Abstract

Abstract: An optical switch was implemented in the reference arm of an extended depth SD-OCT system to sequentially acquire OCT images at different depths into the eye ranging from the cornea to the retina. A custom-made accommodation module was coupled with the delivery of the OCT system to provide controlled step stimuli of accommodation and disaccommodation that preserve ocular alignment. The changes in the lens shape were imaged and ocular distances were dynamically measured during accommodation and disaccommodation. The system is capable of dynamic in vivo imaging of the entire anterior segment and eye-length measurement during accommodation in real-time.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. M. Schor and S. R. Bharadwaj, “A pulse-step model of accommodation dynamics in the aging eye,” Vision Res.45(10), 1237–1254 (2005).
    [CrossRef] [PubMed]
  2. J. A. Mordi and K. J. Ciuffreda, “Dynamic aspects of accommodation: age and presbyopia,” Vision Res.44(6), 591–601 (2004).
    [CrossRef] [PubMed]
  3. A. P. Beers and G. L. Van Der Heijde, “In vivo determination of the biomechanical properties of the component elements of the accommodation mechanism,” Vision Res.34(21), 2897–2905 (1994).
    [CrossRef] [PubMed]
  4. S. Kasthurirangan, A. S. Vilupuru, and A. Glasser, “Amplitude dependent accommodative dynamics in humans,” Vision Res.43(27), 2945–2956 (2003).
    [CrossRef] [PubMed]
  5. E. Gambra, Y. Wang, J. Yuan, P. B. Kruger, and S. Marcos, “Dynamic accommodation with simulated targets blurred with high order aberrations,” Vision Res.50(19), 1922–1927 (2010).
    [CrossRef] [PubMed]
  6. G. Heron and W. N. Charman, “Accommodation as a function of age and the linearity of the response dynamics,” Vision Res.44(27), 3119–3130 (2004).
    [CrossRef] [PubMed]
  7. H. A. Anderson, A. Glasser, R. E. Manny, and K. K. Stuebing, “Age-related changes in accommodative dynamics from preschool to adulthood,” Invest. Ophthalmol. Vis. Sci.51(1), 614–622 (2010).
    [CrossRef] [PubMed]
  8. A. P. Beers and G. L. van der Heijde, “Age-related changes in the accommodation mechanism,” Optom. Vis. Sci.73(4), 235–242 (1996).
    [CrossRef] [PubMed]
  9. G. L. van der Heijde, A. P. Beers, and M. Dubbelman, “Microfluctuations of steady-state accommodation measured with ultrasonography,” Ophthalmic Physiol. Opt.16(3), 216–221 (1996).
    [CrossRef] [PubMed]
  10. W. Drexler, A. Baumgartner, O. Findl, C. K. Hitzenberger, and A. F. Fercher, “Biometric investigation of changes in the anterior eye segment during accommodation,” Vision Res.37(19), 2789–2800 (1997).
    [CrossRef] [PubMed]
  11. R. Subramanian, C. Cook, M. Croft, K. L. DePaul, M. Neider, N. J. Ferrier, P. L. Kaufman, and J. F. Koretz, “Unilateral real-time Scheimpflug videography to study accommodation dynamics in human eyes,” Invest. Ophthalmol. Vis. Sci.44, ARVO E-Abstract 240 (2003).
  12. S. R. Uhlhorn, D. Borja, F. Manns, and J. M. Parel, “Refractive index measurement of the isolated crystalline lens using optical coherence tomography,” Vision Res.48(27), 2732–2738 (2008).
    [CrossRef] [PubMed]
  13. I. Grulkowski, M. Gora, M. Szkulmowski, I. Gorczynska, D. Szlag, S. Marcos, A. Kowalczyk, and M. Wojtkowski, “Anterior segment imaging with Spectral OCT system using a high-speed CMOS camera,” Opt. Express17(6), 4842–4858 (2009).
    [CrossRef] [PubMed]
  14. J. Jungwirth, B. Baumann, M. Pircher, E. Götzinger, and C. K. Hitzenberger, “Extended in vivo anterior eye-segment imaging with full-range complex spectral domain optical coherence tomography,” J. Biomed. Opt.14(5), 050501 (2009).
    [CrossRef] [PubMed]
  15. H. Furukawa, H. Hiro-Oka, N. Satoh, R. Yoshimura, D. Choi, M. Nakanishi, A. Igarashi, H. Ishikawa, K. Ohbayashi, and K. Shimizu, “Full-range imaging of eye accommodation by high-speed long-depth range optical frequency domain imaging,” Biomed. Opt. Express1(5), 1491–1501 (2010).
    [CrossRef] [PubMed]
  16. B. Potsaid, V. Jayaraman, J. G. Fujimoto, J. Jiang, P. J. S. Heim, and A. E. Cable, “MEMS tunable VCSEL light source for ultrahigh speed 60kHz—1MHz axial scan rate and long range centimeter class OCT imaging,” Proc. SPIE8213, 82130M (2012).
    [CrossRef]
  17. C. Dai, C. Zhou, S. Fan, Z. Chen, X. Chai, Q. Ren, and S. Jiao, “Optical coherence tomography for whole eye segment imaging,” Opt. Express20(6), 6109–6115 (2012).
    [CrossRef] [PubMed]
  18. A. Dhalla, T. Bustamante, D. Nanikivil, H. Hendargo, R. McNabb, A. Kuo, and J. A. Izatt, “Dual-depth SSOCT for simultaneous complex resolved anterior segment and conventional retinal imaging,” Proc. SPIE8213, 82131G (2012).
    [CrossRef]
  19. G. Häusler and M. W. Lindner, “‘Coherence radar’ and ‘spectral radar’—new tools for dermatological diagnosis,” J. Biomed. Opt.3(1), 21–31 (1998).
    [CrossRef]
  20. H. Lim, M. Mujat, C. Kerbage, E. C. Lee, Y. Chen, T. C. Chen, and J. F. de Boer, “High-speed imaging of human retina in vivo with swept-source optical coherence tomography,” Opt. Express14(26), 12902–12908 (2006).
    [CrossRef] [PubMed]
  21. M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, “In vivo human retinal imaging by Fourier domain optical coherence tomography,” J. Biomed. Opt.7(3), 457–463 (2002).
    [CrossRef] [PubMed]
  22. C. Dorrer, N. Belabas, J. P. Likforman, and M. Joffre, “Spectral resolution and sampling issues in Fourier transform spectral interferometry,” J. Opt. Soc. Am. B17(10), 1795–1802 (2000).
    [CrossRef]
  23. H. Wang, Y. Pan, and A. M. Rollins, “Extending the effective imaging range of Fourier-domain optical coherence tomography using a fiber optic switch,” Opt. Lett.33(22), 2632–2634 (2008).
    [CrossRef] [PubMed]
  24. American National Standards Institute, Safe Use of Lasers, ANSI-Z136.1 (ANSI, 1993).
  25. D. A. Atchison, A. Bradley, L. N. Thibos, and G. Smith, “Useful variations of the Badal optometer,” Optom. Vis. Sci.72(4), 279–284 (1995).
    [CrossRef] [PubMed]
  26. N. C. Strang, M. Day, L. S. Gray, and D. Seidel, “Accommodation steps, target spatial frequency and refractive error,” Ophthalmic Physiol. Opt.31(5), 444–455 (2011).
    [CrossRef] [PubMed]
  27. F. S. Said and R. A. Weale, “The variation with age of the spectral transmissivity of the living human crystalline lens,” Gerontologia3(4), 213–231 (1959).
    [CrossRef] [PubMed]
  28. S. R. Uhlhorn, F. Manns, H. Tahi, R. O. Pascal, and J. M. Parel, “Corneal group refractive index measurement using low-coherence interferometry,” Proc. SPIE3246, 14–21 (1998).
    [CrossRef]
  29. D. A. Atchison and G. Smith, “Chromatic dispersion of the ocular media of human eyes,” J. Opt. Soc. Am. A22(1), 29–37 (2005).
    [CrossRef]
  30. N. Nassif, B. Cense, B. Hyle Park, S. H. Yun, T. C. Chen, B. E. Bouma, G. J. Tearney, and J. F. de Boer, “In vivo human retinal imaging by ultrahigh-speed spectral domain optical coherence tomography,” Opt. Lett.29(5), 480–482 (2004).
    [CrossRef] [PubMed]
  31. M. Dubbelman, G. L. Van der Heijde, and H. A. Weeber, “Change in shape of the aging human crystalline lens with accommodation,” Vision Res.45(1), 117–132 (2005).
    [CrossRef] [PubMed]
  32. J. M. Schmitt, S. L. Lee, and K. M. Yung, “An optical coherence microscope with enhanced resolving power in thick tissue,” Opt. Commun.142(4-6), 203–207 (1997).
    [CrossRef]
  33. F. Lexer, C. K. Hitzenberger, W. Drexler, S. Molebny, H. Sattmann, M. Sticker, and A. F. Fercher, “Dynamic coherent focus OCT with depth independent transversal resolution,” J. Mod. Opt.46, 541–553 (1999).
  34. W. Drexler, U. Morgner, F. X. Kärtner, C. Pitris, S. A. Boppart, X. D. Li, E. P. Ippen, and J. G. Fujimoto, “In vivo ultrahigh-resolution optical coherence tomography,” Opt. Lett.24(17), 1221–1223 (1999).
    [CrossRef] [PubMed]
  35. B. Qi, A. P. Himmer, L. M. Gordon, X. D. Yang, L. D. Dickensheets, and I. A. Vitkin, “Dynamic focus control in high-speed optical coherence tomography based on a microelectromechanical mirror,” Opt. Commun.232(1-6), 123–128 (2004).
    [CrossRef]
  36. J. Holmes, S. Hattersley, N. Stone, F. Bazant-Hegemark, and H. Barr, “Multi-channel Fourier domain OCT system with superior lateral resolution for biomedical applications,” Proc. SPIE6847, 68470O, 68470O-9 (2008).
    [CrossRef]
  37. C. Zhou, J. Wang, and S. Jiao, “Dual channel dual focus optical coherence tomography for imaging accommodation of the eye,” Opt. Express17(11), 8947–8955 (2009).
    [CrossRef] [PubMed]
  38. A. G. Bennett, “A method of determining the equivalent powers of the eye and its crystalline lens without resort to phakometry,” Ophthalmic Physiol. Opt.8(1), 53–59 (1988).
    [CrossRef] [PubMed]
  39. M. Dubbelman and G. L. Van der Heijde, “The shape of the aging human lens: curvature, equivalent refractive index and the lens paradox,” Vision Res.41(14), 1867–1877 (2001).
    [CrossRef] [PubMed]
  40. C. P. de Freitas, M. Ruggeri, S. Uhlhorn, F. Manns, and J. M. Parel, “Refractive index of the in vivo human crystalline lens measured using whole-eye optical coherence tomography,” Invest Ophthalmol Vis Sci53, E-Abstract 1341 (2012).
  41. S. Ortiz, D. Siedlecki, I. Grulkowski, L. Remon, D. Pascual, M. Wojtkowski, and S. Marcos, “Optical distortion correction in optical coherence tomography for quantitative ocular anterior segment by three-dimensional imaging,” Opt. Express18(3), 2782–2796 (2010).
    [CrossRef] [PubMed]
  42. A. Podoleanu, I. Charalambous, L. Plesea, A. Dogariu, and R. Rosen, “Correction of distortions in optical coherence tomography imaging of the eye,” Phys. Med. Biol.49(7), 1277–1294 (2004).
    [CrossRef] [PubMed]
  43. R. J. Zawadzki, C. Leisser, R. Leitgeb, M. Pircher, and A. F. Fercher, “Three-dimensional ophthalmic optical coherence tomography with a refraction correction algorithm,” Proc. SPIE5140, 20–27 (2003).
    [CrossRef]
  44. V. Westphal, A. Rollins, S. Radhakrishnan, and J. Izatt, “Correction of geometric and refractive image distortions in optical coherence tomography applying Fermat’s principle,” Opt. Express10(9), 397–404 (2002).
    [PubMed]

2012 (4)

B. Potsaid, V. Jayaraman, J. G. Fujimoto, J. Jiang, P. J. S. Heim, and A. E. Cable, “MEMS tunable VCSEL light source for ultrahigh speed 60kHz—1MHz axial scan rate and long range centimeter class OCT imaging,” Proc. SPIE8213, 82130M (2012).
[CrossRef]

C. Dai, C. Zhou, S. Fan, Z. Chen, X. Chai, Q. Ren, and S. Jiao, “Optical coherence tomography for whole eye segment imaging,” Opt. Express20(6), 6109–6115 (2012).
[CrossRef] [PubMed]

A. Dhalla, T. Bustamante, D. Nanikivil, H. Hendargo, R. McNabb, A. Kuo, and J. A. Izatt, “Dual-depth SSOCT for simultaneous complex resolved anterior segment and conventional retinal imaging,” Proc. SPIE8213, 82131G (2012).
[CrossRef]

C. P. de Freitas, M. Ruggeri, S. Uhlhorn, F. Manns, and J. M. Parel, “Refractive index of the in vivo human crystalline lens measured using whole-eye optical coherence tomography,” Invest Ophthalmol Vis Sci53, E-Abstract 1341 (2012).

2011 (1)

N. C. Strang, M. Day, L. S. Gray, and D. Seidel, “Accommodation steps, target spatial frequency and refractive error,” Ophthalmic Physiol. Opt.31(5), 444–455 (2011).
[CrossRef] [PubMed]

2010 (4)

2009 (3)

2008 (3)

S. R. Uhlhorn, D. Borja, F. Manns, and J. M. Parel, “Refractive index measurement of the isolated crystalline lens using optical coherence tomography,” Vision Res.48(27), 2732–2738 (2008).
[CrossRef] [PubMed]

H. Wang, Y. Pan, and A. M. Rollins, “Extending the effective imaging range of Fourier-domain optical coherence tomography using a fiber optic switch,” Opt. Lett.33(22), 2632–2634 (2008).
[CrossRef] [PubMed]

J. Holmes, S. Hattersley, N. Stone, F. Bazant-Hegemark, and H. Barr, “Multi-channel Fourier domain OCT system with superior lateral resolution for biomedical applications,” Proc. SPIE6847, 68470O, 68470O-9 (2008).
[CrossRef]

2006 (1)

2005 (3)

D. A. Atchison and G. Smith, “Chromatic dispersion of the ocular media of human eyes,” J. Opt. Soc. Am. A22(1), 29–37 (2005).
[CrossRef]

M. Dubbelman, G. L. Van der Heijde, and H. A. Weeber, “Change in shape of the aging human crystalline lens with accommodation,” Vision Res.45(1), 117–132 (2005).
[CrossRef] [PubMed]

C. M. Schor and S. R. Bharadwaj, “A pulse-step model of accommodation dynamics in the aging eye,” Vision Res.45(10), 1237–1254 (2005).
[CrossRef] [PubMed]

2004 (5)

J. A. Mordi and K. J. Ciuffreda, “Dynamic aspects of accommodation: age and presbyopia,” Vision Res.44(6), 591–601 (2004).
[CrossRef] [PubMed]

G. Heron and W. N. Charman, “Accommodation as a function of age and the linearity of the response dynamics,” Vision Res.44(27), 3119–3130 (2004).
[CrossRef] [PubMed]

N. Nassif, B. Cense, B. Hyle Park, S. H. Yun, T. C. Chen, B. E. Bouma, G. J. Tearney, and J. F. de Boer, “In vivo human retinal imaging by ultrahigh-speed spectral domain optical coherence tomography,” Opt. Lett.29(5), 480–482 (2004).
[CrossRef] [PubMed]

B. Qi, A. P. Himmer, L. M. Gordon, X. D. Yang, L. D. Dickensheets, and I. A. Vitkin, “Dynamic focus control in high-speed optical coherence tomography based on a microelectromechanical mirror,” Opt. Commun.232(1-6), 123–128 (2004).
[CrossRef]

A. Podoleanu, I. Charalambous, L. Plesea, A. Dogariu, and R. Rosen, “Correction of distortions in optical coherence tomography imaging of the eye,” Phys. Med. Biol.49(7), 1277–1294 (2004).
[CrossRef] [PubMed]

2003 (3)

R. J. Zawadzki, C. Leisser, R. Leitgeb, M. Pircher, and A. F. Fercher, “Three-dimensional ophthalmic optical coherence tomography with a refraction correction algorithm,” Proc. SPIE5140, 20–27 (2003).
[CrossRef]

S. Kasthurirangan, A. S. Vilupuru, and A. Glasser, “Amplitude dependent accommodative dynamics in humans,” Vision Res.43(27), 2945–2956 (2003).
[CrossRef] [PubMed]

R. Subramanian, C. Cook, M. Croft, K. L. DePaul, M. Neider, N. J. Ferrier, P. L. Kaufman, and J. F. Koretz, “Unilateral real-time Scheimpflug videography to study accommodation dynamics in human eyes,” Invest. Ophthalmol. Vis. Sci.44, ARVO E-Abstract 240 (2003).

2002 (2)

M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, “In vivo human retinal imaging by Fourier domain optical coherence tomography,” J. Biomed. Opt.7(3), 457–463 (2002).
[CrossRef] [PubMed]

V. Westphal, A. Rollins, S. Radhakrishnan, and J. Izatt, “Correction of geometric and refractive image distortions in optical coherence tomography applying Fermat’s principle,” Opt. Express10(9), 397–404 (2002).
[PubMed]

2001 (1)

M. Dubbelman and G. L. Van der Heijde, “The shape of the aging human lens: curvature, equivalent refractive index and the lens paradox,” Vision Res.41(14), 1867–1877 (2001).
[CrossRef] [PubMed]

2000 (1)

1999 (2)

F. Lexer, C. K. Hitzenberger, W. Drexler, S. Molebny, H. Sattmann, M. Sticker, and A. F. Fercher, “Dynamic coherent focus OCT with depth independent transversal resolution,” J. Mod. Opt.46, 541–553 (1999).

W. Drexler, U. Morgner, F. X. Kärtner, C. Pitris, S. A. Boppart, X. D. Li, E. P. Ippen, and J. G. Fujimoto, “In vivo ultrahigh-resolution optical coherence tomography,” Opt. Lett.24(17), 1221–1223 (1999).
[CrossRef] [PubMed]

1998 (2)

S. R. Uhlhorn, F. Manns, H. Tahi, R. O. Pascal, and J. M. Parel, “Corneal group refractive index measurement using low-coherence interferometry,” Proc. SPIE3246, 14–21 (1998).
[CrossRef]

G. Häusler and M. W. Lindner, “‘Coherence radar’ and ‘spectral radar’—new tools for dermatological diagnosis,” J. Biomed. Opt.3(1), 21–31 (1998).
[CrossRef]

1997 (2)

W. Drexler, A. Baumgartner, O. Findl, C. K. Hitzenberger, and A. F. Fercher, “Biometric investigation of changes in the anterior eye segment during accommodation,” Vision Res.37(19), 2789–2800 (1997).
[CrossRef] [PubMed]

J. M. Schmitt, S. L. Lee, and K. M. Yung, “An optical coherence microscope with enhanced resolving power in thick tissue,” Opt. Commun.142(4-6), 203–207 (1997).
[CrossRef]

1996 (2)

A. P. Beers and G. L. van der Heijde, “Age-related changes in the accommodation mechanism,” Optom. Vis. Sci.73(4), 235–242 (1996).
[CrossRef] [PubMed]

G. L. van der Heijde, A. P. Beers, and M. Dubbelman, “Microfluctuations of steady-state accommodation measured with ultrasonography,” Ophthalmic Physiol. Opt.16(3), 216–221 (1996).
[CrossRef] [PubMed]

1995 (1)

D. A. Atchison, A. Bradley, L. N. Thibos, and G. Smith, “Useful variations of the Badal optometer,” Optom. Vis. Sci.72(4), 279–284 (1995).
[CrossRef] [PubMed]

1994 (1)

A. P. Beers and G. L. Van Der Heijde, “In vivo determination of the biomechanical properties of the component elements of the accommodation mechanism,” Vision Res.34(21), 2897–2905 (1994).
[CrossRef] [PubMed]

1988 (1)

A. G. Bennett, “A method of determining the equivalent powers of the eye and its crystalline lens without resort to phakometry,” Ophthalmic Physiol. Opt.8(1), 53–59 (1988).
[CrossRef] [PubMed]

1959 (1)

F. S. Said and R. A. Weale, “The variation with age of the spectral transmissivity of the living human crystalline lens,” Gerontologia3(4), 213–231 (1959).
[CrossRef] [PubMed]

Anderson, H. A.

H. A. Anderson, A. Glasser, R. E. Manny, and K. K. Stuebing, “Age-related changes in accommodative dynamics from preschool to adulthood,” Invest. Ophthalmol. Vis. Sci.51(1), 614–622 (2010).
[CrossRef] [PubMed]

Atchison, D. A.

D. A. Atchison and G. Smith, “Chromatic dispersion of the ocular media of human eyes,” J. Opt. Soc. Am. A22(1), 29–37 (2005).
[CrossRef]

D. A. Atchison, A. Bradley, L. N. Thibos, and G. Smith, “Useful variations of the Badal optometer,” Optom. Vis. Sci.72(4), 279–284 (1995).
[CrossRef] [PubMed]

Bajraszewski, T.

M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, “In vivo human retinal imaging by Fourier domain optical coherence tomography,” J. Biomed. Opt.7(3), 457–463 (2002).
[CrossRef] [PubMed]

Barr, H.

J. Holmes, S. Hattersley, N. Stone, F. Bazant-Hegemark, and H. Barr, “Multi-channel Fourier domain OCT system with superior lateral resolution for biomedical applications,” Proc. SPIE6847, 68470O, 68470O-9 (2008).
[CrossRef]

Baumann, B.

J. Jungwirth, B. Baumann, M. Pircher, E. Götzinger, and C. K. Hitzenberger, “Extended in vivo anterior eye-segment imaging with full-range complex spectral domain optical coherence tomography,” J. Biomed. Opt.14(5), 050501 (2009).
[CrossRef] [PubMed]

Baumgartner, A.

W. Drexler, A. Baumgartner, O. Findl, C. K. Hitzenberger, and A. F. Fercher, “Biometric investigation of changes in the anterior eye segment during accommodation,” Vision Res.37(19), 2789–2800 (1997).
[CrossRef] [PubMed]

Bazant-Hegemark, F.

J. Holmes, S. Hattersley, N. Stone, F. Bazant-Hegemark, and H. Barr, “Multi-channel Fourier domain OCT system with superior lateral resolution for biomedical applications,” Proc. SPIE6847, 68470O, 68470O-9 (2008).
[CrossRef]

Beers, A. P.

A. P. Beers and G. L. van der Heijde, “Age-related changes in the accommodation mechanism,” Optom. Vis. Sci.73(4), 235–242 (1996).
[CrossRef] [PubMed]

G. L. van der Heijde, A. P. Beers, and M. Dubbelman, “Microfluctuations of steady-state accommodation measured with ultrasonography,” Ophthalmic Physiol. Opt.16(3), 216–221 (1996).
[CrossRef] [PubMed]

A. P. Beers and G. L. Van Der Heijde, “In vivo determination of the biomechanical properties of the component elements of the accommodation mechanism,” Vision Res.34(21), 2897–2905 (1994).
[CrossRef] [PubMed]

Belabas, N.

Bennett, A. G.

A. G. Bennett, “A method of determining the equivalent powers of the eye and its crystalline lens without resort to phakometry,” Ophthalmic Physiol. Opt.8(1), 53–59 (1988).
[CrossRef] [PubMed]

Bharadwaj, S. R.

C. M. Schor and S. R. Bharadwaj, “A pulse-step model of accommodation dynamics in the aging eye,” Vision Res.45(10), 1237–1254 (2005).
[CrossRef] [PubMed]

Boppart, S. A.

Borja, D.

S. R. Uhlhorn, D. Borja, F. Manns, and J. M. Parel, “Refractive index measurement of the isolated crystalline lens using optical coherence tomography,” Vision Res.48(27), 2732–2738 (2008).
[CrossRef] [PubMed]

Bouma, B. E.

Bradley, A.

D. A. Atchison, A. Bradley, L. N. Thibos, and G. Smith, “Useful variations of the Badal optometer,” Optom. Vis. Sci.72(4), 279–284 (1995).
[CrossRef] [PubMed]

Bustamante, T.

A. Dhalla, T. Bustamante, D. Nanikivil, H. Hendargo, R. McNabb, A. Kuo, and J. A. Izatt, “Dual-depth SSOCT for simultaneous complex resolved anterior segment and conventional retinal imaging,” Proc. SPIE8213, 82131G (2012).
[CrossRef]

Cable, A. E.

B. Potsaid, V. Jayaraman, J. G. Fujimoto, J. Jiang, P. J. S. Heim, and A. E. Cable, “MEMS tunable VCSEL light source for ultrahigh speed 60kHz—1MHz axial scan rate and long range centimeter class OCT imaging,” Proc. SPIE8213, 82130M (2012).
[CrossRef]

Cense, B.

Chai, X.

Charalambous, I.

A. Podoleanu, I. Charalambous, L. Plesea, A. Dogariu, and R. Rosen, “Correction of distortions in optical coherence tomography imaging of the eye,” Phys. Med. Biol.49(7), 1277–1294 (2004).
[CrossRef] [PubMed]

Charman, W. N.

G. Heron and W. N. Charman, “Accommodation as a function of age and the linearity of the response dynamics,” Vision Res.44(27), 3119–3130 (2004).
[CrossRef] [PubMed]

Chen, T. C.

Chen, Y.

Chen, Z.

Choi, D.

Ciuffreda, K. J.

J. A. Mordi and K. J. Ciuffreda, “Dynamic aspects of accommodation: age and presbyopia,” Vision Res.44(6), 591–601 (2004).
[CrossRef] [PubMed]

Cook, C.

R. Subramanian, C. Cook, M. Croft, K. L. DePaul, M. Neider, N. J. Ferrier, P. L. Kaufman, and J. F. Koretz, “Unilateral real-time Scheimpflug videography to study accommodation dynamics in human eyes,” Invest. Ophthalmol. Vis. Sci.44, ARVO E-Abstract 240 (2003).

Croft, M.

R. Subramanian, C. Cook, M. Croft, K. L. DePaul, M. Neider, N. J. Ferrier, P. L. Kaufman, and J. F. Koretz, “Unilateral real-time Scheimpflug videography to study accommodation dynamics in human eyes,” Invest. Ophthalmol. Vis. Sci.44, ARVO E-Abstract 240 (2003).

Dai, C.

Day, M.

N. C. Strang, M. Day, L. S. Gray, and D. Seidel, “Accommodation steps, target spatial frequency and refractive error,” Ophthalmic Physiol. Opt.31(5), 444–455 (2011).
[CrossRef] [PubMed]

de Boer, J. F.

de Freitas, C. P.

C. P. de Freitas, M. Ruggeri, S. Uhlhorn, F. Manns, and J. M. Parel, “Refractive index of the in vivo human crystalline lens measured using whole-eye optical coherence tomography,” Invest Ophthalmol Vis Sci53, E-Abstract 1341 (2012).

DePaul, K. L.

R. Subramanian, C. Cook, M. Croft, K. L. DePaul, M. Neider, N. J. Ferrier, P. L. Kaufman, and J. F. Koretz, “Unilateral real-time Scheimpflug videography to study accommodation dynamics in human eyes,” Invest. Ophthalmol. Vis. Sci.44, ARVO E-Abstract 240 (2003).

Dhalla, A.

A. Dhalla, T. Bustamante, D. Nanikivil, H. Hendargo, R. McNabb, A. Kuo, and J. A. Izatt, “Dual-depth SSOCT for simultaneous complex resolved anterior segment and conventional retinal imaging,” Proc. SPIE8213, 82131G (2012).
[CrossRef]

Dickensheets, L. D.

B. Qi, A. P. Himmer, L. M. Gordon, X. D. Yang, L. D. Dickensheets, and I. A. Vitkin, “Dynamic focus control in high-speed optical coherence tomography based on a microelectromechanical mirror,” Opt. Commun.232(1-6), 123–128 (2004).
[CrossRef]

Dogariu, A.

A. Podoleanu, I. Charalambous, L. Plesea, A. Dogariu, and R. Rosen, “Correction of distortions in optical coherence tomography imaging of the eye,” Phys. Med. Biol.49(7), 1277–1294 (2004).
[CrossRef] [PubMed]

Dorrer, C.

Drexler, W.

F. Lexer, C. K. Hitzenberger, W. Drexler, S. Molebny, H. Sattmann, M. Sticker, and A. F. Fercher, “Dynamic coherent focus OCT with depth independent transversal resolution,” J. Mod. Opt.46, 541–553 (1999).

W. Drexler, U. Morgner, F. X. Kärtner, C. Pitris, S. A. Boppart, X. D. Li, E. P. Ippen, and J. G. Fujimoto, “In vivo ultrahigh-resolution optical coherence tomography,” Opt. Lett.24(17), 1221–1223 (1999).
[CrossRef] [PubMed]

W. Drexler, A. Baumgartner, O. Findl, C. K. Hitzenberger, and A. F. Fercher, “Biometric investigation of changes in the anterior eye segment during accommodation,” Vision Res.37(19), 2789–2800 (1997).
[CrossRef] [PubMed]

Dubbelman, M.

M. Dubbelman, G. L. Van der Heijde, and H. A. Weeber, “Change in shape of the aging human crystalline lens with accommodation,” Vision Res.45(1), 117–132 (2005).
[CrossRef] [PubMed]

M. Dubbelman and G. L. Van der Heijde, “The shape of the aging human lens: curvature, equivalent refractive index and the lens paradox,” Vision Res.41(14), 1867–1877 (2001).
[CrossRef] [PubMed]

G. L. van der Heijde, A. P. Beers, and M. Dubbelman, “Microfluctuations of steady-state accommodation measured with ultrasonography,” Ophthalmic Physiol. Opt.16(3), 216–221 (1996).
[CrossRef] [PubMed]

Fan, S.

Fercher, A. F.

R. J. Zawadzki, C. Leisser, R. Leitgeb, M. Pircher, and A. F. Fercher, “Three-dimensional ophthalmic optical coherence tomography with a refraction correction algorithm,” Proc. SPIE5140, 20–27 (2003).
[CrossRef]

M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, “In vivo human retinal imaging by Fourier domain optical coherence tomography,” J. Biomed. Opt.7(3), 457–463 (2002).
[CrossRef] [PubMed]

F. Lexer, C. K. Hitzenberger, W. Drexler, S. Molebny, H. Sattmann, M. Sticker, and A. F. Fercher, “Dynamic coherent focus OCT with depth independent transversal resolution,” J. Mod. Opt.46, 541–553 (1999).

W. Drexler, A. Baumgartner, O. Findl, C. K. Hitzenberger, and A. F. Fercher, “Biometric investigation of changes in the anterior eye segment during accommodation,” Vision Res.37(19), 2789–2800 (1997).
[CrossRef] [PubMed]

Ferrier, N. J.

R. Subramanian, C. Cook, M. Croft, K. L. DePaul, M. Neider, N. J. Ferrier, P. L. Kaufman, and J. F. Koretz, “Unilateral real-time Scheimpflug videography to study accommodation dynamics in human eyes,” Invest. Ophthalmol. Vis. Sci.44, ARVO E-Abstract 240 (2003).

Findl, O.

W. Drexler, A. Baumgartner, O. Findl, C. K. Hitzenberger, and A. F. Fercher, “Biometric investigation of changes in the anterior eye segment during accommodation,” Vision Res.37(19), 2789–2800 (1997).
[CrossRef] [PubMed]

Fujimoto, J. G.

B. Potsaid, V. Jayaraman, J. G. Fujimoto, J. Jiang, P. J. S. Heim, and A. E. Cable, “MEMS tunable VCSEL light source for ultrahigh speed 60kHz—1MHz axial scan rate and long range centimeter class OCT imaging,” Proc. SPIE8213, 82130M (2012).
[CrossRef]

W. Drexler, U. Morgner, F. X. Kärtner, C. Pitris, S. A. Boppart, X. D. Li, E. P. Ippen, and J. G. Fujimoto, “In vivo ultrahigh-resolution optical coherence tomography,” Opt. Lett.24(17), 1221–1223 (1999).
[CrossRef] [PubMed]

Furukawa, H.

Gambra, E.

E. Gambra, Y. Wang, J. Yuan, P. B. Kruger, and S. Marcos, “Dynamic accommodation with simulated targets blurred with high order aberrations,” Vision Res.50(19), 1922–1927 (2010).
[CrossRef] [PubMed]

Glasser, A.

H. A. Anderson, A. Glasser, R. E. Manny, and K. K. Stuebing, “Age-related changes in accommodative dynamics from preschool to adulthood,” Invest. Ophthalmol. Vis. Sci.51(1), 614–622 (2010).
[CrossRef] [PubMed]

S. Kasthurirangan, A. S. Vilupuru, and A. Glasser, “Amplitude dependent accommodative dynamics in humans,” Vision Res.43(27), 2945–2956 (2003).
[CrossRef] [PubMed]

Gora, M.

Gorczynska, I.

Gordon, L. M.

B. Qi, A. P. Himmer, L. M. Gordon, X. D. Yang, L. D. Dickensheets, and I. A. Vitkin, “Dynamic focus control in high-speed optical coherence tomography based on a microelectromechanical mirror,” Opt. Commun.232(1-6), 123–128 (2004).
[CrossRef]

Götzinger, E.

J. Jungwirth, B. Baumann, M. Pircher, E. Götzinger, and C. K. Hitzenberger, “Extended in vivo anterior eye-segment imaging with full-range complex spectral domain optical coherence tomography,” J. Biomed. Opt.14(5), 050501 (2009).
[CrossRef] [PubMed]

Gray, L. S.

N. C. Strang, M. Day, L. S. Gray, and D. Seidel, “Accommodation steps, target spatial frequency and refractive error,” Ophthalmic Physiol. Opt.31(5), 444–455 (2011).
[CrossRef] [PubMed]

Grulkowski, I.

Hattersley, S.

J. Holmes, S. Hattersley, N. Stone, F. Bazant-Hegemark, and H. Barr, “Multi-channel Fourier domain OCT system with superior lateral resolution for biomedical applications,” Proc. SPIE6847, 68470O, 68470O-9 (2008).
[CrossRef]

Häusler, G.

G. Häusler and M. W. Lindner, “‘Coherence radar’ and ‘spectral radar’—new tools for dermatological diagnosis,” J. Biomed. Opt.3(1), 21–31 (1998).
[CrossRef]

Heim, P. J. S.

B. Potsaid, V. Jayaraman, J. G. Fujimoto, J. Jiang, P. J. S. Heim, and A. E. Cable, “MEMS tunable VCSEL light source for ultrahigh speed 60kHz—1MHz axial scan rate and long range centimeter class OCT imaging,” Proc. SPIE8213, 82130M (2012).
[CrossRef]

Hendargo, H.

A. Dhalla, T. Bustamante, D. Nanikivil, H. Hendargo, R. McNabb, A. Kuo, and J. A. Izatt, “Dual-depth SSOCT for simultaneous complex resolved anterior segment and conventional retinal imaging,” Proc. SPIE8213, 82131G (2012).
[CrossRef]

Heron, G.

G. Heron and W. N. Charman, “Accommodation as a function of age and the linearity of the response dynamics,” Vision Res.44(27), 3119–3130 (2004).
[CrossRef] [PubMed]

Himmer, A. P.

B. Qi, A. P. Himmer, L. M. Gordon, X. D. Yang, L. D. Dickensheets, and I. A. Vitkin, “Dynamic focus control in high-speed optical coherence tomography based on a microelectromechanical mirror,” Opt. Commun.232(1-6), 123–128 (2004).
[CrossRef]

Hiro-Oka, H.

Hitzenberger, C. K.

J. Jungwirth, B. Baumann, M. Pircher, E. Götzinger, and C. K. Hitzenberger, “Extended in vivo anterior eye-segment imaging with full-range complex spectral domain optical coherence tomography,” J. Biomed. Opt.14(5), 050501 (2009).
[CrossRef] [PubMed]

F. Lexer, C. K. Hitzenberger, W. Drexler, S. Molebny, H. Sattmann, M. Sticker, and A. F. Fercher, “Dynamic coherent focus OCT with depth independent transversal resolution,” J. Mod. Opt.46, 541–553 (1999).

W. Drexler, A. Baumgartner, O. Findl, C. K. Hitzenberger, and A. F. Fercher, “Biometric investigation of changes in the anterior eye segment during accommodation,” Vision Res.37(19), 2789–2800 (1997).
[CrossRef] [PubMed]

Holmes, J.

J. Holmes, S. Hattersley, N. Stone, F. Bazant-Hegemark, and H. Barr, “Multi-channel Fourier domain OCT system with superior lateral resolution for biomedical applications,” Proc. SPIE6847, 68470O, 68470O-9 (2008).
[CrossRef]

Hyle Park, B.

Igarashi, A.

Ippen, E. P.

Ishikawa, H.

Izatt, J.

Izatt, J. A.

A. Dhalla, T. Bustamante, D. Nanikivil, H. Hendargo, R. McNabb, A. Kuo, and J. A. Izatt, “Dual-depth SSOCT for simultaneous complex resolved anterior segment and conventional retinal imaging,” Proc. SPIE8213, 82131G (2012).
[CrossRef]

Jayaraman, V.

B. Potsaid, V. Jayaraman, J. G. Fujimoto, J. Jiang, P. J. S. Heim, and A. E. Cable, “MEMS tunable VCSEL light source for ultrahigh speed 60kHz—1MHz axial scan rate and long range centimeter class OCT imaging,” Proc. SPIE8213, 82130M (2012).
[CrossRef]

Jiang, J.

B. Potsaid, V. Jayaraman, J. G. Fujimoto, J. Jiang, P. J. S. Heim, and A. E. Cable, “MEMS tunable VCSEL light source for ultrahigh speed 60kHz—1MHz axial scan rate and long range centimeter class OCT imaging,” Proc. SPIE8213, 82130M (2012).
[CrossRef]

Jiao, S.

Joffre, M.

Jungwirth, J.

J. Jungwirth, B. Baumann, M. Pircher, E. Götzinger, and C. K. Hitzenberger, “Extended in vivo anterior eye-segment imaging with full-range complex spectral domain optical coherence tomography,” J. Biomed. Opt.14(5), 050501 (2009).
[CrossRef] [PubMed]

Kärtner, F. X.

Kasthurirangan, S.

S. Kasthurirangan, A. S. Vilupuru, and A. Glasser, “Amplitude dependent accommodative dynamics in humans,” Vision Res.43(27), 2945–2956 (2003).
[CrossRef] [PubMed]

Kaufman, P. L.

R. Subramanian, C. Cook, M. Croft, K. L. DePaul, M. Neider, N. J. Ferrier, P. L. Kaufman, and J. F. Koretz, “Unilateral real-time Scheimpflug videography to study accommodation dynamics in human eyes,” Invest. Ophthalmol. Vis. Sci.44, ARVO E-Abstract 240 (2003).

Kerbage, C.

Koretz, J. F.

R. Subramanian, C. Cook, M. Croft, K. L. DePaul, M. Neider, N. J. Ferrier, P. L. Kaufman, and J. F. Koretz, “Unilateral real-time Scheimpflug videography to study accommodation dynamics in human eyes,” Invest. Ophthalmol. Vis. Sci.44, ARVO E-Abstract 240 (2003).

Kowalczyk, A.

I. Grulkowski, M. Gora, M. Szkulmowski, I. Gorczynska, D. Szlag, S. Marcos, A. Kowalczyk, and M. Wojtkowski, “Anterior segment imaging with Spectral OCT system using a high-speed CMOS camera,” Opt. Express17(6), 4842–4858 (2009).
[CrossRef] [PubMed]

M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, “In vivo human retinal imaging by Fourier domain optical coherence tomography,” J. Biomed. Opt.7(3), 457–463 (2002).
[CrossRef] [PubMed]

Kruger, P. B.

E. Gambra, Y. Wang, J. Yuan, P. B. Kruger, and S. Marcos, “Dynamic accommodation with simulated targets blurred with high order aberrations,” Vision Res.50(19), 1922–1927 (2010).
[CrossRef] [PubMed]

Kuo, A.

A. Dhalla, T. Bustamante, D. Nanikivil, H. Hendargo, R. McNabb, A. Kuo, and J. A. Izatt, “Dual-depth SSOCT for simultaneous complex resolved anterior segment and conventional retinal imaging,” Proc. SPIE8213, 82131G (2012).
[CrossRef]

Lee, E. C.

Lee, S. L.

J. M. Schmitt, S. L. Lee, and K. M. Yung, “An optical coherence microscope with enhanced resolving power in thick tissue,” Opt. Commun.142(4-6), 203–207 (1997).
[CrossRef]

Leisser, C.

R. J. Zawadzki, C. Leisser, R. Leitgeb, M. Pircher, and A. F. Fercher, “Three-dimensional ophthalmic optical coherence tomography with a refraction correction algorithm,” Proc. SPIE5140, 20–27 (2003).
[CrossRef]

Leitgeb, R.

R. J. Zawadzki, C. Leisser, R. Leitgeb, M. Pircher, and A. F. Fercher, “Three-dimensional ophthalmic optical coherence tomography with a refraction correction algorithm,” Proc. SPIE5140, 20–27 (2003).
[CrossRef]

M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, “In vivo human retinal imaging by Fourier domain optical coherence tomography,” J. Biomed. Opt.7(3), 457–463 (2002).
[CrossRef] [PubMed]

Lexer, F.

F. Lexer, C. K. Hitzenberger, W. Drexler, S. Molebny, H. Sattmann, M. Sticker, and A. F. Fercher, “Dynamic coherent focus OCT with depth independent transversal resolution,” J. Mod. Opt.46, 541–553 (1999).

Li, X. D.

Likforman, J. P.

Lim, H.

Lindner, M. W.

G. Häusler and M. W. Lindner, “‘Coherence radar’ and ‘spectral radar’—new tools for dermatological diagnosis,” J. Biomed. Opt.3(1), 21–31 (1998).
[CrossRef]

Manns, F.

C. P. de Freitas, M. Ruggeri, S. Uhlhorn, F. Manns, and J. M. Parel, “Refractive index of the in vivo human crystalline lens measured using whole-eye optical coherence tomography,” Invest Ophthalmol Vis Sci53, E-Abstract 1341 (2012).

S. R. Uhlhorn, D. Borja, F. Manns, and J. M. Parel, “Refractive index measurement of the isolated crystalline lens using optical coherence tomography,” Vision Res.48(27), 2732–2738 (2008).
[CrossRef] [PubMed]

S. R. Uhlhorn, F. Manns, H. Tahi, R. O. Pascal, and J. M. Parel, “Corneal group refractive index measurement using low-coherence interferometry,” Proc. SPIE3246, 14–21 (1998).
[CrossRef]

Manny, R. E.

H. A. Anderson, A. Glasser, R. E. Manny, and K. K. Stuebing, “Age-related changes in accommodative dynamics from preschool to adulthood,” Invest. Ophthalmol. Vis. Sci.51(1), 614–622 (2010).
[CrossRef] [PubMed]

Marcos, S.

McNabb, R.

A. Dhalla, T. Bustamante, D. Nanikivil, H. Hendargo, R. McNabb, A. Kuo, and J. A. Izatt, “Dual-depth SSOCT for simultaneous complex resolved anterior segment and conventional retinal imaging,” Proc. SPIE8213, 82131G (2012).
[CrossRef]

Molebny, S.

F. Lexer, C. K. Hitzenberger, W. Drexler, S. Molebny, H. Sattmann, M. Sticker, and A. F. Fercher, “Dynamic coherent focus OCT with depth independent transversal resolution,” J. Mod. Opt.46, 541–553 (1999).

Mordi, J. A.

J. A. Mordi and K. J. Ciuffreda, “Dynamic aspects of accommodation: age and presbyopia,” Vision Res.44(6), 591–601 (2004).
[CrossRef] [PubMed]

Morgner, U.

Mujat, M.

Nakanishi, M.

Nanikivil, D.

A. Dhalla, T. Bustamante, D. Nanikivil, H. Hendargo, R. McNabb, A. Kuo, and J. A. Izatt, “Dual-depth SSOCT for simultaneous complex resolved anterior segment and conventional retinal imaging,” Proc. SPIE8213, 82131G (2012).
[CrossRef]

Nassif, N.

Neider, M.

R. Subramanian, C. Cook, M. Croft, K. L. DePaul, M. Neider, N. J. Ferrier, P. L. Kaufman, and J. F. Koretz, “Unilateral real-time Scheimpflug videography to study accommodation dynamics in human eyes,” Invest. Ophthalmol. Vis. Sci.44, ARVO E-Abstract 240 (2003).

Ohbayashi, K.

Ortiz, S.

Pan, Y.

Parel, J. M.

C. P. de Freitas, M. Ruggeri, S. Uhlhorn, F. Manns, and J. M. Parel, “Refractive index of the in vivo human crystalline lens measured using whole-eye optical coherence tomography,” Invest Ophthalmol Vis Sci53, E-Abstract 1341 (2012).

S. R. Uhlhorn, D. Borja, F. Manns, and J. M. Parel, “Refractive index measurement of the isolated crystalline lens using optical coherence tomography,” Vision Res.48(27), 2732–2738 (2008).
[CrossRef] [PubMed]

S. R. Uhlhorn, F. Manns, H. Tahi, R. O. Pascal, and J. M. Parel, “Corneal group refractive index measurement using low-coherence interferometry,” Proc. SPIE3246, 14–21 (1998).
[CrossRef]

Pascal, R. O.

S. R. Uhlhorn, F. Manns, H. Tahi, R. O. Pascal, and J. M. Parel, “Corneal group refractive index measurement using low-coherence interferometry,” Proc. SPIE3246, 14–21 (1998).
[CrossRef]

Pascual, D.

Pircher, M.

J. Jungwirth, B. Baumann, M. Pircher, E. Götzinger, and C. K. Hitzenberger, “Extended in vivo anterior eye-segment imaging with full-range complex spectral domain optical coherence tomography,” J. Biomed. Opt.14(5), 050501 (2009).
[CrossRef] [PubMed]

R. J. Zawadzki, C. Leisser, R. Leitgeb, M. Pircher, and A. F. Fercher, “Three-dimensional ophthalmic optical coherence tomography with a refraction correction algorithm,” Proc. SPIE5140, 20–27 (2003).
[CrossRef]

Pitris, C.

Plesea, L.

A. Podoleanu, I. Charalambous, L. Plesea, A. Dogariu, and R. Rosen, “Correction of distortions in optical coherence tomography imaging of the eye,” Phys. Med. Biol.49(7), 1277–1294 (2004).
[CrossRef] [PubMed]

Podoleanu, A.

A. Podoleanu, I. Charalambous, L. Plesea, A. Dogariu, and R. Rosen, “Correction of distortions in optical coherence tomography imaging of the eye,” Phys. Med. Biol.49(7), 1277–1294 (2004).
[CrossRef] [PubMed]

Potsaid, B.

B. Potsaid, V. Jayaraman, J. G. Fujimoto, J. Jiang, P. J. S. Heim, and A. E. Cable, “MEMS tunable VCSEL light source for ultrahigh speed 60kHz—1MHz axial scan rate and long range centimeter class OCT imaging,” Proc. SPIE8213, 82130M (2012).
[CrossRef]

Qi, B.

B. Qi, A. P. Himmer, L. M. Gordon, X. D. Yang, L. D. Dickensheets, and I. A. Vitkin, “Dynamic focus control in high-speed optical coherence tomography based on a microelectromechanical mirror,” Opt. Commun.232(1-6), 123–128 (2004).
[CrossRef]

Radhakrishnan, S.

Remon, L.

Ren, Q.

Rollins, A.

Rollins, A. M.

Rosen, R.

A. Podoleanu, I. Charalambous, L. Plesea, A. Dogariu, and R. Rosen, “Correction of distortions in optical coherence tomography imaging of the eye,” Phys. Med. Biol.49(7), 1277–1294 (2004).
[CrossRef] [PubMed]

Ruggeri, M.

C. P. de Freitas, M. Ruggeri, S. Uhlhorn, F. Manns, and J. M. Parel, “Refractive index of the in vivo human crystalline lens measured using whole-eye optical coherence tomography,” Invest Ophthalmol Vis Sci53, E-Abstract 1341 (2012).

Said, F. S.

F. S. Said and R. A. Weale, “The variation with age of the spectral transmissivity of the living human crystalline lens,” Gerontologia3(4), 213–231 (1959).
[CrossRef] [PubMed]

Satoh, N.

Sattmann, H.

F. Lexer, C. K. Hitzenberger, W. Drexler, S. Molebny, H. Sattmann, M. Sticker, and A. F. Fercher, “Dynamic coherent focus OCT with depth independent transversal resolution,” J. Mod. Opt.46, 541–553 (1999).

Schmitt, J. M.

J. M. Schmitt, S. L. Lee, and K. M. Yung, “An optical coherence microscope with enhanced resolving power in thick tissue,” Opt. Commun.142(4-6), 203–207 (1997).
[CrossRef]

Schor, C. M.

C. M. Schor and S. R. Bharadwaj, “A pulse-step model of accommodation dynamics in the aging eye,” Vision Res.45(10), 1237–1254 (2005).
[CrossRef] [PubMed]

Seidel, D.

N. C. Strang, M. Day, L. S. Gray, and D. Seidel, “Accommodation steps, target spatial frequency and refractive error,” Ophthalmic Physiol. Opt.31(5), 444–455 (2011).
[CrossRef] [PubMed]

Shimizu, K.

Siedlecki, D.

Smith, G.

D. A. Atchison and G. Smith, “Chromatic dispersion of the ocular media of human eyes,” J. Opt. Soc. Am. A22(1), 29–37 (2005).
[CrossRef]

D. A. Atchison, A. Bradley, L. N. Thibos, and G. Smith, “Useful variations of the Badal optometer,” Optom. Vis. Sci.72(4), 279–284 (1995).
[CrossRef] [PubMed]

Sticker, M.

F. Lexer, C. K. Hitzenberger, W. Drexler, S. Molebny, H. Sattmann, M. Sticker, and A. F. Fercher, “Dynamic coherent focus OCT with depth independent transversal resolution,” J. Mod. Opt.46, 541–553 (1999).

Stone, N.

J. Holmes, S. Hattersley, N. Stone, F. Bazant-Hegemark, and H. Barr, “Multi-channel Fourier domain OCT system with superior lateral resolution for biomedical applications,” Proc. SPIE6847, 68470O, 68470O-9 (2008).
[CrossRef]

Strang, N. C.

N. C. Strang, M. Day, L. S. Gray, and D. Seidel, “Accommodation steps, target spatial frequency and refractive error,” Ophthalmic Physiol. Opt.31(5), 444–455 (2011).
[CrossRef] [PubMed]

Stuebing, K. K.

H. A. Anderson, A. Glasser, R. E. Manny, and K. K. Stuebing, “Age-related changes in accommodative dynamics from preschool to adulthood,” Invest. Ophthalmol. Vis. Sci.51(1), 614–622 (2010).
[CrossRef] [PubMed]

Subramanian, R.

R. Subramanian, C. Cook, M. Croft, K. L. DePaul, M. Neider, N. J. Ferrier, P. L. Kaufman, and J. F. Koretz, “Unilateral real-time Scheimpflug videography to study accommodation dynamics in human eyes,” Invest. Ophthalmol. Vis. Sci.44, ARVO E-Abstract 240 (2003).

Szkulmowski, M.

Szlag, D.

Tahi, H.

S. R. Uhlhorn, F. Manns, H. Tahi, R. O. Pascal, and J. M. Parel, “Corneal group refractive index measurement using low-coherence interferometry,” Proc. SPIE3246, 14–21 (1998).
[CrossRef]

Tearney, G. J.

Thibos, L. N.

D. A. Atchison, A. Bradley, L. N. Thibos, and G. Smith, “Useful variations of the Badal optometer,” Optom. Vis. Sci.72(4), 279–284 (1995).
[CrossRef] [PubMed]

Uhlhorn, S.

C. P. de Freitas, M. Ruggeri, S. Uhlhorn, F. Manns, and J. M. Parel, “Refractive index of the in vivo human crystalline lens measured using whole-eye optical coherence tomography,” Invest Ophthalmol Vis Sci53, E-Abstract 1341 (2012).

Uhlhorn, S. R.

S. R. Uhlhorn, D. Borja, F. Manns, and J. M. Parel, “Refractive index measurement of the isolated crystalline lens using optical coherence tomography,” Vision Res.48(27), 2732–2738 (2008).
[CrossRef] [PubMed]

S. R. Uhlhorn, F. Manns, H. Tahi, R. O. Pascal, and J. M. Parel, “Corneal group refractive index measurement using low-coherence interferometry,” Proc. SPIE3246, 14–21 (1998).
[CrossRef]

Van der Heijde, G. L.

M. Dubbelman, G. L. Van der Heijde, and H. A. Weeber, “Change in shape of the aging human crystalline lens with accommodation,” Vision Res.45(1), 117–132 (2005).
[CrossRef] [PubMed]

M. Dubbelman and G. L. Van der Heijde, “The shape of the aging human lens: curvature, equivalent refractive index and the lens paradox,” Vision Res.41(14), 1867–1877 (2001).
[CrossRef] [PubMed]

A. P. Beers and G. L. van der Heijde, “Age-related changes in the accommodation mechanism,” Optom. Vis. Sci.73(4), 235–242 (1996).
[CrossRef] [PubMed]

G. L. van der Heijde, A. P. Beers, and M. Dubbelman, “Microfluctuations of steady-state accommodation measured with ultrasonography,” Ophthalmic Physiol. Opt.16(3), 216–221 (1996).
[CrossRef] [PubMed]

A. P. Beers and G. L. Van Der Heijde, “In vivo determination of the biomechanical properties of the component elements of the accommodation mechanism,” Vision Res.34(21), 2897–2905 (1994).
[CrossRef] [PubMed]

Vilupuru, A. S.

S. Kasthurirangan, A. S. Vilupuru, and A. Glasser, “Amplitude dependent accommodative dynamics in humans,” Vision Res.43(27), 2945–2956 (2003).
[CrossRef] [PubMed]

Vitkin, I. A.

B. Qi, A. P. Himmer, L. M. Gordon, X. D. Yang, L. D. Dickensheets, and I. A. Vitkin, “Dynamic focus control in high-speed optical coherence tomography based on a microelectromechanical mirror,” Opt. Commun.232(1-6), 123–128 (2004).
[CrossRef]

Wang, H.

Wang, J.

Wang, Y.

E. Gambra, Y. Wang, J. Yuan, P. B. Kruger, and S. Marcos, “Dynamic accommodation with simulated targets blurred with high order aberrations,” Vision Res.50(19), 1922–1927 (2010).
[CrossRef] [PubMed]

Weale, R. A.

F. S. Said and R. A. Weale, “The variation with age of the spectral transmissivity of the living human crystalline lens,” Gerontologia3(4), 213–231 (1959).
[CrossRef] [PubMed]

Weeber, H. A.

M. Dubbelman, G. L. Van der Heijde, and H. A. Weeber, “Change in shape of the aging human crystalline lens with accommodation,” Vision Res.45(1), 117–132 (2005).
[CrossRef] [PubMed]

Westphal, V.

Wojtkowski, M.

Yang, X. D.

B. Qi, A. P. Himmer, L. M. Gordon, X. D. Yang, L. D. Dickensheets, and I. A. Vitkin, “Dynamic focus control in high-speed optical coherence tomography based on a microelectromechanical mirror,” Opt. Commun.232(1-6), 123–128 (2004).
[CrossRef]

Yoshimura, R.

Yuan, J.

E. Gambra, Y. Wang, J. Yuan, P. B. Kruger, and S. Marcos, “Dynamic accommodation with simulated targets blurred with high order aberrations,” Vision Res.50(19), 1922–1927 (2010).
[CrossRef] [PubMed]

Yun, S. H.

Yung, K. M.

J. M. Schmitt, S. L. Lee, and K. M. Yung, “An optical coherence microscope with enhanced resolving power in thick tissue,” Opt. Commun.142(4-6), 203–207 (1997).
[CrossRef]

Zawadzki, R. J.

R. J. Zawadzki, C. Leisser, R. Leitgeb, M. Pircher, and A. F. Fercher, “Three-dimensional ophthalmic optical coherence tomography with a refraction correction algorithm,” Proc. SPIE5140, 20–27 (2003).
[CrossRef]

Zhou, C.

Biomed. Opt. Express (1)

Gerontologia (1)

F. S. Said and R. A. Weale, “The variation with age of the spectral transmissivity of the living human crystalline lens,” Gerontologia3(4), 213–231 (1959).
[CrossRef] [PubMed]

Invest Ophthalmol Vis Sci (1)

C. P. de Freitas, M. Ruggeri, S. Uhlhorn, F. Manns, and J. M. Parel, “Refractive index of the in vivo human crystalline lens measured using whole-eye optical coherence tomography,” Invest Ophthalmol Vis Sci53, E-Abstract 1341 (2012).

Invest. Ophthalmol. Vis. Sci. (2)

H. A. Anderson, A. Glasser, R. E. Manny, and K. K. Stuebing, “Age-related changes in accommodative dynamics from preschool to adulthood,” Invest. Ophthalmol. Vis. Sci.51(1), 614–622 (2010).
[CrossRef] [PubMed]

R. Subramanian, C. Cook, M. Croft, K. L. DePaul, M. Neider, N. J. Ferrier, P. L. Kaufman, and J. F. Koretz, “Unilateral real-time Scheimpflug videography to study accommodation dynamics in human eyes,” Invest. Ophthalmol. Vis. Sci.44, ARVO E-Abstract 240 (2003).

J. Biomed. Opt. (3)

J. Jungwirth, B. Baumann, M. Pircher, E. Götzinger, and C. K. Hitzenberger, “Extended in vivo anterior eye-segment imaging with full-range complex spectral domain optical coherence tomography,” J. Biomed. Opt.14(5), 050501 (2009).
[CrossRef] [PubMed]

G. Häusler and M. W. Lindner, “‘Coherence radar’ and ‘spectral radar’—new tools for dermatological diagnosis,” J. Biomed. Opt.3(1), 21–31 (1998).
[CrossRef]

M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, “In vivo human retinal imaging by Fourier domain optical coherence tomography,” J. Biomed. Opt.7(3), 457–463 (2002).
[CrossRef] [PubMed]

J. Mod. Opt. (1)

F. Lexer, C. K. Hitzenberger, W. Drexler, S. Molebny, H. Sattmann, M. Sticker, and A. F. Fercher, “Dynamic coherent focus OCT with depth independent transversal resolution,” J. Mod. Opt.46, 541–553 (1999).

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (1)

Ophthalmic Physiol. Opt. (3)

A. G. Bennett, “A method of determining the equivalent powers of the eye and its crystalline lens without resort to phakometry,” Ophthalmic Physiol. Opt.8(1), 53–59 (1988).
[CrossRef] [PubMed]

N. C. Strang, M. Day, L. S. Gray, and D. Seidel, “Accommodation steps, target spatial frequency and refractive error,” Ophthalmic Physiol. Opt.31(5), 444–455 (2011).
[CrossRef] [PubMed]

G. L. van der Heijde, A. P. Beers, and M. Dubbelman, “Microfluctuations of steady-state accommodation measured with ultrasonography,” Ophthalmic Physiol. Opt.16(3), 216–221 (1996).
[CrossRef] [PubMed]

Opt. Commun. (2)

B. Qi, A. P. Himmer, L. M. Gordon, X. D. Yang, L. D. Dickensheets, and I. A. Vitkin, “Dynamic focus control in high-speed optical coherence tomography based on a microelectromechanical mirror,” Opt. Commun.232(1-6), 123–128 (2004).
[CrossRef]

J. M. Schmitt, S. L. Lee, and K. M. Yung, “An optical coherence microscope with enhanced resolving power in thick tissue,” Opt. Commun.142(4-6), 203–207 (1997).
[CrossRef]

Opt. Express (6)

Opt. Lett. (3)

Optom. Vis. Sci. (2)

A. P. Beers and G. L. van der Heijde, “Age-related changes in the accommodation mechanism,” Optom. Vis. Sci.73(4), 235–242 (1996).
[CrossRef] [PubMed]

D. A. Atchison, A. Bradley, L. N. Thibos, and G. Smith, “Useful variations of the Badal optometer,” Optom. Vis. Sci.72(4), 279–284 (1995).
[CrossRef] [PubMed]

Phys. Med. Biol. (1)

A. Podoleanu, I. Charalambous, L. Plesea, A. Dogariu, and R. Rosen, “Correction of distortions in optical coherence tomography imaging of the eye,” Phys. Med. Biol.49(7), 1277–1294 (2004).
[CrossRef] [PubMed]

Proc. SPIE (5)

R. J. Zawadzki, C. Leisser, R. Leitgeb, M. Pircher, and A. F. Fercher, “Three-dimensional ophthalmic optical coherence tomography with a refraction correction algorithm,” Proc. SPIE5140, 20–27 (2003).
[CrossRef]

J. Holmes, S. Hattersley, N. Stone, F. Bazant-Hegemark, and H. Barr, “Multi-channel Fourier domain OCT system with superior lateral resolution for biomedical applications,” Proc. SPIE6847, 68470O, 68470O-9 (2008).
[CrossRef]

S. R. Uhlhorn, F. Manns, H. Tahi, R. O. Pascal, and J. M. Parel, “Corneal group refractive index measurement using low-coherence interferometry,” Proc. SPIE3246, 14–21 (1998).
[CrossRef]

B. Potsaid, V. Jayaraman, J. G. Fujimoto, J. Jiang, P. J. S. Heim, and A. E. Cable, “MEMS tunable VCSEL light source for ultrahigh speed 60kHz—1MHz axial scan rate and long range centimeter class OCT imaging,” Proc. SPIE8213, 82130M (2012).
[CrossRef]

A. Dhalla, T. Bustamante, D. Nanikivil, H. Hendargo, R. McNabb, A. Kuo, and J. A. Izatt, “Dual-depth SSOCT for simultaneous complex resolved anterior segment and conventional retinal imaging,” Proc. SPIE8213, 82131G (2012).
[CrossRef]

Vision Res. (10)

S. R. Uhlhorn, D. Borja, F. Manns, and J. M. Parel, “Refractive index measurement of the isolated crystalline lens using optical coherence tomography,” Vision Res.48(27), 2732–2738 (2008).
[CrossRef] [PubMed]

W. Drexler, A. Baumgartner, O. Findl, C. K. Hitzenberger, and A. F. Fercher, “Biometric investigation of changes in the anterior eye segment during accommodation,” Vision Res.37(19), 2789–2800 (1997).
[CrossRef] [PubMed]

C. M. Schor and S. R. Bharadwaj, “A pulse-step model of accommodation dynamics in the aging eye,” Vision Res.45(10), 1237–1254 (2005).
[CrossRef] [PubMed]

J. A. Mordi and K. J. Ciuffreda, “Dynamic aspects of accommodation: age and presbyopia,” Vision Res.44(6), 591–601 (2004).
[CrossRef] [PubMed]

A. P. Beers and G. L. Van Der Heijde, “In vivo determination of the biomechanical properties of the component elements of the accommodation mechanism,” Vision Res.34(21), 2897–2905 (1994).
[CrossRef] [PubMed]

S. Kasthurirangan, A. S. Vilupuru, and A. Glasser, “Amplitude dependent accommodative dynamics in humans,” Vision Res.43(27), 2945–2956 (2003).
[CrossRef] [PubMed]

E. Gambra, Y. Wang, J. Yuan, P. B. Kruger, and S. Marcos, “Dynamic accommodation with simulated targets blurred with high order aberrations,” Vision Res.50(19), 1922–1927 (2010).
[CrossRef] [PubMed]

G. Heron and W. N. Charman, “Accommodation as a function of age and the linearity of the response dynamics,” Vision Res.44(27), 3119–3130 (2004).
[CrossRef] [PubMed]

M. Dubbelman, G. L. Van der Heijde, and H. A. Weeber, “Change in shape of the aging human crystalline lens with accommodation,” Vision Res.45(1), 117–132 (2005).
[CrossRef] [PubMed]

M. Dubbelman and G. L. Van der Heijde, “The shape of the aging human lens: curvature, equivalent refractive index and the lens paradox,” Vision Res.41(14), 1867–1877 (2001).
[CrossRef] [PubMed]

Other (1)

American National Standards Institute, Safe Use of Lasers, ANSI-Z136.1 (ANSI, 1993).

Supplementary Material (4)

» Media 1: AVI (2668 KB)     
» Media 2: AVI (2711 KB)     
» Media 3: AVI (931 KB)     
» Media 4: AVI (931 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Schematic of the accommodation OCT system. The SD-OCT system is shown with the Optical Switch in the reference arm. SLD: Light source. LSC: Line-scan camera. FO: Objective lens of the spectrometer. C: Collimator. G: Grating. M1,M2,M3: Mirrors. GZ: Axial galvanometer scanner. The accommodation module and the OCT delivery unit are also shown. GX and GY: Transversal galvanometer scanners. FD: Objective lens of the OCT delivery unit. DM: Dichroic mirror. BS: Beam splitter. M: 45° Mirror. FB: Badal lens. FA: Auxiliary lens. FC: Collimating lens. T: Target. D: Diffuser. WLED: White light LED.

Fig. 2
Fig. 2

Plot of the sensitivity as a function of depth (A) and FWHM of the axial point spread functions (B).

Fig. 3
Fig. 3

(A) Schematic of the optical switch. GZ: axial galvanometer scanner. D1, D2 and D3: delay lines. M1, M2, and M3: mirrors. LS: linear stage. (B) Multiple frame acquisition. Frames F1 and F2 cover the anterior segment. Frame F3 covers the retina. (C) Timing diagram of the switching operations. During a frame acquisition, the signal VGZ is constant so that the reference beam is maintained at a specific delay line. The reference beam is then commuted to the next delay line at the end of a frame acquisition and during the inactive operation of the transversal galvanometer mirrors GX and/or GY. The optical switch operates during the inactive return scan of the lateral scanners. VGX: control signal of the transversal horizontal galvanometer scanner. EOF: end of frame event. VGZ: control signal of the axial horizontal scanner. tS: average switching time tS = 200 µs. VM1, VM2 and VM3: VGZ values corresponding to the reference beam aligned along the delay lines D1, D2 and D3, respectively. d12 and d13 are the optical paths differences between the delay lines.

Fig. 4
Fig. 4

Single frame OCT image of the anterior segment of a 35 year-old human eye. The main ocular structures are indicated: cornea (C), anterior chamber (AC), crystalline lens (L), iris (I) and angle (A). The image consists of 1000 A-lines of 2048 pixels each. The size of the frame in the axial direction is 7.6 mm when the mean group refractive index of the anterior segment is taken to be 1.37 at 840 nm. The lateral scanning length was set to 16mm. Zero-delay location (ZD) is indicated.

Fig. 5
Fig. 5

Generation of an image of the full depth anterior segment of a 35 year-old subject using the optical switch with two delay lines (D1 and D2). (A) Image of the anterior segment (F1) with delay line D1. (B) Image of the anterior segment (F2) with delay line D2. Regions of low contrast were removed from frame F1 (C) and F2 (D) at depths longer than d12/2 = 6.5 mm. (E) Cropped frames F1 and F2 are joined. The composite frame consists of 500 (lateral) × 2556 (axial) pixels. The size of the composite frame in the axial direction is 13 mm when the mean group refractive index of the anterior segment is taken to be 1.37 at 840 nm. The lateral scanning length was set to 16mm.

Fig. 6
Fig. 6

Generation of an image of the full-length anterior segment and the retina of a 35 year-old subject using the optical switch with three delay lines (D1, D2 and D3). The composite OCT image of the anterior segment (F1 + F2) together with the retina (F3) consists of 500 A-lines × 4604 (axial) pixels. Most of the vitreous chamber length is not imaged.

Fig. 7
Fig. 7

OCT cross-sectional images of the lens acquired: on a 24 year-old subject in the relaxed state (A) and in response to a 7 D accommodative stimulus (B), and on a 35 year-old subject in the relaxed state (C) and in response to a 7 D accommodative stimulus (D). Image density: 1000 A-lines × 2556 (axial) pixels. The size of the composite frame in the axial direction is 13 mm when the mean group refractive index of the anterior segment is taken to be 1.37 at 840 nm. The lateral scanning length was set to 16mm.

Fig. 8
Fig. 8

Real-time display of lens accommodation in a 24 year-old subject (Media 1) (A) and a 35 year-old subject (Media 2) (B). The movies were recorded during the accommodative responses from relaxed state (0 D stimulus) to a 7 D stimulus. The OCT images in the movies are continuously displayed at 12.5 fps during the accommodative responses from the relaxed state (0 D stimulus) to a 7 D accommodative stimulus.

Fig. 9
Fig. 9

(A) Real-time full-length display of accommodation in a 35 year old subject in response to a step stimulus from 0 D to 4 D (Media 3). (B) Real-time display of disaccommodation in response to a step stimulus from 4 D to 0 D (Media 4). The frame rate of the composite OCT images of the anterior segment and the retina in the movies is 8.25fps.

Fig. 10
Fig. 10

(A) Step stimulus from 0 D to 4 D. (B) Step stimulus from 4 D to 0 D. (C and D) Dynamics of the axial eye length in response to the accommodation stimulus (C) and the disaccommodation stimulus (C). (E and F) Dynamics of the axial eye length in response to the accommodation stimulus (E) and the disaccommodation stimulus (F). (G and H) Dynamics of the ocular distance changes in response to the accommodation stimulus (G) and the disaccommodation stimulus (H). The displayed length changes were calculated by subtracting from the measurements the minimum value measured in the relaxed state. (I and L) Exponential fits of the time dependent change in lens thickness during accommodation (I) and disaccommodation (L).

Tables (2)

Tables Icon

Table 1 Group refractive index of the cornea [28], the crystalline lens [12] and the aqueous, vitreous humors [29] and retina [30] at 840 nm used to convert optical distances

Tables Icon

Table 2 Mean and standard deviation of the corneal thickness, eye axial length, anterior chamber depth and crystalline lens thickness during accommodation and disaccommodation in a 35 year old subject

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

x L ( t )=Δ x L ( 1 e tΔt τ )
x L ( t )=Δ x L e tΔt τ

Metrics