Abstract

This study describes a scanning time-resolved fluorescence spectroscopy (TRFS) system designed to continuously acquire fluorescence emission and to reconstruct fluorescence lifetime images (FLIM) from a luminal surface by using a catheter-based optical probe with rotary joint and pull-back device. The ability of the system to temporally and spectrally resolve the fluorescence emission from tissue was validated using standard dyes and tissue phantoms (e.g., ex vivo pig aorta phantom). Current results demonstrate that this system is capable to reliably resolve the fluorescence emission of multiple fluorophores located in the lumen; and suggest its potential for intravascular detection of distinct biochemical features of atherosclerotic plaques.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. R. Moreno and J. E. Muller, “Identification of high-risk atherosclerotic plaques: a survey of spectroscopic methods,” Curr. Opin. Cardiol.17(6), 638–647 (2002).
    [CrossRef] [PubMed]
  2. Y. Honda and P. J. Fitzgerald, “Frontiers in intravascular imaging technologies,” Circulation117(15), 2024–2037 (2008).
    [CrossRef] [PubMed]
  3. P. Uehlinger, T. Gabrecht, T. Glanzmann, J. P. Ballini, A. Radu, S. Andrejevic, P. Monnier, and G. Wagnières, “In vivo time-resolved spectroscopy of the human bronchial early cancer autofluorescence,” J. Biomed. Opt.14(2), 024011 (2009).
    [CrossRef] [PubMed]
  4. K. König, “Clinical multiphoton tomography,” J Biophotonics1(1), 13–23 (2008).
    [CrossRef] [PubMed]
  5. M. Y. Berezin and S. Achilefu, “Fluorescence lifetime measurements and biological imaging,” Chem. Rev.110(5), 2641–2684 (2010).
    [CrossRef] [PubMed]
  6. P. A. De Beule, C. Dunsby, N. P. Galletly, G. W. Stamp, A. C. Chu, U. Anand, P. Anand, C. D. Benham, A. Naylor, and P. M. French, “A hyperspectral fluorescence lifetime probe for skin cancer diagnosis,” Rev. Sci. Instrum.78(12), 123101 (2007).
    [CrossRef] [PubMed]
  7. L. Marcu, “Fluorescence lifetime in cardiovascular diagnostics,” J. Biomed. Opt.15(1), 011106 (2010).
    [CrossRef] [PubMed]
  8. L. Marcu, M. C. Fishbein, J. M. Maarek, and W. S. Grundfest, “Discrimination of human coronary artery atherosclerotic lipid-rich lesions by time-resolved laser-induced fluorescence spectroscopy,” Arterioscler. Thromb. Vasc. Biol.21(7), 1244–1250 (2001).
    [CrossRef] [PubMed]
  9. L. Marcu, J. A. Jo, Q. Fang, T. Papaioannou, T. Reil, J. H. Qiao, J. D. Baker, J. A. Freischlag, and M. C. Fishbein, “Detection of rupture-prone atherosclerotic plaques by time-resolved laser-induced fluorescence spectroscopy,” Atherosclerosis204(1), 156–164 (2009).
    [CrossRef] [PubMed]
  10. J. Phipps, Y. Sun, R. Saroufeem, N. Hatami, M. C. Fishbein, and L. Marcu, “Fluorescence lifetime imaging for the characterization of the biochemical composition of atherosclerotic plaques,” J. Biomed. Opt.16(9), 096018 (2011).
    [CrossRef] [PubMed]
  11. D. N. Stephens, J. Park, Y. Sun, T. Papaioannou, and L. Marcu, “Intraluminal fluorescence spectroscopy catheter with ultrasound guidance,” J. Biomed. Opt.14(3), 030505 (2009).
    [CrossRef] [PubMed]
  12. Y. Sun, R. Liu, D. S. Elson, C. W. Hollars, J. A. Jo, J. Park, Y. Sun, and L. Marcu, “Simultaneous time- and wavelength-resolved fluorescence spectroscopy for near real-time tissue diagnosis,” Opt. Lett.33(6), 630–632 (2008).
    [CrossRef] [PubMed]
  13. Y. Sun, Y. Sun, D. Stephens, H. Xie, J. Phipps, R. Saroufeem, J. Southard, D. S. Elson, and L. Marcu, “Dynamic tissue analysis using time- and wavelength-resolved fluorescence spectroscopy for atherosclerosis diagnosis,” Opt. Express19(5), 3890–3901 (2011).
    [CrossRef] [PubMed]
  14. “American National Standard for Safe Use of Lasers,” ANSI Z136.1-2007 (ANSI, 2007).
  15. “Using FastFrame segmented memory,” Application note (Tektronix).
  16. D. Magde, G. E. Rojas, and P. G. Seybold, “Solvent dependence of the fluorescence lifetimes of xanthene dyes,” Photochem. Photobiol.70(5), 737–744 (1999).
    [CrossRef]
  17. H. Pal, S. Nad, and M. Kumbhakar, “Photophysical properties of coumarin-120: Unusual behavior in nonpolar solvents,” J. Chem. Phys.119(1), 443–452 (2003).
    [CrossRef]
  18. G. Jones, W. R. Jackson, C. Choi, and W. R. Bergmark, “Solvent effects on emission yield and lifetime for Coumarin laser dyes: requirements for a rotatory decay mechanism,” J. Phys. Chem.89(2), 294–300 (1985).
    [CrossRef]
  19. N. Boens, W. W. Qin, N. Basarić, J. Hofkens, M. Ameloot, J. Pouget, J. P. Lefèvre, B. Valeur, E. Gratton, M. vandeVen, N. D. Silva, Y. Engelborghs, K. Willaert, A. Sillen, G. Rumbles, D. Phillips, A. J. W. G. Visser, A. van Hoek, J. R. Lakowicz, H. Malak, I. Gryczynski, A. G. Szabo, D. T. Krajcarski, N. Tamai, and A. Miura, “Fluorescence lifetime standards for time and frequency domain fluorescence spectroscopy,” Anal. Chem.79(5), 2137–2149 (2007).
    [CrossRef] [PubMed]
  20. M. Arık, N. Celebi, and Y. Onganer, “Fluorescence quenching of fluorescein with molecular oxygen in solution,” J. Photochem. Photobiol. Chem.170(2), 105–111 (2005).
    [CrossRef]
  21. A. Žukauskas, P. Vitta, N. Kurilcik, S. Jursenas, and E. Bakiene, “Characterization of biological materials by frequency-domain fluorescence lifetime measurements using ultraviolet light-emitting diodes,” Opt. Mater.30(5), 800–805 (2008).
    [CrossRef]
  22. J. Liu, Y. Sun, J. Qi, and L. Marcu, “A novel method for fast and robust estimation of fluorescence decay dynamics using constrained least-squares deconvolution with Laguerre expansion,” Phys. Med. Biol.57(4), 843–865 (2012).
    [CrossRef] [PubMed]
  23. J. A. Jo, Q. Fang, T. Papaioannou, and L. Marcu, “Fast model-free deconvolution of fluorescence decay for analysis of biological systems,” J. Biomed. Opt.9(4), 743–752 (2004).
    [CrossRef] [PubMed]
  24. Y. Sun, J. Park, D. N. Stephens, J. A. Jo, L. Sun, J. M. Cannata, R. M. Saroufeem, K. K. Shung, and L. Marcu, “Development of a dual-modal tissue diagnostic system combining time-resolved fluorescence spectroscopy and ultrasonic backscatter microscopy,” Rev. Sci. Instrum.80(6), 065104 (2009).
    [CrossRef] [PubMed]
  25. J. Pu, G. S. Mintz, E. S. Brilakis, S. Banerjee, A. R. Abdel-Karim, B. Maini, S. Biro, J. B. Lee, G. W. Stone, G. Weisz, and A. Maehara, “In vivo characterization of coronary plaques: novel findings from comparing greyscale and virtual histology intravascular ultrasound and near-infrared spectroscopy,” Eur. Heart J.33(3), 372–383 (2012).
    [CrossRef] [PubMed]
  26. J. Bec, H. Xie, D. Yankelevich, F. Zhou, Y. Sun, N. Ghata, R. Aldredge, and L. Marcu, “Design, construction and validation of a multimodal intravascular diagnostic catheter combining IVUS and fluorescence lifetime spectroscopy detection channels,” Proc. SPIE7883, 788337 (2011).
    [CrossRef]

2012 (2)

J. Liu, Y. Sun, J. Qi, and L. Marcu, “A novel method for fast and robust estimation of fluorescence decay dynamics using constrained least-squares deconvolution with Laguerre expansion,” Phys. Med. Biol.57(4), 843–865 (2012).
[CrossRef] [PubMed]

J. Pu, G. S. Mintz, E. S. Brilakis, S. Banerjee, A. R. Abdel-Karim, B. Maini, S. Biro, J. B. Lee, G. W. Stone, G. Weisz, and A. Maehara, “In vivo characterization of coronary plaques: novel findings from comparing greyscale and virtual histology intravascular ultrasound and near-infrared spectroscopy,” Eur. Heart J.33(3), 372–383 (2012).
[CrossRef] [PubMed]

2011 (3)

J. Bec, H. Xie, D. Yankelevich, F. Zhou, Y. Sun, N. Ghata, R. Aldredge, and L. Marcu, “Design, construction and validation of a multimodal intravascular diagnostic catheter combining IVUS and fluorescence lifetime spectroscopy detection channels,” Proc. SPIE7883, 788337 (2011).
[CrossRef]

Y. Sun, Y. Sun, D. Stephens, H. Xie, J. Phipps, R. Saroufeem, J. Southard, D. S. Elson, and L. Marcu, “Dynamic tissue analysis using time- and wavelength-resolved fluorescence spectroscopy for atherosclerosis diagnosis,” Opt. Express19(5), 3890–3901 (2011).
[CrossRef] [PubMed]

J. Phipps, Y. Sun, R. Saroufeem, N. Hatami, M. C. Fishbein, and L. Marcu, “Fluorescence lifetime imaging for the characterization of the biochemical composition of atherosclerotic plaques,” J. Biomed. Opt.16(9), 096018 (2011).
[CrossRef] [PubMed]

2010 (2)

M. Y. Berezin and S. Achilefu, “Fluorescence lifetime measurements and biological imaging,” Chem. Rev.110(5), 2641–2684 (2010).
[CrossRef] [PubMed]

L. Marcu, “Fluorescence lifetime in cardiovascular diagnostics,” J. Biomed. Opt.15(1), 011106 (2010).
[CrossRef] [PubMed]

2009 (4)

P. Uehlinger, T. Gabrecht, T. Glanzmann, J. P. Ballini, A. Radu, S. Andrejevic, P. Monnier, and G. Wagnières, “In vivo time-resolved spectroscopy of the human bronchial early cancer autofluorescence,” J. Biomed. Opt.14(2), 024011 (2009).
[CrossRef] [PubMed]

D. N. Stephens, J. Park, Y. Sun, T. Papaioannou, and L. Marcu, “Intraluminal fluorescence spectroscopy catheter with ultrasound guidance,” J. Biomed. Opt.14(3), 030505 (2009).
[CrossRef] [PubMed]

L. Marcu, J. A. Jo, Q. Fang, T. Papaioannou, T. Reil, J. H. Qiao, J. D. Baker, J. A. Freischlag, and M. C. Fishbein, “Detection of rupture-prone atherosclerotic plaques by time-resolved laser-induced fluorescence spectroscopy,” Atherosclerosis204(1), 156–164 (2009).
[CrossRef] [PubMed]

Y. Sun, J. Park, D. N. Stephens, J. A. Jo, L. Sun, J. M. Cannata, R. M. Saroufeem, K. K. Shung, and L. Marcu, “Development of a dual-modal tissue diagnostic system combining time-resolved fluorescence spectroscopy and ultrasonic backscatter microscopy,” Rev. Sci. Instrum.80(6), 065104 (2009).
[CrossRef] [PubMed]

2008 (4)

Y. Sun, R. Liu, D. S. Elson, C. W. Hollars, J. A. Jo, J. Park, Y. Sun, and L. Marcu, “Simultaneous time- and wavelength-resolved fluorescence spectroscopy for near real-time tissue diagnosis,” Opt. Lett.33(6), 630–632 (2008).
[CrossRef] [PubMed]

A. Žukauskas, P. Vitta, N. Kurilcik, S. Jursenas, and E. Bakiene, “Characterization of biological materials by frequency-domain fluorescence lifetime measurements using ultraviolet light-emitting diodes,” Opt. Mater.30(5), 800–805 (2008).
[CrossRef]

K. König, “Clinical multiphoton tomography,” J Biophotonics1(1), 13–23 (2008).
[CrossRef] [PubMed]

Y. Honda and P. J. Fitzgerald, “Frontiers in intravascular imaging technologies,” Circulation117(15), 2024–2037 (2008).
[CrossRef] [PubMed]

2007 (2)

P. A. De Beule, C. Dunsby, N. P. Galletly, G. W. Stamp, A. C. Chu, U. Anand, P. Anand, C. D. Benham, A. Naylor, and P. M. French, “A hyperspectral fluorescence lifetime probe for skin cancer diagnosis,” Rev. Sci. Instrum.78(12), 123101 (2007).
[CrossRef] [PubMed]

N. Boens, W. W. Qin, N. Basarić, J. Hofkens, M. Ameloot, J. Pouget, J. P. Lefèvre, B. Valeur, E. Gratton, M. vandeVen, N. D. Silva, Y. Engelborghs, K. Willaert, A. Sillen, G. Rumbles, D. Phillips, A. J. W. G. Visser, A. van Hoek, J. R. Lakowicz, H. Malak, I. Gryczynski, A. G. Szabo, D. T. Krajcarski, N. Tamai, and A. Miura, “Fluorescence lifetime standards for time and frequency domain fluorescence spectroscopy,” Anal. Chem.79(5), 2137–2149 (2007).
[CrossRef] [PubMed]

2005 (1)

M. Arık, N. Celebi, and Y. Onganer, “Fluorescence quenching of fluorescein with molecular oxygen in solution,” J. Photochem. Photobiol. Chem.170(2), 105–111 (2005).
[CrossRef]

2004 (1)

J. A. Jo, Q. Fang, T. Papaioannou, and L. Marcu, “Fast model-free deconvolution of fluorescence decay for analysis of biological systems,” J. Biomed. Opt.9(4), 743–752 (2004).
[CrossRef] [PubMed]

2003 (1)

H. Pal, S. Nad, and M. Kumbhakar, “Photophysical properties of coumarin-120: Unusual behavior in nonpolar solvents,” J. Chem. Phys.119(1), 443–452 (2003).
[CrossRef]

2002 (1)

P. R. Moreno and J. E. Muller, “Identification of high-risk atherosclerotic plaques: a survey of spectroscopic methods,” Curr. Opin. Cardiol.17(6), 638–647 (2002).
[CrossRef] [PubMed]

2001 (1)

L. Marcu, M. C. Fishbein, J. M. Maarek, and W. S. Grundfest, “Discrimination of human coronary artery atherosclerotic lipid-rich lesions by time-resolved laser-induced fluorescence spectroscopy,” Arterioscler. Thromb. Vasc. Biol.21(7), 1244–1250 (2001).
[CrossRef] [PubMed]

1999 (1)

D. Magde, G. E. Rojas, and P. G. Seybold, “Solvent dependence of the fluorescence lifetimes of xanthene dyes,” Photochem. Photobiol.70(5), 737–744 (1999).
[CrossRef]

1985 (1)

G. Jones, W. R. Jackson, C. Choi, and W. R. Bergmark, “Solvent effects on emission yield and lifetime for Coumarin laser dyes: requirements for a rotatory decay mechanism,” J. Phys. Chem.89(2), 294–300 (1985).
[CrossRef]

Abdel-Karim, A. R.

J. Pu, G. S. Mintz, E. S. Brilakis, S. Banerjee, A. R. Abdel-Karim, B. Maini, S. Biro, J. B. Lee, G. W. Stone, G. Weisz, and A. Maehara, “In vivo characterization of coronary plaques: novel findings from comparing greyscale and virtual histology intravascular ultrasound and near-infrared spectroscopy,” Eur. Heart J.33(3), 372–383 (2012).
[CrossRef] [PubMed]

Achilefu, S.

M. Y. Berezin and S. Achilefu, “Fluorescence lifetime measurements and biological imaging,” Chem. Rev.110(5), 2641–2684 (2010).
[CrossRef] [PubMed]

Aldredge, R.

J. Bec, H. Xie, D. Yankelevich, F. Zhou, Y. Sun, N. Ghata, R. Aldredge, and L. Marcu, “Design, construction and validation of a multimodal intravascular diagnostic catheter combining IVUS and fluorescence lifetime spectroscopy detection channels,” Proc. SPIE7883, 788337 (2011).
[CrossRef]

Ameloot, M.

N. Boens, W. W. Qin, N. Basarić, J. Hofkens, M. Ameloot, J. Pouget, J. P. Lefèvre, B. Valeur, E. Gratton, M. vandeVen, N. D. Silva, Y. Engelborghs, K. Willaert, A. Sillen, G. Rumbles, D. Phillips, A. J. W. G. Visser, A. van Hoek, J. R. Lakowicz, H. Malak, I. Gryczynski, A. G. Szabo, D. T. Krajcarski, N. Tamai, and A. Miura, “Fluorescence lifetime standards for time and frequency domain fluorescence spectroscopy,” Anal. Chem.79(5), 2137–2149 (2007).
[CrossRef] [PubMed]

Anand, P.

P. A. De Beule, C. Dunsby, N. P. Galletly, G. W. Stamp, A. C. Chu, U. Anand, P. Anand, C. D. Benham, A. Naylor, and P. M. French, “A hyperspectral fluorescence lifetime probe for skin cancer diagnosis,” Rev. Sci. Instrum.78(12), 123101 (2007).
[CrossRef] [PubMed]

Anand, U.

P. A. De Beule, C. Dunsby, N. P. Galletly, G. W. Stamp, A. C. Chu, U. Anand, P. Anand, C. D. Benham, A. Naylor, and P. M. French, “A hyperspectral fluorescence lifetime probe for skin cancer diagnosis,” Rev. Sci. Instrum.78(12), 123101 (2007).
[CrossRef] [PubMed]

Andrejevic, S.

P. Uehlinger, T. Gabrecht, T. Glanzmann, J. P. Ballini, A. Radu, S. Andrejevic, P. Monnier, and G. Wagnières, “In vivo time-resolved spectroscopy of the human bronchial early cancer autofluorescence,” J. Biomed. Opt.14(2), 024011 (2009).
[CrossRef] [PubMed]

Arik, M.

M. Arık, N. Celebi, and Y. Onganer, “Fluorescence quenching of fluorescein with molecular oxygen in solution,” J. Photochem. Photobiol. Chem.170(2), 105–111 (2005).
[CrossRef]

Baker, J. D.

L. Marcu, J. A. Jo, Q. Fang, T. Papaioannou, T. Reil, J. H. Qiao, J. D. Baker, J. A. Freischlag, and M. C. Fishbein, “Detection of rupture-prone atherosclerotic plaques by time-resolved laser-induced fluorescence spectroscopy,” Atherosclerosis204(1), 156–164 (2009).
[CrossRef] [PubMed]

Bakiene, E.

A. Žukauskas, P. Vitta, N. Kurilcik, S. Jursenas, and E. Bakiene, “Characterization of biological materials by frequency-domain fluorescence lifetime measurements using ultraviolet light-emitting diodes,” Opt. Mater.30(5), 800–805 (2008).
[CrossRef]

Ballini, J. P.

P. Uehlinger, T. Gabrecht, T. Glanzmann, J. P. Ballini, A. Radu, S. Andrejevic, P. Monnier, and G. Wagnières, “In vivo time-resolved spectroscopy of the human bronchial early cancer autofluorescence,” J. Biomed. Opt.14(2), 024011 (2009).
[CrossRef] [PubMed]

Banerjee, S.

J. Pu, G. S. Mintz, E. S. Brilakis, S. Banerjee, A. R. Abdel-Karim, B. Maini, S. Biro, J. B. Lee, G. W. Stone, G. Weisz, and A. Maehara, “In vivo characterization of coronary plaques: novel findings from comparing greyscale and virtual histology intravascular ultrasound and near-infrared spectroscopy,” Eur. Heart J.33(3), 372–383 (2012).
[CrossRef] [PubMed]

Basaric, N.

N. Boens, W. W. Qin, N. Basarić, J. Hofkens, M. Ameloot, J. Pouget, J. P. Lefèvre, B. Valeur, E. Gratton, M. vandeVen, N. D. Silva, Y. Engelborghs, K. Willaert, A. Sillen, G. Rumbles, D. Phillips, A. J. W. G. Visser, A. van Hoek, J. R. Lakowicz, H. Malak, I. Gryczynski, A. G. Szabo, D. T. Krajcarski, N. Tamai, and A. Miura, “Fluorescence lifetime standards for time and frequency domain fluorescence spectroscopy,” Anal. Chem.79(5), 2137–2149 (2007).
[CrossRef] [PubMed]

Bec, J.

J. Bec, H. Xie, D. Yankelevich, F. Zhou, Y. Sun, N. Ghata, R. Aldredge, and L. Marcu, “Design, construction and validation of a multimodal intravascular diagnostic catheter combining IVUS and fluorescence lifetime spectroscopy detection channels,” Proc. SPIE7883, 788337 (2011).
[CrossRef]

Benham, C. D.

P. A. De Beule, C. Dunsby, N. P. Galletly, G. W. Stamp, A. C. Chu, U. Anand, P. Anand, C. D. Benham, A. Naylor, and P. M. French, “A hyperspectral fluorescence lifetime probe for skin cancer diagnosis,” Rev. Sci. Instrum.78(12), 123101 (2007).
[CrossRef] [PubMed]

Berezin, M. Y.

M. Y. Berezin and S. Achilefu, “Fluorescence lifetime measurements and biological imaging,” Chem. Rev.110(5), 2641–2684 (2010).
[CrossRef] [PubMed]

Bergmark, W. R.

G. Jones, W. R. Jackson, C. Choi, and W. R. Bergmark, “Solvent effects on emission yield and lifetime for Coumarin laser dyes: requirements for a rotatory decay mechanism,” J. Phys. Chem.89(2), 294–300 (1985).
[CrossRef]

Biro, S.

J. Pu, G. S. Mintz, E. S. Brilakis, S. Banerjee, A. R. Abdel-Karim, B. Maini, S. Biro, J. B. Lee, G. W. Stone, G. Weisz, and A. Maehara, “In vivo characterization of coronary plaques: novel findings from comparing greyscale and virtual histology intravascular ultrasound and near-infrared spectroscopy,” Eur. Heart J.33(3), 372–383 (2012).
[CrossRef] [PubMed]

Boens, N.

N. Boens, W. W. Qin, N. Basarić, J. Hofkens, M. Ameloot, J. Pouget, J. P. Lefèvre, B. Valeur, E. Gratton, M. vandeVen, N. D. Silva, Y. Engelborghs, K. Willaert, A. Sillen, G. Rumbles, D. Phillips, A. J. W. G. Visser, A. van Hoek, J. R. Lakowicz, H. Malak, I. Gryczynski, A. G. Szabo, D. T. Krajcarski, N. Tamai, and A. Miura, “Fluorescence lifetime standards for time and frequency domain fluorescence spectroscopy,” Anal. Chem.79(5), 2137–2149 (2007).
[CrossRef] [PubMed]

Brilakis, E. S.

J. Pu, G. S. Mintz, E. S. Brilakis, S. Banerjee, A. R. Abdel-Karim, B. Maini, S. Biro, J. B. Lee, G. W. Stone, G. Weisz, and A. Maehara, “In vivo characterization of coronary plaques: novel findings from comparing greyscale and virtual histology intravascular ultrasound and near-infrared spectroscopy,” Eur. Heart J.33(3), 372–383 (2012).
[CrossRef] [PubMed]

Cannata, J. M.

Y. Sun, J. Park, D. N. Stephens, J. A. Jo, L. Sun, J. M. Cannata, R. M. Saroufeem, K. K. Shung, and L. Marcu, “Development of a dual-modal tissue diagnostic system combining time-resolved fluorescence spectroscopy and ultrasonic backscatter microscopy,” Rev. Sci. Instrum.80(6), 065104 (2009).
[CrossRef] [PubMed]

Celebi, N.

M. Arık, N. Celebi, and Y. Onganer, “Fluorescence quenching of fluorescein with molecular oxygen in solution,” J. Photochem. Photobiol. Chem.170(2), 105–111 (2005).
[CrossRef]

Choi, C.

G. Jones, W. R. Jackson, C. Choi, and W. R. Bergmark, “Solvent effects on emission yield and lifetime for Coumarin laser dyes: requirements for a rotatory decay mechanism,” J. Phys. Chem.89(2), 294–300 (1985).
[CrossRef]

Chu, A. C.

P. A. De Beule, C. Dunsby, N. P. Galletly, G. W. Stamp, A. C. Chu, U. Anand, P. Anand, C. D. Benham, A. Naylor, and P. M. French, “A hyperspectral fluorescence lifetime probe for skin cancer diagnosis,” Rev. Sci. Instrum.78(12), 123101 (2007).
[CrossRef] [PubMed]

De Beule, P. A.

P. A. De Beule, C. Dunsby, N. P. Galletly, G. W. Stamp, A. C. Chu, U. Anand, P. Anand, C. D. Benham, A. Naylor, and P. M. French, “A hyperspectral fluorescence lifetime probe for skin cancer diagnosis,” Rev. Sci. Instrum.78(12), 123101 (2007).
[CrossRef] [PubMed]

Dunsby, C.

P. A. De Beule, C. Dunsby, N. P. Galletly, G. W. Stamp, A. C. Chu, U. Anand, P. Anand, C. D. Benham, A. Naylor, and P. M. French, “A hyperspectral fluorescence lifetime probe for skin cancer diagnosis,” Rev. Sci. Instrum.78(12), 123101 (2007).
[CrossRef] [PubMed]

Elson, D. S.

Engelborghs, Y.

N. Boens, W. W. Qin, N. Basarić, J. Hofkens, M. Ameloot, J. Pouget, J. P. Lefèvre, B. Valeur, E. Gratton, M. vandeVen, N. D. Silva, Y. Engelborghs, K. Willaert, A. Sillen, G. Rumbles, D. Phillips, A. J. W. G. Visser, A. van Hoek, J. R. Lakowicz, H. Malak, I. Gryczynski, A. G. Szabo, D. T. Krajcarski, N. Tamai, and A. Miura, “Fluorescence lifetime standards for time and frequency domain fluorescence spectroscopy,” Anal. Chem.79(5), 2137–2149 (2007).
[CrossRef] [PubMed]

Fang, Q.

L. Marcu, J. A. Jo, Q. Fang, T. Papaioannou, T. Reil, J. H. Qiao, J. D. Baker, J. A. Freischlag, and M. C. Fishbein, “Detection of rupture-prone atherosclerotic plaques by time-resolved laser-induced fluorescence spectroscopy,” Atherosclerosis204(1), 156–164 (2009).
[CrossRef] [PubMed]

J. A. Jo, Q. Fang, T. Papaioannou, and L. Marcu, “Fast model-free deconvolution of fluorescence decay for analysis of biological systems,” J. Biomed. Opt.9(4), 743–752 (2004).
[CrossRef] [PubMed]

Fishbein, M. C.

J. Phipps, Y. Sun, R. Saroufeem, N. Hatami, M. C. Fishbein, and L. Marcu, “Fluorescence lifetime imaging for the characterization of the biochemical composition of atherosclerotic plaques,” J. Biomed. Opt.16(9), 096018 (2011).
[CrossRef] [PubMed]

L. Marcu, J. A. Jo, Q. Fang, T. Papaioannou, T. Reil, J. H. Qiao, J. D. Baker, J. A. Freischlag, and M. C. Fishbein, “Detection of rupture-prone atherosclerotic plaques by time-resolved laser-induced fluorescence spectroscopy,” Atherosclerosis204(1), 156–164 (2009).
[CrossRef] [PubMed]

L. Marcu, M. C. Fishbein, J. M. Maarek, and W. S. Grundfest, “Discrimination of human coronary artery atherosclerotic lipid-rich lesions by time-resolved laser-induced fluorescence spectroscopy,” Arterioscler. Thromb. Vasc. Biol.21(7), 1244–1250 (2001).
[CrossRef] [PubMed]

Fitzgerald, P. J.

Y. Honda and P. J. Fitzgerald, “Frontiers in intravascular imaging technologies,” Circulation117(15), 2024–2037 (2008).
[CrossRef] [PubMed]

Freischlag, J. A.

L. Marcu, J. A. Jo, Q. Fang, T. Papaioannou, T. Reil, J. H. Qiao, J. D. Baker, J. A. Freischlag, and M. C. Fishbein, “Detection of rupture-prone atherosclerotic plaques by time-resolved laser-induced fluorescence spectroscopy,” Atherosclerosis204(1), 156–164 (2009).
[CrossRef] [PubMed]

French, P. M.

P. A. De Beule, C. Dunsby, N. P. Galletly, G. W. Stamp, A. C. Chu, U. Anand, P. Anand, C. D. Benham, A. Naylor, and P. M. French, “A hyperspectral fluorescence lifetime probe for skin cancer diagnosis,” Rev. Sci. Instrum.78(12), 123101 (2007).
[CrossRef] [PubMed]

Gabrecht, T.

P. Uehlinger, T. Gabrecht, T. Glanzmann, J. P. Ballini, A. Radu, S. Andrejevic, P. Monnier, and G. Wagnières, “In vivo time-resolved spectroscopy of the human bronchial early cancer autofluorescence,” J. Biomed. Opt.14(2), 024011 (2009).
[CrossRef] [PubMed]

Galletly, N. P.

P. A. De Beule, C. Dunsby, N. P. Galletly, G. W. Stamp, A. C. Chu, U. Anand, P. Anand, C. D. Benham, A. Naylor, and P. M. French, “A hyperspectral fluorescence lifetime probe for skin cancer diagnosis,” Rev. Sci. Instrum.78(12), 123101 (2007).
[CrossRef] [PubMed]

Ghata, N.

J. Bec, H. Xie, D. Yankelevich, F. Zhou, Y. Sun, N. Ghata, R. Aldredge, and L. Marcu, “Design, construction and validation of a multimodal intravascular diagnostic catheter combining IVUS and fluorescence lifetime spectroscopy detection channels,” Proc. SPIE7883, 788337 (2011).
[CrossRef]

Glanzmann, T.

P. Uehlinger, T. Gabrecht, T. Glanzmann, J. P. Ballini, A. Radu, S. Andrejevic, P. Monnier, and G. Wagnières, “In vivo time-resolved spectroscopy of the human bronchial early cancer autofluorescence,” J. Biomed. Opt.14(2), 024011 (2009).
[CrossRef] [PubMed]

Gratton, E.

N. Boens, W. W. Qin, N. Basarić, J. Hofkens, M. Ameloot, J. Pouget, J. P. Lefèvre, B. Valeur, E. Gratton, M. vandeVen, N. D. Silva, Y. Engelborghs, K. Willaert, A. Sillen, G. Rumbles, D. Phillips, A. J. W. G. Visser, A. van Hoek, J. R. Lakowicz, H. Malak, I. Gryczynski, A. G. Szabo, D. T. Krajcarski, N. Tamai, and A. Miura, “Fluorescence lifetime standards for time and frequency domain fluorescence spectroscopy,” Anal. Chem.79(5), 2137–2149 (2007).
[CrossRef] [PubMed]

Grundfest, W. S.

L. Marcu, M. C. Fishbein, J. M. Maarek, and W. S. Grundfest, “Discrimination of human coronary artery atherosclerotic lipid-rich lesions by time-resolved laser-induced fluorescence spectroscopy,” Arterioscler. Thromb. Vasc. Biol.21(7), 1244–1250 (2001).
[CrossRef] [PubMed]

Gryczynski, I.

N. Boens, W. W. Qin, N. Basarić, J. Hofkens, M. Ameloot, J. Pouget, J. P. Lefèvre, B. Valeur, E. Gratton, M. vandeVen, N. D. Silva, Y. Engelborghs, K. Willaert, A. Sillen, G. Rumbles, D. Phillips, A. J. W. G. Visser, A. van Hoek, J. R. Lakowicz, H. Malak, I. Gryczynski, A. G. Szabo, D. T. Krajcarski, N. Tamai, and A. Miura, “Fluorescence lifetime standards for time and frequency domain fluorescence spectroscopy,” Anal. Chem.79(5), 2137–2149 (2007).
[CrossRef] [PubMed]

Hatami, N.

J. Phipps, Y. Sun, R. Saroufeem, N. Hatami, M. C. Fishbein, and L. Marcu, “Fluorescence lifetime imaging for the characterization of the biochemical composition of atherosclerotic plaques,” J. Biomed. Opt.16(9), 096018 (2011).
[CrossRef] [PubMed]

Hofkens, J.

N. Boens, W. W. Qin, N. Basarić, J. Hofkens, M. Ameloot, J. Pouget, J. P. Lefèvre, B. Valeur, E. Gratton, M. vandeVen, N. D. Silva, Y. Engelborghs, K. Willaert, A. Sillen, G. Rumbles, D. Phillips, A. J. W. G. Visser, A. van Hoek, J. R. Lakowicz, H. Malak, I. Gryczynski, A. G. Szabo, D. T. Krajcarski, N. Tamai, and A. Miura, “Fluorescence lifetime standards for time and frequency domain fluorescence spectroscopy,” Anal. Chem.79(5), 2137–2149 (2007).
[CrossRef] [PubMed]

Hollars, C. W.

Honda, Y.

Y. Honda and P. J. Fitzgerald, “Frontiers in intravascular imaging technologies,” Circulation117(15), 2024–2037 (2008).
[CrossRef] [PubMed]

Jackson, W. R.

G. Jones, W. R. Jackson, C. Choi, and W. R. Bergmark, “Solvent effects on emission yield and lifetime for Coumarin laser dyes: requirements for a rotatory decay mechanism,” J. Phys. Chem.89(2), 294–300 (1985).
[CrossRef]

Jo, J. A.

L. Marcu, J. A. Jo, Q. Fang, T. Papaioannou, T. Reil, J. H. Qiao, J. D. Baker, J. A. Freischlag, and M. C. Fishbein, “Detection of rupture-prone atherosclerotic plaques by time-resolved laser-induced fluorescence spectroscopy,” Atherosclerosis204(1), 156–164 (2009).
[CrossRef] [PubMed]

Y. Sun, J. Park, D. N. Stephens, J. A. Jo, L. Sun, J. M. Cannata, R. M. Saroufeem, K. K. Shung, and L. Marcu, “Development of a dual-modal tissue diagnostic system combining time-resolved fluorescence spectroscopy and ultrasonic backscatter microscopy,” Rev. Sci. Instrum.80(6), 065104 (2009).
[CrossRef] [PubMed]

Y. Sun, R. Liu, D. S. Elson, C. W. Hollars, J. A. Jo, J. Park, Y. Sun, and L. Marcu, “Simultaneous time- and wavelength-resolved fluorescence spectroscopy for near real-time tissue diagnosis,” Opt. Lett.33(6), 630–632 (2008).
[CrossRef] [PubMed]

J. A. Jo, Q. Fang, T. Papaioannou, and L. Marcu, “Fast model-free deconvolution of fluorescence decay for analysis of biological systems,” J. Biomed. Opt.9(4), 743–752 (2004).
[CrossRef] [PubMed]

Jones, G.

G. Jones, W. R. Jackson, C. Choi, and W. R. Bergmark, “Solvent effects on emission yield and lifetime for Coumarin laser dyes: requirements for a rotatory decay mechanism,” J. Phys. Chem.89(2), 294–300 (1985).
[CrossRef]

Jursenas, S.

A. Žukauskas, P. Vitta, N. Kurilcik, S. Jursenas, and E. Bakiene, “Characterization of biological materials by frequency-domain fluorescence lifetime measurements using ultraviolet light-emitting diodes,” Opt. Mater.30(5), 800–805 (2008).
[CrossRef]

König, K.

K. König, “Clinical multiphoton tomography,” J Biophotonics1(1), 13–23 (2008).
[CrossRef] [PubMed]

Krajcarski, D. T.

N. Boens, W. W. Qin, N. Basarić, J. Hofkens, M. Ameloot, J. Pouget, J. P. Lefèvre, B. Valeur, E. Gratton, M. vandeVen, N. D. Silva, Y. Engelborghs, K. Willaert, A. Sillen, G. Rumbles, D. Phillips, A. J. W. G. Visser, A. van Hoek, J. R. Lakowicz, H. Malak, I. Gryczynski, A. G. Szabo, D. T. Krajcarski, N. Tamai, and A. Miura, “Fluorescence lifetime standards for time and frequency domain fluorescence spectroscopy,” Anal. Chem.79(5), 2137–2149 (2007).
[CrossRef] [PubMed]

Kumbhakar, M.

H. Pal, S. Nad, and M. Kumbhakar, “Photophysical properties of coumarin-120: Unusual behavior in nonpolar solvents,” J. Chem. Phys.119(1), 443–452 (2003).
[CrossRef]

Kurilcik, N.

A. Žukauskas, P. Vitta, N. Kurilcik, S. Jursenas, and E. Bakiene, “Characterization of biological materials by frequency-domain fluorescence lifetime measurements using ultraviolet light-emitting diodes,” Opt. Mater.30(5), 800–805 (2008).
[CrossRef]

Lakowicz, J. R.

N. Boens, W. W. Qin, N. Basarić, J. Hofkens, M. Ameloot, J. Pouget, J. P. Lefèvre, B. Valeur, E. Gratton, M. vandeVen, N. D. Silva, Y. Engelborghs, K. Willaert, A. Sillen, G. Rumbles, D. Phillips, A. J. W. G. Visser, A. van Hoek, J. R. Lakowicz, H. Malak, I. Gryczynski, A. G. Szabo, D. T. Krajcarski, N. Tamai, and A. Miura, “Fluorescence lifetime standards for time and frequency domain fluorescence spectroscopy,” Anal. Chem.79(5), 2137–2149 (2007).
[CrossRef] [PubMed]

Lee, J. B.

J. Pu, G. S. Mintz, E. S. Brilakis, S. Banerjee, A. R. Abdel-Karim, B. Maini, S. Biro, J. B. Lee, G. W. Stone, G. Weisz, and A. Maehara, “In vivo characterization of coronary plaques: novel findings from comparing greyscale and virtual histology intravascular ultrasound and near-infrared spectroscopy,” Eur. Heart J.33(3), 372–383 (2012).
[CrossRef] [PubMed]

Lefèvre, J. P.

N. Boens, W. W. Qin, N. Basarić, J. Hofkens, M. Ameloot, J. Pouget, J. P. Lefèvre, B. Valeur, E. Gratton, M. vandeVen, N. D. Silva, Y. Engelborghs, K. Willaert, A. Sillen, G. Rumbles, D. Phillips, A. J. W. G. Visser, A. van Hoek, J. R. Lakowicz, H. Malak, I. Gryczynski, A. G. Szabo, D. T. Krajcarski, N. Tamai, and A. Miura, “Fluorescence lifetime standards for time and frequency domain fluorescence spectroscopy,” Anal. Chem.79(5), 2137–2149 (2007).
[CrossRef] [PubMed]

Liu, J.

J. Liu, Y. Sun, J. Qi, and L. Marcu, “A novel method for fast and robust estimation of fluorescence decay dynamics using constrained least-squares deconvolution with Laguerre expansion,” Phys. Med. Biol.57(4), 843–865 (2012).
[CrossRef] [PubMed]

Liu, R.

Maarek, J. M.

L. Marcu, M. C. Fishbein, J. M. Maarek, and W. S. Grundfest, “Discrimination of human coronary artery atherosclerotic lipid-rich lesions by time-resolved laser-induced fluorescence spectroscopy,” Arterioscler. Thromb. Vasc. Biol.21(7), 1244–1250 (2001).
[CrossRef] [PubMed]

Maehara, A.

J. Pu, G. S. Mintz, E. S. Brilakis, S. Banerjee, A. R. Abdel-Karim, B. Maini, S. Biro, J. B. Lee, G. W. Stone, G. Weisz, and A. Maehara, “In vivo characterization of coronary plaques: novel findings from comparing greyscale and virtual histology intravascular ultrasound and near-infrared spectroscopy,” Eur. Heart J.33(3), 372–383 (2012).
[CrossRef] [PubMed]

Magde, D.

D. Magde, G. E. Rojas, and P. G. Seybold, “Solvent dependence of the fluorescence lifetimes of xanthene dyes,” Photochem. Photobiol.70(5), 737–744 (1999).
[CrossRef]

Maini, B.

J. Pu, G. S. Mintz, E. S. Brilakis, S. Banerjee, A. R. Abdel-Karim, B. Maini, S. Biro, J. B. Lee, G. W. Stone, G. Weisz, and A. Maehara, “In vivo characterization of coronary plaques: novel findings from comparing greyscale and virtual histology intravascular ultrasound and near-infrared spectroscopy,” Eur. Heart J.33(3), 372–383 (2012).
[CrossRef] [PubMed]

Malak, H.

N. Boens, W. W. Qin, N. Basarić, J. Hofkens, M. Ameloot, J. Pouget, J. P. Lefèvre, B. Valeur, E. Gratton, M. vandeVen, N. D. Silva, Y. Engelborghs, K. Willaert, A. Sillen, G. Rumbles, D. Phillips, A. J. W. G. Visser, A. van Hoek, J. R. Lakowicz, H. Malak, I. Gryczynski, A. G. Szabo, D. T. Krajcarski, N. Tamai, and A. Miura, “Fluorescence lifetime standards for time and frequency domain fluorescence spectroscopy,” Anal. Chem.79(5), 2137–2149 (2007).
[CrossRef] [PubMed]

Marcu, L.

J. Liu, Y. Sun, J. Qi, and L. Marcu, “A novel method for fast and robust estimation of fluorescence decay dynamics using constrained least-squares deconvolution with Laguerre expansion,” Phys. Med. Biol.57(4), 843–865 (2012).
[CrossRef] [PubMed]

J. Phipps, Y. Sun, R. Saroufeem, N. Hatami, M. C. Fishbein, and L. Marcu, “Fluorescence lifetime imaging for the characterization of the biochemical composition of atherosclerotic plaques,” J. Biomed. Opt.16(9), 096018 (2011).
[CrossRef] [PubMed]

Y. Sun, Y. Sun, D. Stephens, H. Xie, J. Phipps, R. Saroufeem, J. Southard, D. S. Elson, and L. Marcu, “Dynamic tissue analysis using time- and wavelength-resolved fluorescence spectroscopy for atherosclerosis diagnosis,” Opt. Express19(5), 3890–3901 (2011).
[CrossRef] [PubMed]

J. Bec, H. Xie, D. Yankelevich, F. Zhou, Y. Sun, N. Ghata, R. Aldredge, and L. Marcu, “Design, construction and validation of a multimodal intravascular diagnostic catheter combining IVUS and fluorescence lifetime spectroscopy detection channels,” Proc. SPIE7883, 788337 (2011).
[CrossRef]

L. Marcu, “Fluorescence lifetime in cardiovascular diagnostics,” J. Biomed. Opt.15(1), 011106 (2010).
[CrossRef] [PubMed]

L. Marcu, J. A. Jo, Q. Fang, T. Papaioannou, T. Reil, J. H. Qiao, J. D. Baker, J. A. Freischlag, and M. C. Fishbein, “Detection of rupture-prone atherosclerotic plaques by time-resolved laser-induced fluorescence spectroscopy,” Atherosclerosis204(1), 156–164 (2009).
[CrossRef] [PubMed]

Y. Sun, J. Park, D. N. Stephens, J. A. Jo, L. Sun, J. M. Cannata, R. M. Saroufeem, K. K. Shung, and L. Marcu, “Development of a dual-modal tissue diagnostic system combining time-resolved fluorescence spectroscopy and ultrasonic backscatter microscopy,” Rev. Sci. Instrum.80(6), 065104 (2009).
[CrossRef] [PubMed]

D. N. Stephens, J. Park, Y. Sun, T. Papaioannou, and L. Marcu, “Intraluminal fluorescence spectroscopy catheter with ultrasound guidance,” J. Biomed. Opt.14(3), 030505 (2009).
[CrossRef] [PubMed]

Y. Sun, R. Liu, D. S. Elson, C. W. Hollars, J. A. Jo, J. Park, Y. Sun, and L. Marcu, “Simultaneous time- and wavelength-resolved fluorescence spectroscopy for near real-time tissue diagnosis,” Opt. Lett.33(6), 630–632 (2008).
[CrossRef] [PubMed]

J. A. Jo, Q. Fang, T. Papaioannou, and L. Marcu, “Fast model-free deconvolution of fluorescence decay for analysis of biological systems,” J. Biomed. Opt.9(4), 743–752 (2004).
[CrossRef] [PubMed]

L. Marcu, M. C. Fishbein, J. M. Maarek, and W. S. Grundfest, “Discrimination of human coronary artery atherosclerotic lipid-rich lesions by time-resolved laser-induced fluorescence spectroscopy,” Arterioscler. Thromb. Vasc. Biol.21(7), 1244–1250 (2001).
[CrossRef] [PubMed]

Mintz, G. S.

J. Pu, G. S. Mintz, E. S. Brilakis, S. Banerjee, A. R. Abdel-Karim, B. Maini, S. Biro, J. B. Lee, G. W. Stone, G. Weisz, and A. Maehara, “In vivo characterization of coronary plaques: novel findings from comparing greyscale and virtual histology intravascular ultrasound and near-infrared spectroscopy,” Eur. Heart J.33(3), 372–383 (2012).
[CrossRef] [PubMed]

Miura, A.

N. Boens, W. W. Qin, N. Basarić, J. Hofkens, M. Ameloot, J. Pouget, J. P. Lefèvre, B. Valeur, E. Gratton, M. vandeVen, N. D. Silva, Y. Engelborghs, K. Willaert, A. Sillen, G. Rumbles, D. Phillips, A. J. W. G. Visser, A. van Hoek, J. R. Lakowicz, H. Malak, I. Gryczynski, A. G. Szabo, D. T. Krajcarski, N. Tamai, and A. Miura, “Fluorescence lifetime standards for time and frequency domain fluorescence spectroscopy,” Anal. Chem.79(5), 2137–2149 (2007).
[CrossRef] [PubMed]

Monnier, P.

P. Uehlinger, T. Gabrecht, T. Glanzmann, J. P. Ballini, A. Radu, S. Andrejevic, P. Monnier, and G. Wagnières, “In vivo time-resolved spectroscopy of the human bronchial early cancer autofluorescence,” J. Biomed. Opt.14(2), 024011 (2009).
[CrossRef] [PubMed]

Moreno, P. R.

P. R. Moreno and J. E. Muller, “Identification of high-risk atherosclerotic plaques: a survey of spectroscopic methods,” Curr. Opin. Cardiol.17(6), 638–647 (2002).
[CrossRef] [PubMed]

Muller, J. E.

P. R. Moreno and J. E. Muller, “Identification of high-risk atherosclerotic plaques: a survey of spectroscopic methods,” Curr. Opin. Cardiol.17(6), 638–647 (2002).
[CrossRef] [PubMed]

Nad, S.

H. Pal, S. Nad, and M. Kumbhakar, “Photophysical properties of coumarin-120: Unusual behavior in nonpolar solvents,” J. Chem. Phys.119(1), 443–452 (2003).
[CrossRef]

Naylor, A.

P. A. De Beule, C. Dunsby, N. P. Galletly, G. W. Stamp, A. C. Chu, U. Anand, P. Anand, C. D. Benham, A. Naylor, and P. M. French, “A hyperspectral fluorescence lifetime probe for skin cancer diagnosis,” Rev. Sci. Instrum.78(12), 123101 (2007).
[CrossRef] [PubMed]

Onganer, Y.

M. Arık, N. Celebi, and Y. Onganer, “Fluorescence quenching of fluorescein with molecular oxygen in solution,” J. Photochem. Photobiol. Chem.170(2), 105–111 (2005).
[CrossRef]

Pal, H.

H. Pal, S. Nad, and M. Kumbhakar, “Photophysical properties of coumarin-120: Unusual behavior in nonpolar solvents,” J. Chem. Phys.119(1), 443–452 (2003).
[CrossRef]

Papaioannou, T.

L. Marcu, J. A. Jo, Q. Fang, T. Papaioannou, T. Reil, J. H. Qiao, J. D. Baker, J. A. Freischlag, and M. C. Fishbein, “Detection of rupture-prone atherosclerotic plaques by time-resolved laser-induced fluorescence spectroscopy,” Atherosclerosis204(1), 156–164 (2009).
[CrossRef] [PubMed]

D. N. Stephens, J. Park, Y. Sun, T. Papaioannou, and L. Marcu, “Intraluminal fluorescence spectroscopy catheter with ultrasound guidance,” J. Biomed. Opt.14(3), 030505 (2009).
[CrossRef] [PubMed]

J. A. Jo, Q. Fang, T. Papaioannou, and L. Marcu, “Fast model-free deconvolution of fluorescence decay for analysis of biological systems,” J. Biomed. Opt.9(4), 743–752 (2004).
[CrossRef] [PubMed]

Park, J.

D. N. Stephens, J. Park, Y. Sun, T. Papaioannou, and L. Marcu, “Intraluminal fluorescence spectroscopy catheter with ultrasound guidance,” J. Biomed. Opt.14(3), 030505 (2009).
[CrossRef] [PubMed]

Y. Sun, J. Park, D. N. Stephens, J. A. Jo, L. Sun, J. M. Cannata, R. M. Saroufeem, K. K. Shung, and L. Marcu, “Development of a dual-modal tissue diagnostic system combining time-resolved fluorescence spectroscopy and ultrasonic backscatter microscopy,” Rev. Sci. Instrum.80(6), 065104 (2009).
[CrossRef] [PubMed]

Y. Sun, R. Liu, D. S. Elson, C. W. Hollars, J. A. Jo, J. Park, Y. Sun, and L. Marcu, “Simultaneous time- and wavelength-resolved fluorescence spectroscopy for near real-time tissue diagnosis,” Opt. Lett.33(6), 630–632 (2008).
[CrossRef] [PubMed]

Phillips, D.

N. Boens, W. W. Qin, N. Basarić, J. Hofkens, M. Ameloot, J. Pouget, J. P. Lefèvre, B. Valeur, E. Gratton, M. vandeVen, N. D. Silva, Y. Engelborghs, K. Willaert, A. Sillen, G. Rumbles, D. Phillips, A. J. W. G. Visser, A. van Hoek, J. R. Lakowicz, H. Malak, I. Gryczynski, A. G. Szabo, D. T. Krajcarski, N. Tamai, and A. Miura, “Fluorescence lifetime standards for time and frequency domain fluorescence spectroscopy,” Anal. Chem.79(5), 2137–2149 (2007).
[CrossRef] [PubMed]

Phipps, J.

J. Phipps, Y. Sun, R. Saroufeem, N. Hatami, M. C. Fishbein, and L. Marcu, “Fluorescence lifetime imaging for the characterization of the biochemical composition of atherosclerotic plaques,” J. Biomed. Opt.16(9), 096018 (2011).
[CrossRef] [PubMed]

Y. Sun, Y. Sun, D. Stephens, H. Xie, J. Phipps, R. Saroufeem, J. Southard, D. S. Elson, and L. Marcu, “Dynamic tissue analysis using time- and wavelength-resolved fluorescence spectroscopy for atherosclerosis diagnosis,” Opt. Express19(5), 3890–3901 (2011).
[CrossRef] [PubMed]

Pouget, J.

N. Boens, W. W. Qin, N. Basarić, J. Hofkens, M. Ameloot, J. Pouget, J. P. Lefèvre, B. Valeur, E. Gratton, M. vandeVen, N. D. Silva, Y. Engelborghs, K. Willaert, A. Sillen, G. Rumbles, D. Phillips, A. J. W. G. Visser, A. van Hoek, J. R. Lakowicz, H. Malak, I. Gryczynski, A. G. Szabo, D. T. Krajcarski, N. Tamai, and A. Miura, “Fluorescence lifetime standards for time and frequency domain fluorescence spectroscopy,” Anal. Chem.79(5), 2137–2149 (2007).
[CrossRef] [PubMed]

Pu, J.

J. Pu, G. S. Mintz, E. S. Brilakis, S. Banerjee, A. R. Abdel-Karim, B. Maini, S. Biro, J. B. Lee, G. W. Stone, G. Weisz, and A. Maehara, “In vivo characterization of coronary plaques: novel findings from comparing greyscale and virtual histology intravascular ultrasound and near-infrared spectroscopy,” Eur. Heart J.33(3), 372–383 (2012).
[CrossRef] [PubMed]

Qi, J.

J. Liu, Y. Sun, J. Qi, and L. Marcu, “A novel method for fast and robust estimation of fluorescence decay dynamics using constrained least-squares deconvolution with Laguerre expansion,” Phys. Med. Biol.57(4), 843–865 (2012).
[CrossRef] [PubMed]

Qiao, J. H.

L. Marcu, J. A. Jo, Q. Fang, T. Papaioannou, T. Reil, J. H. Qiao, J. D. Baker, J. A. Freischlag, and M. C. Fishbein, “Detection of rupture-prone atherosclerotic plaques by time-resolved laser-induced fluorescence spectroscopy,” Atherosclerosis204(1), 156–164 (2009).
[CrossRef] [PubMed]

Qin, W. W.

N. Boens, W. W. Qin, N. Basarić, J. Hofkens, M. Ameloot, J. Pouget, J. P. Lefèvre, B. Valeur, E. Gratton, M. vandeVen, N. D. Silva, Y. Engelborghs, K. Willaert, A. Sillen, G. Rumbles, D. Phillips, A. J. W. G. Visser, A. van Hoek, J. R. Lakowicz, H. Malak, I. Gryczynski, A. G. Szabo, D. T. Krajcarski, N. Tamai, and A. Miura, “Fluorescence lifetime standards for time and frequency domain fluorescence spectroscopy,” Anal. Chem.79(5), 2137–2149 (2007).
[CrossRef] [PubMed]

Radu, A.

P. Uehlinger, T. Gabrecht, T. Glanzmann, J. P. Ballini, A. Radu, S. Andrejevic, P. Monnier, and G. Wagnières, “In vivo time-resolved spectroscopy of the human bronchial early cancer autofluorescence,” J. Biomed. Opt.14(2), 024011 (2009).
[CrossRef] [PubMed]

Reil, T.

L. Marcu, J. A. Jo, Q. Fang, T. Papaioannou, T. Reil, J. H. Qiao, J. D. Baker, J. A. Freischlag, and M. C. Fishbein, “Detection of rupture-prone atherosclerotic plaques by time-resolved laser-induced fluorescence spectroscopy,” Atherosclerosis204(1), 156–164 (2009).
[CrossRef] [PubMed]

Rojas, G. E.

D. Magde, G. E. Rojas, and P. G. Seybold, “Solvent dependence of the fluorescence lifetimes of xanthene dyes,” Photochem. Photobiol.70(5), 737–744 (1999).
[CrossRef]

Rumbles, G.

N. Boens, W. W. Qin, N. Basarić, J. Hofkens, M. Ameloot, J. Pouget, J. P. Lefèvre, B. Valeur, E. Gratton, M. vandeVen, N. D. Silva, Y. Engelborghs, K. Willaert, A. Sillen, G. Rumbles, D. Phillips, A. J. W. G. Visser, A. van Hoek, J. R. Lakowicz, H. Malak, I. Gryczynski, A. G. Szabo, D. T. Krajcarski, N. Tamai, and A. Miura, “Fluorescence lifetime standards for time and frequency domain fluorescence spectroscopy,” Anal. Chem.79(5), 2137–2149 (2007).
[CrossRef] [PubMed]

Saroufeem, R.

J. Phipps, Y. Sun, R. Saroufeem, N. Hatami, M. C. Fishbein, and L. Marcu, “Fluorescence lifetime imaging for the characterization of the biochemical composition of atherosclerotic plaques,” J. Biomed. Opt.16(9), 096018 (2011).
[CrossRef] [PubMed]

Y. Sun, Y. Sun, D. Stephens, H. Xie, J. Phipps, R. Saroufeem, J. Southard, D. S. Elson, and L. Marcu, “Dynamic tissue analysis using time- and wavelength-resolved fluorescence spectroscopy for atherosclerosis diagnosis,” Opt. Express19(5), 3890–3901 (2011).
[CrossRef] [PubMed]

Saroufeem, R. M.

Y. Sun, J. Park, D. N. Stephens, J. A. Jo, L. Sun, J. M. Cannata, R. M. Saroufeem, K. K. Shung, and L. Marcu, “Development of a dual-modal tissue diagnostic system combining time-resolved fluorescence spectroscopy and ultrasonic backscatter microscopy,” Rev. Sci. Instrum.80(6), 065104 (2009).
[CrossRef] [PubMed]

Seybold, P. G.

D. Magde, G. E. Rojas, and P. G. Seybold, “Solvent dependence of the fluorescence lifetimes of xanthene dyes,” Photochem. Photobiol.70(5), 737–744 (1999).
[CrossRef]

Shung, K. K.

Y. Sun, J. Park, D. N. Stephens, J. A. Jo, L. Sun, J. M. Cannata, R. M. Saroufeem, K. K. Shung, and L. Marcu, “Development of a dual-modal tissue diagnostic system combining time-resolved fluorescence spectroscopy and ultrasonic backscatter microscopy,” Rev. Sci. Instrum.80(6), 065104 (2009).
[CrossRef] [PubMed]

Sillen, A.

N. Boens, W. W. Qin, N. Basarić, J. Hofkens, M. Ameloot, J. Pouget, J. P. Lefèvre, B. Valeur, E. Gratton, M. vandeVen, N. D. Silva, Y. Engelborghs, K. Willaert, A. Sillen, G. Rumbles, D. Phillips, A. J. W. G. Visser, A. van Hoek, J. R. Lakowicz, H. Malak, I. Gryczynski, A. G. Szabo, D. T. Krajcarski, N. Tamai, and A. Miura, “Fluorescence lifetime standards for time and frequency domain fluorescence spectroscopy,” Anal. Chem.79(5), 2137–2149 (2007).
[CrossRef] [PubMed]

Silva, N. D.

N. Boens, W. W. Qin, N. Basarić, J. Hofkens, M. Ameloot, J. Pouget, J. P. Lefèvre, B. Valeur, E. Gratton, M. vandeVen, N. D. Silva, Y. Engelborghs, K. Willaert, A. Sillen, G. Rumbles, D. Phillips, A. J. W. G. Visser, A. van Hoek, J. R. Lakowicz, H. Malak, I. Gryczynski, A. G. Szabo, D. T. Krajcarski, N. Tamai, and A. Miura, “Fluorescence lifetime standards for time and frequency domain fluorescence spectroscopy,” Anal. Chem.79(5), 2137–2149 (2007).
[CrossRef] [PubMed]

Southard, J.

Stamp, G. W.

P. A. De Beule, C. Dunsby, N. P. Galletly, G. W. Stamp, A. C. Chu, U. Anand, P. Anand, C. D. Benham, A. Naylor, and P. M. French, “A hyperspectral fluorescence lifetime probe for skin cancer diagnosis,” Rev. Sci. Instrum.78(12), 123101 (2007).
[CrossRef] [PubMed]

Stephens, D.

Stephens, D. N.

Y. Sun, J. Park, D. N. Stephens, J. A. Jo, L. Sun, J. M. Cannata, R. M. Saroufeem, K. K. Shung, and L. Marcu, “Development of a dual-modal tissue diagnostic system combining time-resolved fluorescence spectroscopy and ultrasonic backscatter microscopy,” Rev. Sci. Instrum.80(6), 065104 (2009).
[CrossRef] [PubMed]

D. N. Stephens, J. Park, Y. Sun, T. Papaioannou, and L. Marcu, “Intraluminal fluorescence spectroscopy catheter with ultrasound guidance,” J. Biomed. Opt.14(3), 030505 (2009).
[CrossRef] [PubMed]

Stone, G. W.

J. Pu, G. S. Mintz, E. S. Brilakis, S. Banerjee, A. R. Abdel-Karim, B. Maini, S. Biro, J. B. Lee, G. W. Stone, G. Weisz, and A. Maehara, “In vivo characterization of coronary plaques: novel findings from comparing greyscale and virtual histology intravascular ultrasound and near-infrared spectroscopy,” Eur. Heart J.33(3), 372–383 (2012).
[CrossRef] [PubMed]

Sun, L.

Y. Sun, J. Park, D. N. Stephens, J. A. Jo, L. Sun, J. M. Cannata, R. M. Saroufeem, K. K. Shung, and L. Marcu, “Development of a dual-modal tissue diagnostic system combining time-resolved fluorescence spectroscopy and ultrasonic backscatter microscopy,” Rev. Sci. Instrum.80(6), 065104 (2009).
[CrossRef] [PubMed]

Sun, Y.

J. Liu, Y. Sun, J. Qi, and L. Marcu, “A novel method for fast and robust estimation of fluorescence decay dynamics using constrained least-squares deconvolution with Laguerre expansion,” Phys. Med. Biol.57(4), 843–865 (2012).
[CrossRef] [PubMed]

J. Phipps, Y. Sun, R. Saroufeem, N. Hatami, M. C. Fishbein, and L. Marcu, “Fluorescence lifetime imaging for the characterization of the biochemical composition of atherosclerotic plaques,” J. Biomed. Opt.16(9), 096018 (2011).
[CrossRef] [PubMed]

J. Bec, H. Xie, D. Yankelevich, F. Zhou, Y. Sun, N. Ghata, R. Aldredge, and L. Marcu, “Design, construction and validation of a multimodal intravascular diagnostic catheter combining IVUS and fluorescence lifetime spectroscopy detection channels,” Proc. SPIE7883, 788337 (2011).
[CrossRef]

Y. Sun, Y. Sun, D. Stephens, H. Xie, J. Phipps, R. Saroufeem, J. Southard, D. S. Elson, and L. Marcu, “Dynamic tissue analysis using time- and wavelength-resolved fluorescence spectroscopy for atherosclerosis diagnosis,” Opt. Express19(5), 3890–3901 (2011).
[CrossRef] [PubMed]

Y. Sun, Y. Sun, D. Stephens, H. Xie, J. Phipps, R. Saroufeem, J. Southard, D. S. Elson, and L. Marcu, “Dynamic tissue analysis using time- and wavelength-resolved fluorescence spectroscopy for atherosclerosis diagnosis,” Opt. Express19(5), 3890–3901 (2011).
[CrossRef] [PubMed]

Y. Sun, J. Park, D. N. Stephens, J. A. Jo, L. Sun, J. M. Cannata, R. M. Saroufeem, K. K. Shung, and L. Marcu, “Development of a dual-modal tissue diagnostic system combining time-resolved fluorescence spectroscopy and ultrasonic backscatter microscopy,” Rev. Sci. Instrum.80(6), 065104 (2009).
[CrossRef] [PubMed]

D. N. Stephens, J. Park, Y. Sun, T. Papaioannou, and L. Marcu, “Intraluminal fluorescence spectroscopy catheter with ultrasound guidance,” J. Biomed. Opt.14(3), 030505 (2009).
[CrossRef] [PubMed]

Y. Sun, R. Liu, D. S. Elson, C. W. Hollars, J. A. Jo, J. Park, Y. Sun, and L. Marcu, “Simultaneous time- and wavelength-resolved fluorescence spectroscopy for near real-time tissue diagnosis,” Opt. Lett.33(6), 630–632 (2008).
[CrossRef] [PubMed]

Y. Sun, R. Liu, D. S. Elson, C. W. Hollars, J. A. Jo, J. Park, Y. Sun, and L. Marcu, “Simultaneous time- and wavelength-resolved fluorescence spectroscopy for near real-time tissue diagnosis,” Opt. Lett.33(6), 630–632 (2008).
[CrossRef] [PubMed]

Szabo, A. G.

N. Boens, W. W. Qin, N. Basarić, J. Hofkens, M. Ameloot, J. Pouget, J. P. Lefèvre, B. Valeur, E. Gratton, M. vandeVen, N. D. Silva, Y. Engelborghs, K. Willaert, A. Sillen, G. Rumbles, D. Phillips, A. J. W. G. Visser, A. van Hoek, J. R. Lakowicz, H. Malak, I. Gryczynski, A. G. Szabo, D. T. Krajcarski, N. Tamai, and A. Miura, “Fluorescence lifetime standards for time and frequency domain fluorescence spectroscopy,” Anal. Chem.79(5), 2137–2149 (2007).
[CrossRef] [PubMed]

Tamai, N.

N. Boens, W. W. Qin, N. Basarić, J. Hofkens, M. Ameloot, J. Pouget, J. P. Lefèvre, B. Valeur, E. Gratton, M. vandeVen, N. D. Silva, Y. Engelborghs, K. Willaert, A. Sillen, G. Rumbles, D. Phillips, A. J. W. G. Visser, A. van Hoek, J. R. Lakowicz, H. Malak, I. Gryczynski, A. G. Szabo, D. T. Krajcarski, N. Tamai, and A. Miura, “Fluorescence lifetime standards for time and frequency domain fluorescence spectroscopy,” Anal. Chem.79(5), 2137–2149 (2007).
[CrossRef] [PubMed]

Uehlinger, P.

P. Uehlinger, T. Gabrecht, T. Glanzmann, J. P. Ballini, A. Radu, S. Andrejevic, P. Monnier, and G. Wagnières, “In vivo time-resolved spectroscopy of the human bronchial early cancer autofluorescence,” J. Biomed. Opt.14(2), 024011 (2009).
[CrossRef] [PubMed]

Valeur, B.

N. Boens, W. W. Qin, N. Basarić, J. Hofkens, M. Ameloot, J. Pouget, J. P. Lefèvre, B. Valeur, E. Gratton, M. vandeVen, N. D. Silva, Y. Engelborghs, K. Willaert, A. Sillen, G. Rumbles, D. Phillips, A. J. W. G. Visser, A. van Hoek, J. R. Lakowicz, H. Malak, I. Gryczynski, A. G. Szabo, D. T. Krajcarski, N. Tamai, and A. Miura, “Fluorescence lifetime standards for time and frequency domain fluorescence spectroscopy,” Anal. Chem.79(5), 2137–2149 (2007).
[CrossRef] [PubMed]

van Hoek, A.

N. Boens, W. W. Qin, N. Basarić, J. Hofkens, M. Ameloot, J. Pouget, J. P. Lefèvre, B. Valeur, E. Gratton, M. vandeVen, N. D. Silva, Y. Engelborghs, K. Willaert, A. Sillen, G. Rumbles, D. Phillips, A. J. W. G. Visser, A. van Hoek, J. R. Lakowicz, H. Malak, I. Gryczynski, A. G. Szabo, D. T. Krajcarski, N. Tamai, and A. Miura, “Fluorescence lifetime standards for time and frequency domain fluorescence spectroscopy,” Anal. Chem.79(5), 2137–2149 (2007).
[CrossRef] [PubMed]

vandeVen, M.

N. Boens, W. W. Qin, N. Basarić, J. Hofkens, M. Ameloot, J. Pouget, J. P. Lefèvre, B. Valeur, E. Gratton, M. vandeVen, N. D. Silva, Y. Engelborghs, K. Willaert, A. Sillen, G. Rumbles, D. Phillips, A. J. W. G. Visser, A. van Hoek, J. R. Lakowicz, H. Malak, I. Gryczynski, A. G. Szabo, D. T. Krajcarski, N. Tamai, and A. Miura, “Fluorescence lifetime standards for time and frequency domain fluorescence spectroscopy,” Anal. Chem.79(5), 2137–2149 (2007).
[CrossRef] [PubMed]

Visser, A. J. W. G.

N. Boens, W. W. Qin, N. Basarić, J. Hofkens, M. Ameloot, J. Pouget, J. P. Lefèvre, B. Valeur, E. Gratton, M. vandeVen, N. D. Silva, Y. Engelborghs, K. Willaert, A. Sillen, G. Rumbles, D. Phillips, A. J. W. G. Visser, A. van Hoek, J. R. Lakowicz, H. Malak, I. Gryczynski, A. G. Szabo, D. T. Krajcarski, N. Tamai, and A. Miura, “Fluorescence lifetime standards for time and frequency domain fluorescence spectroscopy,” Anal. Chem.79(5), 2137–2149 (2007).
[CrossRef] [PubMed]

Vitta, P.

A. Žukauskas, P. Vitta, N. Kurilcik, S. Jursenas, and E. Bakiene, “Characterization of biological materials by frequency-domain fluorescence lifetime measurements using ultraviolet light-emitting diodes,” Opt. Mater.30(5), 800–805 (2008).
[CrossRef]

Wagnières, G.

P. Uehlinger, T. Gabrecht, T. Glanzmann, J. P. Ballini, A. Radu, S. Andrejevic, P. Monnier, and G. Wagnières, “In vivo time-resolved spectroscopy of the human bronchial early cancer autofluorescence,” J. Biomed. Opt.14(2), 024011 (2009).
[CrossRef] [PubMed]

Weisz, G.

J. Pu, G. S. Mintz, E. S. Brilakis, S. Banerjee, A. R. Abdel-Karim, B. Maini, S. Biro, J. B. Lee, G. W. Stone, G. Weisz, and A. Maehara, “In vivo characterization of coronary plaques: novel findings from comparing greyscale and virtual histology intravascular ultrasound and near-infrared spectroscopy,” Eur. Heart J.33(3), 372–383 (2012).
[CrossRef] [PubMed]

Willaert, K.

N. Boens, W. W. Qin, N. Basarić, J. Hofkens, M. Ameloot, J. Pouget, J. P. Lefèvre, B. Valeur, E. Gratton, M. vandeVen, N. D. Silva, Y. Engelborghs, K. Willaert, A. Sillen, G. Rumbles, D. Phillips, A. J. W. G. Visser, A. van Hoek, J. R. Lakowicz, H. Malak, I. Gryczynski, A. G. Szabo, D. T. Krajcarski, N. Tamai, and A. Miura, “Fluorescence lifetime standards for time and frequency domain fluorescence spectroscopy,” Anal. Chem.79(5), 2137–2149 (2007).
[CrossRef] [PubMed]

Xie, H.

J. Bec, H. Xie, D. Yankelevich, F. Zhou, Y. Sun, N. Ghata, R. Aldredge, and L. Marcu, “Design, construction and validation of a multimodal intravascular diagnostic catheter combining IVUS and fluorescence lifetime spectroscopy detection channels,” Proc. SPIE7883, 788337 (2011).
[CrossRef]

Y. Sun, Y. Sun, D. Stephens, H. Xie, J. Phipps, R. Saroufeem, J. Southard, D. S. Elson, and L. Marcu, “Dynamic tissue analysis using time- and wavelength-resolved fluorescence spectroscopy for atherosclerosis diagnosis,” Opt. Express19(5), 3890–3901 (2011).
[CrossRef] [PubMed]

Yankelevich, D.

J. Bec, H. Xie, D. Yankelevich, F. Zhou, Y. Sun, N. Ghata, R. Aldredge, and L. Marcu, “Design, construction and validation of a multimodal intravascular diagnostic catheter combining IVUS and fluorescence lifetime spectroscopy detection channels,” Proc. SPIE7883, 788337 (2011).
[CrossRef]

Zhou, F.

J. Bec, H. Xie, D. Yankelevich, F. Zhou, Y. Sun, N. Ghata, R. Aldredge, and L. Marcu, “Design, construction and validation of a multimodal intravascular diagnostic catheter combining IVUS and fluorescence lifetime spectroscopy detection channels,” Proc. SPIE7883, 788337 (2011).
[CrossRef]

Žukauskas, A.

A. Žukauskas, P. Vitta, N. Kurilcik, S. Jursenas, and E. Bakiene, “Characterization of biological materials by frequency-domain fluorescence lifetime measurements using ultraviolet light-emitting diodes,” Opt. Mater.30(5), 800–805 (2008).
[CrossRef]

Anal. Chem. (1)

N. Boens, W. W. Qin, N. Basarić, J. Hofkens, M. Ameloot, J. Pouget, J. P. Lefèvre, B. Valeur, E. Gratton, M. vandeVen, N. D. Silva, Y. Engelborghs, K. Willaert, A. Sillen, G. Rumbles, D. Phillips, A. J. W. G. Visser, A. van Hoek, J. R. Lakowicz, H. Malak, I. Gryczynski, A. G. Szabo, D. T. Krajcarski, N. Tamai, and A. Miura, “Fluorescence lifetime standards for time and frequency domain fluorescence spectroscopy,” Anal. Chem.79(5), 2137–2149 (2007).
[CrossRef] [PubMed]

Arterioscler. Thromb. Vasc. Biol. (1)

L. Marcu, M. C. Fishbein, J. M. Maarek, and W. S. Grundfest, “Discrimination of human coronary artery atherosclerotic lipid-rich lesions by time-resolved laser-induced fluorescence spectroscopy,” Arterioscler. Thromb. Vasc. Biol.21(7), 1244–1250 (2001).
[CrossRef] [PubMed]

Atherosclerosis (1)

L. Marcu, J. A. Jo, Q. Fang, T. Papaioannou, T. Reil, J. H. Qiao, J. D. Baker, J. A. Freischlag, and M. C. Fishbein, “Detection of rupture-prone atherosclerotic plaques by time-resolved laser-induced fluorescence spectroscopy,” Atherosclerosis204(1), 156–164 (2009).
[CrossRef] [PubMed]

Chem. Rev. (1)

M. Y. Berezin and S. Achilefu, “Fluorescence lifetime measurements and biological imaging,” Chem. Rev.110(5), 2641–2684 (2010).
[CrossRef] [PubMed]

Circulation (1)

Y. Honda and P. J. Fitzgerald, “Frontiers in intravascular imaging technologies,” Circulation117(15), 2024–2037 (2008).
[CrossRef] [PubMed]

Curr. Opin. Cardiol. (1)

P. R. Moreno and J. E. Muller, “Identification of high-risk atherosclerotic plaques: a survey of spectroscopic methods,” Curr. Opin. Cardiol.17(6), 638–647 (2002).
[CrossRef] [PubMed]

Eur. Heart J. (1)

J. Pu, G. S. Mintz, E. S. Brilakis, S. Banerjee, A. R. Abdel-Karim, B. Maini, S. Biro, J. B. Lee, G. W. Stone, G. Weisz, and A. Maehara, “In vivo characterization of coronary plaques: novel findings from comparing greyscale and virtual histology intravascular ultrasound and near-infrared spectroscopy,” Eur. Heart J.33(3), 372–383 (2012).
[CrossRef] [PubMed]

J Biophotonics (1)

K. König, “Clinical multiphoton tomography,” J Biophotonics1(1), 13–23 (2008).
[CrossRef] [PubMed]

J. Biomed. Opt. (5)

P. Uehlinger, T. Gabrecht, T. Glanzmann, J. P. Ballini, A. Radu, S. Andrejevic, P. Monnier, and G. Wagnières, “In vivo time-resolved spectroscopy of the human bronchial early cancer autofluorescence,” J. Biomed. Opt.14(2), 024011 (2009).
[CrossRef] [PubMed]

J. Phipps, Y. Sun, R. Saroufeem, N. Hatami, M. C. Fishbein, and L. Marcu, “Fluorescence lifetime imaging for the characterization of the biochemical composition of atherosclerotic plaques,” J. Biomed. Opt.16(9), 096018 (2011).
[CrossRef] [PubMed]

D. N. Stephens, J. Park, Y. Sun, T. Papaioannou, and L. Marcu, “Intraluminal fluorescence spectroscopy catheter with ultrasound guidance,” J. Biomed. Opt.14(3), 030505 (2009).
[CrossRef] [PubMed]

L. Marcu, “Fluorescence lifetime in cardiovascular diagnostics,” J. Biomed. Opt.15(1), 011106 (2010).
[CrossRef] [PubMed]

J. A. Jo, Q. Fang, T. Papaioannou, and L. Marcu, “Fast model-free deconvolution of fluorescence decay for analysis of biological systems,” J. Biomed. Opt.9(4), 743–752 (2004).
[CrossRef] [PubMed]

J. Chem. Phys. (1)

H. Pal, S. Nad, and M. Kumbhakar, “Photophysical properties of coumarin-120: Unusual behavior in nonpolar solvents,” J. Chem. Phys.119(1), 443–452 (2003).
[CrossRef]

J. Photochem. Photobiol. Chem. (1)

M. Arık, N. Celebi, and Y. Onganer, “Fluorescence quenching of fluorescein with molecular oxygen in solution,” J. Photochem. Photobiol. Chem.170(2), 105–111 (2005).
[CrossRef]

J. Phys. Chem. (1)

G. Jones, W. R. Jackson, C. Choi, and W. R. Bergmark, “Solvent effects on emission yield and lifetime for Coumarin laser dyes: requirements for a rotatory decay mechanism,” J. Phys. Chem.89(2), 294–300 (1985).
[CrossRef]

Opt. Express (1)

Opt. Lett. (1)

Opt. Mater. (1)

A. Žukauskas, P. Vitta, N. Kurilcik, S. Jursenas, and E. Bakiene, “Characterization of biological materials by frequency-domain fluorescence lifetime measurements using ultraviolet light-emitting diodes,” Opt. Mater.30(5), 800–805 (2008).
[CrossRef]

Photochem. Photobiol. (1)

D. Magde, G. E. Rojas, and P. G. Seybold, “Solvent dependence of the fluorescence lifetimes of xanthene dyes,” Photochem. Photobiol.70(5), 737–744 (1999).
[CrossRef]

Phys. Med. Biol. (1)

J. Liu, Y. Sun, J. Qi, and L. Marcu, “A novel method for fast and robust estimation of fluorescence decay dynamics using constrained least-squares deconvolution with Laguerre expansion,” Phys. Med. Biol.57(4), 843–865 (2012).
[CrossRef] [PubMed]

Proc. SPIE (1)

J. Bec, H. Xie, D. Yankelevich, F. Zhou, Y. Sun, N. Ghata, R. Aldredge, and L. Marcu, “Design, construction and validation of a multimodal intravascular diagnostic catheter combining IVUS and fluorescence lifetime spectroscopy detection channels,” Proc. SPIE7883, 788337 (2011).
[CrossRef]

Rev. Sci. Instrum. (2)

Y. Sun, J. Park, D. N. Stephens, J. A. Jo, L. Sun, J. M. Cannata, R. M. Saroufeem, K. K. Shung, and L. Marcu, “Development of a dual-modal tissue diagnostic system combining time-resolved fluorescence spectroscopy and ultrasonic backscatter microscopy,” Rev. Sci. Instrum.80(6), 065104 (2009).
[CrossRef] [PubMed]

P. A. De Beule, C. Dunsby, N. P. Galletly, G. W. Stamp, A. C. Chu, U. Anand, P. Anand, C. D. Benham, A. Naylor, and P. M. French, “A hyperspectral fluorescence lifetime probe for skin cancer diagnosis,” Rev. Sci. Instrum.78(12), 123101 (2007).
[CrossRef] [PubMed]

Other (2)

“American National Standard for Safe Use of Lasers,” ANSI Z136.1-2007 (ANSI, 2007).

“Using FastFrame segmented memory,” Application note (Tektronix).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic of the helical (radial) scanning-TRFS system depicting the SVOF running in a lumen. Solid line shows the optical pathway while the dotted line shows the electronic control. The spectral selection module consists of a set of dichroic filters and band-pass filters allowing for selection of four wavelength bands (central wavelength/bandwidth): channel 1 (390/40 nm), channel 2 (452/45 nm), channel 3 (542/50 nm) and channel 4 (629/53 nm).

Fig. 2
Fig. 2

Effect of scanning speed on pixel size and reconstruction of fluorescence intensity and lifetime imaging maps. 2D- maps of fluorescence intensity (a) and lifetime (b) are given for a linear scan performed at 4 distinct scanning speeds. The FLIM images were acquired from RhB solution placed in capillary tubes positioned at 0.5 mm apart. (c) Histogram of average lifetime values corresponding to FLIM images in (b).

Fig. 3
Fig. 3

Effect of lumen diameter (acrylic tubes) in helical scan on pixel size and reconstruction of fluorescence intensity and lifetime imaging maps. The optical fiber was centered in the acrylic tube resulting in distances between the fiber tip and fluorophore on the lumen wall was determined by the acrylic tubes with diameter of 2 mm, 4 mm and 6 mm respectively. The helical scan of 2D- fluorescent intensity (a) and lifetime (b) imaging maps (in loop format) was measured from fluorophores pair (RhB) separated by 0.5 mm along luminal circumference. (c) The intensity profile along the center of fluorophore phantom as a function of arc distance. (d) The histogram of average lifetime values corresponding to lifetime maps in (b).

Fig. 4
Fig. 4

Evaluation of the spatial resolution of the scanning-TRFS system (results from linear-scan). Fluorescence images of RhB dye placed in a needle-shape capillary: (a) Fluorescent intensity (b) lifetime map (FLIM); (c) Photograph of the needle-shape capillary with diameter varied from 0.08 to 0.5 mm; Note the shape of the fluorescence emission follows the shape of the capillary; (d) Normalized intensity profiles along lines L1-L8 as depicted in (a). The interval in y-direction between the lines (L1-L8) is equal to 0.5 mm along the fluorophore at the position of different diameter. The spatial resolution of the scanning TRFS system was determined as 250 µm by the FWHM of point spread function (i.e., the intensity profile at the sub-resolution 80 µm capillary tip).

Fig. 5
Fig. 5

Scanning-TRFS system ability to spectrally and temporarily resolve the fluorescence emission of five distinct fluorophores (1) C120, (2) C1, (3) 9CA, (4) FITC, and (5) RhB contained in the radial tubular/capillary structures. Validation in a cylindrical physical phantom for the four wavelength bands/channels. (a) Fluorescence intensity in 2D open-format depicting the channels where each fluorophore fluoresces; (b) lifetime imaging maps in open-format depicting the resolved average lifetimes for each fluorophore. (c) Schematic of the 6 mm diameter acrylic tube phantom with the five radial tubes in which the fluorophores are placed and labeled as position 1 to 5. (d) Histogram of average lifetime corresponding to the lifetime imaging maps presented in (b).

Fig. 6
Fig. 6

Scanning-TRFS system ability to spectrally and temporarily resolve the fluorescence emission of target fluorophores placed in arterial lumen. Validation in an intact pig aorta tissue with target fluorophores placed on a metallic stent. (a) Fluorescence intensity in close-format (upper) and open-format (button) depicting the channels in which each target fluorophore fluoresce; (b) Lifetime imaging maps in close-format (upper) and open-format (button) depicting the resolved average lifetimes for each fluorophore; (c) Application of fiber-optic probe in the pig aorta phantom (inner diameter/lumen: ~6 mm) with stent deployed inside. Two fluorophores: C1 and FITC mounted on the stent are shown in the inset photo. The third fluorophore (RhB) not seen in the picture acted as reference marker. (d) Histogram of average lifetime corresponding to the vessel wall autofluorescence generate by structural proteins and C1 and FITC-based beads. Note that the stent wire can be distinguished against the aortic wall autofluorescence (Channels 1 and 2). The fluorescence of the fluorescence beads is also resolved against the aortic wall autofluorescence: C1 in channel 1 and 2 and FITC in channel 3. The fluorescence emission of the reference marker (RhB) is observed in channels 3 and 4. (e) and (f) Examples from two locations in the phantom on the phantom demonstrating the accuracy of deconvolution between the measured fluorescence pulse and fitted fluorescence pulse, the residuals between these two, and the correlation of residuals: (e) one location from the dye C1 (x = 3.78 mm y = 5.5 mm); (f) second location from the vessel wall (x = 10.3 mm y = 5.5 mm). Both signals are from the channel 1.

Tables (3)

Tables Icon

Table 1 Linear scan pixel sizes

Tables Icon

Table 2 Helical scan pixel sizes (constant pullback speed at 0.04 mm/s and RPM at 20/s)

Tables Icon

Table 3 Fluorescence characteristics of fluorophores used in physical phantom

Metrics