Abstract

A real-time three-dimensional (3D) photoacoustic imaging system was developed for epilepsy imaging in small animals. The system is based on a spherical array containing 192 transducers with a 5 MHz central frequency. The signals from the 192 transducers are amplified by 16 homemade preamplifier boards with 26 dB and multiplexed into a 64 channel data acquisition system. It can record a complete set of 3D data at a frame rate of 3.3 f/s, and the spatial resolution is about 0.2 mm. Phantom experiments were conducted to demonstrate the high imaging quality and real time imaging ability of the system. Finally, we tested the system on an acute epilepsy rat model, and the induced seizure focus was successfully detected using this system.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. A. Kruger, R. B. Lam, D. R. Reinecke, S. P. Del Rio, and R. P. Doyle, “Photoacoustic angiography of the breast,” Med. Phys.37(11), 6096–6100 (2010).
    [CrossRef] [PubMed]
  2. A. A. Karabutov, E. Savateeva, and A. Oraevsky, “Imaging of layered structures in biological tissues with opto-acoustic front surface transducer,” Proc. SPIE3601, 284–295 (1999).
    [CrossRef]
  3. J. Xiao, L. Yao, Y. Sun, E. S. Sobel, J. He, and H. Jiang, “Quantitative two-dimensional photoacoustic tomography of osteoarthritis in the finger joints,” Opt. Express18(14), 14359–14365 (2010).
    [CrossRef] [PubMed]
  4. X. Wang, Y. Pang, G. Ku, G. Stoica, and L. V. Wang, “Three-dimensional laser-induced photoacoustic tomography of mouse brain with the skin and skull intact,” Opt. Lett.28(19), 1739–1741 (2003).
    [CrossRef] [PubMed]
  5. Q. Zhang, Z. Liu, P. R. Carney, Z. Yuan, H. Chen, S. N. Roper, and H. Jiang, “Non-invasive imaging of epileptic seizures in vivo using photoacoustic tomography,” Phys. Med. Biol.53(7), 1921–1931 (2008).
    [CrossRef] [PubMed]
  6. J. Gamelin, A. Maurudis, A. Aguirre, F. Huang, P. Guo, L. V. Wang, and Q. Zhu, “A real-time photoacoustic tomography system for small animals,” Opt. Express17(13), 10489–10498 (2009).
    [CrossRef] [PubMed]
  7. D. W. Yang, D. Xing, S. H. Yang, and L. Z. Xiang, “Fast full-view photoacoustic imaging by combined scanning with a linear transducer array,” Opt. Express15(23), 15566–15575 (2007).
    [CrossRef] [PubMed]
  8. S. Manohar, A. Kharine, J. C. G. van Hespen, W. Steenbergen, and T. G. van Leeuwen, “Photoacoustic mammography laboratory prototype: imaging of breast tissue phantoms,” J. Biomed. Opt.9(6), 1172–1181 (2004).
    [CrossRef] [PubMed]
  9. T. N. Erpelding, Y. Wang, L. Jankovic, Z. Guo, J. Robert, G. David, C. Kim, and L. V. Wang, “Three-dimensional photoacoustic imaging with a clinical two-dimensional matrix ultrasound transducer,” Proc. SPIE7899, 78990A, 78990A-6 (2011).
    [CrossRef]
  10. M. B. Roumeliotis, I. Kosik, and J. J. L. Carson, “3D photoacoustic imaging using staring, sparse array with 60 transducers,” Proc. SPIE8223, 82233F, 82233F-6 (2012).
    [CrossRef]
  11. C. G. A. Hoelen and F. F. M. de Mul, “Image reconstruction for photoacoustic scanning of tissue structures,” Appl. Opt.39(31), 5872–5883 (2000).
    [CrossRef] [PubMed]
  12. L. Yao and H. Jiang, “Photoacoustic image reconstruction from few-detector and limited-angle data,” Biomed. Opt. Express2(9), 2649–2654 (2011).
    [CrossRef] [PubMed]
  13. L. Yao and H. Jiang, “Enhancing finite element-based photoacoustic tomography using total variation minimization,” Appl. Opt.50(25), 5031–5041 (2011).
    [CrossRef]

2012 (1)

M. B. Roumeliotis, I. Kosik, and J. J. L. Carson, “3D photoacoustic imaging using staring, sparse array with 60 transducers,” Proc. SPIE8223, 82233F, 82233F-6 (2012).
[CrossRef]

2011 (3)

L. Yao and H. Jiang, “Photoacoustic image reconstruction from few-detector and limited-angle data,” Biomed. Opt. Express2(9), 2649–2654 (2011).
[CrossRef] [PubMed]

L. Yao and H. Jiang, “Enhancing finite element-based photoacoustic tomography using total variation minimization,” Appl. Opt.50(25), 5031–5041 (2011).
[CrossRef]

T. N. Erpelding, Y. Wang, L. Jankovic, Z. Guo, J. Robert, G. David, C. Kim, and L. V. Wang, “Three-dimensional photoacoustic imaging with a clinical two-dimensional matrix ultrasound transducer,” Proc. SPIE7899, 78990A, 78990A-6 (2011).
[CrossRef]

2010 (2)

R. A. Kruger, R. B. Lam, D. R. Reinecke, S. P. Del Rio, and R. P. Doyle, “Photoacoustic angiography of the breast,” Med. Phys.37(11), 6096–6100 (2010).
[CrossRef] [PubMed]

J. Xiao, L. Yao, Y. Sun, E. S. Sobel, J. He, and H. Jiang, “Quantitative two-dimensional photoacoustic tomography of osteoarthritis in the finger joints,” Opt. Express18(14), 14359–14365 (2010).
[CrossRef] [PubMed]

2009 (1)

2008 (1)

Q. Zhang, Z. Liu, P. R. Carney, Z. Yuan, H. Chen, S. N. Roper, and H. Jiang, “Non-invasive imaging of epileptic seizures in vivo using photoacoustic tomography,” Phys. Med. Biol.53(7), 1921–1931 (2008).
[CrossRef] [PubMed]

2007 (1)

2004 (1)

S. Manohar, A. Kharine, J. C. G. van Hespen, W. Steenbergen, and T. G. van Leeuwen, “Photoacoustic mammography laboratory prototype: imaging of breast tissue phantoms,” J. Biomed. Opt.9(6), 1172–1181 (2004).
[CrossRef] [PubMed]

2003 (1)

2000 (1)

1999 (1)

A. A. Karabutov, E. Savateeva, and A. Oraevsky, “Imaging of layered structures in biological tissues with opto-acoustic front surface transducer,” Proc. SPIE3601, 284–295 (1999).
[CrossRef]

Aguirre, A.

Carney, P. R.

Q. Zhang, Z. Liu, P. R. Carney, Z. Yuan, H. Chen, S. N. Roper, and H. Jiang, “Non-invasive imaging of epileptic seizures in vivo using photoacoustic tomography,” Phys. Med. Biol.53(7), 1921–1931 (2008).
[CrossRef] [PubMed]

Carson, J. J. L.

M. B. Roumeliotis, I. Kosik, and J. J. L. Carson, “3D photoacoustic imaging using staring, sparse array with 60 transducers,” Proc. SPIE8223, 82233F, 82233F-6 (2012).
[CrossRef]

Chen, H.

Q. Zhang, Z. Liu, P. R. Carney, Z. Yuan, H. Chen, S. N. Roper, and H. Jiang, “Non-invasive imaging of epileptic seizures in vivo using photoacoustic tomography,” Phys. Med. Biol.53(7), 1921–1931 (2008).
[CrossRef] [PubMed]

David, G.

T. N. Erpelding, Y. Wang, L. Jankovic, Z. Guo, J. Robert, G. David, C. Kim, and L. V. Wang, “Three-dimensional photoacoustic imaging with a clinical two-dimensional matrix ultrasound transducer,” Proc. SPIE7899, 78990A, 78990A-6 (2011).
[CrossRef]

de Mul, F. F. M.

Del Rio, S. P.

R. A. Kruger, R. B. Lam, D. R. Reinecke, S. P. Del Rio, and R. P. Doyle, “Photoacoustic angiography of the breast,” Med. Phys.37(11), 6096–6100 (2010).
[CrossRef] [PubMed]

Doyle, R. P.

R. A. Kruger, R. B. Lam, D. R. Reinecke, S. P. Del Rio, and R. P. Doyle, “Photoacoustic angiography of the breast,” Med. Phys.37(11), 6096–6100 (2010).
[CrossRef] [PubMed]

Erpelding, T. N.

T. N. Erpelding, Y. Wang, L. Jankovic, Z. Guo, J. Robert, G. David, C. Kim, and L. V. Wang, “Three-dimensional photoacoustic imaging with a clinical two-dimensional matrix ultrasound transducer,” Proc. SPIE7899, 78990A, 78990A-6 (2011).
[CrossRef]

Gamelin, J.

Guo, P.

Guo, Z.

T. N. Erpelding, Y. Wang, L. Jankovic, Z. Guo, J. Robert, G. David, C. Kim, and L. V. Wang, “Three-dimensional photoacoustic imaging with a clinical two-dimensional matrix ultrasound transducer,” Proc. SPIE7899, 78990A, 78990A-6 (2011).
[CrossRef]

He, J.

Hoelen, C. G. A.

Huang, F.

Jankovic, L.

T. N. Erpelding, Y. Wang, L. Jankovic, Z. Guo, J. Robert, G. David, C. Kim, and L. V. Wang, “Three-dimensional photoacoustic imaging with a clinical two-dimensional matrix ultrasound transducer,” Proc. SPIE7899, 78990A, 78990A-6 (2011).
[CrossRef]

Jiang, H.

Karabutov, A. A.

A. A. Karabutov, E. Savateeva, and A. Oraevsky, “Imaging of layered structures in biological tissues with opto-acoustic front surface transducer,” Proc. SPIE3601, 284–295 (1999).
[CrossRef]

Kharine, A.

S. Manohar, A. Kharine, J. C. G. van Hespen, W. Steenbergen, and T. G. van Leeuwen, “Photoacoustic mammography laboratory prototype: imaging of breast tissue phantoms,” J. Biomed. Opt.9(6), 1172–1181 (2004).
[CrossRef] [PubMed]

Kim, C.

T. N. Erpelding, Y. Wang, L. Jankovic, Z. Guo, J. Robert, G. David, C. Kim, and L. V. Wang, “Three-dimensional photoacoustic imaging with a clinical two-dimensional matrix ultrasound transducer,” Proc. SPIE7899, 78990A, 78990A-6 (2011).
[CrossRef]

Kosik, I.

M. B. Roumeliotis, I. Kosik, and J. J. L. Carson, “3D photoacoustic imaging using staring, sparse array with 60 transducers,” Proc. SPIE8223, 82233F, 82233F-6 (2012).
[CrossRef]

Kruger, R. A.

R. A. Kruger, R. B. Lam, D. R. Reinecke, S. P. Del Rio, and R. P. Doyle, “Photoacoustic angiography of the breast,” Med. Phys.37(11), 6096–6100 (2010).
[CrossRef] [PubMed]

Ku, G.

Lam, R. B.

R. A. Kruger, R. B. Lam, D. R. Reinecke, S. P. Del Rio, and R. P. Doyle, “Photoacoustic angiography of the breast,” Med. Phys.37(11), 6096–6100 (2010).
[CrossRef] [PubMed]

Liu, Z.

Q. Zhang, Z. Liu, P. R. Carney, Z. Yuan, H. Chen, S. N. Roper, and H. Jiang, “Non-invasive imaging of epileptic seizures in vivo using photoacoustic tomography,” Phys. Med. Biol.53(7), 1921–1931 (2008).
[CrossRef] [PubMed]

Manohar, S.

S. Manohar, A. Kharine, J. C. G. van Hespen, W. Steenbergen, and T. G. van Leeuwen, “Photoacoustic mammography laboratory prototype: imaging of breast tissue phantoms,” J. Biomed. Opt.9(6), 1172–1181 (2004).
[CrossRef] [PubMed]

Maurudis, A.

Oraevsky, A.

A. A. Karabutov, E. Savateeva, and A. Oraevsky, “Imaging of layered structures in biological tissues with opto-acoustic front surface transducer,” Proc. SPIE3601, 284–295 (1999).
[CrossRef]

Pang, Y.

Reinecke, D. R.

R. A. Kruger, R. B. Lam, D. R. Reinecke, S. P. Del Rio, and R. P. Doyle, “Photoacoustic angiography of the breast,” Med. Phys.37(11), 6096–6100 (2010).
[CrossRef] [PubMed]

Robert, J.

T. N. Erpelding, Y. Wang, L. Jankovic, Z. Guo, J. Robert, G. David, C. Kim, and L. V. Wang, “Three-dimensional photoacoustic imaging with a clinical two-dimensional matrix ultrasound transducer,” Proc. SPIE7899, 78990A, 78990A-6 (2011).
[CrossRef]

Roper, S. N.

Q. Zhang, Z. Liu, P. R. Carney, Z. Yuan, H. Chen, S. N. Roper, and H. Jiang, “Non-invasive imaging of epileptic seizures in vivo using photoacoustic tomography,” Phys. Med. Biol.53(7), 1921–1931 (2008).
[CrossRef] [PubMed]

Roumeliotis, M. B.

M. B. Roumeliotis, I. Kosik, and J. J. L. Carson, “3D photoacoustic imaging using staring, sparse array with 60 transducers,” Proc. SPIE8223, 82233F, 82233F-6 (2012).
[CrossRef]

Savateeva, E.

A. A. Karabutov, E. Savateeva, and A. Oraevsky, “Imaging of layered structures in biological tissues with opto-acoustic front surface transducer,” Proc. SPIE3601, 284–295 (1999).
[CrossRef]

Sobel, E. S.

Steenbergen, W.

S. Manohar, A. Kharine, J. C. G. van Hespen, W. Steenbergen, and T. G. van Leeuwen, “Photoacoustic mammography laboratory prototype: imaging of breast tissue phantoms,” J. Biomed. Opt.9(6), 1172–1181 (2004).
[CrossRef] [PubMed]

Stoica, G.

Sun, Y.

van Hespen, J. C. G.

S. Manohar, A. Kharine, J. C. G. van Hespen, W. Steenbergen, and T. G. van Leeuwen, “Photoacoustic mammography laboratory prototype: imaging of breast tissue phantoms,” J. Biomed. Opt.9(6), 1172–1181 (2004).
[CrossRef] [PubMed]

van Leeuwen, T. G.

S. Manohar, A. Kharine, J. C. G. van Hespen, W. Steenbergen, and T. G. van Leeuwen, “Photoacoustic mammography laboratory prototype: imaging of breast tissue phantoms,” J. Biomed. Opt.9(6), 1172–1181 (2004).
[CrossRef] [PubMed]

Wang, L. V.

Wang, X.

Wang, Y.

T. N. Erpelding, Y. Wang, L. Jankovic, Z. Guo, J. Robert, G. David, C. Kim, and L. V. Wang, “Three-dimensional photoacoustic imaging with a clinical two-dimensional matrix ultrasound transducer,” Proc. SPIE7899, 78990A, 78990A-6 (2011).
[CrossRef]

Xiang, L. Z.

Xiao, J.

Xing, D.

Yang, D. W.

Yang, S. H.

Yao, L.

Yuan, Z.

Q. Zhang, Z. Liu, P. R. Carney, Z. Yuan, H. Chen, S. N. Roper, and H. Jiang, “Non-invasive imaging of epileptic seizures in vivo using photoacoustic tomography,” Phys. Med. Biol.53(7), 1921–1931 (2008).
[CrossRef] [PubMed]

Zhang, Q.

Q. Zhang, Z. Liu, P. R. Carney, Z. Yuan, H. Chen, S. N. Roper, and H. Jiang, “Non-invasive imaging of epileptic seizures in vivo using photoacoustic tomography,” Phys. Med. Biol.53(7), 1921–1931 (2008).
[CrossRef] [PubMed]

Zhu, Q.

Appl. Opt. (2)

Biomed. Opt. Express (1)

J. Biomed. Opt. (1)

S. Manohar, A. Kharine, J. C. G. van Hespen, W. Steenbergen, and T. G. van Leeuwen, “Photoacoustic mammography laboratory prototype: imaging of breast tissue phantoms,” J. Biomed. Opt.9(6), 1172–1181 (2004).
[CrossRef] [PubMed]

Med. Phys. (1)

R. A. Kruger, R. B. Lam, D. R. Reinecke, S. P. Del Rio, and R. P. Doyle, “Photoacoustic angiography of the breast,” Med. Phys.37(11), 6096–6100 (2010).
[CrossRef] [PubMed]

Opt. Express (3)

Opt. Lett. (1)

Phys. Med. Biol. (1)

Q. Zhang, Z. Liu, P. R. Carney, Z. Yuan, H. Chen, S. N. Roper, and H. Jiang, “Non-invasive imaging of epileptic seizures in vivo using photoacoustic tomography,” Phys. Med. Biol.53(7), 1921–1931 (2008).
[CrossRef] [PubMed]

Proc. SPIE (3)

A. A. Karabutov, E. Savateeva, and A. Oraevsky, “Imaging of layered structures in biological tissues with opto-acoustic front surface transducer,” Proc. SPIE3601, 284–295 (1999).
[CrossRef]

T. N. Erpelding, Y. Wang, L. Jankovic, Z. Guo, J. Robert, G. David, C. Kim, and L. V. Wang, “Three-dimensional photoacoustic imaging with a clinical two-dimensional matrix ultrasound transducer,” Proc. SPIE7899, 78990A, 78990A-6 (2011).
[CrossRef]

M. B. Roumeliotis, I. Kosik, and J. J. L. Carson, “3D photoacoustic imaging using staring, sparse array with 60 transducers,” Proc. SPIE8223, 82233F, 82233F-6 (2012).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Block diagram of our real-time 3D PAT system. The inset is a photograph of the close-up view of the chamber holding the rat head.

Fig. 2
Fig. 2

The spherical transducer array. (a) Photograph of the transducer array. (b) 3D schematic of the transducer distribution on the interface.

Fig. 3
Fig. 3

(a) and (c): x-y and z-x cross section images through the center plan of the point object. (b) and (d): the profile extracted in x and z directions from (a) and (c), respectively. Units are in mm.

Fig. 4
Fig. 4

(a): photograph of the phantom containing three tiled hairs; (b)-(c): reconstructed 3D images of the three hairs in two different views. Scale bar represents 5 mm.

Fig. 5
Fig. 5

Reconstructed 3D images of ink flowing through a 0.3 mm-tube embedded in a background phantom. (a): photograph of the phantom containing the tube. (b)-(j): reconstructed 3D images at different time points. The time interval is 0.3 s. Scale bar represents 5 mm.

Fig. 6
Fig. 6

(a) and (c): photograph of the rat with BMI injection and the control rat after scalp removed. (b) and (d): 3D PAT images at 6 time points for (a) and (c) respectively. The three main blood vessels are indicated by the white arrows, and the seizure focus is indicated by the circle in (b). The time interval between two successive images is 0.3 s. Scale bar represents 10 mm.

Metrics