Abstract

Hyperspectral imaging has the potential to achieve high spatial resolution and high functional sensitivity for non-invasive assessment of tissue oxygenation. However, clinical acceptance of hyperspectral imaging in ischemic wound assessment is hampered by its poor reproducibility, low accuracy, and misinterpreted biology. These limitations are partially caused by the lack of a traceable calibration standard. We proposed a digital tissue phantom (DTP) platform for quantitative calibration and performance evaluation of spectral wound imaging devices. The technical feasibility of such a DTP platform was demonstrated by both in vitro and in vivo experiments. The in vitro DTPs were developed based on a liquid blood phantom model. The in vivo DTPs were developed based on a porcine ischemic skin flap model. The DTPs were projected by a Hyperspectral Image Projector (HIP) with high fidelity. A wide-gap 2nd derivative oxygenation algorithm was developed to reconstruct tissue functional parameters from hyperspectral measurements. In this study, we have demonstrated not only the technical feasibility of using DTPs for quantitative calibration, evaluation, and optimization of spectral imaging devices but also its potential for ischemic wound assessment in clinical practice.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. K. Sen, G. M. Gordillo, S. Roy, R. Kirsner, L. Lambert, T. K. Hunt, F. Gottrup, G. C. Gurtner, and M. T. Longaker, “Human skin wounds: a major and snowballing threat to public health and the economy,” Wound Repair Regen.17(6), 763–771 (2009).
    [CrossRef] [PubMed]
  2. C. K. Sen, “Wound healing essentials: let there be oxygen,” Wound Repair Regen.17(1), 1–18 (2009).
    [CrossRef] [PubMed]
  3. L. Khaodhiar, T. Dinh, K. T. Schomacker, S. V. Panasyuk, J. E. Freeman, R. Lew, T. Vo, A. A. Panasyuk, C. Lima, J. M. Giurini, T. E. Lyons, and A. Veves, “The use of medical hyperspectral technology to evaluate microcirculatory changes in diabetic foot ulcers and to predict clinical outcomes,” Diabetes Care30(4), 903–910 (2007).
    [CrossRef] [PubMed]
  4. S. A. Shah, N. Bachrach, S. J. Spear, D. S. Letbetter, R. A. Stone, R. Dhir, J. W. Prichard, H. G. Brown, and W. A. LaFramboise, “Cutaneous wound analysis using hyperspectral imaging,” Biotechniques34(2), 408–413 (2003).
    [PubMed]
  5. R. X. Xu, K. Huang, R. Qin, J. Huang, J. S. Xu, L. Ding, U. S. Gnyawali, G. M. Gordillo, S. C. Gnyawali, and C. K. Sen, “Dual-mode imaging of cutaneous tissue oxygenation and vascular function,” J. Vis. Exp. (46): (2010), doi:.
    [CrossRef] [PubMed]
  6. J. P. Rice, S. W. Brown, D. W. Allen, H. W. Yoon, M. Litorja, and J. C. Hwang, “Hyperspectral image projector applications,” Proc. SPIE8254, 82540R (2012).
    [CrossRef]
  7. D. W. Allen, S. Maxwell, J. P. Rice, R. Chang, M. Litorja, J. Hwang, J. Cadeddu, E. Livingston, E. Wehner, and K. J. Zuzak, “Hyperspectral image projection of a pig kidney for the evaluation of imagers used for oximetry,” Proc. SPIE7906, 79060V (2011).
    [CrossRef]
  8. S. Roy, S. Biswas, S. Khanna, G. Gordillo, V. Bergdall, J. Green, C. B. Marsh, L. J. Gould, and C. K. Sen, “Characterization of a preclinical model of chronic ischemic wound,” Physiol. Genomics37(3), 211–224 (2009).
    [CrossRef] [PubMed]
  9. A. Basiri, M. Nabili, S. Mathews, A. Libin, S. Groah, H. J. Noordmans, and J. C. Ramella-Roman, “Use of a multi-spectral camera in the characterization of skin wounds,” Opt. Express18(4), 3244–3257 (2010).
    [CrossRef] [PubMed]
  10. J. R. Mansfield, M. G. Sowa, J. R. Payette, B. Abdulrauf, M. F. Stranc, and H. H. Mantsch, “Tissue viability by multispectral near infrared imaging: a fuzzy C-means clustering analysis,” IEEE Trans. Med. Imaging17(6), 1011–1018 (1998).
    [CrossRef] [PubMed]
  11. M. G. Sowa, L. Leonardi, J. R. Payette, J. S. Fish, and H. H. Mantsch, “Near infrared spectroscopic assessment of hemodynamic changes in the early post-burn period,” Burns27(3), 241–249 (2001).
    [CrossRef] [PubMed]
  12. K. J. Zuzak, M. D. Schaeberle, E. N. Lewis, and I. W. Levin, “Visible reflectance hyperspectral imaging: characterization of a noninvasive, in vivo system for determining tissue perfusion,” Anal. Chem.74(9), 2021–2028 (2002).
    [CrossRef] [PubMed]
  13. C. E. Cooper, C. E. Elwell, J. H. Meek, S. J. Matcher, J. S. Wyatt, M. Cope, and D. T. Delpy, “The noninvasive measurement of absolute cerebral deoxyhemoglobin concentration and mean optical path length in the neonatal brain by second derivative near infrared spectroscopy,” Pediatr. Res.39(1), 32–38 (1996).
    [CrossRef] [PubMed]
  14. D. E. Myers, L. D. Anderson, R. P. Seifert, J. P. Ortner, C. E. Cooper, G. J. Beilman, and J. D. Mowlem, “Noninvasive method for measuring local hemoglobin oxygen saturation in tissue using wide gap second derivative near-infrared spectroscopy,” J. Biomed. Opt.10(3), 034017 (2005).
    [CrossRef] [PubMed]
  15. I. Nishidate, N. Tanaka, T. Kawase, T. Maeda, T. Yuasa, Y. Aizu, T. Yuasa, and K. Niizeki, “Noninvasive imaging of human skin hemodynamics using a digital red-green-blue camera,” J. Biomed. Opt.16(8), 086012 (2011).
    [CrossRef] [PubMed]
  16. T. T. Berendschot, P. J. DeLint, and D. van Norren, “Fundus reflectance—historical and present ideas,” Prog. Retin. Eye Res.22(2), 171–200 (2003).
    [CrossRef] [PubMed]
  17. L. Wang, S. L. Jacques, and L. Zheng, “MCML—Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed.47(2), 131–146 (1995).
    [CrossRef] [PubMed]

2012 (1)

J. P. Rice, S. W. Brown, D. W. Allen, H. W. Yoon, M. Litorja, and J. C. Hwang, “Hyperspectral image projector applications,” Proc. SPIE8254, 82540R (2012).
[CrossRef]

2011 (2)

D. W. Allen, S. Maxwell, J. P. Rice, R. Chang, M. Litorja, J. Hwang, J. Cadeddu, E. Livingston, E. Wehner, and K. J. Zuzak, “Hyperspectral image projection of a pig kidney for the evaluation of imagers used for oximetry,” Proc. SPIE7906, 79060V (2011).
[CrossRef]

I. Nishidate, N. Tanaka, T. Kawase, T. Maeda, T. Yuasa, Y. Aizu, T. Yuasa, and K. Niizeki, “Noninvasive imaging of human skin hemodynamics using a digital red-green-blue camera,” J. Biomed. Opt.16(8), 086012 (2011).
[CrossRef] [PubMed]

2010 (2)

A. Basiri, M. Nabili, S. Mathews, A. Libin, S. Groah, H. J. Noordmans, and J. C. Ramella-Roman, “Use of a multi-spectral camera in the characterization of skin wounds,” Opt. Express18(4), 3244–3257 (2010).
[CrossRef] [PubMed]

R. X. Xu, K. Huang, R. Qin, J. Huang, J. S. Xu, L. Ding, U. S. Gnyawali, G. M. Gordillo, S. C. Gnyawali, and C. K. Sen, “Dual-mode imaging of cutaneous tissue oxygenation and vascular function,” J. Vis. Exp. (46): (2010), doi:.
[CrossRef] [PubMed]

2009 (3)

S. Roy, S. Biswas, S. Khanna, G. Gordillo, V. Bergdall, J. Green, C. B. Marsh, L. J. Gould, and C. K. Sen, “Characterization of a preclinical model of chronic ischemic wound,” Physiol. Genomics37(3), 211–224 (2009).
[CrossRef] [PubMed]

C. K. Sen, G. M. Gordillo, S. Roy, R. Kirsner, L. Lambert, T. K. Hunt, F. Gottrup, G. C. Gurtner, and M. T. Longaker, “Human skin wounds: a major and snowballing threat to public health and the economy,” Wound Repair Regen.17(6), 763–771 (2009).
[CrossRef] [PubMed]

C. K. Sen, “Wound healing essentials: let there be oxygen,” Wound Repair Regen.17(1), 1–18 (2009).
[CrossRef] [PubMed]

2007 (1)

L. Khaodhiar, T. Dinh, K. T. Schomacker, S. V. Panasyuk, J. E. Freeman, R. Lew, T. Vo, A. A. Panasyuk, C. Lima, J. M. Giurini, T. E. Lyons, and A. Veves, “The use of medical hyperspectral technology to evaluate microcirculatory changes in diabetic foot ulcers and to predict clinical outcomes,” Diabetes Care30(4), 903–910 (2007).
[CrossRef] [PubMed]

2005 (1)

D. E. Myers, L. D. Anderson, R. P. Seifert, J. P. Ortner, C. E. Cooper, G. J. Beilman, and J. D. Mowlem, “Noninvasive method for measuring local hemoglobin oxygen saturation in tissue using wide gap second derivative near-infrared spectroscopy,” J. Biomed. Opt.10(3), 034017 (2005).
[CrossRef] [PubMed]

2003 (2)

T. T. Berendschot, P. J. DeLint, and D. van Norren, “Fundus reflectance—historical and present ideas,” Prog. Retin. Eye Res.22(2), 171–200 (2003).
[CrossRef] [PubMed]

S. A. Shah, N. Bachrach, S. J. Spear, D. S. Letbetter, R. A. Stone, R. Dhir, J. W. Prichard, H. G. Brown, and W. A. LaFramboise, “Cutaneous wound analysis using hyperspectral imaging,” Biotechniques34(2), 408–413 (2003).
[PubMed]

2002 (1)

K. J. Zuzak, M. D. Schaeberle, E. N. Lewis, and I. W. Levin, “Visible reflectance hyperspectral imaging: characterization of a noninvasive, in vivo system for determining tissue perfusion,” Anal. Chem.74(9), 2021–2028 (2002).
[CrossRef] [PubMed]

2001 (1)

M. G. Sowa, L. Leonardi, J. R. Payette, J. S. Fish, and H. H. Mantsch, “Near infrared spectroscopic assessment of hemodynamic changes in the early post-burn period,” Burns27(3), 241–249 (2001).
[CrossRef] [PubMed]

1998 (1)

J. R. Mansfield, M. G. Sowa, J. R. Payette, B. Abdulrauf, M. F. Stranc, and H. H. Mantsch, “Tissue viability by multispectral near infrared imaging: a fuzzy C-means clustering analysis,” IEEE Trans. Med. Imaging17(6), 1011–1018 (1998).
[CrossRef] [PubMed]

1996 (1)

C. E. Cooper, C. E. Elwell, J. H. Meek, S. J. Matcher, J. S. Wyatt, M. Cope, and D. T. Delpy, “The noninvasive measurement of absolute cerebral deoxyhemoglobin concentration and mean optical path length in the neonatal brain by second derivative near infrared spectroscopy,” Pediatr. Res.39(1), 32–38 (1996).
[CrossRef] [PubMed]

1995 (1)

L. Wang, S. L. Jacques, and L. Zheng, “MCML—Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed.47(2), 131–146 (1995).
[CrossRef] [PubMed]

Abdulrauf, B.

J. R. Mansfield, M. G. Sowa, J. R. Payette, B. Abdulrauf, M. F. Stranc, and H. H. Mantsch, “Tissue viability by multispectral near infrared imaging: a fuzzy C-means clustering analysis,” IEEE Trans. Med. Imaging17(6), 1011–1018 (1998).
[CrossRef] [PubMed]

Aizu, Y.

I. Nishidate, N. Tanaka, T. Kawase, T. Maeda, T. Yuasa, Y. Aizu, T. Yuasa, and K. Niizeki, “Noninvasive imaging of human skin hemodynamics using a digital red-green-blue camera,” J. Biomed. Opt.16(8), 086012 (2011).
[CrossRef] [PubMed]

Allen, D. W.

J. P. Rice, S. W. Brown, D. W. Allen, H. W. Yoon, M. Litorja, and J. C. Hwang, “Hyperspectral image projector applications,” Proc. SPIE8254, 82540R (2012).
[CrossRef]

D. W. Allen, S. Maxwell, J. P. Rice, R. Chang, M. Litorja, J. Hwang, J. Cadeddu, E. Livingston, E. Wehner, and K. J. Zuzak, “Hyperspectral image projection of a pig kidney for the evaluation of imagers used for oximetry,” Proc. SPIE7906, 79060V (2011).
[CrossRef]

Anderson, L. D.

D. E. Myers, L. D. Anderson, R. P. Seifert, J. P. Ortner, C. E. Cooper, G. J. Beilman, and J. D. Mowlem, “Noninvasive method for measuring local hemoglobin oxygen saturation in tissue using wide gap second derivative near-infrared spectroscopy,” J. Biomed. Opt.10(3), 034017 (2005).
[CrossRef] [PubMed]

Bachrach, N.

S. A. Shah, N. Bachrach, S. J. Spear, D. S. Letbetter, R. A. Stone, R. Dhir, J. W. Prichard, H. G. Brown, and W. A. LaFramboise, “Cutaneous wound analysis using hyperspectral imaging,” Biotechniques34(2), 408–413 (2003).
[PubMed]

Basiri, A.

Beilman, G. J.

D. E. Myers, L. D. Anderson, R. P. Seifert, J. P. Ortner, C. E. Cooper, G. J. Beilman, and J. D. Mowlem, “Noninvasive method for measuring local hemoglobin oxygen saturation in tissue using wide gap second derivative near-infrared spectroscopy,” J. Biomed. Opt.10(3), 034017 (2005).
[CrossRef] [PubMed]

Berendschot, T. T.

T. T. Berendschot, P. J. DeLint, and D. van Norren, “Fundus reflectance—historical and present ideas,” Prog. Retin. Eye Res.22(2), 171–200 (2003).
[CrossRef] [PubMed]

Bergdall, V.

S. Roy, S. Biswas, S. Khanna, G. Gordillo, V. Bergdall, J. Green, C. B. Marsh, L. J. Gould, and C. K. Sen, “Characterization of a preclinical model of chronic ischemic wound,” Physiol. Genomics37(3), 211–224 (2009).
[CrossRef] [PubMed]

Biswas, S.

S. Roy, S. Biswas, S. Khanna, G. Gordillo, V. Bergdall, J. Green, C. B. Marsh, L. J. Gould, and C. K. Sen, “Characterization of a preclinical model of chronic ischemic wound,” Physiol. Genomics37(3), 211–224 (2009).
[CrossRef] [PubMed]

Brown, H. G.

S. A. Shah, N. Bachrach, S. J. Spear, D. S. Letbetter, R. A. Stone, R. Dhir, J. W. Prichard, H. G. Brown, and W. A. LaFramboise, “Cutaneous wound analysis using hyperspectral imaging,” Biotechniques34(2), 408–413 (2003).
[PubMed]

Brown, S. W.

J. P. Rice, S. W. Brown, D. W. Allen, H. W. Yoon, M. Litorja, and J. C. Hwang, “Hyperspectral image projector applications,” Proc. SPIE8254, 82540R (2012).
[CrossRef]

Cadeddu, J.

D. W. Allen, S. Maxwell, J. P. Rice, R. Chang, M. Litorja, J. Hwang, J. Cadeddu, E. Livingston, E. Wehner, and K. J. Zuzak, “Hyperspectral image projection of a pig kidney for the evaluation of imagers used for oximetry,” Proc. SPIE7906, 79060V (2011).
[CrossRef]

Chang, R.

D. W. Allen, S. Maxwell, J. P. Rice, R. Chang, M. Litorja, J. Hwang, J. Cadeddu, E. Livingston, E. Wehner, and K. J. Zuzak, “Hyperspectral image projection of a pig kidney for the evaluation of imagers used for oximetry,” Proc. SPIE7906, 79060V (2011).
[CrossRef]

Cooper, C. E.

D. E. Myers, L. D. Anderson, R. P. Seifert, J. P. Ortner, C. E. Cooper, G. J. Beilman, and J. D. Mowlem, “Noninvasive method for measuring local hemoglobin oxygen saturation in tissue using wide gap second derivative near-infrared spectroscopy,” J. Biomed. Opt.10(3), 034017 (2005).
[CrossRef] [PubMed]

C. E. Cooper, C. E. Elwell, J. H. Meek, S. J. Matcher, J. S. Wyatt, M. Cope, and D. T. Delpy, “The noninvasive measurement of absolute cerebral deoxyhemoglobin concentration and mean optical path length in the neonatal brain by second derivative near infrared spectroscopy,” Pediatr. Res.39(1), 32–38 (1996).
[CrossRef] [PubMed]

Cope, M.

C. E. Cooper, C. E. Elwell, J. H. Meek, S. J. Matcher, J. S. Wyatt, M. Cope, and D. T. Delpy, “The noninvasive measurement of absolute cerebral deoxyhemoglobin concentration and mean optical path length in the neonatal brain by second derivative near infrared spectroscopy,” Pediatr. Res.39(1), 32–38 (1996).
[CrossRef] [PubMed]

DeLint, P. J.

T. T. Berendschot, P. J. DeLint, and D. van Norren, “Fundus reflectance—historical and present ideas,” Prog. Retin. Eye Res.22(2), 171–200 (2003).
[CrossRef] [PubMed]

Delpy, D. T.

C. E. Cooper, C. E. Elwell, J. H. Meek, S. J. Matcher, J. S. Wyatt, M. Cope, and D. T. Delpy, “The noninvasive measurement of absolute cerebral deoxyhemoglobin concentration and mean optical path length in the neonatal brain by second derivative near infrared spectroscopy,” Pediatr. Res.39(1), 32–38 (1996).
[CrossRef] [PubMed]

Dhir, R.

S. A. Shah, N. Bachrach, S. J. Spear, D. S. Letbetter, R. A. Stone, R. Dhir, J. W. Prichard, H. G. Brown, and W. A. LaFramboise, “Cutaneous wound analysis using hyperspectral imaging,” Biotechniques34(2), 408–413 (2003).
[PubMed]

Ding, L.

R. X. Xu, K. Huang, R. Qin, J. Huang, J. S. Xu, L. Ding, U. S. Gnyawali, G. M. Gordillo, S. C. Gnyawali, and C. K. Sen, “Dual-mode imaging of cutaneous tissue oxygenation and vascular function,” J. Vis. Exp. (46): (2010), doi:.
[CrossRef] [PubMed]

Dinh, T.

L. Khaodhiar, T. Dinh, K. T. Schomacker, S. V. Panasyuk, J. E. Freeman, R. Lew, T. Vo, A. A. Panasyuk, C. Lima, J. M. Giurini, T. E. Lyons, and A. Veves, “The use of medical hyperspectral technology to evaluate microcirculatory changes in diabetic foot ulcers and to predict clinical outcomes,” Diabetes Care30(4), 903–910 (2007).
[CrossRef] [PubMed]

Elwell, C. E.

C. E. Cooper, C. E. Elwell, J. H. Meek, S. J. Matcher, J. S. Wyatt, M. Cope, and D. T. Delpy, “The noninvasive measurement of absolute cerebral deoxyhemoglobin concentration and mean optical path length in the neonatal brain by second derivative near infrared spectroscopy,” Pediatr. Res.39(1), 32–38 (1996).
[CrossRef] [PubMed]

Fish, J. S.

M. G. Sowa, L. Leonardi, J. R. Payette, J. S. Fish, and H. H. Mantsch, “Near infrared spectroscopic assessment of hemodynamic changes in the early post-burn period,” Burns27(3), 241–249 (2001).
[CrossRef] [PubMed]

Freeman, J. E.

L. Khaodhiar, T. Dinh, K. T. Schomacker, S. V. Panasyuk, J. E. Freeman, R. Lew, T. Vo, A. A. Panasyuk, C. Lima, J. M. Giurini, T. E. Lyons, and A. Veves, “The use of medical hyperspectral technology to evaluate microcirculatory changes in diabetic foot ulcers and to predict clinical outcomes,” Diabetes Care30(4), 903–910 (2007).
[CrossRef] [PubMed]

Giurini, J. M.

L. Khaodhiar, T. Dinh, K. T. Schomacker, S. V. Panasyuk, J. E. Freeman, R. Lew, T. Vo, A. A. Panasyuk, C. Lima, J. M. Giurini, T. E. Lyons, and A. Veves, “The use of medical hyperspectral technology to evaluate microcirculatory changes in diabetic foot ulcers and to predict clinical outcomes,” Diabetes Care30(4), 903–910 (2007).
[CrossRef] [PubMed]

Gnyawali, S. C.

R. X. Xu, K. Huang, R. Qin, J. Huang, J. S. Xu, L. Ding, U. S. Gnyawali, G. M. Gordillo, S. C. Gnyawali, and C. K. Sen, “Dual-mode imaging of cutaneous tissue oxygenation and vascular function,” J. Vis. Exp. (46): (2010), doi:.
[CrossRef] [PubMed]

Gnyawali, U. S.

R. X. Xu, K. Huang, R. Qin, J. Huang, J. S. Xu, L. Ding, U. S. Gnyawali, G. M. Gordillo, S. C. Gnyawali, and C. K. Sen, “Dual-mode imaging of cutaneous tissue oxygenation and vascular function,” J. Vis. Exp. (46): (2010), doi:.
[CrossRef] [PubMed]

Gordillo, G.

S. Roy, S. Biswas, S. Khanna, G. Gordillo, V. Bergdall, J. Green, C. B. Marsh, L. J. Gould, and C. K. Sen, “Characterization of a preclinical model of chronic ischemic wound,” Physiol. Genomics37(3), 211–224 (2009).
[CrossRef] [PubMed]

Gordillo, G. M.

R. X. Xu, K. Huang, R. Qin, J. Huang, J. S. Xu, L. Ding, U. S. Gnyawali, G. M. Gordillo, S. C. Gnyawali, and C. K. Sen, “Dual-mode imaging of cutaneous tissue oxygenation and vascular function,” J. Vis. Exp. (46): (2010), doi:.
[CrossRef] [PubMed]

C. K. Sen, G. M. Gordillo, S. Roy, R. Kirsner, L. Lambert, T. K. Hunt, F. Gottrup, G. C. Gurtner, and M. T. Longaker, “Human skin wounds: a major and snowballing threat to public health and the economy,” Wound Repair Regen.17(6), 763–771 (2009).
[CrossRef] [PubMed]

Gottrup, F.

C. K. Sen, G. M. Gordillo, S. Roy, R. Kirsner, L. Lambert, T. K. Hunt, F. Gottrup, G. C. Gurtner, and M. T. Longaker, “Human skin wounds: a major and snowballing threat to public health and the economy,” Wound Repair Regen.17(6), 763–771 (2009).
[CrossRef] [PubMed]

Gould, L. J.

S. Roy, S. Biswas, S. Khanna, G. Gordillo, V. Bergdall, J. Green, C. B. Marsh, L. J. Gould, and C. K. Sen, “Characterization of a preclinical model of chronic ischemic wound,” Physiol. Genomics37(3), 211–224 (2009).
[CrossRef] [PubMed]

Green, J.

S. Roy, S. Biswas, S. Khanna, G. Gordillo, V. Bergdall, J. Green, C. B. Marsh, L. J. Gould, and C. K. Sen, “Characterization of a preclinical model of chronic ischemic wound,” Physiol. Genomics37(3), 211–224 (2009).
[CrossRef] [PubMed]

Groah, S.

Gurtner, G. C.

C. K. Sen, G. M. Gordillo, S. Roy, R. Kirsner, L. Lambert, T. K. Hunt, F. Gottrup, G. C. Gurtner, and M. T. Longaker, “Human skin wounds: a major and snowballing threat to public health and the economy,” Wound Repair Regen.17(6), 763–771 (2009).
[CrossRef] [PubMed]

Huang, J.

R. X. Xu, K. Huang, R. Qin, J. Huang, J. S. Xu, L. Ding, U. S. Gnyawali, G. M. Gordillo, S. C. Gnyawali, and C. K. Sen, “Dual-mode imaging of cutaneous tissue oxygenation and vascular function,” J. Vis. Exp. (46): (2010), doi:.
[CrossRef] [PubMed]

Huang, K.

R. X. Xu, K. Huang, R. Qin, J. Huang, J. S. Xu, L. Ding, U. S. Gnyawali, G. M. Gordillo, S. C. Gnyawali, and C. K. Sen, “Dual-mode imaging of cutaneous tissue oxygenation and vascular function,” J. Vis. Exp. (46): (2010), doi:.
[CrossRef] [PubMed]

Hunt, T. K.

C. K. Sen, G. M. Gordillo, S. Roy, R. Kirsner, L. Lambert, T. K. Hunt, F. Gottrup, G. C. Gurtner, and M. T. Longaker, “Human skin wounds: a major and snowballing threat to public health and the economy,” Wound Repair Regen.17(6), 763–771 (2009).
[CrossRef] [PubMed]

Hwang, J.

D. W. Allen, S. Maxwell, J. P. Rice, R. Chang, M. Litorja, J. Hwang, J. Cadeddu, E. Livingston, E. Wehner, and K. J. Zuzak, “Hyperspectral image projection of a pig kidney for the evaluation of imagers used for oximetry,” Proc. SPIE7906, 79060V (2011).
[CrossRef]

Hwang, J. C.

J. P. Rice, S. W. Brown, D. W. Allen, H. W. Yoon, M. Litorja, and J. C. Hwang, “Hyperspectral image projector applications,” Proc. SPIE8254, 82540R (2012).
[CrossRef]

Jacques, S. L.

L. Wang, S. L. Jacques, and L. Zheng, “MCML—Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed.47(2), 131–146 (1995).
[CrossRef] [PubMed]

Kawase, T.

I. Nishidate, N. Tanaka, T. Kawase, T. Maeda, T. Yuasa, Y. Aizu, T. Yuasa, and K. Niizeki, “Noninvasive imaging of human skin hemodynamics using a digital red-green-blue camera,” J. Biomed. Opt.16(8), 086012 (2011).
[CrossRef] [PubMed]

Khanna, S.

S. Roy, S. Biswas, S. Khanna, G. Gordillo, V. Bergdall, J. Green, C. B. Marsh, L. J. Gould, and C. K. Sen, “Characterization of a preclinical model of chronic ischemic wound,” Physiol. Genomics37(3), 211–224 (2009).
[CrossRef] [PubMed]

Khaodhiar, L.

L. Khaodhiar, T. Dinh, K. T. Schomacker, S. V. Panasyuk, J. E. Freeman, R. Lew, T. Vo, A. A. Panasyuk, C. Lima, J. M. Giurini, T. E. Lyons, and A. Veves, “The use of medical hyperspectral technology to evaluate microcirculatory changes in diabetic foot ulcers and to predict clinical outcomes,” Diabetes Care30(4), 903–910 (2007).
[CrossRef] [PubMed]

Kirsner, R.

C. K. Sen, G. M. Gordillo, S. Roy, R. Kirsner, L. Lambert, T. K. Hunt, F. Gottrup, G. C. Gurtner, and M. T. Longaker, “Human skin wounds: a major and snowballing threat to public health and the economy,” Wound Repair Regen.17(6), 763–771 (2009).
[CrossRef] [PubMed]

LaFramboise, W. A.

S. A. Shah, N. Bachrach, S. J. Spear, D. S. Letbetter, R. A. Stone, R. Dhir, J. W. Prichard, H. G. Brown, and W. A. LaFramboise, “Cutaneous wound analysis using hyperspectral imaging,” Biotechniques34(2), 408–413 (2003).
[PubMed]

Lambert, L.

C. K. Sen, G. M. Gordillo, S. Roy, R. Kirsner, L. Lambert, T. K. Hunt, F. Gottrup, G. C. Gurtner, and M. T. Longaker, “Human skin wounds: a major and snowballing threat to public health and the economy,” Wound Repair Regen.17(6), 763–771 (2009).
[CrossRef] [PubMed]

Leonardi, L.

M. G. Sowa, L. Leonardi, J. R. Payette, J. S. Fish, and H. H. Mantsch, “Near infrared spectroscopic assessment of hemodynamic changes in the early post-burn period,” Burns27(3), 241–249 (2001).
[CrossRef] [PubMed]

Letbetter, D. S.

S. A. Shah, N. Bachrach, S. J. Spear, D. S. Letbetter, R. A. Stone, R. Dhir, J. W. Prichard, H. G. Brown, and W. A. LaFramboise, “Cutaneous wound analysis using hyperspectral imaging,” Biotechniques34(2), 408–413 (2003).
[PubMed]

Levin, I. W.

K. J. Zuzak, M. D. Schaeberle, E. N. Lewis, and I. W. Levin, “Visible reflectance hyperspectral imaging: characterization of a noninvasive, in vivo system for determining tissue perfusion,” Anal. Chem.74(9), 2021–2028 (2002).
[CrossRef] [PubMed]

Lew, R.

L. Khaodhiar, T. Dinh, K. T. Schomacker, S. V. Panasyuk, J. E. Freeman, R. Lew, T. Vo, A. A. Panasyuk, C. Lima, J. M. Giurini, T. E. Lyons, and A. Veves, “The use of medical hyperspectral technology to evaluate microcirculatory changes in diabetic foot ulcers and to predict clinical outcomes,” Diabetes Care30(4), 903–910 (2007).
[CrossRef] [PubMed]

Lewis, E. N.

K. J. Zuzak, M. D. Schaeberle, E. N. Lewis, and I. W. Levin, “Visible reflectance hyperspectral imaging: characterization of a noninvasive, in vivo system for determining tissue perfusion,” Anal. Chem.74(9), 2021–2028 (2002).
[CrossRef] [PubMed]

Libin, A.

Lima, C.

L. Khaodhiar, T. Dinh, K. T. Schomacker, S. V. Panasyuk, J. E. Freeman, R. Lew, T. Vo, A. A. Panasyuk, C. Lima, J. M. Giurini, T. E. Lyons, and A. Veves, “The use of medical hyperspectral technology to evaluate microcirculatory changes in diabetic foot ulcers and to predict clinical outcomes,” Diabetes Care30(4), 903–910 (2007).
[CrossRef] [PubMed]

Litorja, M.

J. P. Rice, S. W. Brown, D. W. Allen, H. W. Yoon, M. Litorja, and J. C. Hwang, “Hyperspectral image projector applications,” Proc. SPIE8254, 82540R (2012).
[CrossRef]

D. W. Allen, S. Maxwell, J. P. Rice, R. Chang, M. Litorja, J. Hwang, J. Cadeddu, E. Livingston, E. Wehner, and K. J. Zuzak, “Hyperspectral image projection of a pig kidney for the evaluation of imagers used for oximetry,” Proc. SPIE7906, 79060V (2011).
[CrossRef]

Livingston, E.

D. W. Allen, S. Maxwell, J. P. Rice, R. Chang, M. Litorja, J. Hwang, J. Cadeddu, E. Livingston, E. Wehner, and K. J. Zuzak, “Hyperspectral image projection of a pig kidney for the evaluation of imagers used for oximetry,” Proc. SPIE7906, 79060V (2011).
[CrossRef]

Longaker, M. T.

C. K. Sen, G. M. Gordillo, S. Roy, R. Kirsner, L. Lambert, T. K. Hunt, F. Gottrup, G. C. Gurtner, and M. T. Longaker, “Human skin wounds: a major and snowballing threat to public health and the economy,” Wound Repair Regen.17(6), 763–771 (2009).
[CrossRef] [PubMed]

Lyons, T. E.

L. Khaodhiar, T. Dinh, K. T. Schomacker, S. V. Panasyuk, J. E. Freeman, R. Lew, T. Vo, A. A. Panasyuk, C. Lima, J. M. Giurini, T. E. Lyons, and A. Veves, “The use of medical hyperspectral technology to evaluate microcirculatory changes in diabetic foot ulcers and to predict clinical outcomes,” Diabetes Care30(4), 903–910 (2007).
[CrossRef] [PubMed]

Maeda, T.

I. Nishidate, N. Tanaka, T. Kawase, T. Maeda, T. Yuasa, Y. Aizu, T. Yuasa, and K. Niizeki, “Noninvasive imaging of human skin hemodynamics using a digital red-green-blue camera,” J. Biomed. Opt.16(8), 086012 (2011).
[CrossRef] [PubMed]

Mansfield, J. R.

J. R. Mansfield, M. G. Sowa, J. R. Payette, B. Abdulrauf, M. F. Stranc, and H. H. Mantsch, “Tissue viability by multispectral near infrared imaging: a fuzzy C-means clustering analysis,” IEEE Trans. Med. Imaging17(6), 1011–1018 (1998).
[CrossRef] [PubMed]

Mantsch, H. H.

M. G. Sowa, L. Leonardi, J. R. Payette, J. S. Fish, and H. H. Mantsch, “Near infrared spectroscopic assessment of hemodynamic changes in the early post-burn period,” Burns27(3), 241–249 (2001).
[CrossRef] [PubMed]

J. R. Mansfield, M. G. Sowa, J. R. Payette, B. Abdulrauf, M. F. Stranc, and H. H. Mantsch, “Tissue viability by multispectral near infrared imaging: a fuzzy C-means clustering analysis,” IEEE Trans. Med. Imaging17(6), 1011–1018 (1998).
[CrossRef] [PubMed]

Marsh, C. B.

S. Roy, S. Biswas, S. Khanna, G. Gordillo, V. Bergdall, J. Green, C. B. Marsh, L. J. Gould, and C. K. Sen, “Characterization of a preclinical model of chronic ischemic wound,” Physiol. Genomics37(3), 211–224 (2009).
[CrossRef] [PubMed]

Matcher, S. J.

C. E. Cooper, C. E. Elwell, J. H. Meek, S. J. Matcher, J. S. Wyatt, M. Cope, and D. T. Delpy, “The noninvasive measurement of absolute cerebral deoxyhemoglobin concentration and mean optical path length in the neonatal brain by second derivative near infrared spectroscopy,” Pediatr. Res.39(1), 32–38 (1996).
[CrossRef] [PubMed]

Mathews, S.

Maxwell, S.

D. W. Allen, S. Maxwell, J. P. Rice, R. Chang, M. Litorja, J. Hwang, J. Cadeddu, E. Livingston, E. Wehner, and K. J. Zuzak, “Hyperspectral image projection of a pig kidney for the evaluation of imagers used for oximetry,” Proc. SPIE7906, 79060V (2011).
[CrossRef]

Meek, J. H.

C. E. Cooper, C. E. Elwell, J. H. Meek, S. J. Matcher, J. S. Wyatt, M. Cope, and D. T. Delpy, “The noninvasive measurement of absolute cerebral deoxyhemoglobin concentration and mean optical path length in the neonatal brain by second derivative near infrared spectroscopy,” Pediatr. Res.39(1), 32–38 (1996).
[CrossRef] [PubMed]

Mowlem, J. D.

D. E. Myers, L. D. Anderson, R. P. Seifert, J. P. Ortner, C. E. Cooper, G. J. Beilman, and J. D. Mowlem, “Noninvasive method for measuring local hemoglobin oxygen saturation in tissue using wide gap second derivative near-infrared spectroscopy,” J. Biomed. Opt.10(3), 034017 (2005).
[CrossRef] [PubMed]

Myers, D. E.

D. E. Myers, L. D. Anderson, R. P. Seifert, J. P. Ortner, C. E. Cooper, G. J. Beilman, and J. D. Mowlem, “Noninvasive method for measuring local hemoglobin oxygen saturation in tissue using wide gap second derivative near-infrared spectroscopy,” J. Biomed. Opt.10(3), 034017 (2005).
[CrossRef] [PubMed]

Nabili, M.

Niizeki, K.

I. Nishidate, N. Tanaka, T. Kawase, T. Maeda, T. Yuasa, Y. Aizu, T. Yuasa, and K. Niizeki, “Noninvasive imaging of human skin hemodynamics using a digital red-green-blue camera,” J. Biomed. Opt.16(8), 086012 (2011).
[CrossRef] [PubMed]

Nishidate, I.

I. Nishidate, N. Tanaka, T. Kawase, T. Maeda, T. Yuasa, Y. Aizu, T. Yuasa, and K. Niizeki, “Noninvasive imaging of human skin hemodynamics using a digital red-green-blue camera,” J. Biomed. Opt.16(8), 086012 (2011).
[CrossRef] [PubMed]

Noordmans, H. J.

Ortner, J. P.

D. E. Myers, L. D. Anderson, R. P. Seifert, J. P. Ortner, C. E. Cooper, G. J. Beilman, and J. D. Mowlem, “Noninvasive method for measuring local hemoglobin oxygen saturation in tissue using wide gap second derivative near-infrared spectroscopy,” J. Biomed. Opt.10(3), 034017 (2005).
[CrossRef] [PubMed]

Panasyuk, A. A.

L. Khaodhiar, T. Dinh, K. T. Schomacker, S. V. Panasyuk, J. E. Freeman, R. Lew, T. Vo, A. A. Panasyuk, C. Lima, J. M. Giurini, T. E. Lyons, and A. Veves, “The use of medical hyperspectral technology to evaluate microcirculatory changes in diabetic foot ulcers and to predict clinical outcomes,” Diabetes Care30(4), 903–910 (2007).
[CrossRef] [PubMed]

Panasyuk, S. V.

L. Khaodhiar, T. Dinh, K. T. Schomacker, S. V. Panasyuk, J. E. Freeman, R. Lew, T. Vo, A. A. Panasyuk, C. Lima, J. M. Giurini, T. E. Lyons, and A. Veves, “The use of medical hyperspectral technology to evaluate microcirculatory changes in diabetic foot ulcers and to predict clinical outcomes,” Diabetes Care30(4), 903–910 (2007).
[CrossRef] [PubMed]

Payette, J. R.

M. G. Sowa, L. Leonardi, J. R. Payette, J. S. Fish, and H. H. Mantsch, “Near infrared spectroscopic assessment of hemodynamic changes in the early post-burn period,” Burns27(3), 241–249 (2001).
[CrossRef] [PubMed]

J. R. Mansfield, M. G. Sowa, J. R. Payette, B. Abdulrauf, M. F. Stranc, and H. H. Mantsch, “Tissue viability by multispectral near infrared imaging: a fuzzy C-means clustering analysis,” IEEE Trans. Med. Imaging17(6), 1011–1018 (1998).
[CrossRef] [PubMed]

Prichard, J. W.

S. A. Shah, N. Bachrach, S. J. Spear, D. S. Letbetter, R. A. Stone, R. Dhir, J. W. Prichard, H. G. Brown, and W. A. LaFramboise, “Cutaneous wound analysis using hyperspectral imaging,” Biotechniques34(2), 408–413 (2003).
[PubMed]

Qin, R.

R. X. Xu, K. Huang, R. Qin, J. Huang, J. S. Xu, L. Ding, U. S. Gnyawali, G. M. Gordillo, S. C. Gnyawali, and C. K. Sen, “Dual-mode imaging of cutaneous tissue oxygenation and vascular function,” J. Vis. Exp. (46): (2010), doi:.
[CrossRef] [PubMed]

Ramella-Roman, J. C.

Rice, J. P.

J. P. Rice, S. W. Brown, D. W. Allen, H. W. Yoon, M. Litorja, and J. C. Hwang, “Hyperspectral image projector applications,” Proc. SPIE8254, 82540R (2012).
[CrossRef]

D. W. Allen, S. Maxwell, J. P. Rice, R. Chang, M. Litorja, J. Hwang, J. Cadeddu, E. Livingston, E. Wehner, and K. J. Zuzak, “Hyperspectral image projection of a pig kidney for the evaluation of imagers used for oximetry,” Proc. SPIE7906, 79060V (2011).
[CrossRef]

Roy, S.

S. Roy, S. Biswas, S. Khanna, G. Gordillo, V. Bergdall, J. Green, C. B. Marsh, L. J. Gould, and C. K. Sen, “Characterization of a preclinical model of chronic ischemic wound,” Physiol. Genomics37(3), 211–224 (2009).
[CrossRef] [PubMed]

C. K. Sen, G. M. Gordillo, S. Roy, R. Kirsner, L. Lambert, T. K. Hunt, F. Gottrup, G. C. Gurtner, and M. T. Longaker, “Human skin wounds: a major and snowballing threat to public health and the economy,” Wound Repair Regen.17(6), 763–771 (2009).
[CrossRef] [PubMed]

Schaeberle, M. D.

K. J. Zuzak, M. D. Schaeberle, E. N. Lewis, and I. W. Levin, “Visible reflectance hyperspectral imaging: characterization of a noninvasive, in vivo system for determining tissue perfusion,” Anal. Chem.74(9), 2021–2028 (2002).
[CrossRef] [PubMed]

Schomacker, K. T.

L. Khaodhiar, T. Dinh, K. T. Schomacker, S. V. Panasyuk, J. E. Freeman, R. Lew, T. Vo, A. A. Panasyuk, C. Lima, J. M. Giurini, T. E. Lyons, and A. Veves, “The use of medical hyperspectral technology to evaluate microcirculatory changes in diabetic foot ulcers and to predict clinical outcomes,” Diabetes Care30(4), 903–910 (2007).
[CrossRef] [PubMed]

Seifert, R. P.

D. E. Myers, L. D. Anderson, R. P. Seifert, J. P. Ortner, C. E. Cooper, G. J. Beilman, and J. D. Mowlem, “Noninvasive method for measuring local hemoglobin oxygen saturation in tissue using wide gap second derivative near-infrared spectroscopy,” J. Biomed. Opt.10(3), 034017 (2005).
[CrossRef] [PubMed]

Sen, C. K.

R. X. Xu, K. Huang, R. Qin, J. Huang, J. S. Xu, L. Ding, U. S. Gnyawali, G. M. Gordillo, S. C. Gnyawali, and C. K. Sen, “Dual-mode imaging of cutaneous tissue oxygenation and vascular function,” J. Vis. Exp. (46): (2010), doi:.
[CrossRef] [PubMed]

S. Roy, S. Biswas, S. Khanna, G. Gordillo, V. Bergdall, J. Green, C. B. Marsh, L. J. Gould, and C. K. Sen, “Characterization of a preclinical model of chronic ischemic wound,” Physiol. Genomics37(3), 211–224 (2009).
[CrossRef] [PubMed]

C. K. Sen, G. M. Gordillo, S. Roy, R. Kirsner, L. Lambert, T. K. Hunt, F. Gottrup, G. C. Gurtner, and M. T. Longaker, “Human skin wounds: a major and snowballing threat to public health and the economy,” Wound Repair Regen.17(6), 763–771 (2009).
[CrossRef] [PubMed]

C. K. Sen, “Wound healing essentials: let there be oxygen,” Wound Repair Regen.17(1), 1–18 (2009).
[CrossRef] [PubMed]

Shah, S. A.

S. A. Shah, N. Bachrach, S. J. Spear, D. S. Letbetter, R. A. Stone, R. Dhir, J. W. Prichard, H. G. Brown, and W. A. LaFramboise, “Cutaneous wound analysis using hyperspectral imaging,” Biotechniques34(2), 408–413 (2003).
[PubMed]

Sowa, M. G.

M. G. Sowa, L. Leonardi, J. R. Payette, J. S. Fish, and H. H. Mantsch, “Near infrared spectroscopic assessment of hemodynamic changes in the early post-burn period,” Burns27(3), 241–249 (2001).
[CrossRef] [PubMed]

J. R. Mansfield, M. G. Sowa, J. R. Payette, B. Abdulrauf, M. F. Stranc, and H. H. Mantsch, “Tissue viability by multispectral near infrared imaging: a fuzzy C-means clustering analysis,” IEEE Trans. Med. Imaging17(6), 1011–1018 (1998).
[CrossRef] [PubMed]

Spear, S. J.

S. A. Shah, N. Bachrach, S. J. Spear, D. S. Letbetter, R. A. Stone, R. Dhir, J. W. Prichard, H. G. Brown, and W. A. LaFramboise, “Cutaneous wound analysis using hyperspectral imaging,” Biotechniques34(2), 408–413 (2003).
[PubMed]

Stone, R. A.

S. A. Shah, N. Bachrach, S. J. Spear, D. S. Letbetter, R. A. Stone, R. Dhir, J. W. Prichard, H. G. Brown, and W. A. LaFramboise, “Cutaneous wound analysis using hyperspectral imaging,” Biotechniques34(2), 408–413 (2003).
[PubMed]

Stranc, M. F.

J. R. Mansfield, M. G. Sowa, J. R. Payette, B. Abdulrauf, M. F. Stranc, and H. H. Mantsch, “Tissue viability by multispectral near infrared imaging: a fuzzy C-means clustering analysis,” IEEE Trans. Med. Imaging17(6), 1011–1018 (1998).
[CrossRef] [PubMed]

Tanaka, N.

I. Nishidate, N. Tanaka, T. Kawase, T. Maeda, T. Yuasa, Y. Aizu, T. Yuasa, and K. Niizeki, “Noninvasive imaging of human skin hemodynamics using a digital red-green-blue camera,” J. Biomed. Opt.16(8), 086012 (2011).
[CrossRef] [PubMed]

van Norren, D.

T. T. Berendschot, P. J. DeLint, and D. van Norren, “Fundus reflectance—historical and present ideas,” Prog. Retin. Eye Res.22(2), 171–200 (2003).
[CrossRef] [PubMed]

Veves, A.

L. Khaodhiar, T. Dinh, K. T. Schomacker, S. V. Panasyuk, J. E. Freeman, R. Lew, T. Vo, A. A. Panasyuk, C. Lima, J. M. Giurini, T. E. Lyons, and A. Veves, “The use of medical hyperspectral technology to evaluate microcirculatory changes in diabetic foot ulcers and to predict clinical outcomes,” Diabetes Care30(4), 903–910 (2007).
[CrossRef] [PubMed]

Vo, T.

L. Khaodhiar, T. Dinh, K. T. Schomacker, S. V. Panasyuk, J. E. Freeman, R. Lew, T. Vo, A. A. Panasyuk, C. Lima, J. M. Giurini, T. E. Lyons, and A. Veves, “The use of medical hyperspectral technology to evaluate microcirculatory changes in diabetic foot ulcers and to predict clinical outcomes,” Diabetes Care30(4), 903–910 (2007).
[CrossRef] [PubMed]

Wang, L.

L. Wang, S. L. Jacques, and L. Zheng, “MCML—Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed.47(2), 131–146 (1995).
[CrossRef] [PubMed]

Wehner, E.

D. W. Allen, S. Maxwell, J. P. Rice, R. Chang, M. Litorja, J. Hwang, J. Cadeddu, E. Livingston, E. Wehner, and K. J. Zuzak, “Hyperspectral image projection of a pig kidney for the evaluation of imagers used for oximetry,” Proc. SPIE7906, 79060V (2011).
[CrossRef]

Wyatt, J. S.

C. E. Cooper, C. E. Elwell, J. H. Meek, S. J. Matcher, J. S. Wyatt, M. Cope, and D. T. Delpy, “The noninvasive measurement of absolute cerebral deoxyhemoglobin concentration and mean optical path length in the neonatal brain by second derivative near infrared spectroscopy,” Pediatr. Res.39(1), 32–38 (1996).
[CrossRef] [PubMed]

Xu, J. S.

R. X. Xu, K. Huang, R. Qin, J. Huang, J. S. Xu, L. Ding, U. S. Gnyawali, G. M. Gordillo, S. C. Gnyawali, and C. K. Sen, “Dual-mode imaging of cutaneous tissue oxygenation and vascular function,” J. Vis. Exp. (46): (2010), doi:.
[CrossRef] [PubMed]

Xu, R. X.

R. X. Xu, K. Huang, R. Qin, J. Huang, J. S. Xu, L. Ding, U. S. Gnyawali, G. M. Gordillo, S. C. Gnyawali, and C. K. Sen, “Dual-mode imaging of cutaneous tissue oxygenation and vascular function,” J. Vis. Exp. (46): (2010), doi:.
[CrossRef] [PubMed]

Yoon, H. W.

J. P. Rice, S. W. Brown, D. W. Allen, H. W. Yoon, M. Litorja, and J. C. Hwang, “Hyperspectral image projector applications,” Proc. SPIE8254, 82540R (2012).
[CrossRef]

Yuasa, T.

I. Nishidate, N. Tanaka, T. Kawase, T. Maeda, T. Yuasa, Y. Aizu, T. Yuasa, and K. Niizeki, “Noninvasive imaging of human skin hemodynamics using a digital red-green-blue camera,” J. Biomed. Opt.16(8), 086012 (2011).
[CrossRef] [PubMed]

I. Nishidate, N. Tanaka, T. Kawase, T. Maeda, T. Yuasa, Y. Aizu, T. Yuasa, and K. Niizeki, “Noninvasive imaging of human skin hemodynamics using a digital red-green-blue camera,” J. Biomed. Opt.16(8), 086012 (2011).
[CrossRef] [PubMed]

Zheng, L.

L. Wang, S. L. Jacques, and L. Zheng, “MCML—Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed.47(2), 131–146 (1995).
[CrossRef] [PubMed]

Zuzak, K. J.

D. W. Allen, S. Maxwell, J. P. Rice, R. Chang, M. Litorja, J. Hwang, J. Cadeddu, E. Livingston, E. Wehner, and K. J. Zuzak, “Hyperspectral image projection of a pig kidney for the evaluation of imagers used for oximetry,” Proc. SPIE7906, 79060V (2011).
[CrossRef]

K. J. Zuzak, M. D. Schaeberle, E. N. Lewis, and I. W. Levin, “Visible reflectance hyperspectral imaging: characterization of a noninvasive, in vivo system for determining tissue perfusion,” Anal. Chem.74(9), 2021–2028 (2002).
[CrossRef] [PubMed]

Anal. Chem. (1)

K. J. Zuzak, M. D. Schaeberle, E. N. Lewis, and I. W. Levin, “Visible reflectance hyperspectral imaging: characterization of a noninvasive, in vivo system for determining tissue perfusion,” Anal. Chem.74(9), 2021–2028 (2002).
[CrossRef] [PubMed]

Biotechniques (1)

S. A. Shah, N. Bachrach, S. J. Spear, D. S. Letbetter, R. A. Stone, R. Dhir, J. W. Prichard, H. G. Brown, and W. A. LaFramboise, “Cutaneous wound analysis using hyperspectral imaging,” Biotechniques34(2), 408–413 (2003).
[PubMed]

Burns (1)

M. G. Sowa, L. Leonardi, J. R. Payette, J. S. Fish, and H. H. Mantsch, “Near infrared spectroscopic assessment of hemodynamic changes in the early post-burn period,” Burns27(3), 241–249 (2001).
[CrossRef] [PubMed]

Comput. Methods Programs Biomed. (1)

L. Wang, S. L. Jacques, and L. Zheng, “MCML—Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed.47(2), 131–146 (1995).
[CrossRef] [PubMed]

Diabetes Care (1)

L. Khaodhiar, T. Dinh, K. T. Schomacker, S. V. Panasyuk, J. E. Freeman, R. Lew, T. Vo, A. A. Panasyuk, C. Lima, J. M. Giurini, T. E. Lyons, and A. Veves, “The use of medical hyperspectral technology to evaluate microcirculatory changes in diabetic foot ulcers and to predict clinical outcomes,” Diabetes Care30(4), 903–910 (2007).
[CrossRef] [PubMed]

IEEE Trans. Med. Imaging (1)

J. R. Mansfield, M. G. Sowa, J. R. Payette, B. Abdulrauf, M. F. Stranc, and H. H. Mantsch, “Tissue viability by multispectral near infrared imaging: a fuzzy C-means clustering analysis,” IEEE Trans. Med. Imaging17(6), 1011–1018 (1998).
[CrossRef] [PubMed]

J. Biomed. Opt. (2)

D. E. Myers, L. D. Anderson, R. P. Seifert, J. P. Ortner, C. E. Cooper, G. J. Beilman, and J. D. Mowlem, “Noninvasive method for measuring local hemoglobin oxygen saturation in tissue using wide gap second derivative near-infrared spectroscopy,” J. Biomed. Opt.10(3), 034017 (2005).
[CrossRef] [PubMed]

I. Nishidate, N. Tanaka, T. Kawase, T. Maeda, T. Yuasa, Y. Aizu, T. Yuasa, and K. Niizeki, “Noninvasive imaging of human skin hemodynamics using a digital red-green-blue camera,” J. Biomed. Opt.16(8), 086012 (2011).
[CrossRef] [PubMed]

J. Vis. Exp. (1)

R. X. Xu, K. Huang, R. Qin, J. Huang, J. S. Xu, L. Ding, U. S. Gnyawali, G. M. Gordillo, S. C. Gnyawali, and C. K. Sen, “Dual-mode imaging of cutaneous tissue oxygenation and vascular function,” J. Vis. Exp. (46): (2010), doi:.
[CrossRef] [PubMed]

Opt. Express (1)

Pediatr. Res. (1)

C. E. Cooper, C. E. Elwell, J. H. Meek, S. J. Matcher, J. S. Wyatt, M. Cope, and D. T. Delpy, “The noninvasive measurement of absolute cerebral deoxyhemoglobin concentration and mean optical path length in the neonatal brain by second derivative near infrared spectroscopy,” Pediatr. Res.39(1), 32–38 (1996).
[CrossRef] [PubMed]

Physiol. Genomics (1)

S. Roy, S. Biswas, S. Khanna, G. Gordillo, V. Bergdall, J. Green, C. B. Marsh, L. J. Gould, and C. K. Sen, “Characterization of a preclinical model of chronic ischemic wound,” Physiol. Genomics37(3), 211–224 (2009).
[CrossRef] [PubMed]

Proc. SPIE (2)

J. P. Rice, S. W. Brown, D. W. Allen, H. W. Yoon, M. Litorja, and J. C. Hwang, “Hyperspectral image projector applications,” Proc. SPIE8254, 82540R (2012).
[CrossRef]

D. W. Allen, S. Maxwell, J. P. Rice, R. Chang, M. Litorja, J. Hwang, J. Cadeddu, E. Livingston, E. Wehner, and K. J. Zuzak, “Hyperspectral image projection of a pig kidney for the evaluation of imagers used for oximetry,” Proc. SPIE7906, 79060V (2011).
[CrossRef]

Prog. Retin. Eye Res. (1)

T. T. Berendschot, P. J. DeLint, and D. van Norren, “Fundus reflectance—historical and present ideas,” Prog. Retin. Eye Res.22(2), 171–200 (2003).
[CrossRef] [PubMed]

Wound Repair Regen. (2)

C. K. Sen, G. M. Gordillo, S. Roy, R. Kirsner, L. Lambert, T. K. Hunt, F. Gottrup, G. C. Gurtner, and M. T. Longaker, “Human skin wounds: a major and snowballing threat to public health and the economy,” Wound Repair Regen.17(6), 763–771 (2009).
[CrossRef] [PubMed]

C. K. Sen, “Wound healing essentials: let there be oxygen,” Wound Repair Regen.17(1), 1–18 (2009).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

A hyperspectral imaging setup for benchtop and in vivo experiments. The system consists of a broadband light source, a hyperspectral linear camera, a motorized linear stage, a universal joint, and an optical rail structure installed on a mobile cart.

Fig. 2
Fig. 2

The schematic of the HIP experimental setup. The HIP system consists of a VNIR spectral light engine, a SWIR spectral light engine, a supercontinuum laser source, and a power supply. The output from the spectral light engine is coupled into an integrating sphere and a spatial light engine respectively. The output from the integrating sphere is measured by a spectrometer. The output from a spatial light engine is detected by a unit-under-test (UUT). The UUT could be any spectral imaging devices needing calibration or performance validation.

Fig. 3
Fig. 3

(a) Schematic drawing of the experimental setup for hyperspectral imaging of a tissue-simulating phantom. The phantom was placed in a cardboard container ventilated with argon gas. Sodium hydrosulfite was added dropwise by a syringe pump to reach different oxygenation plateaus. A NIST traceable white diffuser was placed next to the phantom as the reflectance reference. A hyperspectral linear camera was driven by a motorized linear stage to scan over the whole field of view. The oxygenation level of the phantom was compared with the invasive measurements by a tissue oximeter. (b) Blood phantom at full oxygenation. (c) Blood phantom at full deoxygenation. The white part on the top of (b) and (c) is the NIST traceable white diffuser.

Fig. 4
Fig. 4

(a) Reflectance spectra of the blood phantom at different oxygenation levels ranging from 93% to 4%. (b) Reflectance spectra of the corresponding digital phantoms at the same oxygenation levels ranging from 93% to 4%. (c) The spectral differences between the blood phantom and the digital phantom at different oxygenation levels from 93% to 4%. Reflectance spectra in (b) is almost identical to those in (a) at different oxygenation levels, indicating that a DTP is able to reproduce the spectral characteristics of the original blood phantom with high fidelity.

Fig. 5
Fig. 5

(a) Ischemic skin flaps created in the dorsal area of a domestic pig. S1 and S2 are sample dermal flaps created by elevating skin from the underlying tissue and placing silastic sheets underneath to prevent the graft bed reperfusion. C2 is the control flap created by the similar procedure except that no silastic sheet is placed. C1 is the blank control of normal skin tissue without any incision. (b-c) RGB images of the hyperspectral data cubes acquired on the 1st day (b) and the 3rd day (c) after surgery from the control tissue (“C1”). (d-e) RGB images of the hyperspectral data cubes acquired on the 1st day (b) and the 3rd day (e) after surgery from the sample tissue (“S2”).

Fig. 6
Fig. 6

(a) Reflectance spectra acquired on the 1st and the 3rd days after surgery from the control and the sample skin flap. Spectral fluctuations can be observed on both the sample ischemic flap and the control. (b) Corresponding wide-gap 2nd derivative spectra. The 2nd derivative spectrum of the sample ischemic flap shows significant fluctuation after surgery, whereas that of the control tissue shows minimal fluctuation.

Fig. 7
Fig. 7

(a) Reflectance spectra obtained from the hyperspectral data cubes of the in vivo porcine ischemic skin flap at 7 different spots. (b) Reflectance spectra acquired from the corresponding in vivo DTPs. The in vivo DTPs were generated by projecting the hyperspectral data cubes using a HIP projector. Reflectance spectra in (b) are almost identical to those in (a) at different spots, indicating that a DTP is able to reproduce the spectral characteristics of the original ischemic skin flap with high fidelity.

Fig. 8
Fig. 8

Comparison of the reflectance spectra of the original biological systems and those projected by the HIP. (a) Original and HIP-projected reflectance spectra of a blood phantom with full oxygenation. (b) Original and HIP-projected reflectance spectra at one ROI in the ischemic skin flap. Lower and upper deviations represent the spatial heterogeneity of the reflectance spectra.

Fig. 9
Fig. 9

(a) Actual oxygenation levels versus oxygenation levels reconstructed from the wide-gap 2nd derivative spectra based on the simulated measurements. 20% of type I noise is introduced into the simulated measurements. (b) Actual versus reconstructed oxygenation levels for the simulated measurements where up to 10% of type II noise is introduced in the absorption and scattering spectra.

Fig. 10
Fig. 10

Actual phantom oxygenation levels measured by a tissue oximeter versus those reconstructed from the original hyperspectral measurements (blue circles) and from the projected DTPs (green triangles). The solid redline is a 1:1 diagonal line. The reconstructed oxygenation values have been normalized to the scale of 0 to 100. Linear correlation is observed between the reconstructed and the actual oxygenation levels. The error bars indicate the oxygen heterogeneity of the tested blood phantom.

Metrics