. Pract.20(5), 397–415 (2011).
[CrossRef] [PubMed]

Beuerman, E.

A. Rebane, M. A. Drobizhev, N. S. Makarov, E. Beuerman, C. Nacke, and J. Pahapill, “Modeling non-Lorentzian two-photon absprption line shape in dipolar chromophores,” J. Lumin.130(6), 1055–1059 (2010).
[CrossRef]

N. S. Makarov, E. Beuerman, M. Drobizhev, J. Starkey, and A. Rebane, “Environment-sensitive two-photon dye,” Proc. SPIE7049, 70490Y (2008).
[CrossRef]

Birkedal-Hansen, H.

H. Birkedal-Hansen and K. Danø, “A sensitive collagenase assay using [3H] collagen labeled by reaction with pyridoxal phosphate and [3H] borohydride,” Anal. Biochem.115(1), 18–26 (1981).
[CrossRef] [PubMed]

Bozzini, A.

A. Bozzini, G. Renne, L. Meneghetti, G. Bandi, G. Santos, A. R. Vento, S. Menna, S. Andrighetto, G. Viale, E. Cassano, and M. Bellomi, “Sensitivity of imaging for multifocal-multicentric breast carcinoma,” BMC Cancer8(1), 275 (2008).
[CrossRef] [PubMed]

Brown, P. O.

P. O. Brown and C. Palmer, “The preclinical natural history of serous ovarian cancer: defining the target for early detection,” PLoS Med.6(7), e1000114 (2009).
[CrossRef] [PubMed]

Brunetti, A.

M. Mancini, E. Vergara, G. Salvatore, A. Greco, G. Troncone, A. Affuso, R. Liuzzi, P. Salerno, M. Scotto di Santolo, M. Santoro, A. Brunetti, and M. Salvatore, “Morphological ultrasound microimaging of thyroid in living mice,” Endocrinology150(10), 4810–4815 (2009).
[CrossRef] [PubMed]

Bucci, D. M.

O. A. Oredipe, R. F. Barth, S. E. Tuttle, D. M. Adams, I. Sautins, D. M. Bucci, C. M. Mojzisik, G. H. Hinkle, S. Jewell, Z. Steplewski, M. O. Thurston, and E. W. Martin, “Limits of sensitivity for the radioimmunodetection of colon cancer by means of a hand held gamma probe” Int. J. Rad. Appl. Instrum. Part B. Nucl. Med. Biol.15, 595–603 (1988).

Bugaj, J. E.

J. E. Bugaj, S. Achilefu, R. B. Dorshow, and R. Rajagopalan, “Novel fluorescent contrast agents for optical imaging of in vivo tumors based on a receptor-targeted dye-peptide conjugate platform,” J. Biomed. Opt.6(2), 122–133 (2001).
[CrossRef] [PubMed]

S. Achilefu, R. B. Dorshow, J. E. Bugaj, and R. Rajagopalan, “Novel receptor-targeted fluorescent contrast agents for in vivo tumor imaging,” Invest. Radiol.35(8), 479–485 (2000).
[CrossRef] [PubMed]

Carkaci, S.

N. A. Shkumat, A. Springer, C. M. Walker, E. M. Rohren, W. T. Yang, B. E. Adrada, E. Arribas, S. Carkaci, H. H. Chuang, L. Santiago, and O. R. Mawlawi, “Investigating the limit of detectability of a positron emission mammography device: a phantom study,” Med. Phys.38(9), 5176–5185 (2011).
[CrossRef] [PubMed]

Cassano, E.

A. Bozzini, G. Renne, L. Meneghetti, G. Bandi, G. Santos, A. R. Vento, S. Menna, S. Andrighetto, G. Viale, E. Cassano, and M. Bellomi, “Sensitivity of imaging for multifocal-multicentric breast carcinoma,” BMC Cancer8(1), 275 (2008).
[CrossRef] [PubMed]

Cerussi, A. E.

S. Kukreti, A. E. Cerussi, W. Tanamai, D. Hsiang, B. J. Tromberg, and E. Gratton, “Characterization of metabolic differences between benign and malignant tumors: high-spectral-resolution diffuse optical spectroscopy,” Radiology254(1), 277–284 (2010).
[CrossRef] [PubMed]

Chan, M. K.

P. S. Adusumilli, D. P. Eisenberg, Y. S. Chun, K. W. Ryu, L. Ben-Porat, K. J. Hendershott, M. K. Chan, R. Huq, C. C. Riedl, and Y. Fong, “Virally directed fluorescent imaging improves diagnostic sensitivity in the detection of minimal residual disease after potentially curative cytoreductive surgery,” J. Gastrointest. Surg.9(8), 1138–1147 (2005).
[CrossRef] [PubMed]

Chuang, H. H.

N. A. Shkumat, A. Springer, C. M. Walker, E. M. Rohren, W. T. Yang, B. E. Adrada, E. Arribas, S. Carkaci, H. H. Chuang, L. Santiago, and O. R. Mawlawi, “Investigating the limit of detectability of a positron emission mammography device: a phantom study,” Med. Phys.38(9), 5176–5185 (2011).
[CrossRef] [PubMed]

Chun, Y. S.

P. S. Adusumilli, D. P. Eisenberg, Y. S. Chun, K. W. Ryu, L. Ben-Porat, K. J. Hendershott, M. K. Chan, R. Huq, C. C. Riedl, and Y. Fong, “Virally directed fluorescent imaging improves diagnostic sensitivity in the detection of minimal residual disease after potentially curative cytoreductive surgery,” J. Gastrointest. Surg.9(8), 1138–1147 (2005).
[CrossRef] [PubMed]

Danielson, K. G.

L. W. Anderson, K. G. Danielson, and H. L. Hosick, “Metastatic potential of hyperplastic alveolar nodule derived mouse mammary tumor cells following intravenous inoculation,” Eur. J. Cancer Clin. Oncol.17(9), 1001–1008 (1981).
[CrossRef] [PubMed]

K. G. Danielson, L. W. Anderson, and H. L. Hosick, “Selection and characterization in culture of mammary tumor cells with distinctive growth properties in vivo,” Cancer Res.40(6), 1812–1819 (1980).
[PubMed]

Danø, K.

H. Birkedal-Hansen and K. Danø, “A sensitive collagenase assay using [3H] collagen labeled by reaction with pyridoxal phosphate and [3H] borohydride,” Anal. Biochem.115(1), 18–26 (1981).
[CrossRef] [PubMed]

DeNovo, R. C.

J. M. Song, R. Jagannathan, D. L. Stokes, P. M. Kasili, M. Panjehpour, M. N. Phan, B. F. Overholt, R. C. DeNovo, X. Pan, R. J. Lee, and T. Vo-Dinh, “Development of a fluorescence detection system using optical parametric oscillator (OPO) laser excitation for in vivo diagnosis,” Technol. Cancer Res. Treat.2(6), 515–523 (2003).
[PubMed]

Dmytruk, I. M.

V. P. Tokar, M. Y. Losytskyy, V. B. Kovalska, D. V. Kryvorotenko, A. O. Balanda, V. M. Prokopets, M. P. Galak, I. M. Dmytruk, V. M. Yashchuk, and S. M. Yarmoluk, “Fluorescence of styryl dyes-DNA complexes induced by single- and two-photon excitation,” J. Fluoresc.16(6), 783–791 (2006).
[CrossRef] [PubMed]

Dorshow, R. B.

J. E. Bugaj, S. Achilefu, R. B. Dorshow, and R. Rajagopalan, “Novel fluorescent contrast agents for optical imaging of in vivo tumors based on a receptor-targeted dye-peptide conjugate platform,” J. Biomed. Opt.6(2), 122–133 (2001).
[CrossRef] [PubMed]

S. Achilefu, R. B. Dorshow, J. E. Bugaj, and R. Rajagopalan, “Novel receptor-targeted fluorescent contrast agents for in vivo tumor imaging,” Invest. Radiol.35(8), 479–485 (2000).
[CrossRef] [PubMed]

Dowsett, M.

M. T. Weigel and M. Dowsett, “Current and emerging biomarkers in breast cancer: prognosis and prediction,” Endocr. Relat. Cancer17(4), R245–R262 (2010).
[CrossRef] [PubMed]

Drobizhev, M.

N. S. Makarov, E. Beuerman, M. Drobizhev, J. Starkey, and A. Rebane, “Environment-sensitive two-photon dye,” Proc. SPIE7049, 70490Y (2008).
[CrossRef]

N. S. Makarov, M. Drobizhev, and A. Rebane, “Two-photon absorption standards in the 550-1600 nm excitation wavelength range,” Opt. Express16(6), 4029–4047 (2008).
[CrossRef] [PubMed]

Drobizhev, M. A.

A. Rebane, M. A. Drobizhev, N. S. Makarov, E. Beuerman, C. Nacke, and J. Pahapill, “Modeling non-Lorentzian two-photon absprption line shape in dipolar chromophores,” J. Lumin.130(6), 1055–1059 (2010).
[CrossRef]

Eckford, P. D.

P. D. Eckford and F. J. Sharom, “P-glycoprotein (ABCB1) interacts directly with lipid-based anti-cancer drugs and platelet-activating factors,” Biochem. Cell Biol.84(6), 1022–1033 (2006).
[CrossRef] [PubMed]

Ehlis, A. C.

F. B. Haeussinger, S. Heinzel, T. Hahn, M. Schecklmann, A. C. Ehlis, and A. J. Fallgatter, “Simulation of near-infrared light absorption considering individual head and prefrontal cortex anatomy: implications for optical neuroimaging,” PLoS ONE6(10), e26377 (2011).
[CrossRef] [PubMed]

Eisenberg, D. P.

P. S. Adusumilli, D. P. Eisenberg, Y. S. Chun, K. W. Ryu, L. Ben-Porat, K. J. Hendershott, M. K. Chan, R. Huq, C. C. Riedl, and Y. Fong, “Virally directed fluorescent imaging improves diagnostic sensitivity in the detection of minimal residual disease after potentially curative cytoreductive surgery,” J. Gastrointest. Surg.9(8), 1138–1147 (2005).
[CrossRef] [PubMed]

Fallgatter, A. J.

F. B. Haeussinger, S. Heinzel, T. Hahn, M. Schecklmann, A. C. Ehlis, and A. J. Fallgatter, “Simulation of near-infrared light absorption considering individual head and prefrontal cortex anatomy: implications for optical neuroimaging,” PLoS ONE6(10), e26377 (2011).
[CrossRef] [PubMed]

Fong, Y.

P. S. Adusumilli, D. P. Eisenberg, Y. S. Chun, K. W. Ryu, L. Ben-Porat, K. J. Hendershott, M. K. Chan, R. Huq, C. C. Riedl, and Y. Fong, “Virally directed fluorescent imaging improves diagnostic sensitivity in the detection of minimal residual disease after potentially curative cytoreductive surgery,” J. Gastrointest. Surg.9(8), 1138–1147 (2005).
[CrossRef] [PubMed]

Fukushima, A.

H. Hayashi, K. Ashizawa, M. Uetani, S. Futagawa, A. Fukushima, K. Minami, S. Honda, and K. Hayashi, “Detectability of peripheral lung cancer on chest radiographs: effect of the size, location and extent of ground-glass opacity,” Br. J. Radiol.82(976), 272–278 (2009).
[CrossRef] [PubMed]

Futagawa, S.

H. Hayashi, K. Ashizawa, M. Uetani, S. Futagawa, A. Fukushima, K. Minami, S. Honda, and K. Hayashi, “Detectability of peripheral lung cancer on chest radiographs: effect of the size, location and extent of ground-glass opacity,” Br. J. Radiol.82(976), 272–278 (2009).
[CrossRef] [PubMed]

Galak, M. P.

V. P. Tokar, M. Y. Losytskyy, V. B. Kovalska, D. V. Kryvorotenko, A. O. Balanda, V. M. Prokopets, M. P. Galak, I. M. Dmytruk, V. M. Yashchuk, and S. M. Yarmoluk, “Fluorescence of styryl dyes-DNA complexes induced by single- and two-photon excitation,” J. Fluoresc.16(6), 783–791 (2006).
[CrossRef] [PubMed]

Gratton, E.

S. Kukreti, A. E. Cerussi, W. Tanamai, D. Hsiang, B. J. Tromberg, and E. Gratton, “Characterization of metabolic differences between benign and malignant tumors: high-spectral-resolution diffuse optical spectroscopy,” Radiology254(1), 277–284 (2010).
[CrossRef] [PubMed]

Greco, A.

M. Mancini, E. Vergara, G. Salvatore, A. Greco, G. Troncone, A. Affuso, R. Liuzzi, P. Salerno, M. Scotto di Santolo, M. Santoro, A. Brunetti, and M. Salvatore, “Morphological ultrasound microimaging of thyroid in living mice,” Endocrinology150(10), 4810–4815 (2009).
[CrossRef] [PubMed]

Hackett, A. J.

R. B. Owens, H. S. Smith, and A. J. Hackett, “Epithelial cell cultures from normal glandular tissue of mice,” J. Natl. Cancer Inst.53(1), 261–269 (1974).
[PubMed]

Hadjipanayis, C. G.

C. G. Hadjipanayis, H. Jiang, D. W. Roberts, and L. Yang, “Current and future clinical applications for optical imaging of cancer: from intraoperative surgical guidance to cancer screening,” Semin. Oncol.38(1), 109–118 (2011).
[CrossRef] [PubMed]

Haeussinger, F. B.

F. B. Haeussinger, S. Heinzel, T. Hahn, M. Schecklmann, A. C. Ehlis, and A. J. Fallgatter, “Simulation of near-infrared light absorption considering individual head and prefrontal cortex anatomy: implications for optical neuroimaging,” PLoS ONE6(10), e26377 (2011).
[CrossRef] [PubMed]

Hahn, T.

F. B. Haeussinger, S. Heinzel, T. Hahn, M. Schecklmann, A. C. Ehlis, and A. J. Fallgatter, “Simulation of near-infrared light absorption considering individual head and prefrontal cortex anatomy: implications for optical neuroimaging,” PLoS ONE6(10), e26377 (2011).
[CrossRef] [PubMed]

Hamner, S.

N. P. Robertson, J. R. Starkey, S. Hamner, and G. G. Meadows, “Tumor cell invasion of three-dimensional matrices of defined composition: evidence for a specific role for heparan sulfate in rodent cell lines,” Cancer Res.49(7), 1816–1823 (1989).
[PubMed]

Hayashi, H.

H. Hayashi, K. Ashizawa, M. Uetani, S. Futagawa, A. Fukushima, K. Minami, S. Honda, and K. Hayashi, “Detectability of peripheral lung cancer on chest radiographs: effect of the size, location and extent of ground-glass opacity,” Br. J. Radiol.82(976), 272–278 (2009).
[CrossRef] [PubMed]

Hayashi, K.

H. Hayashi, K. Ashizawa, M. Uetani, S. Futagawa, A. Fukushima, K. Minami, S. Honda, and K. Hayashi, “Detectability of peripheral lung cancer on chest radiographs: effect of the size, location and extent of ground-glass opacity,” Br. J. Radiol.82(976), 272–278 (2009).
[CrossRef] [PubMed]

Heinzel, S.

F. B. Haeussinger, S. Heinzel, T. Hahn, M. Schecklmann, A. C. Ehlis, and A. J. Fallgatter, “Simulation of near-infrared light absorption considering individual head and prefrontal cortex anatomy: implications for optical neuroimaging,” PLoS ONE6(10), e26377 (2011).
[CrossRef] [PubMed]

Hendershott, K. J.

P. S. Adusumilli, D. P. Eisenberg, Y. S. Chun, K. W. Ryu, L. Ben-Porat, K. J. Hendershott, M. K. Chan, R. Huq, C. C. Riedl, and Y. Fong, “Virally directed fluorescent imaging improves diagnostic sensitivity in the detection of minimal residual disease after potentially curative cytoreductive surgery,” J. Gastrointest. Surg.9(8), 1138–1147 (2005).
[CrossRef] [PubMed]

Henklein, P.

K. Licha, C. Hessenius, A. Becker, P. Henklein, M. Bauer, S. Wisniewski, B. Wiedenmann, and W. Semmler, “Synthesis, characterization, and biological properties of cyanine-labeled somatostatin analogues as receptor-targeted fluorescent probes,” Bioconjug. Chem.12(1), 44–50 (2001).
[CrossRef] [PubMed]

Hessenius, C.

K. Licha, C. Hessenius, A. Becker, P. Henklein, M. Bauer, S. Wisniewski, B. Wiedenmann, and W. Semmler, “Synthesis, characterization, and biological properties of cyanine-labeled somatostatin analogues as receptor-targeted fluorescent probes,” Bioconjug. Chem.12(1), 44–50 (2001).
[CrossRef] [PubMed]

Hinkle, G. H.

O. A. Oredipe, R. F. Barth, S. E. Tuttle, D. M. Adams, I. Sautins, D. M. Bucci, C. M. Mojzisik, G. H. Hinkle, S. Jewell, Z. Steplewski, M. O. Thurston, and E. W. Martin, “Limits of sensitivity for the radioimmunodetection of colon cancer by means of a hand held gamma probe” Int. J. Rad. Appl. Instrum. Part B. Nucl. Med. Biol.15, 595–603 (1988).

Honda, S.

H. Hayashi, K. Ashizawa, M. Uetani, S. Futagawa, A. Fukushima, K. Minami, S. Honda, and K. Hayashi, “Detectability of peripheral lung cancer on chest radiographs: effect of the size, location and extent of ground-glass opacity,” Br. J. Radiol.82(976), 272–278 (2009).
[CrossRef] [PubMed]

Hosick, H. L.

W. Jones and H. L. Hosick, “Collagen concentration as a significant variable for growth and morphology of mouse mammary parenchyma in collagen matrix culture,” Cell Biol. Int. Rep.10(4), 277–286 (1986).
[CrossRef] [PubMed]

L. W. Anderson, K. G. Danielson, and H. L. Hosick, “Metastatic potential of hyperplastic alveolar nodule derived mouse mammary tumor cells following intravenous inoculation,” Eur. J. Cancer Clin. Oncol.17(9), 1001–1008 (1981).
[CrossRef] [PubMed]

K. G. Danielson, L. W. Anderson, and H. L. Hosick, “Selection and characterization in culture of mammary tumor cells with distinctive growth properties in vivo,” Cancer Res.40(6), 1812–1819 (1980).
[PubMed]

Hsiang, D.

S. Kukreti, A. E. Cerussi, W. Tanamai, D. Hsiang, B. J. Tromberg, and E. Gratton, “Characterization of metabolic differences between benign and malignant tumors: high-spectral-resolution diffuse optical spectroscopy,” Radiology254(1), 277–284 (2010).
[CrossRef] [PubMed]

Huq, R.

P. S. Adusumilli, D. P. Eisenberg, Y. S. Chun, K. W. Ryu, L. Ben-Porat, K. J. Hendershott, M. K. Chan, R. Huq, C. C. Riedl, and Y. Fong, “Virally directed fluorescent imaging improves diagnostic sensitivity in the detection of minimal residual disease after potentially curative cytoreductive surgery,” J. Gastrointest. Surg.9(8), 1138–1147 (2005).
[CrossRef] [PubMed]

Jagannathan, R.

J. M. Song, R. Jagannathan, D. L. Stokes, P. M. Kasili, M. Panjehpour, M. N. Phan, B. F. Overholt, R. C. DeNovo, X. Pan, R. J. Lee, and T. Vo-Dinh, “Development of a fluorescence detection system using optical parametric oscillator (OPO) laser excitation for in vivo diagnosis,” Technol. Cancer Res. Treat.2(6), 515–523 (2003).
[PubMed]

Jewell, S.

O. A. Oredipe, R. F. Barth, S. E. Tuttle, D. M. Adams, I. Sautins, D. M. Bucci, C. M. Mojzisik, G. H. Hinkle, S. Jewell, Z. Steplewski, M. O. Thurston, and E. W. Martin, “Limits of sensitivity for the radioimmunodetection of colon cancer by means of a hand held gamma probe” Int. J. Rad. Appl. Instrum. Part B. Nucl. Med. Biol.15, 595–603 (1988).

Jiang, H.

C. G. Hadjipanayis, H. Jiang, D. W. Roberts, and L. Yang, “Current and future clinical applications for optical imaging of cancer: from intraoperative surgical guidance to cancer screening,” Semin. Oncol.38(1), 109–118 (2011).
[CrossRef] [PubMed]

Jones, W.

W. Jones and H. L. Hosick, “Collagen concentration as a significant variable for growth and morphology of mouse mammary parenchyma in collagen matrix culture,” Cell Biol. Int. Rep.10(4), 277–286 (1986).
[CrossRef] [PubMed]

Josephson, L.

L. Josephson, M. F. Kircher, U. Mahmood, Y. Tang, and R. Weissleder, “Near-infrared fluorescent nanoparticles as combined MR/optical imaging probes,” Bioconjug. Chem.13(3), 554–560 (2002).
[CrossRef] [PubMed]

Kasili, P. M.

J. M. Song, R. Jagannathan, D. L. Stokes, P. M. Kasili, M. Panjehpour, M. N. Phan, B. F. Overholt, R. C. DeNovo, X. Pan, R. J. Lee, and T. Vo-Dinh, “Development of a fluorescence detection system using optical parametric oscillator (OPO) laser excitation for in vivo diagnosis,” Technol. Cancer Res. Treat.2(6), 515–523 (2003).
[PubMed]

Khatri, A.

C. Tang, P. J. Russell, R. Martiniello-Wilks, J. E. Rasko, and A. Khatri, “Concise review: Nanoparticles and cellular carriers-allies in cancer imaging and cellular gene therapy?” Stem Cells28(9), 1686–1702 (2010).
[CrossRef] [PubMed]

Kircher, M. F.

L. Josephson, M. F. Kircher, U. Mahmood, Y. Tang, and R. Weissleder, “Near-infrared fluorescent nanoparticles as combined MR/optical imaging probes,” Bioconjug. Chem.13(3), 554–560 (2002).
[CrossRef] [PubMed]

Kovalska, V. B.

V. P. Tokar, M. Y. Losytskyy, V. B. Kovalska, D. V. Kryvorotenko, A. O. Balanda, V. M. Prokopets, M. P. Galak, I. M. Dmytruk, V. M. Yashchuk, and S. M. Yarmoluk, “Fluorescence of styryl dyes-DNA complexes induced by single- and two-photon excitation,” J. Fluoresc.16(6), 783–791 (2006).
[CrossRef] [PubMed]

Kryvorotenko, D. V.

V. P. Tokar, M. Y. Losytskyy, V. B. Kovalska, D. V. Kryvorotenko, A. O. Balanda, V. M. Prokopets, M. P. Galak, I. M. Dmytruk, V. M. Yashchuk, and S. M. Yarmoluk, “Fluorescence of styryl dyes-DNA complexes induced by single- and two-photon excitation,” J. Fluoresc.16(6), 783–791 (2006).
[CrossRef] [PubMed]

Kukreti, S.

S. Kukreti, A. E. Cerussi, W. Tanamai, D. Hsiang, B. J. Tromberg, and E. Gratton, “Characterization of metabolic differences between benign and malignant tumors: high-spectral-resolution diffuse optical spectroscopy,” Radiology254(1), 277–284 (2010).
[CrossRef] [PubMed]

Lee, R. J.

J. M. Song, R. Jagannathan, D. L. Stokes, P. M. Kasili, M. Panjehpour, M. N. Phan, B. F. Overholt, R. C. DeNovo, X. Pan, R. J. Lee, and T. Vo-Dinh, “Development of a fluorescence detection system using optical parametric oscillator (OPO) laser excitation for in vivo diagnosis,” Technol. Cancer Res. Treat.2(6), 515–523 (2003).
[PubMed]

Licha, K.

K. Licha, C. Hessenius, A. Becker, P. Henklein, M. Bauer, S. Wisniewski, B. Wiedenmann, and W. Semmler, “Synthesis, characterization, and biological properties of cyanine-labeled somatostatin analogues as receptor-targeted fluorescent probes,” Bioconjug. Chem.12(1), 44–50 (2001).
[CrossRef] [PubMed]

Liu, Y.

M. Solomon, Y. Liu, M. Y. Berezin, and S. Achilefu, “Optical imaging in cancer research: basic principles, tumor detection, and therapeutic monitoring,” Med. Princ. Pract.20(5), 397–415 (2011).
[CrossRef] [PubMed]

Liuzzi, R.

M. Mancini, E. Vergara, G. Salvatore, A. Greco, G. Troncone, A. Affuso, R. Liuzzi, P. Salerno, M. Scotto di Santolo, M. Santoro, A. Brunetti, and M. Salvatore, “Morphological ultrasound microimaging of thyroid in living mice,” Endocrinology150(10), 4810–4815 (2009).
[CrossRef] [PubMed]

Losytskyy, M. Y.

V. P. Tokar, M. Y. Losytskyy, V. B. Kovalska, D. V. Kryvorotenko, A. O. Balanda, V. M. Prokopets, M. P. Galak, I. M. Dmytruk, V. M. Yashchuk, and S. M. Yarmoluk, “Fluorescence of styryl dyes-DNA complexes induced by single- and two-photon excitation,” J. Fluoresc.16(6), 783–791 (2006).
[CrossRef] [PubMed]

Lugo, M. R.

M. R. Lugo and F. J. Sharom, “Interaction of LDS-751 with P-glycoprotein and mapping of the location of the R drug binding site,” Biochemistry44(2), 643–655 (2005).
[CrossRef] [PubMed]

Mahmood, U.

L. Josephson, M. F. Kircher, U. Mahmood, Y. Tang, and R. Weissleder, “Near-infrared fluorescent nanoparticles as combined MR/optical imaging probes,” Bioconjug. Chem.13(3), 554–560 (2002).
[CrossRef] [PubMed]

Makarov, N. S.

A. Rebane, M. A. Drobizhev, N. S. Makarov, E. Beuerman, C. Nacke, and J. Pahapill, “Modeling non-Lorentzian two-photon absprption line shape in dipolar chromophores,” J. Lumin.130(6), 1055–1059 (2010).
[CrossRef]

N. S. Makarov, E. Beuerman, M. Drobizhev, J. Starkey, and A. Rebane, “Environment-sensitive two-photon dye,” Proc. SPIE7049, 70490Y (2008).
[CrossRef]

N. S. Makarov, M. Drobizhev, and A. Rebane, “Two-photon absorption standards in the 550-1600 nm excitation wavelength range,” Opt. Express16(6), 4029–4047 (2008).
[CrossRef] [PubMed]

Mancini, M.

M. Mancini, E. Vergara, G. Salvatore, A. Greco, G. Troncone, A. Affuso, R. Liuzzi, P. Salerno, M. Scotto di Santolo, M. Santoro, A. Brunetti, and M. Salvatore, “Morphological ultrasound microimaging of thyroid in living mice,” Endocrinology150(10), 4810–4815 (2009).
[CrossRef] [PubMed]

Martin, E. W.

O. A. Oredipe, R. F. Barth, S. E. Tuttle, D. M. Adams, I. Sautins, D. M. Bucci, C. M. Mojzisik, G. H. Hinkle, S. Jewell, Z. Steplewski, M. O. Thurston, and E. W. Martin, “Limits of sensitivity for the radioimmunodetection of colon cancer by means of a hand held gamma probe” Int. J. Rad. Appl. Instrum. Part B. Nucl. Med. Biol.15, 595–603 (1988).

Martiniello-Wilks, R.

C. Tang, P. J. Russell, R. Martiniello-Wilks, J. E. Rasko, and A. Khatri, “Concise review: Nanoparticles and cellular carriers-allies in cancer imaging and cellular gene therapy?” Stem Cells28(9), 1686–1702 (2010).
[CrossRef] [PubMed]

Mawlawi, O. R.

N. A. Shkumat, A. Springer, C. M. Walker, E. M. Rohren, W. T. Yang, B. E. Adrada, E. Arribas, S. Carkaci, H. H. Chuang, L. Santiago, and O. R. Mawlawi, “Investigating the limit of detectability of a positron emission mammography device: a phantom study,” Med. Phys.38(9), 5176–5185 (2011).
[CrossRef] [PubMed]

Meadows, G. G.

N. P. Robertson, J. R. Starkey, S. Hamner, and G. G. Meadows, “Tumor cell invasion of three-dimensional matrices of defined composition: evidence for a specific role for heparan sulfate in rodent cell lines,” Cancer Res.49(7), 1816–1823 (1989).
[PubMed]

Meneghetti, L.

A. Bozzini, G. Renne, L. Meneghetti, G. Bandi, G. Santos, A. R. Vento, S. Menna, S. Andrighetto, G. Viale, E. Cassano, and M. Bellomi, “Sensitivity of imaging for multifocal-multicentric breast carcinoma,” BMC Cancer8(1), 275 (2008).
[CrossRef] [PubMed]

Menna, S.

A. Bozzini, G. Renne, L. Meneghetti, G. Bandi, G. Santos, A. R. Vento, S. Menna, S. Andrighetto, G. Viale, E. Cassano, and M. Bellomi, “Sensitivity of imaging for multifocal-multicentric breast carcinoma,” BMC Cancer8(1), 275 (2008).
[CrossRef] [PubMed]

Minami, K.

H. Hayashi, K. Ashizawa, M. Uetani, S. Futagawa, A. Fukushima, K. Minami, S. Honda, and K. Hayashi, “Detectability of peripheral lung cancer on chest radiographs: effect of the size, location and extent of ground-glass opacity,” Br. J. Radiol.82(976), 272–278 (2009).
[CrossRef] [PubMed]

Mojzisik, C. M.

O. A. Oredipe, R. F. Barth, S. E. Tuttle, D. M. Adams, I. Sautins, D. M. Bucci, C. M. Mojzisik, G. H. Hinkle, S. Jewell, Z. Steplewski, M. O. Thurston, and E. W. Martin, “Limits of sensitivity for the radioimmunodetection of colon cancer by means of a hand held gamma probe” Int. J. Rad. Appl. Instrum. Part B. Nucl. Med. Biol.15, 595–603 (1988).

Nacke, C.

A. Rebane, M. A. Drobizhev, N. S. Makarov, E. Beuerman, C. Nacke, and J. Pahapill, “Modeling non-Lorentzian two-photon absprption line shape in dipolar chromophores,” J. Lumin.130(6), 1055–1059 (2010).
[CrossRef]

Oredipe, O. A.

O. A. Oredipe, R. F. Barth, S. E. Tuttle, D. M. Adams, I. Sautins, D. M. Bucci, C. M. Mojzisik, G. H. Hinkle, S. Jewell, Z. Steplewski, M. O. Thurston, and E. W. Martin, “Limits of sensitivity for the radioimmunodetection of colon cancer by means of a hand held gamma probe” Int. J. Rad. Appl. Instrum. Part B. Nucl. Med. Biol.15, 595–603 (1988).

Overholt, B. F.

J. M. Song, R. Jagannathan, D. L. Stokes, P. M. Kasili, M. Panjehpour, M. N. Phan, B. F. Overholt, R. C. DeNovo, X. Pan, R. J. Lee, and T. Vo-Dinh, “Development of a fluorescence detection system using optical parametric oscillator (OPO) laser excitation for in vivo diagnosis,” Technol. Cancer Res. Treat.2(6), 515–523 (2003).
[PubMed]

Owens, R. B.

R. B. Owens, H. S. Smith, and A. J. Hackett, “Epithelial cell cultures from normal glandular tissue of mice,” J. Natl. Cancer Inst.53(1), 261–269 (1974).
[PubMed]

Pahapill, J.

A. Rebane, M. A. Drobizhev, N. S. Makarov, E. Beuerman, C. Nacke, and J. Pahapill, “Modeling non-Lorentzian two-photon absprption line shape in dipolar chromophores,” J. Lumin.130(6), 1055–1059 (2010).
[CrossRef]

Palmer, C.

P. O. Brown and C. Palmer, “The preclinical natural history of serous ovarian cancer: defining the target for early detection,” PLoS Med.6(7), e1000114 (2009).
[CrossRef] [PubMed]

Pan, X.

J. M. Song, R. Jagannathan, D. L. Stokes, P. M. Kasili, M. Panjehpour, M. N. Phan, B. F. Overholt, R. C. DeNovo, X. Pan, R. J. Lee, and T. Vo-Dinh, “Development of a fluorescence detection system using optical parametric oscillator (OPO) laser excitation for in vivo diagnosis,” Technol. Cancer Res. Treat.2(6), 515–523 (2003).
[PubMed]

Panjehpour, M.

J. M. Song, R. Jagannathan, D. L. Stokes, P. M. Kasili, M. Panjehpour, M. N. Phan, B. F. Overholt, R. C. DeNovo, X. Pan, R. J. Lee, and T. Vo-Dinh, “Development of a fluorescence detection system using optical parametric oscillator (OPO) laser excitation for in vivo diagnosis,” Technol. Cancer Res. Treat.2(6), 515–523 (2003).
[PubMed]

Phan, M. N.

J. M. Song, R. Jagannathan, D. L. Stokes, P. M. Kasili, M. Panjehpour, M. N. Phan, B. F. Overholt, R. C. DeNovo, X. Pan, R. J. Lee, and T. Vo-Dinh, “Development of a fluorescence detection system using optical parametric oscillator (OPO) laser excitation for in vivo diagnosis,” Technol. Cancer Res. Treat.2(6), 515–523 (2003).
[PubMed]

Prokopets, V. M.

V. P. Tokar, M. Y. Losytskyy, V. B. Kovalska, D. V. Kryvorotenko, A. O. Balanda, V. M. Prokopets, M. P. Galak, I. M. Dmytruk, V. M. Yashchuk, and S. M. Yarmoluk, “Fluorescence of styryl dyes-DNA complexes induced by single- and two-photon excitation,” J. Fluoresc.16(6), 783–791 (2006).
[CrossRef] [PubMed]

Rajagopalan, R.

J. E. Bugaj, S. Achilefu, R. B. Dorshow, and R. Rajagopalan, “Novel fluorescent contrast agents for optical imaging of in vivo tumors based on a receptor-targeted dye-peptide conjugate platform,” J. Biomed. Opt.6(2), 122–133 (2001).
[CrossRef] [PubMed]

S. Achilefu, R. B. Dorshow, J. E. Bugaj, and R. Rajagopalan, “Novel receptor-targeted fluorescent contrast agents for in vivo tumor imaging,” Invest. Radiol.35(8), 479–485 (2000).
[CrossRef] [PubMed]

Ramadass, R.

R. Ramadass and J. Bereiter-Hahn, ““Photophysical properties of DASPMI as revealed by spectrally resolved fluorescence decays,” J. Phys. B111(26), 7681–7690 (2007).
[CrossRef]

Rasko, J. E.

C. Tang, P. J. Russell, R. Martiniello-Wilks, J. E. Rasko, and A. Khatri, “Concise review: Nanoparticles and cellular carriers-allies in cancer imaging and cellular gene therapy?” Stem Cells28(9), 1686–1702 (2010).
[CrossRef] [PubMed]

Rebane, A.

A. Rebane, M. A. Drobizhev, N. S. Makarov, E. Beuerman, C. Nacke, and J. Pahapill, “Modeling non-Lorentzian two-photon absprption line shape in dipolar chromophores,” J. Lumin.130(6), 1055–1059 (2010).
[CrossRef]

N. S. Makarov, E. Beuerman, M. Drobizhev, J. Starkey, and A. Rebane, “Environment-sensitive two-photon dye,” Proc. SPIE7049, 70490Y (2008).
[CrossRef]

N. S. Makarov, M. Drobizhev, and A. Rebane, “Two-photon absorption standards in the 550-1600 nm excitation wavelength range,” Opt. Express16(6), 4029–4047 (2008).
[CrossRef] [PubMed]

Renne, G.

A. Bozzini, G. Renne, L. Meneghetti, G. Bandi, G. Santos, A. R. Vento, S. Menna, S. Andrighetto, G. Viale, E. Cassano, and M. Bellomi, “Sensitivity of imaging for multifocal-multicentric breast carcinoma,” BMC Cancer8(1), 275 (2008).
[CrossRef] [PubMed]

Riedl, C. C.

P. S. Adusumilli, D. P. Eisenberg, Y. S. Chun, K. W. Ryu, L. Ben-Porat, K. J. Hendershott, M. K. Chan, R. Huq, C. C. Riedl, and Y. Fong, “Virally directed fluorescent imaging improves diagnostic sensitivity in the detection of minimal residual disease after potentially curative cytoreductive surgery,” J. Gastrointest. Surg.9(8), 1138–1147 (2005).
[CrossRef] [PubMed]

Roberts, D. W.

C. G. Hadjipanayis, H. Jiang, D. W. Roberts, and L. Yang, “Current and future clinical applications for optical imaging of cancer: from intraoperative surgical guidance to cancer screening,” Semin. Oncol.38(1), 109–118 (2011).
[CrossRef] [PubMed]

Robertson, N. P.

N. P. Robertson, J. R. Starkey, S. Hamner, and G. G. Meadows, “Tumor cell invasion of three-dimensional matrices of defined composition: evidence for a specific role for heparan sulfate in rodent cell lines,” Cancer Res.49(7), 1816–1823 (1989).
[PubMed]

Rohren, E. M.

N. A. Shkumat, A. Springer, C. M. Walker, E. M. Rohren, W. T. Yang, B. E. Adrada, E. Arribas, S. Carkaci, H. H. Chuang, L. Santiago, and O. R. Mawlawi, “Investigating the limit of detectability of a positron emission mammography device: a phantom study,” Med. Phys.38(9), 5176–5185 (2011).
[CrossRef] [PubMed]

Russell, P. J.

C. Tang, P. J. Russell, R. Martiniello-Wilks, J. E. Rasko, and A. Khatri, “Concise review: Nanoparticles and cellular carriers-allies in cancer imaging and cellular gene therapy?” Stem Cells28(9), 1686–1702 (2010).
[CrossRef] [PubMed]

Ryu, K. W.

P. S. Adusumilli, D. P. Eisenberg, Y. S. Chun, K. W. Ryu, L. Ben-Porat, K. J. Hendershott, M. K. Chan, R. Huq, C. C. Riedl, and Y. Fong, “Virally directed fluorescent imaging improves diagnostic sensitivity in the detection of minimal residual disease after potentially curative cytoreductive surgery,” J. Gastrointest. Surg.9(8), 1138–1147 (2005).
[CrossRef] [PubMed]

Salerno, P.

M. Mancini, E. Vergara, G. Salvatore, A. Greco, G. Troncone, A. Affuso, R. Liuzzi, P. Salerno, M. Scotto di Santolo, M. Santoro, A. Brunetti, and M. Salvatore, “Morphological ultrasound microimaging of thyroid in living mice,” Endocrinology150(10), 4810–4815 (2009).
[CrossRef] [PubMed]

Salvatore, G.

M. Mancini, E. Vergara, G. Salvatore, A. Greco, G. Troncone, A. Affuso, R. Liuzzi, P. Salerno, M. Scotto di Santolo, M. Santoro, A. Brunetti, and M. Salvatore, “Morphological ultrasound microimaging of thyroid in living mice,” Endocrinology150(10), 4810–4815 (2009).
[CrossRef] [PubMed]

Salvatore, M.

M. Mancini, E. Vergara, G. Salvatore, A. Greco, G. Troncone, A. Affuso, R. Liuzzi, P. Salerno, M. Scotto di Santolo, M. Santoro, A. Brunetti, and M. Salvatore, “Morphological ultrasound microimaging of thyroid in living mice,” Endocrinology150(10), 4810–4815 (2009).
[CrossRef] [PubMed]

Santiago, L.

N. A. Shkumat, A. Springer, C. M. Walker, E. M. Rohren, W. T. Yang, B. E. Adrada, E. Arribas, S. Carkaci, H. H. Chuang, L. Santiago, and O. R. Mawlawi, “Investigating the limit of detectability of a positron emission mammography device: a phantom study,” Med. Phys.38(9), 5176–5185 (2011).
[CrossRef] [PubMed]

Santoro, M.

M. Mancini, E. Vergara, G. Salvatore, A. Greco, G. Troncone, A. Affuso, R. Liuzzi, P. Salerno, M. Scotto di Santolo, M. Santoro, A. Brunetti, and M. Salvatore, “Morphological ultrasound microimaging of thyroid in living mice,” Endocrinology150(10), 4810–4815 (2009).
[CrossRef] [PubMed]

Santos, G.

A. Bozzini, G. Renne, L. Meneghetti, G. Bandi, G. Santos, A. R. Vento, S. Menna, S. Andrighetto, G. Viale, E. Cassano, and M. Bellomi, “Sensitivity of imaging for multifocal-multicentric breast carcinoma,” BMC Cancer8(1), 275 (2008).
[CrossRef] [PubMed]

Sautins, I.

O. A. Oredipe, R. F. Barth, S. E. Tuttle, D. M. Adams, I. Sautins, D. M. Bucci, C. M. Mojzisik, G. H. Hinkle, S. Jewell, Z. Steplewski, M. O. Thurston, and E. W. Martin, “Limits of sensitivity for the radioimmunodetection of colon cancer by means of a hand held gamma probe” Int. J. Rad. Appl. Instrum. Part B. Nucl. Med. Biol.15, 595–603 (1988).

Schecklmann, M.

F. B. Haeussinger, S. Heinzel, T. Hahn, M. Schecklmann, A. C. Ehlis, and A. J. Fallgatter, “Simulation of near-infrared light absorption considering individual head and prefrontal cortex anatomy: implications for optical neuroimaging,” PLoS ONE6(10), e26377 (2011).
[CrossRef] [PubMed]

Schor, S. L.

S. L. Schor, “Cell proliferation and migration on collagen substrata in vitro,” J. Cell Sci.41, 159–175 (1980).
[PubMed]

Scotto di Santolo, M.

M. Mancini, E. Vergara, G. Salvatore, A. Greco, G. Troncone, A. Affuso, R. Liuzzi, P. Salerno, M. Scotto di Santolo, M. Santoro, A. Brunetti, and M. Salvatore, “Morphological ultrasound microimaging of thyroid in living mice,” Endocrinology150(10), 4810–4815 (2009).
[CrossRef] [PubMed]

Semmler, W.

K. Licha, C. Hessenius, A. Becker, P. Henklein, M. Bauer, S. Wisniewski, B. Wiedenmann, and W. Semmler, “Synthesis, characterization, and biological properties of cyanine-labeled somatostatin analogues as receptor-targeted fluorescent probes,” Bioconjug. Chem.12(1), 44–50 (2001).
[CrossRef] [PubMed]

Sharom, F. J.

P. D. Eckford and F. J. Sharom, “P-glycoprotein (ABCB1) interacts directly with lipid-based anti-cancer drugs and platelet-activating factors,” Biochem. Cell Biol.84(6), 1022–1033 (2006).
[CrossRef] [PubMed]

M. R. Lugo and F. J. Sharom, “Interaction of LDS-751 with P-glycoprotein and mapping of the location of the R drug binding site,” Biochemistry44(2), 643–655 (2005).
[CrossRef] [PubMed]

Shkumat, N. A.

N. A. Shkumat, A. Springer, C. M. Walker, E. M. Rohren, W. T. Yang, B. E. Adrada, E. Arribas, S. Carkaci, H. H. Chuang, L. Santiago, and O. R. Mawlawi, “Investigating the limit of detectability of a positron emission mammography device: a phantom study,” Med. Phys.38(9), 5176–5185 (2011).
[CrossRef] [PubMed]

Smith, H. S.

R. B. Owens, H. S. Smith, and A. J. Hackett, “Epithelial cell cultures from normal glandular tissue of mice,” J. Natl. Cancer Inst.53(1), 261–269 (1974).
[PubMed]

Solomon, M.

M. Solomon, Y. Liu, M. Y. Berezin, and S. Achilefu, “Optical imaging in cancer research: basic principles, tumor detection, and therapeutic monitoring,” Med. Princ. Pract.20(5), 397–415 (2011).
[CrossRef] [PubMed]

Song, J. M.

J. M. Song, R. Jagannathan, D. L. Stokes, P. M. Kasili, M. Panjehpour, M. N. Phan, B. F. Overholt, R. C. DeNovo, X. Pan, R. J. Lee, and T. Vo-Dinh, “Development of a fluorescence detection system using optical parametric oscillator (OPO) laser excitation for in vivo diagnosis,” Technol. Cancer Res. Treat.2(6), 515–523 (2003).
[PubMed]

Springer, A.

N. A. Shkumat, A. Springer, C. M. Walker, E. M. Rohren, W. T. Yang, B. E. Adrada, E. Arribas, S. Carkaci, H. H. Chuang, L. Santiago, and O. R. Mawlawi, “Investigating the limit of detectability of a positron emission mammography device: a phantom study,” Med. Phys.38(9), 5176–5185 (2011).
[CrossRef] [PubMed]

Starkey, J.

N. S. Makarov, E. Beuerman, M. Drobizhev, J. Starkey, and A. Rebane, “Environment-sensitive two-photon dye,” Proc. SPIE7049, 70490Y (2008).
[CrossRef]

Starkey, J. R.

N. P. Robertson, J. R. Starkey, S. Hamner, and G. G. Meadows, “Tumor cell invasion of three-dimensional matrices of defined composition: evidence for a specific role for heparan sulfate in rodent cell lines,” Cancer Res.49(7), 1816–1823 (1989).
[PubMed]

Steplewski, Z.

O. A. Oredipe, R. F. Barth, S. E. Tuttle, D. M. Adams, I. Sautins, D. M. Bucci, C. M. Mojzisik, G. H. Hinkle, S. Jewell, Z. Steplewski, M. O. Thurston, and E. W. Martin, “Limits of sensitivity for the radioimmunodetection of colon cancer by means of a hand held gamma probe” Int. J. Rad. Appl. Instrum. Part B. Nucl. Med. Biol.15, 595–603 (1988).

Stokes, D. L.

J. M. Song, R. Jagannathan, D. L. Stokes, P. M. Kasili, M. Panjehpour, M. N. Phan, B. F. Overholt, R. C. DeNovo, X. Pan, R. J. Lee, and T. Vo-Dinh, “Development of a fluorescence detection system using optical parametric oscillator (OPO) laser excitation for in vivo diagnosis,” Technol. Cancer Res. Treat.2(6), 515–523 (2003).
[PubMed]

Tanamai, W.

S. Kukreti, A. E. Cerussi, W. Tanamai, D. Hsiang, B. J. Tromberg, and E. Gratton, “Characterization of metabolic differences between benign and malignant tumors: high-spectral-resolution diffuse optical spectroscopy,” Radiology254(1), 277–284 (2010).
[CrossRef] [PubMed]

Tang, C.

C. Tang, P. J. Russell, R. Martiniello-Wilks, J. E. Rasko, and A. Khatri, “Concise review: Nanoparticles and cellular carriers-allies in cancer imaging and cellular gene therapy?” Stem Cells28(9), 1686–1702 (2010).
[CrossRef] [PubMed]

Tang, Y.

L. Josephson, M. F. Kircher, U. Mahmood, Y. Tang, and R. Weissleder, “Near-infrared fluorescent nanoparticles as combined MR/optical imaging probes,” Bioconjug. Chem.13(3), 554–560 (2002).
[CrossRef] [PubMed]

Thurston, M. O.

O. A. Oredipe, R. F. Barth, S. E. Tuttle, D. M. Adams, I. Sautins, D. M. Bucci, C. M. Mojzisik, G. H. Hinkle, S. Jewell, Z. Steplewski, M. O. Thurston, and E. W. Martin, “Limits of sensitivity for the radioimmunodetection of colon cancer by means of a hand held gamma probe” Int. J. Rad. Appl. Instrum. Part B. Nucl. Med. Biol.15, 595–603 (1988).

Tokar, V. P.

V. P. Tokar, M. Y. Losytskyy, V. B. Kovalska, D. V. Kryvorotenko, A. O. Balanda, V. M. Prokopets, M. P. Galak, I. M. Dmytruk, V. M. Yashchuk, and S. M. Yarmoluk, “Fluorescence of styryl dyes-DNA complexes induced by single- and two-photon excitation,” J. Fluoresc.16(6), 783–791 (2006).
[CrossRef] [PubMed]

Tromberg, B. J.

S. Kukreti, A. E. Cerussi, W. Tanamai, D. Hsiang, B. J. Tromberg, and E. Gratton, “Characterization of metabolic differences between benign and malignant tumors: high-spectral-resolution diffuse optical spectroscopy,” Radiology254(1), 277–284 (2010).
[CrossRef] [PubMed]

Troncone, G.

M. Mancini, E. Vergara, G. Salvatore, A. Greco, G. Troncone, A. Affuso, R. Liuzzi, P. Salerno, M. Scotto di Santolo, M. Santoro, A. Brunetti, and M. Salvatore, “Morphological ultrasound microimaging of thyroid in living mice,” Endocrinology150(10), 4810–4815 (2009).
[CrossRef] [PubMed]

Tuttle, S. E.

O. A. Oredipe, R. F. Barth, S. E. Tuttle, D. M. Adams, I. Sautins, D. M. Bucci, C. M. Mojzisik, G. H. Hinkle, S. Jewell, Z. Steplewski, M. O. Thurston, and E. W. Martin, “Limits of sensitivity for the radioimmunodetection of colon cancer by means of a hand held gamma probe” Int. J. Rad. Appl. Instrum. Part B. Nucl. Med. Biol.15, 595–603 (1988).

Uetani, M.

H. Hayashi, K. Ashizawa, M. Uetani, S. Futagawa, A. Fukushima, K. Minami, S. Honda, and K. Hayashi, “Detectability of peripheral lung cancer on chest radiographs: effect of the size, location and extent of ground-glass opacity,” Br. J. Radiol.82(976), 272–278 (2009).
[CrossRef] [PubMed]

Vento, A. R.

A. Bozzini, G. Renne, L. Meneghetti, G. Bandi, G. Santos, A. R. Vento, S. Menna, S. Andrighetto, G. Viale, E. Cassano, and M. Bellomi, “Sensitivity of imaging for multifocal-multicentric breast carcinoma,” BMC Cancer8(1), 275 (2008).
[CrossRef] [PubMed]

Vergara, E.

M. Mancini, E. Vergara, G. Salvatore, A. Greco, G. Troncone, A. Affuso, R. Liuzzi, P. Salerno, M. Scotto di Santolo, M. Santoro, A. Brunetti, and M. Salvatore, “Morphological ultrasound microimaging of thyroid in living mice,” Endocrinology150(10), 4810–4815 (2009).
[CrossRef] [PubMed]

Viale, G.

A. Bozzini, G. Renne, L. Meneghetti, G. Bandi, G. Santos, A. R. Vento, S. Menna, S. Andrighetto, G. Viale, E. Cassano, and M. Bellomi, “Sensitivity of imaging for multifocal-multicentric breast carcinoma,” BMC Cancer8(1), 275 (2008).
[CrossRef] [PubMed]

Vo-Dinh, T.

J. M. Song, R. Jagannathan, D. L. Stokes, P. M. Kasili, M. Panjehpour, M. N. Phan, B. F. Overholt, R. C. DeNovo, X. Pan, R. J. Lee, and T. Vo-Dinh, “Development of a fluorescence detection system using optical parametric oscillator (OPO) laser excitation for in vivo diagnosis,” Technol. Cancer Res. Treat.2(6), 515–523 (2003).
[PubMed]

Walker, C. M.

N. A. Shkumat, A. Springer, C. M. Walker, E. M. Rohren, W. T. Yang, B. E. Adrada, E. Arribas, S. Carkaci, H. H. Chuang, L. Santiago, and O. R. Mawlawi, “Investigating the limit of detectability of a positron emission mammography device: a phantom study,” Med. Phys.38(9), 5176–5185 (2011).
[CrossRef] [PubMed]

Weigel, M. T.

M. T. Weigel and M. Dowsett, “Current and emerging biomarkers in breast cancer: prognosis and prediction,” Endocr. Relat. Cancer17(4), R245–R262 (2010).
[CrossRef] [PubMed]

Weissleder, R.

L. Josephson, M. F. Kircher, U. Mahmood, Y. Tang, and R. Weissleder, “Near-infrared fluorescent nanoparticles as combined MR/optical imaging probes,” Bioconjug. Chem.13(3), 554–560 (2002).
[CrossRef] [PubMed]

Wiedenmann, B.

K. Licha, C. Hessenius, A. Becker, P. Henklein, M. Bauer, S. Wisniewski, B. Wiedenmann, and W. Semmler, “Synthesis, characterization, and biological properties of cyanine-labeled somatostatin analogues as receptor-targeted fluorescent probes,” Bioconjug. Chem.12(1), 44–50 (2001).
[CrossRef] [PubMed]

Wisniewski, S.

K. Licha, C. Hessenius, A. Becker, P. Henklein, M. Bauer, S. Wisniewski, B. Wiedenmann, and W. Semmler, “Synthesis, characterization, and biological properties of cyanine-labeled somatostatin analogues as receptor-targeted fluorescent probes,” Bioconjug. Chem.12(1), 44–50 (2001).
[CrossRef] [PubMed]

Yang, L.

C. G. Hadjipanayis, H. Jiang, D. W. Roberts, and L. Yang, “Current and future clinical applications for optical imaging of cancer: from intraoperative surgical guidance to cancer screening,” Semin. Oncol.38(1), 109–118 (2011).
[CrossRef] [PubMed]

Yang, W. T.

N. A. Shkumat, A. Springer, C. M. Walker, E. M. Rohren, W. T. Yang, B. E. Adrada, E. Arribas, S. Carkaci, H. H. Chuang, L. Santiago, and O. R. Mawlawi, “Investigating the limit of detectability of a positron emission mammography device: a phantom study,” Med. Phys.38(9), 5176–5185 (2011).
[CrossRef] [PubMed]

Yarmoluk, S. M.

V. P. Tokar, M. Y. Losytskyy, V. B. Kovalska, D. V. Kryvorotenko, A. O. Balanda, V. M. Prokopets, M. P. Galak, I. M. Dmytruk, V. M. Yashchuk, and S. M. Yarmoluk, “Fluorescence of styryl dyes-DNA complexes induced by single- and two-photon excitation,” J. Fluoresc.16(6), 783–791 (2006).
[CrossRef] [PubMed]

Yashchuk, V. M.

V. P. Tokar, M. Y. Losytskyy, V. B. Kovalska, D. V. Kryvorotenko, A. O. Balanda, V. M. Prokopets, M. P. Galak, I. M. Dmytruk, V. M. Yashchuk, and S. M. Yarmoluk, “Fluorescence of styryl dyes-DNA complexes induced by single- and two-photon excitation,” J. Fluoresc.16(6), 783–791 (2006).
[CrossRef] [PubMed]

Anal. Biochem. (1)

H. Birkedal-Hansen and K. Danø, “A sensitive collagenase assay using [3H] collagen labeled by reaction with pyridoxal phosphate and [3H] borohydride,” Anal. Biochem.115(1), 18–26 (1981).
[CrossRef] [PubMed]

Biochem. Cell Biol. (1)

P. D. Eckford and F. J. Sharom, “P-glycoprotein (ABCB1) interacts directly with lipid-based anti-cancer drugs and platelet-activating factors,” Biochem. Cell Biol.84(6), 1022–1033 (2006).
[CrossRef] [PubMed]

Biochemistry (1)

M. R. Lugo and F. J. Sharom, “Interaction of LDS-751 with P-glycoprotein and mapping of the location of the R drug binding site,” Biochemistry44(2), 643–655 (2005).
[CrossRef] [PubMed]

Bioconjug. Chem. (2)

K. Licha, C. Hessenius, A. Becker, P. Henklein, M. Bauer, S. Wisniewski, B. Wiedenmann, and W. Semmler, “Synthesis, characterization, and biological properties of cyanine-labeled somatostatin analogues as receptor-targeted fluorescent probes,” Bioconjug. Chem.12(1), 44–50 (2001).
[CrossRef] [PubMed]

L. Josephson, M. F. Kircher, U. Mahmood, Y. Tang, and R. Weissleder, “Near-infrared fluorescent nanoparticles as combined MR/optical imaging probes,” Bioconjug. Chem.13(3), 554–560 (2002).
[CrossRef] [PubMed]

BMC Cancer (1)

A. Bozzini, G. Renne, L. Meneghetti, G. Bandi, G. Santos, A. R. Vento, S. Menna, S. Andrighetto, G. Viale, E. Cassano, and M. Bellomi, “Sensitivity of imaging for multifocal-multicentric breast carcinoma,” BMC Cancer8(1), 275 (2008).
[CrossRef] [PubMed]

Br. J. Radiol. (1)

H. Hayashi, K. Ashizawa, M. Uetani, S. Futagawa, A. Fukushima, K. Minami, S. Honda, and K. Hayashi, “Detectability of peripheral lung cancer on chest radiographs: effect of the size, location and extent of ground-glass opacity,” Br. J. Radiol.82(976), 272–278 (2009).
[CrossRef] [PubMed]

Cancer Lett. (1)

N. Almog, “Molecular mechanisms underlying tumor dormancy,” Cancer Lett.294(2), 139–146 (2010).
[CrossRef] [PubMed]

Cancer Res. (2)

K. G. Danielson, L. W. Anderson, and H. L. Hosick, “Selection and characterization in culture of mammary tumor cells with distinctive growth properties in vivo,” Cancer Res.40(6), 1812–1819 (1980).
[PubMed]

N. P. Robertson, J. R. Starkey, S. Hamner, and G. G. Meadows, “Tumor cell invasion of three-dimensional matrices of defined composition: evidence for a specific role for heparan sulfate in rodent cell lines,” Cancer Res.49(7), 1816–1823 (1989).
[PubMed]

Cell Biol. Int. Rep. (1)

W. Jones and H. L. Hosick, “Collagen concentration as a significant variable for growth and morphology of mouse mammary parenchyma in collagen matrix culture,” Cell Biol. Int. Rep.10(4), 277–286 (1986).
[CrossRef] [PubMed]

Endocr. Relat. Cancer (1)

M. T. Weigel and M. Dowsett, “Current and emerging biomarkers in breast cancer: prognosis and prediction,” Endocr. Relat. Cancer17(4), R245–R262 (2010).
[CrossRef] [PubMed]

Endocrinology (1)

M. Mancini, E. Vergara, G. Salvatore, A. Greco, G. Troncone, A. Affuso, R. Liuzzi, P. Salerno, M. Scotto di Santolo, M. Santoro, A. Brunetti, and M. Salvatore, “Morphological ultrasound microimaging of thyroid in living mice,” Endocrinology150(10), 4810–4815 (2009).
[CrossRef] [PubMed]

Eur. J. Cancer Clin. Oncol. (1)

L. W. Anderson, K. G. Danielson, and H. L. Hosick, “Metastatic potential of hyperplastic alveolar nodule derived mouse mammary tumor cells following intravenous inoculation,” Eur. J. Cancer Clin. Oncol.17(9), 1001–1008 (1981).
[CrossRef] [PubMed]

Int. J. Rad. Appl. Instrum. Part B. Nucl. Med. Biol. (1)

O. A. Oredipe, R. F. Barth, S. E. Tuttle, D. M. Adams, I. Sautins, D. M. Bucci, C. M. Mojzisik, G. H. Hinkle, S. Jewell, Z. Steplewski, M. O. Thurston, and E. W. Martin, “Limits of sensitivity for the radioimmunodetection of colon cancer by means of a hand held gamma probe” Int. J. Rad. Appl. Instrum. Part B. Nucl. Med. Biol.15, 595–603 (1988).

Invest. Radiol. (1)

S. Achilefu, R. B. Dorshow, J. E. Bugaj, and R. Rajagopalan, “Novel receptor-targeted fluorescent contrast agents for in vivo tumor imaging,” Invest. Radiol.35(8), 479–485 (2000).
[CrossRef] [PubMed]

J. Biomed. Opt. (1)

J. E. Bugaj, S. Achilefu, R. B. Dorshow, and R. Rajagopalan, “Novel fluorescent contrast agents for optical imaging of in vivo tumors based on a receptor-targeted dye-peptide conjugate platform,” J. Biomed. Opt.6(2), 122–133 (2001).
[CrossRef] [PubMed]

J. Cell Sci. (1)

S. L. Schor, “Cell proliferation and migration on collagen substrata in vitro,” J. Cell Sci.41, 159–175 (1980).
[PubMed]

J. Fluoresc. (1)

V. P. Tokar, M. Y. Losytskyy, V. B. Kovalska, D. V. Kryvorotenko, A. O. Balanda, V. M. Prokopets, M. P. Galak, I. M. Dmytruk, V. M. Yashchuk, and S. M. Yarmoluk, “Fluorescence of styryl dyes-DNA complexes induced by single- and two-photon excitation,” J. Fluoresc.16(6), 783–791 (2006).
[CrossRef] [PubMed]

J. Gastrointest. Surg. (1)

P. S. Adusumilli, D. P. Eisenberg, Y. S. Chun, K. W. Ryu, L. Ben-Porat, K. J. Hendershott, M. K. Chan, R. Huq, C. C. Riedl, and Y. Fong, “Virally directed fluorescent imaging improves diagnostic sensitivity in the detection of minimal residual disease after potentially curative cytoreductive surgery,” J. Gastrointest. Surg.9(8), 1138–1147 (2005).
[CrossRef] [PubMed]

J. Lumin. (1)

A. Rebane, M. A. Drobizhev, N. S. Makarov, E. Beuerman, C. Nacke, and J. Pahapill, “Modeling non-Lorentzian two-photon absprption line shape in dipolar chromophores,” J. Lumin.130(6), 1055–1059 (2010).
[CrossRef]

J. Natl. Cancer Inst. (1)

R. B. Owens, H. S. Smith, and A. J. Hackett, “Epithelial cell cultures from normal glandular tissue of mice,” J. Natl. Cancer Inst.53(1), 261–269 (1974).
[PubMed]

J. Phys. B (1)

R. Ramadass and J. Bereiter-Hahn, ““Photophysical properties of DASPMI as revealed by spectrally resolved fluorescence decays,” J. Phys. B111(26), 7681–7690 (2007).
[CrossRef]

Med. Phys. (1)

N. A. Shkumat, A. Springer, C. M. Walker, E. M. Rohren, W. T. Yang, B. E. Adrada, E. Arribas, S. Carkaci, H. H. Chuang, L. Santiago, and O. R. Mawlawi, “Investigating the limit of detectability of a positron emission mammography device: a phantom study,” Med. Phys.38(9), 5176–5185 (2011).
[CrossRef] [PubMed]

Med. Princ. Pract. (1)

M. Solomon, Y. Liu, M. Y. Berezin, and S. Achilefu, “Optical imaging in cancer research: basic principles, tumor detection, and therapeutic monitoring,” Med. Princ. Pract.20(5), 397–415 (2011).
[CrossRef] [PubMed]

Opt. Express (1)

PLoS Med. (1)

P. O. Brown and C. Palmer, “The preclinical natural history of serous ovarian cancer: defining the target for early detection,” PLoS Med.6(7), e1000114 (2009).
[CrossRef] [PubMed]

PLoS ONE (1)

F. B. Haeussinger, S. Heinzel, T. Hahn, M. Schecklmann, A. C. Ehlis, and A. J. Fallgatter, “Simulation of near-infrared light absorption considering individual head and prefrontal cortex anatomy: implications for optical neuroimaging,” PLoS ONE6(10), e26377 (2011).
[CrossRef] [PubMed]

Proc. SPIE (1)

N. S. Makarov, E. Beuerman, M. Drobizhev, J. Starkey, and A. Rebane, “Environment-sensitive two-photon dye,” Proc. SPIE7049, 70490Y (2008).
[CrossRef]

Radiology (1)

S. Kukreti, A. E. Cerussi, W. Tanamai, D. Hsiang, B. J. Tromberg, and E. Gratton, “Characterization of metabolic differences between benign and malignant tumors: high-spectral-resolution diffuse optical spectroscopy,” Radiology254(1), 277–284 (2010).
[CrossRef] [PubMed]

Semin. Oncol. (1)

C. G. Hadjipanayis, H. Jiang, D. W. Roberts, and L. Yang, “Current and future clinical applications for optical imaging of cancer: from intraoperative surgical guidance to cancer screening,” Semin. Oncol.38(1), 109–118 (2011).
[CrossRef] [PubMed]

Stem Cells (1)

C. Tang, P. J. Russell, R. Martiniello-Wilks, J. E. Rasko, and A. Khatri, “Concise review: Nanoparticles and cellular carriers-allies in cancer imaging and cellular gene therapy?” Stem Cells28(9), 1686–1702 (2010).
[CrossRef] [PubMed]

Technol. Cancer Res. Treat. (2)

S. Achilefu, “Lighting up tumors with receptor-specific optical molecular probes,” Technol. Cancer Res. Treat.3(4), 393–409 (2004).
[PubMed]

J. M. Song, R. Jagannathan, D. L. Stokes, P. M. Kasili, M. Panjehpour, M. N. Phan, B. F. Overholt, R. C. DeNovo, X. Pan, R. J. Lee, and T. Vo-Dinh, “Development of a fluorescence detection system using optical parametric oscillator (OPO) laser excitation for in vivo diagnosis,” Technol. Cancer Res. Treat.2(6), 515–523 (2003).
[PubMed]

Other (4)

R. C. Hallowes, E. S. Bone, and W. Jones, “A new dimension in the culture of human breast,” in Tissue Culture in Medical Research II, R. J. Richards and K. T. Rajan, eds. (Pergamon, Oxford, 1980), pp. 213-220.

“Primer3,” http://frodo.wi.mit.edu/primer3/input.htm .

“ImageJ,” http://rsbweb.nih.gov/ij/

C. D. M. Fletcher, ed., Diagnostic Histopathology of Tumors (Churchill Livingstone, 2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Properties of the tissue phantoms. (a) General view of a collagen type I based phantom consisting of collagen matrix (lower half) and serum medium containing Styryl-9M (upper half); (b) a normal mouse mammary epithelial cell colony in a phantom after 2 days of incubation; (c) high magnification image of normal mouse mammary epithelial cell colony after 14 days of incubation.

Fig. 2
Fig. 2

Schematic of the imaging setup. ND, variable neutral density filter; ID, iris diaphragm; L1, focusing lens; OB, imaging objective (camera lens or microscope objective); SF, spectral filter; CCD, imaging detector. Inserts show the mouse ear tumor (a) and the near-IR laser spot (b); 2PEF in a dye-doped plastic film positioned in front of the tumor visualizes the laser beam.

Fig. 3
Fig. 3

(a) 2PA spectrum of Styryl-9M in chloroform (black line), shown as 2PA cross section (left y-axis) versus laser wavelength (bottom x-axis). 1PA extinction spectrum (blue dotted line) and fluorescence emission spectrum (red line) in chloroform; (b) 2PEF spectra in tissue phantoms with no cells (black squares), with normal cells (red circles), and with cancer cells (blue triangles), all normalized at 1100 nm and presented in arbitrary units.

Fig. 4
Fig. 4

Dependence of the fluorescence intensity ratio (2) on the x-distance across the phantom. (a) Homogeneous phantoms with uniform distribution of the cells throughout the collagen matrix. The coding of the colony types is shown in the inset. (b) Phantoms containing, in addition to normal cells, a single implanted colony of cancer cells. Distance is measured from the center of the phantom. Vertical dashed lines indicate approximate margins of the initially implanted cancer colony. The laser beam had a symmetrical Gaussian spatial profile with FWHM of ~200 μm. The excitation beam propagates from right to left.

Fig. 5
Fig. 5

Estimation of the smallest number of cancer cells that can be detected as a colony in the phantom. Horizontal axes – estimated number of cancer cells in the implanted colony; Horizontal dotted line indicates the empirical threshold for the discrimination between the cancer-containing and cancer-free samples; (a) +SA cancer line. Solid curve: fit parameters used, FU = 0.55, FB = 0.95, N = 106, NPgp = 40,000 and ΔE/kT = 16.0; (b) NIHOVCAR3 cancer line.

Fig. 6
Fig. 6

Fluorescence image of 4T1 cells stained with anti p-glycoprotein antibody and Alexa Fluor 568 protein A.

Fig. 7
Fig. 7

Dual wavelength 2PEF imaging of the pinna of the mouse ear with the laser beam perpendicular to the pinna. Panels (a) and (c) show the image and the integrated intensity trace for an apparently normal region of the pinna of the ear; Panels (b) and (d) show the same for a region containing the 4T1 tumor.

Tables (3)

Tables Icon

Table 1 Primers used in the real time PCR analysis

Tables Icon

Table 3 PCR expression analysis for MDR1 proteins

Tables Icon

Table 2 Relative fluorescence for MDR1

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

F( x i , y j )= I 1200 ( x i , y j ) I 1100 ( x i , y j ) .
F ˜ ( x i )= I 1200 ( x i ) I B ( x i ) I 1100 ( x i ) I B ( x i ) ( P 1100 P 1200 ) 2 ,
I( x i )= j=1 M I( x i , y j ) ,
F= σ 2 B ( 1200 ) ϕ B N B + σ 2 U ( 1200 ) ϕ U N U σ 2 U ( 1100 ) ϕ B N B + σ 2 U ( 1100 ) ϕ U N U ,
σ 2 B ( 1100 ) ϕ B = σ 2 U ( 1100 ) ϕ U .
F= σ 2 U ( 1200 ) σ 2 U ( 1100 ) + N B N ( σ 2 B ( 1200 ) σ 2 B ( 1100 ) σ 2 U ( 1200 ) σ 2 U ( 1100 ) ),
e ΔE kT = N B ( N N B )( N Pgp N c N B ) ,
F( N c )= F U +( F B F U ) 1+(N+ N ¯ Pgp N c ) e ΔE kT [1+(N+ N ¯ Pgp N c ) e ΔE kT ] 2 4N N ¯ Pgp N c e 2ΔE kT 2N e ΔE kT ,

Metrics