Abstract

The editors introduce the Biomedical Optics Express feature issue on “Phantoms for the Performance Evaluation and Validation of Optical Medical Imaging Devices.” This topic was the focus of a technical workshop that was held on November 7–8, 2011, in Washington, D.C. The feature issue includes 13 contributions from workshop attendees.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. H. Contag and M. H. Bachmann, “Advances in in vivo bioluminescence imaging of gene expression,” Annu. Rev. Biomed. Eng.4(1), 235–260 (2002).
    [CrossRef] [PubMed]
  2. C. H. Contag and B. D. Ross, “It’s not just about anatomy: in vivo bioluminescence imaging as an eyepiece into biology,” J. Magn. Reson. Imaging16(4), 378–387 (2002).
    [CrossRef] [PubMed]
  3. C. E. Cooper and R. Springett, “Measurement of cytochrome oxidase and mitochondrial energetics by near-infrared spectroscopy,” Philos. Trans. R. Soc. Lond. B Biol. Sci.352(1354), 669–676 (1997).
    [CrossRef] [PubMed]
  4. J. G. Fujimoto, C. Pitris, S. A. Boppart, and M. E. Brezinski, “Optical coherence tomography: an emerging technology for biomedical imaging and optical biopsy,” Neoplasia2(1/2), 9–25 (2000).
    [CrossRef] [PubMed]
  5. E. Gratton, S. Fantini, M. A. Franceschini, G. Gratton, and M. Fabiani, “Measurements of scattering and absorption changes in muscle and brain,” Philos. Trans. R. Soc. Lond. B Biol. Sci.352(1354), 727–735 (1997).
    [CrossRef] [PubMed]
  6. D. J. Hawrysz and E. M. Sevick-Muraca, “Developments toward diagnostic breast cancer imaging using near-infrared optical measurements and fluorescent contrast agents,” Neoplasia2(5), 388–417 (2000).
    [CrossRef] [PubMed]
  7. J. C. Hebden, “Advances in optical imaging of the newborn infant brain,” Psychophysiology40(4), 501–510 (2003).
    [CrossRef] [PubMed]
  8. V. Ntziachristos, C. Bremer, E. E. Graves, J. Ripoll, and R. Weissleder, “In vivo tomographic imaging of near-infrared fluorescent probes,” Mol. Imaging1(2), 82–88 (2002).
    [CrossRef] [PubMed]
  9. V. Ntziachristos, C. H. Tung, C. Bremer, and R. Weissleder, “Fluorescence molecular tomography resolves protease activity in vivo,” Nat. Med.8(7), 757–761 (2002).
    [CrossRef] [PubMed]
  10. B. W. Pogue, J. D. Pitts, M. A. Mycek, R. D. Sloboda, C. M. Wilmot, J. F. Brandsema, and J. A. O’Hara, “In vivo NADH fluorescence monitoring as an assay for cellular damage in photodynamic therapy,” Photochem. Photobiol.74(6), 817–824 (2001).
    [CrossRef] [PubMed]
  11. E. M. Sevick-Muraca, J. P. Houston, and M. Gurfinkel, “Fluorescence-enhanced, near infrared diagnostic imaging with contrast agents,” Curr. Opin. Chem. Biol.6(5), 642–650 (2002).
    [CrossRef] [PubMed]
  12. B. C. Wilson, P. J. Muller, and J. C. Yanch, “Instrumentation and light dosimetry for intra-operative photodynamic therapy (PDT) of malignant brain tumours,” Phys. Med. Biol.31(2), 125–133 (1986).
    [CrossRef] [PubMed]
  13. S. R. Arridge, M. Cope, and D. T. Delpy, “The theoretical basis for the determination of optical pathlengths in tissue: temporal and frequency analysis,” Phys. Med. Biol.37(7), 1531–1560 (1992).
    [CrossRef] [PubMed]
  14. S. L. Jacques, “Laser-tissue interactions. Photochemical, photothermal, and photomechanical,” Surg. Clin. North Am.72(3), 531–558 (1992).
    [PubMed]
  15. S. J. Madsen, B. C. Wilson, M. S. Patterson, Y. D. Park, S. L. Jacques, and Y. Hefetz, “Experimental tests of a simple diffusion model for the estimation of scattering and absorption coefficients of turbid media from time-resolved diffuse reflectance measurements,” Appl. Opt.31(18), 3509–3517 (1992).
    [CrossRef] [PubMed]
  16. V. G. Peters, D. R. Wyman, M. S. Patterson, and G. L. Frank, “Optical properties of normal and diseased human breast tissues in the visible and near infrared,” Phys. Med. Biol.35(9), 1317–1334 (1990).
    [CrossRef] [PubMed]
  17. W. M. Star, J. P. Marijnissen, and M. J. C. van Gemert, “Light dosimetry in optical phantoms and in tissues: I. Multiple flux and transport theory,” Phys. Med. Biol.33(4), 437–454 (1988).
    [CrossRef] [PubMed]
  18. D. R. Wyman, M. S. Patterson, and B. C. Wilson, “Similarity relations for the interaction parameters in radiation transport,” Appl. Opt.28(24), 5243–5249 (1989).
    [CrossRef] [PubMed]
  19. W. B. Cai and X. Y. Chen, “Multimodality molecular imaging of tumor angiogenesis,” J. Nucl. Med.49(Suppl 2), 113S–128S (2008).
    [CrossRef] [PubMed]
  20. M. Moseley and G. Donnan, “Multimodality imaging - Introduction,” Stroke35(11_suppl_1), 2632–2634 (2004).
    [CrossRef]
  21. W. J. M. Mulder, G. J. Strijkers, J. W. Habets, E. J. W. Bleeker, D. W. J. van der Schaft, G. Storm, G. A. Koning, A. W. Griffioen, and K. Nicolay, “MR molecular imaging and fluorescence microscopy for identification of activated tumor endothelium using a bimodal lipidic nanoparticle,” FASEB J.19(14), 2008–2010 (2005).
    [PubMed]
  22. M. B. Aldrich, M. V. Marshall, E. M. Sevick-Muraca, G. Lanza, J. Kotyk, J. Culver, L. V. Wang, J. Uddin, B. C. Crews, L. J. Marnett, J. C. Liao, C. Contag, J. M. Crawford, K. Wang, B. Reisdorph, H. Appelman, D. K. Turgeon, C. Meyer, and T. Wang, “Seeing it through: translational validation of new medical imaging modalities,” Biomed. Opt. Express3(4), 764–776 (2012).
    [CrossRef] [PubMed]
  23. US FDA Guidance documents on “General and Cross-Cutting Topics,” http://www.fda.gov/RegulatoryInformation/Guidances/ucm122044.htm
  24. G. Cohen, “Contrast--detail--dose analysis of six different computed tomographic scanners,” J. Comput. Assist. Tomogr.3(2), 197–203 (1979).
    [CrossRef] [PubMed]
  25. J. B. Olsen and E. M. Sager, “Subjective evaluation of image quality based on images obtained with a breast tissue phantom: comparison with a conventional image quality phantom,” Br. J. Radiol.68(806), 160–164 (1995).
    [CrossRef] [PubMed]
  26. S. E. Seltzer, R. G. Swensson, P. F. Judy, and R. D. Nawfel, “Size discrimination in computed tomographic images. Effects of feature contrast and display window,” Invest. Radiol.23(6), 455–462 (1988).
    [CrossRef] [PubMed]
  27. “About NIST Standard Reference Materials®, SRM,” http://www.nist.gov/srm/definitions.cfm
  28. B. W. Pogue and M. S. Patterson, “Review of tissue simulating phantoms for optical spectroscopy, imaging and dosimetry,” J. Biomed. Opt.11(4), 041102 (2006).
    [CrossRef] [PubMed]
  29. “Traceability - NIST Policy and Supplementary Materials” http://www.nist.gov/traceability/
  30. M. L. Huebschman, R. A. Schultz, and H. R. Garner, “Characteristics and capabilities of the hyperspectral imaging microscope,” IEEE Eng. Med. Biol. Mag.21(4), 104–117 (2002).
    [CrossRef] [PubMed]
  31. D. W. Allen, M. Litorja, S. W. Brown, and Y. Q. Zong, “Evaluation of a portable hyperspectral imager for medical imaging applications,” Proc. SPIE3765, 67650F, 67650F-10 (2007).
    [CrossRef]
  32. B. S. Sorg, B. J. Moeller, O. Donovan, Y. Cao, and M. W. Dewhirst, “Hyperspectral imaging of hemoglobin saturation in tumor microvasculature and tumor hypoxia development,” J. Biomed. Opt.10(4), 044004 (2005).
    [CrossRef] [PubMed]
  33. J. Y. Lee, M. L. Clarke, F. Tokumasu, J. F. Lesoine, D. W. Allen, R. Chang, M. Litorja, and J. Hwang, “Absorption-based hyperspectral imaging and analysis of single erythrocytes,” IEEE J. Sel. Top. Quantum Electron. (early access).
  34. D. W. Allen, S. Maxwell, J. P. Rice, R. C. Chang, M. Litorja, J. Hwang, J. Cadeddu, E. Livingston, E. Wehner, and K. J. Zuzak, “Hyperspectral image projection of a pig kidney for the evaluation of imagers used for oximetry,” Proc. SPIE7906, 79060V, 79060V-9 (2011).
    [CrossRef]
  35. R. Tibshirani, “Regression shrinkage and selection via the Lasso,” J. R. Stat. Soc. Ser. B Methodological58, 267–288 (1996).
  36. D. Samarov, M. L. Clarke, J. Lee, D. W. Allen, M. Litorja, and J. Hwang, “Validating the lasso algorithm by unmixing spectral signatures in multicolor phantoms,” Proc. SPIE8229, 82290Z, 82290Z-9 (2012).
    [CrossRef]
  37. M. B. Sinclair, J. A. Timlin, D. M. Haaland, and M. Werner-Washburne, “Design, construction, characterization, and application of a hyperspectral microarray scanner,” Appl. Opt.43(10), 2079–2088 (2004).
    [CrossRef] [PubMed]
  38. A. F. Fercher, C. K. Hitzenberger, W. Drexler, G. Kamp, and H. Sattmann, “In vivo optical coherence tomography,” Am. J. Ophthalmol.116(1), 113–114 (1993).
    [PubMed]
  39. E. A. Swanson, J. A. Izatt, M. R. Hee, D. Huang, C. P. Lin, J. S. Schuman, C. A. Puliafito, and J. G. Fujimoto, “In vivo retinal imaging by optical coherence tomography,” Opt. Lett.18(21), 1864–1866 (1993).
    [CrossRef] [PubMed]
  40. G. B. Airy, “On the diffraction of an object-glass with circular aperture,” Trans. Cambridge Philos.l Soc.5, 283–291 (1835).
  41. M. Roy, A. Kim, F. Dadani, and B. C. Wilson, “Homogenized tissue phantoms for quantitative evaluation of subsurface fluorescence contrast,” J. Biomed. Opt.16(1), 016013 (2011).
    [CrossRef] [PubMed]
  42. A. Bednov, S. Ulyanov, C. Cheung, and A. G. Yodh, “Correlation properties of multiple scattered light: implication to coherent diagnostics of burned skin,” J. Biomed. Opt.9(2), 347–352 (2004).
    [CrossRef] [PubMed]
  43. J. P. Culver, T. Durduran, D. Furuya, C. Cheung, J. H. Greenberg, and A. G. Yodh, “Diffuse optical tomography of cerebral blood flow, oxygenation, and metabolism in rat during focal ischemia,” J. Cereb. Blood Flow Metab.23(8), 911–924 (2003).
    [CrossRef] [PubMed]
  44. E. M. Hillman, D. A. Boas, A. M. Dale, and A. K. Dunn, “Laminar optical tomography: demonstration of millimeter-scale depth-resolved imaging in turbid media,” Opt. Lett.29(14), 1650–1652 (2004).
    [CrossRef] [PubMed]
  45. S. L. Jacques and S. J. Kirkpatrick, “Acoustically modulated speckle imaging of biological tissues,” Opt. Lett.23(11), 879–881 (1998).
    [CrossRef] [PubMed]
  46. M. Larsson, W. Steenbergen, and T. Strömberg, “Influence of optical properties and fiber separation on laser doppler flowmetry,” J. Biomed. Opt.7(2), 236–243 (2002).
    [CrossRef] [PubMed]
  47. G. Soelkner, G. Mitic, and R. Lohwasser, “Monte Carlo simulations and laser Doppler flow measurements with high penetration depth in biological tissuelike head phantoms,” Appl. Opt.36(22), 5647–5654 (1997).
    [CrossRef] [PubMed]
  48. S. T. Flock, S. L. Jacques, B. C. Wilson, W. M. Star, and M. J. van Gemert, “Optical properties of Intralipid: a phantom medium for light propagation studies,” Lasers Surg. Med.12(5), 510–519 (1992).
    [CrossRef] [PubMed]

2012 (2)

2011 (2)

D. W. Allen, S. Maxwell, J. P. Rice, R. C. Chang, M. Litorja, J. Hwang, J. Cadeddu, E. Livingston, E. Wehner, and K. J. Zuzak, “Hyperspectral image projection of a pig kidney for the evaluation of imagers used for oximetry,” Proc. SPIE7906, 79060V, 79060V-9 (2011).
[CrossRef]

M. Roy, A. Kim, F. Dadani, and B. C. Wilson, “Homogenized tissue phantoms for quantitative evaluation of subsurface fluorescence contrast,” J. Biomed. Opt.16(1), 016013 (2011).
[CrossRef] [PubMed]

2008 (1)

W. B. Cai and X. Y. Chen, “Multimodality molecular imaging of tumor angiogenesis,” J. Nucl. Med.49(Suppl 2), 113S–128S (2008).
[CrossRef] [PubMed]

2007 (1)

D. W. Allen, M. Litorja, S. W. Brown, and Y. Q. Zong, “Evaluation of a portable hyperspectral imager for medical imaging applications,” Proc. SPIE3765, 67650F, 67650F-10 (2007).
[CrossRef]

2006 (1)

B. W. Pogue and M. S. Patterson, “Review of tissue simulating phantoms for optical spectroscopy, imaging and dosimetry,” J. Biomed. Opt.11(4), 041102 (2006).
[CrossRef] [PubMed]

2005 (2)

B. S. Sorg, B. J. Moeller, O. Donovan, Y. Cao, and M. W. Dewhirst, “Hyperspectral imaging of hemoglobin saturation in tumor microvasculature and tumor hypoxia development,” J. Biomed. Opt.10(4), 044004 (2005).
[CrossRef] [PubMed]

W. J. M. Mulder, G. J. Strijkers, J. W. Habets, E. J. W. Bleeker, D. W. J. van der Schaft, G. Storm, G. A. Koning, A. W. Griffioen, and K. Nicolay, “MR molecular imaging and fluorescence microscopy for identification of activated tumor endothelium using a bimodal lipidic nanoparticle,” FASEB J.19(14), 2008–2010 (2005).
[PubMed]

2004 (4)

2003 (2)

J. P. Culver, T. Durduran, D. Furuya, C. Cheung, J. H. Greenberg, and A. G. Yodh, “Diffuse optical tomography of cerebral blood flow, oxygenation, and metabolism in rat during focal ischemia,” J. Cereb. Blood Flow Metab.23(8), 911–924 (2003).
[CrossRef] [PubMed]

J. C. Hebden, “Advances in optical imaging of the newborn infant brain,” Psychophysiology40(4), 501–510 (2003).
[CrossRef] [PubMed]

2002 (7)

V. Ntziachristos, C. Bremer, E. E. Graves, J. Ripoll, and R. Weissleder, “In vivo tomographic imaging of near-infrared fluorescent probes,” Mol. Imaging1(2), 82–88 (2002).
[CrossRef] [PubMed]

V. Ntziachristos, C. H. Tung, C. Bremer, and R. Weissleder, “Fluorescence molecular tomography resolves protease activity in vivo,” Nat. Med.8(7), 757–761 (2002).
[CrossRef] [PubMed]

C. H. Contag and M. H. Bachmann, “Advances in in vivo bioluminescence imaging of gene expression,” Annu. Rev. Biomed. Eng.4(1), 235–260 (2002).
[CrossRef] [PubMed]

C. H. Contag and B. D. Ross, “It’s not just about anatomy: in vivo bioluminescence imaging as an eyepiece into biology,” J. Magn. Reson. Imaging16(4), 378–387 (2002).
[CrossRef] [PubMed]

M. L. Huebschman, R. A. Schultz, and H. R. Garner, “Characteristics and capabilities of the hyperspectral imaging microscope,” IEEE Eng. Med. Biol. Mag.21(4), 104–117 (2002).
[CrossRef] [PubMed]

E. M. Sevick-Muraca, J. P. Houston, and M. Gurfinkel, “Fluorescence-enhanced, near infrared diagnostic imaging with contrast agents,” Curr. Opin. Chem. Biol.6(5), 642–650 (2002).
[CrossRef] [PubMed]

M. Larsson, W. Steenbergen, and T. Strömberg, “Influence of optical properties and fiber separation on laser doppler flowmetry,” J. Biomed. Opt.7(2), 236–243 (2002).
[CrossRef] [PubMed]

2001 (1)

B. W. Pogue, J. D. Pitts, M. A. Mycek, R. D. Sloboda, C. M. Wilmot, J. F. Brandsema, and J. A. O’Hara, “In vivo NADH fluorescence monitoring as an assay for cellular damage in photodynamic therapy,” Photochem. Photobiol.74(6), 817–824 (2001).
[CrossRef] [PubMed]

2000 (2)

J. G. Fujimoto, C. Pitris, S. A. Boppart, and M. E. Brezinski, “Optical coherence tomography: an emerging technology for biomedical imaging and optical biopsy,” Neoplasia2(1/2), 9–25 (2000).
[CrossRef] [PubMed]

D. J. Hawrysz and E. M. Sevick-Muraca, “Developments toward diagnostic breast cancer imaging using near-infrared optical measurements and fluorescent contrast agents,” Neoplasia2(5), 388–417 (2000).
[CrossRef] [PubMed]

1998 (1)

1997 (3)

G. Soelkner, G. Mitic, and R. Lohwasser, “Monte Carlo simulations and laser Doppler flow measurements with high penetration depth in biological tissuelike head phantoms,” Appl. Opt.36(22), 5647–5654 (1997).
[CrossRef] [PubMed]

E. Gratton, S. Fantini, M. A. Franceschini, G. Gratton, and M. Fabiani, “Measurements of scattering and absorption changes in muscle and brain,” Philos. Trans. R. Soc. Lond. B Biol. Sci.352(1354), 727–735 (1997).
[CrossRef] [PubMed]

C. E. Cooper and R. Springett, “Measurement of cytochrome oxidase and mitochondrial energetics by near-infrared spectroscopy,” Philos. Trans. R. Soc. Lond. B Biol. Sci.352(1354), 669–676 (1997).
[CrossRef] [PubMed]

1996 (1)

R. Tibshirani, “Regression shrinkage and selection via the Lasso,” J. R. Stat. Soc. Ser. B Methodological58, 267–288 (1996).

1995 (1)

J. B. Olsen and E. M. Sager, “Subjective evaluation of image quality based on images obtained with a breast tissue phantom: comparison with a conventional image quality phantom,” Br. J. Radiol.68(806), 160–164 (1995).
[CrossRef] [PubMed]

1993 (2)

A. F. Fercher, C. K. Hitzenberger, W. Drexler, G. Kamp, and H. Sattmann, “In vivo optical coherence tomography,” Am. J. Ophthalmol.116(1), 113–114 (1993).
[PubMed]

E. A. Swanson, J. A. Izatt, M. R. Hee, D. Huang, C. P. Lin, J. S. Schuman, C. A. Puliafito, and J. G. Fujimoto, “In vivo retinal imaging by optical coherence tomography,” Opt. Lett.18(21), 1864–1866 (1993).
[CrossRef] [PubMed]

1992 (4)

S. T. Flock, S. L. Jacques, B. C. Wilson, W. M. Star, and M. J. van Gemert, “Optical properties of Intralipid: a phantom medium for light propagation studies,” Lasers Surg. Med.12(5), 510–519 (1992).
[CrossRef] [PubMed]

S. R. Arridge, M. Cope, and D. T. Delpy, “The theoretical basis for the determination of optical pathlengths in tissue: temporal and frequency analysis,” Phys. Med. Biol.37(7), 1531–1560 (1992).
[CrossRef] [PubMed]

S. L. Jacques, “Laser-tissue interactions. Photochemical, photothermal, and photomechanical,” Surg. Clin. North Am.72(3), 531–558 (1992).
[PubMed]

S. J. Madsen, B. C. Wilson, M. S. Patterson, Y. D. Park, S. L. Jacques, and Y. Hefetz, “Experimental tests of a simple diffusion model for the estimation of scattering and absorption coefficients of turbid media from time-resolved diffuse reflectance measurements,” Appl. Opt.31(18), 3509–3517 (1992).
[CrossRef] [PubMed]

1990 (1)

V. G. Peters, D. R. Wyman, M. S. Patterson, and G. L. Frank, “Optical properties of normal and diseased human breast tissues in the visible and near infrared,” Phys. Med. Biol.35(9), 1317–1334 (1990).
[CrossRef] [PubMed]

1989 (1)

1988 (2)

W. M. Star, J. P. Marijnissen, and M. J. C. van Gemert, “Light dosimetry in optical phantoms and in tissues: I. Multiple flux and transport theory,” Phys. Med. Biol.33(4), 437–454 (1988).
[CrossRef] [PubMed]

S. E. Seltzer, R. G. Swensson, P. F. Judy, and R. D. Nawfel, “Size discrimination in computed tomographic images. Effects of feature contrast and display window,” Invest. Radiol.23(6), 455–462 (1988).
[CrossRef] [PubMed]

1986 (1)

B. C. Wilson, P. J. Muller, and J. C. Yanch, “Instrumentation and light dosimetry for intra-operative photodynamic therapy (PDT) of malignant brain tumours,” Phys. Med. Biol.31(2), 125–133 (1986).
[CrossRef] [PubMed]

1979 (1)

G. Cohen, “Contrast--detail--dose analysis of six different computed tomographic scanners,” J. Comput. Assist. Tomogr.3(2), 197–203 (1979).
[CrossRef] [PubMed]

1835 (1)

G. B. Airy, “On the diffraction of an object-glass with circular aperture,” Trans. Cambridge Philos.l Soc.5, 283–291 (1835).

Airy, G. B.

G. B. Airy, “On the diffraction of an object-glass with circular aperture,” Trans. Cambridge Philos.l Soc.5, 283–291 (1835).

Aldrich, M. B.

Allen, D. W.

D. Samarov, M. L. Clarke, J. Lee, D. W. Allen, M. Litorja, and J. Hwang, “Validating the lasso algorithm by unmixing spectral signatures in multicolor phantoms,” Proc. SPIE8229, 82290Z, 82290Z-9 (2012).
[CrossRef]

D. W. Allen, S. Maxwell, J. P. Rice, R. C. Chang, M. Litorja, J. Hwang, J. Cadeddu, E. Livingston, E. Wehner, and K. J. Zuzak, “Hyperspectral image projection of a pig kidney for the evaluation of imagers used for oximetry,” Proc. SPIE7906, 79060V, 79060V-9 (2011).
[CrossRef]

D. W. Allen, M. Litorja, S. W. Brown, and Y. Q. Zong, “Evaluation of a portable hyperspectral imager for medical imaging applications,” Proc. SPIE3765, 67650F, 67650F-10 (2007).
[CrossRef]

J. Y. Lee, M. L. Clarke, F. Tokumasu, J. F. Lesoine, D. W. Allen, R. Chang, M. Litorja, and J. Hwang, “Absorption-based hyperspectral imaging and analysis of single erythrocytes,” IEEE J. Sel. Top. Quantum Electron. (early access).

Appelman, H.

Arridge, S. R.

S. R. Arridge, M. Cope, and D. T. Delpy, “The theoretical basis for the determination of optical pathlengths in tissue: temporal and frequency analysis,” Phys. Med. Biol.37(7), 1531–1560 (1992).
[CrossRef] [PubMed]

Bachmann, M. H.

C. H. Contag and M. H. Bachmann, “Advances in in vivo bioluminescence imaging of gene expression,” Annu. Rev. Biomed. Eng.4(1), 235–260 (2002).
[CrossRef] [PubMed]

Bednov, A.

A. Bednov, S. Ulyanov, C. Cheung, and A. G. Yodh, “Correlation properties of multiple scattered light: implication to coherent diagnostics of burned skin,” J. Biomed. Opt.9(2), 347–352 (2004).
[CrossRef] [PubMed]

Bleeker, E. J. W.

W. J. M. Mulder, G. J. Strijkers, J. W. Habets, E. J. W. Bleeker, D. W. J. van der Schaft, G. Storm, G. A. Koning, A. W. Griffioen, and K. Nicolay, “MR molecular imaging and fluorescence microscopy for identification of activated tumor endothelium using a bimodal lipidic nanoparticle,” FASEB J.19(14), 2008–2010 (2005).
[PubMed]

Boas, D. A.

Boppart, S. A.

J. G. Fujimoto, C. Pitris, S. A. Boppart, and M. E. Brezinski, “Optical coherence tomography: an emerging technology for biomedical imaging and optical biopsy,” Neoplasia2(1/2), 9–25 (2000).
[CrossRef] [PubMed]

Brandsema, J. F.

B. W. Pogue, J. D. Pitts, M. A. Mycek, R. D. Sloboda, C. M. Wilmot, J. F. Brandsema, and J. A. O’Hara, “In vivo NADH fluorescence monitoring as an assay for cellular damage in photodynamic therapy,” Photochem. Photobiol.74(6), 817–824 (2001).
[CrossRef] [PubMed]

Bremer, C.

V. Ntziachristos, C. Bremer, E. E. Graves, J. Ripoll, and R. Weissleder, “In vivo tomographic imaging of near-infrared fluorescent probes,” Mol. Imaging1(2), 82–88 (2002).
[CrossRef] [PubMed]

V. Ntziachristos, C. H. Tung, C. Bremer, and R. Weissleder, “Fluorescence molecular tomography resolves protease activity in vivo,” Nat. Med.8(7), 757–761 (2002).
[CrossRef] [PubMed]

Brezinski, M. E.

J. G. Fujimoto, C. Pitris, S. A. Boppart, and M. E. Brezinski, “Optical coherence tomography: an emerging technology for biomedical imaging and optical biopsy,” Neoplasia2(1/2), 9–25 (2000).
[CrossRef] [PubMed]

Brown, S. W.

D. W. Allen, M. Litorja, S. W. Brown, and Y. Q. Zong, “Evaluation of a portable hyperspectral imager for medical imaging applications,” Proc. SPIE3765, 67650F, 67650F-10 (2007).
[CrossRef]

Cadeddu, J.

D. W. Allen, S. Maxwell, J. P. Rice, R. C. Chang, M. Litorja, J. Hwang, J. Cadeddu, E. Livingston, E. Wehner, and K. J. Zuzak, “Hyperspectral image projection of a pig kidney for the evaluation of imagers used for oximetry,” Proc. SPIE7906, 79060V, 79060V-9 (2011).
[CrossRef]

Cai, W. B.

W. B. Cai and X. Y. Chen, “Multimodality molecular imaging of tumor angiogenesis,” J. Nucl. Med.49(Suppl 2), 113S–128S (2008).
[CrossRef] [PubMed]

Cao, Y.

B. S. Sorg, B. J. Moeller, O. Donovan, Y. Cao, and M. W. Dewhirst, “Hyperspectral imaging of hemoglobin saturation in tumor microvasculature and tumor hypoxia development,” J. Biomed. Opt.10(4), 044004 (2005).
[CrossRef] [PubMed]

Chang, R.

J. Y. Lee, M. L. Clarke, F. Tokumasu, J. F. Lesoine, D. W. Allen, R. Chang, M. Litorja, and J. Hwang, “Absorption-based hyperspectral imaging and analysis of single erythrocytes,” IEEE J. Sel. Top. Quantum Electron. (early access).

Chang, R. C.

D. W. Allen, S. Maxwell, J. P. Rice, R. C. Chang, M. Litorja, J. Hwang, J. Cadeddu, E. Livingston, E. Wehner, and K. J. Zuzak, “Hyperspectral image projection of a pig kidney for the evaluation of imagers used for oximetry,” Proc. SPIE7906, 79060V, 79060V-9 (2011).
[CrossRef]

Chen, X. Y.

W. B. Cai and X. Y. Chen, “Multimodality molecular imaging of tumor angiogenesis,” J. Nucl. Med.49(Suppl 2), 113S–128S (2008).
[CrossRef] [PubMed]

Cheung, C.

A. Bednov, S. Ulyanov, C. Cheung, and A. G. Yodh, “Correlation properties of multiple scattered light: implication to coherent diagnostics of burned skin,” J. Biomed. Opt.9(2), 347–352 (2004).
[CrossRef] [PubMed]

J. P. Culver, T. Durduran, D. Furuya, C. Cheung, J. H. Greenberg, and A. G. Yodh, “Diffuse optical tomography of cerebral blood flow, oxygenation, and metabolism in rat during focal ischemia,” J. Cereb. Blood Flow Metab.23(8), 911–924 (2003).
[CrossRef] [PubMed]

Clarke, M. L.

D. Samarov, M. L. Clarke, J. Lee, D. W. Allen, M. Litorja, and J. Hwang, “Validating the lasso algorithm by unmixing spectral signatures in multicolor phantoms,” Proc. SPIE8229, 82290Z, 82290Z-9 (2012).
[CrossRef]

J. Y. Lee, M. L. Clarke, F. Tokumasu, J. F. Lesoine, D. W. Allen, R. Chang, M. Litorja, and J. Hwang, “Absorption-based hyperspectral imaging and analysis of single erythrocytes,” IEEE J. Sel. Top. Quantum Electron. (early access).

Cohen, G.

G. Cohen, “Contrast--detail--dose analysis of six different computed tomographic scanners,” J. Comput. Assist. Tomogr.3(2), 197–203 (1979).
[CrossRef] [PubMed]

Contag, C.

Contag, C. H.

C. H. Contag and M. H. Bachmann, “Advances in in vivo bioluminescence imaging of gene expression,” Annu. Rev. Biomed. Eng.4(1), 235–260 (2002).
[CrossRef] [PubMed]

C. H. Contag and B. D. Ross, “It’s not just about anatomy: in vivo bioluminescence imaging as an eyepiece into biology,” J. Magn. Reson. Imaging16(4), 378–387 (2002).
[CrossRef] [PubMed]

Cooper, C. E.

C. E. Cooper and R. Springett, “Measurement of cytochrome oxidase and mitochondrial energetics by near-infrared spectroscopy,” Philos. Trans. R. Soc. Lond. B Biol. Sci.352(1354), 669–676 (1997).
[CrossRef] [PubMed]

Cope, M.

S. R. Arridge, M. Cope, and D. T. Delpy, “The theoretical basis for the determination of optical pathlengths in tissue: temporal and frequency analysis,” Phys. Med. Biol.37(7), 1531–1560 (1992).
[CrossRef] [PubMed]

Crawford, J. M.

Crews, B. C.

Culver, J.

Culver, J. P.

J. P. Culver, T. Durduran, D. Furuya, C. Cheung, J. H. Greenberg, and A. G. Yodh, “Diffuse optical tomography of cerebral blood flow, oxygenation, and metabolism in rat during focal ischemia,” J. Cereb. Blood Flow Metab.23(8), 911–924 (2003).
[CrossRef] [PubMed]

Dadani, F.

M. Roy, A. Kim, F. Dadani, and B. C. Wilson, “Homogenized tissue phantoms for quantitative evaluation of subsurface fluorescence contrast,” J. Biomed. Opt.16(1), 016013 (2011).
[CrossRef] [PubMed]

Dale, A. M.

Delpy, D. T.

S. R. Arridge, M. Cope, and D. T. Delpy, “The theoretical basis for the determination of optical pathlengths in tissue: temporal and frequency analysis,” Phys. Med. Biol.37(7), 1531–1560 (1992).
[CrossRef] [PubMed]

Dewhirst, M. W.

B. S. Sorg, B. J. Moeller, O. Donovan, Y. Cao, and M. W. Dewhirst, “Hyperspectral imaging of hemoglobin saturation in tumor microvasculature and tumor hypoxia development,” J. Biomed. Opt.10(4), 044004 (2005).
[CrossRef] [PubMed]

Donnan, G.

M. Moseley and G. Donnan, “Multimodality imaging - Introduction,” Stroke35(11_suppl_1), 2632–2634 (2004).
[CrossRef]

Donovan, O.

B. S. Sorg, B. J. Moeller, O. Donovan, Y. Cao, and M. W. Dewhirst, “Hyperspectral imaging of hemoglobin saturation in tumor microvasculature and tumor hypoxia development,” J. Biomed. Opt.10(4), 044004 (2005).
[CrossRef] [PubMed]

Drexler, W.

A. F. Fercher, C. K. Hitzenberger, W. Drexler, G. Kamp, and H. Sattmann, “In vivo optical coherence tomography,” Am. J. Ophthalmol.116(1), 113–114 (1993).
[PubMed]

Dunn, A. K.

Durduran, T.

J. P. Culver, T. Durduran, D. Furuya, C. Cheung, J. H. Greenberg, and A. G. Yodh, “Diffuse optical tomography of cerebral blood flow, oxygenation, and metabolism in rat during focal ischemia,” J. Cereb. Blood Flow Metab.23(8), 911–924 (2003).
[CrossRef] [PubMed]

Fabiani, M.

E. Gratton, S. Fantini, M. A. Franceschini, G. Gratton, and M. Fabiani, “Measurements of scattering and absorption changes in muscle and brain,” Philos. Trans. R. Soc. Lond. B Biol. Sci.352(1354), 727–735 (1997).
[CrossRef] [PubMed]

Fantini, S.

E. Gratton, S. Fantini, M. A. Franceschini, G. Gratton, and M. Fabiani, “Measurements of scattering and absorption changes in muscle and brain,” Philos. Trans. R. Soc. Lond. B Biol. Sci.352(1354), 727–735 (1997).
[CrossRef] [PubMed]

Fercher, A. F.

A. F. Fercher, C. K. Hitzenberger, W. Drexler, G. Kamp, and H. Sattmann, “In vivo optical coherence tomography,” Am. J. Ophthalmol.116(1), 113–114 (1993).
[PubMed]

Flock, S. T.

S. T. Flock, S. L. Jacques, B. C. Wilson, W. M. Star, and M. J. van Gemert, “Optical properties of Intralipid: a phantom medium for light propagation studies,” Lasers Surg. Med.12(5), 510–519 (1992).
[CrossRef] [PubMed]

Franceschini, M. A.

E. Gratton, S. Fantini, M. A. Franceschini, G. Gratton, and M. Fabiani, “Measurements of scattering and absorption changes in muscle and brain,” Philos. Trans. R. Soc. Lond. B Biol. Sci.352(1354), 727–735 (1997).
[CrossRef] [PubMed]

Frank, G. L.

V. G. Peters, D. R. Wyman, M. S. Patterson, and G. L. Frank, “Optical properties of normal and diseased human breast tissues in the visible and near infrared,” Phys. Med. Biol.35(9), 1317–1334 (1990).
[CrossRef] [PubMed]

Fujimoto, J. G.

J. G. Fujimoto, C. Pitris, S. A. Boppart, and M. E. Brezinski, “Optical coherence tomography: an emerging technology for biomedical imaging and optical biopsy,” Neoplasia2(1/2), 9–25 (2000).
[CrossRef] [PubMed]

E. A. Swanson, J. A. Izatt, M. R. Hee, D. Huang, C. P. Lin, J. S. Schuman, C. A. Puliafito, and J. G. Fujimoto, “In vivo retinal imaging by optical coherence tomography,” Opt. Lett.18(21), 1864–1866 (1993).
[CrossRef] [PubMed]

Furuya, D.

J. P. Culver, T. Durduran, D. Furuya, C. Cheung, J. H. Greenberg, and A. G. Yodh, “Diffuse optical tomography of cerebral blood flow, oxygenation, and metabolism in rat during focal ischemia,” J. Cereb. Blood Flow Metab.23(8), 911–924 (2003).
[CrossRef] [PubMed]

Garner, H. R.

M. L. Huebschman, R. A. Schultz, and H. R. Garner, “Characteristics and capabilities of the hyperspectral imaging microscope,” IEEE Eng. Med. Biol. Mag.21(4), 104–117 (2002).
[CrossRef] [PubMed]

Gratton, E.

E. Gratton, S. Fantini, M. A. Franceschini, G. Gratton, and M. Fabiani, “Measurements of scattering and absorption changes in muscle and brain,” Philos. Trans. R. Soc. Lond. B Biol. Sci.352(1354), 727–735 (1997).
[CrossRef] [PubMed]

Gratton, G.

E. Gratton, S. Fantini, M. A. Franceschini, G. Gratton, and M. Fabiani, “Measurements of scattering and absorption changes in muscle and brain,” Philos. Trans. R. Soc. Lond. B Biol. Sci.352(1354), 727–735 (1997).
[CrossRef] [PubMed]

Graves, E. E.

V. Ntziachristos, C. Bremer, E. E. Graves, J. Ripoll, and R. Weissleder, “In vivo tomographic imaging of near-infrared fluorescent probes,” Mol. Imaging1(2), 82–88 (2002).
[CrossRef] [PubMed]

Greenberg, J. H.

J. P. Culver, T. Durduran, D. Furuya, C. Cheung, J. H. Greenberg, and A. G. Yodh, “Diffuse optical tomography of cerebral blood flow, oxygenation, and metabolism in rat during focal ischemia,” J. Cereb. Blood Flow Metab.23(8), 911–924 (2003).
[CrossRef] [PubMed]

Griffioen, A. W.

W. J. M. Mulder, G. J. Strijkers, J. W. Habets, E. J. W. Bleeker, D. W. J. van der Schaft, G. Storm, G. A. Koning, A. W. Griffioen, and K. Nicolay, “MR molecular imaging and fluorescence microscopy for identification of activated tumor endothelium using a bimodal lipidic nanoparticle,” FASEB J.19(14), 2008–2010 (2005).
[PubMed]

Gurfinkel, M.

E. M. Sevick-Muraca, J. P. Houston, and M. Gurfinkel, “Fluorescence-enhanced, near infrared diagnostic imaging with contrast agents,” Curr. Opin. Chem. Biol.6(5), 642–650 (2002).
[CrossRef] [PubMed]

Haaland, D. M.

Habets, J. W.

W. J. M. Mulder, G. J. Strijkers, J. W. Habets, E. J. W. Bleeker, D. W. J. van der Schaft, G. Storm, G. A. Koning, A. W. Griffioen, and K. Nicolay, “MR molecular imaging and fluorescence microscopy for identification of activated tumor endothelium using a bimodal lipidic nanoparticle,” FASEB J.19(14), 2008–2010 (2005).
[PubMed]

Hawrysz, D. J.

D. J. Hawrysz and E. M. Sevick-Muraca, “Developments toward diagnostic breast cancer imaging using near-infrared optical measurements and fluorescent contrast agents,” Neoplasia2(5), 388–417 (2000).
[CrossRef] [PubMed]

Hebden, J. C.

J. C. Hebden, “Advances in optical imaging of the newborn infant brain,” Psychophysiology40(4), 501–510 (2003).
[CrossRef] [PubMed]

Hee, M. R.

Hefetz, Y.

Hillman, E. M.

Hitzenberger, C. K.

A. F. Fercher, C. K. Hitzenberger, W. Drexler, G. Kamp, and H. Sattmann, “In vivo optical coherence tomography,” Am. J. Ophthalmol.116(1), 113–114 (1993).
[PubMed]

Houston, J. P.

E. M. Sevick-Muraca, J. P. Houston, and M. Gurfinkel, “Fluorescence-enhanced, near infrared diagnostic imaging with contrast agents,” Curr. Opin. Chem. Biol.6(5), 642–650 (2002).
[CrossRef] [PubMed]

Huang, D.

Huebschman, M. L.

M. L. Huebschman, R. A. Schultz, and H. R. Garner, “Characteristics and capabilities of the hyperspectral imaging microscope,” IEEE Eng. Med. Biol. Mag.21(4), 104–117 (2002).
[CrossRef] [PubMed]

Hwang, J.

D. Samarov, M. L. Clarke, J. Lee, D. W. Allen, M. Litorja, and J. Hwang, “Validating the lasso algorithm by unmixing spectral signatures in multicolor phantoms,” Proc. SPIE8229, 82290Z, 82290Z-9 (2012).
[CrossRef]

D. W. Allen, S. Maxwell, J. P. Rice, R. C. Chang, M. Litorja, J. Hwang, J. Cadeddu, E. Livingston, E. Wehner, and K. J. Zuzak, “Hyperspectral image projection of a pig kidney for the evaluation of imagers used for oximetry,” Proc. SPIE7906, 79060V, 79060V-9 (2011).
[CrossRef]

J. Y. Lee, M. L. Clarke, F. Tokumasu, J. F. Lesoine, D. W. Allen, R. Chang, M. Litorja, and J. Hwang, “Absorption-based hyperspectral imaging and analysis of single erythrocytes,” IEEE J. Sel. Top. Quantum Electron. (early access).

Izatt, J. A.

Jacques, S. L.

S. L. Jacques and S. J. Kirkpatrick, “Acoustically modulated speckle imaging of biological tissues,” Opt. Lett.23(11), 879–881 (1998).
[CrossRef] [PubMed]

S. T. Flock, S. L. Jacques, B. C. Wilson, W. M. Star, and M. J. van Gemert, “Optical properties of Intralipid: a phantom medium for light propagation studies,” Lasers Surg. Med.12(5), 510–519 (1992).
[CrossRef] [PubMed]

S. J. Madsen, B. C. Wilson, M. S. Patterson, Y. D. Park, S. L. Jacques, and Y. Hefetz, “Experimental tests of a simple diffusion model for the estimation of scattering and absorption coefficients of turbid media from time-resolved diffuse reflectance measurements,” Appl. Opt.31(18), 3509–3517 (1992).
[CrossRef] [PubMed]

S. L. Jacques, “Laser-tissue interactions. Photochemical, photothermal, and photomechanical,” Surg. Clin. North Am.72(3), 531–558 (1992).
[PubMed]

Judy, P. F.

S. E. Seltzer, R. G. Swensson, P. F. Judy, and R. D. Nawfel, “Size discrimination in computed tomographic images. Effects of feature contrast and display window,” Invest. Radiol.23(6), 455–462 (1988).
[CrossRef] [PubMed]

Kamp, G.

A. F. Fercher, C. K. Hitzenberger, W. Drexler, G. Kamp, and H. Sattmann, “In vivo optical coherence tomography,” Am. J. Ophthalmol.116(1), 113–114 (1993).
[PubMed]

Kim, A.

M. Roy, A. Kim, F. Dadani, and B. C. Wilson, “Homogenized tissue phantoms for quantitative evaluation of subsurface fluorescence contrast,” J. Biomed. Opt.16(1), 016013 (2011).
[CrossRef] [PubMed]

Kirkpatrick, S. J.

Koning, G. A.

W. J. M. Mulder, G. J. Strijkers, J. W. Habets, E. J. W. Bleeker, D. W. J. van der Schaft, G. Storm, G. A. Koning, A. W. Griffioen, and K. Nicolay, “MR molecular imaging and fluorescence microscopy for identification of activated tumor endothelium using a bimodal lipidic nanoparticle,” FASEB J.19(14), 2008–2010 (2005).
[PubMed]

Kotyk, J.

Lanza, G.

Larsson, M.

M. Larsson, W. Steenbergen, and T. Strömberg, “Influence of optical properties and fiber separation on laser doppler flowmetry,” J. Biomed. Opt.7(2), 236–243 (2002).
[CrossRef] [PubMed]

Lee, J.

D. Samarov, M. L. Clarke, J. Lee, D. W. Allen, M. Litorja, and J. Hwang, “Validating the lasso algorithm by unmixing spectral signatures in multicolor phantoms,” Proc. SPIE8229, 82290Z, 82290Z-9 (2012).
[CrossRef]

Lee, J. Y.

J. Y. Lee, M. L. Clarke, F. Tokumasu, J. F. Lesoine, D. W. Allen, R. Chang, M. Litorja, and J. Hwang, “Absorption-based hyperspectral imaging and analysis of single erythrocytes,” IEEE J. Sel. Top. Quantum Electron. (early access).

Lesoine, J. F.

J. Y. Lee, M. L. Clarke, F. Tokumasu, J. F. Lesoine, D. W. Allen, R. Chang, M. Litorja, and J. Hwang, “Absorption-based hyperspectral imaging and analysis of single erythrocytes,” IEEE J. Sel. Top. Quantum Electron. (early access).

Liao, J. C.

Lin, C. P.

Litorja, M.

D. Samarov, M. L. Clarke, J. Lee, D. W. Allen, M. Litorja, and J. Hwang, “Validating the lasso algorithm by unmixing spectral signatures in multicolor phantoms,” Proc. SPIE8229, 82290Z, 82290Z-9 (2012).
[CrossRef]

D. W. Allen, S. Maxwell, J. P. Rice, R. C. Chang, M. Litorja, J. Hwang, J. Cadeddu, E. Livingston, E. Wehner, and K. J. Zuzak, “Hyperspectral image projection of a pig kidney for the evaluation of imagers used for oximetry,” Proc. SPIE7906, 79060V, 79060V-9 (2011).
[CrossRef]

D. W. Allen, M. Litorja, S. W. Brown, and Y. Q. Zong, “Evaluation of a portable hyperspectral imager for medical imaging applications,” Proc. SPIE3765, 67650F, 67650F-10 (2007).
[CrossRef]

J. Y. Lee, M. L. Clarke, F. Tokumasu, J. F. Lesoine, D. W. Allen, R. Chang, M. Litorja, and J. Hwang, “Absorption-based hyperspectral imaging and analysis of single erythrocytes,” IEEE J. Sel. Top. Quantum Electron. (early access).

Livingston, E.

D. W. Allen, S. Maxwell, J. P. Rice, R. C. Chang, M. Litorja, J. Hwang, J. Cadeddu, E. Livingston, E. Wehner, and K. J. Zuzak, “Hyperspectral image projection of a pig kidney for the evaluation of imagers used for oximetry,” Proc. SPIE7906, 79060V, 79060V-9 (2011).
[CrossRef]

Lohwasser, R.

Madsen, S. J.

Marijnissen, J. P.

W. M. Star, J. P. Marijnissen, and M. J. C. van Gemert, “Light dosimetry in optical phantoms and in tissues: I. Multiple flux and transport theory,” Phys. Med. Biol.33(4), 437–454 (1988).
[CrossRef] [PubMed]

Marnett, L. J.

Marshall, M. V.

Maxwell, S.

D. W. Allen, S. Maxwell, J. P. Rice, R. C. Chang, M. Litorja, J. Hwang, J. Cadeddu, E. Livingston, E. Wehner, and K. J. Zuzak, “Hyperspectral image projection of a pig kidney for the evaluation of imagers used for oximetry,” Proc. SPIE7906, 79060V, 79060V-9 (2011).
[CrossRef]

Meyer, C.

Mitic, G.

Moeller, B. J.

B. S. Sorg, B. J. Moeller, O. Donovan, Y. Cao, and M. W. Dewhirst, “Hyperspectral imaging of hemoglobin saturation in tumor microvasculature and tumor hypoxia development,” J. Biomed. Opt.10(4), 044004 (2005).
[CrossRef] [PubMed]

Moseley, M.

M. Moseley and G. Donnan, “Multimodality imaging - Introduction,” Stroke35(11_suppl_1), 2632–2634 (2004).
[CrossRef]

Mulder, W. J. M.

W. J. M. Mulder, G. J. Strijkers, J. W. Habets, E. J. W. Bleeker, D. W. J. van der Schaft, G. Storm, G. A. Koning, A. W. Griffioen, and K. Nicolay, “MR molecular imaging and fluorescence microscopy for identification of activated tumor endothelium using a bimodal lipidic nanoparticle,” FASEB J.19(14), 2008–2010 (2005).
[PubMed]

Muller, P. J.

B. C. Wilson, P. J. Muller, and J. C. Yanch, “Instrumentation and light dosimetry for intra-operative photodynamic therapy (PDT) of malignant brain tumours,” Phys. Med. Biol.31(2), 125–133 (1986).
[CrossRef] [PubMed]

Mycek, M. A.

B. W. Pogue, J. D. Pitts, M. A. Mycek, R. D. Sloboda, C. M. Wilmot, J. F. Brandsema, and J. A. O’Hara, “In vivo NADH fluorescence monitoring as an assay for cellular damage in photodynamic therapy,” Photochem. Photobiol.74(6), 817–824 (2001).
[CrossRef] [PubMed]

Nawfel, R. D.

S. E. Seltzer, R. G. Swensson, P. F. Judy, and R. D. Nawfel, “Size discrimination in computed tomographic images. Effects of feature contrast and display window,” Invest. Radiol.23(6), 455–462 (1988).
[CrossRef] [PubMed]

Nicolay, K.

W. J. M. Mulder, G. J. Strijkers, J. W. Habets, E. J. W. Bleeker, D. W. J. van der Schaft, G. Storm, G. A. Koning, A. W. Griffioen, and K. Nicolay, “MR molecular imaging and fluorescence microscopy for identification of activated tumor endothelium using a bimodal lipidic nanoparticle,” FASEB J.19(14), 2008–2010 (2005).
[PubMed]

Ntziachristos, V.

V. Ntziachristos, C. Bremer, E. E. Graves, J. Ripoll, and R. Weissleder, “In vivo tomographic imaging of near-infrared fluorescent probes,” Mol. Imaging1(2), 82–88 (2002).
[CrossRef] [PubMed]

V. Ntziachristos, C. H. Tung, C. Bremer, and R. Weissleder, “Fluorescence molecular tomography resolves protease activity in vivo,” Nat. Med.8(7), 757–761 (2002).
[CrossRef] [PubMed]

O’Hara, J. A.

B. W. Pogue, J. D. Pitts, M. A. Mycek, R. D. Sloboda, C. M. Wilmot, J. F. Brandsema, and J. A. O’Hara, “In vivo NADH fluorescence monitoring as an assay for cellular damage in photodynamic therapy,” Photochem. Photobiol.74(6), 817–824 (2001).
[CrossRef] [PubMed]

Olsen, J. B.

J. B. Olsen and E. M. Sager, “Subjective evaluation of image quality based on images obtained with a breast tissue phantom: comparison with a conventional image quality phantom,” Br. J. Radiol.68(806), 160–164 (1995).
[CrossRef] [PubMed]

Park, Y. D.

Patterson, M. S.

B. W. Pogue and M. S. Patterson, “Review of tissue simulating phantoms for optical spectroscopy, imaging and dosimetry,” J. Biomed. Opt.11(4), 041102 (2006).
[CrossRef] [PubMed]

S. J. Madsen, B. C. Wilson, M. S. Patterson, Y. D. Park, S. L. Jacques, and Y. Hefetz, “Experimental tests of a simple diffusion model for the estimation of scattering and absorption coefficients of turbid media from time-resolved diffuse reflectance measurements,” Appl. Opt.31(18), 3509–3517 (1992).
[CrossRef] [PubMed]

V. G. Peters, D. R. Wyman, M. S. Patterson, and G. L. Frank, “Optical properties of normal and diseased human breast tissues in the visible and near infrared,” Phys. Med. Biol.35(9), 1317–1334 (1990).
[CrossRef] [PubMed]

D. R. Wyman, M. S. Patterson, and B. C. Wilson, “Similarity relations for the interaction parameters in radiation transport,” Appl. Opt.28(24), 5243–5249 (1989).
[CrossRef] [PubMed]

Peters, V. G.

V. G. Peters, D. R. Wyman, M. S. Patterson, and G. L. Frank, “Optical properties of normal and diseased human breast tissues in the visible and near infrared,” Phys. Med. Biol.35(9), 1317–1334 (1990).
[CrossRef] [PubMed]

Pitris, C.

J. G. Fujimoto, C. Pitris, S. A. Boppart, and M. E. Brezinski, “Optical coherence tomography: an emerging technology for biomedical imaging and optical biopsy,” Neoplasia2(1/2), 9–25 (2000).
[CrossRef] [PubMed]

Pitts, J. D.

B. W. Pogue, J. D. Pitts, M. A. Mycek, R. D. Sloboda, C. M. Wilmot, J. F. Brandsema, and J. A. O’Hara, “In vivo NADH fluorescence monitoring as an assay for cellular damage in photodynamic therapy,” Photochem. Photobiol.74(6), 817–824 (2001).
[CrossRef] [PubMed]

Pogue, B. W.

B. W. Pogue and M. S. Patterson, “Review of tissue simulating phantoms for optical spectroscopy, imaging and dosimetry,” J. Biomed. Opt.11(4), 041102 (2006).
[CrossRef] [PubMed]

B. W. Pogue, J. D. Pitts, M. A. Mycek, R. D. Sloboda, C. M. Wilmot, J. F. Brandsema, and J. A. O’Hara, “In vivo NADH fluorescence monitoring as an assay for cellular damage in photodynamic therapy,” Photochem. Photobiol.74(6), 817–824 (2001).
[CrossRef] [PubMed]

Puliafito, C. A.

Reisdorph, B.

Rice, J. P.

D. W. Allen, S. Maxwell, J. P. Rice, R. C. Chang, M. Litorja, J. Hwang, J. Cadeddu, E. Livingston, E. Wehner, and K. J. Zuzak, “Hyperspectral image projection of a pig kidney for the evaluation of imagers used for oximetry,” Proc. SPIE7906, 79060V, 79060V-9 (2011).
[CrossRef]

Ripoll, J.

V. Ntziachristos, C. Bremer, E. E. Graves, J. Ripoll, and R. Weissleder, “In vivo tomographic imaging of near-infrared fluorescent probes,” Mol. Imaging1(2), 82–88 (2002).
[CrossRef] [PubMed]

Ross, B. D.

C. H. Contag and B. D. Ross, “It’s not just about anatomy: in vivo bioluminescence imaging as an eyepiece into biology,” J. Magn. Reson. Imaging16(4), 378–387 (2002).
[CrossRef] [PubMed]

Roy, M.

M. Roy, A. Kim, F. Dadani, and B. C. Wilson, “Homogenized tissue phantoms for quantitative evaluation of subsurface fluorescence contrast,” J. Biomed. Opt.16(1), 016013 (2011).
[CrossRef] [PubMed]

Sager, E. M.

J. B. Olsen and E. M. Sager, “Subjective evaluation of image quality based on images obtained with a breast tissue phantom: comparison with a conventional image quality phantom,” Br. J. Radiol.68(806), 160–164 (1995).
[CrossRef] [PubMed]

Samarov, D.

D. Samarov, M. L. Clarke, J. Lee, D. W. Allen, M. Litorja, and J. Hwang, “Validating the lasso algorithm by unmixing spectral signatures in multicolor phantoms,” Proc. SPIE8229, 82290Z, 82290Z-9 (2012).
[CrossRef]

Sattmann, H.

A. F. Fercher, C. K. Hitzenberger, W. Drexler, G. Kamp, and H. Sattmann, “In vivo optical coherence tomography,” Am. J. Ophthalmol.116(1), 113–114 (1993).
[PubMed]

Schultz, R. A.

M. L. Huebschman, R. A. Schultz, and H. R. Garner, “Characteristics and capabilities of the hyperspectral imaging microscope,” IEEE Eng. Med. Biol. Mag.21(4), 104–117 (2002).
[CrossRef] [PubMed]

Schuman, J. S.

Seltzer, S. E.

S. E. Seltzer, R. G. Swensson, P. F. Judy, and R. D. Nawfel, “Size discrimination in computed tomographic images. Effects of feature contrast and display window,” Invest. Radiol.23(6), 455–462 (1988).
[CrossRef] [PubMed]

Sevick-Muraca, E. M.

M. B. Aldrich, M. V. Marshall, E. M. Sevick-Muraca, G. Lanza, J. Kotyk, J. Culver, L. V. Wang, J. Uddin, B. C. Crews, L. J. Marnett, J. C. Liao, C. Contag, J. M. Crawford, K. Wang, B. Reisdorph, H. Appelman, D. K. Turgeon, C. Meyer, and T. Wang, “Seeing it through: translational validation of new medical imaging modalities,” Biomed. Opt. Express3(4), 764–776 (2012).
[CrossRef] [PubMed]

E. M. Sevick-Muraca, J. P. Houston, and M. Gurfinkel, “Fluorescence-enhanced, near infrared diagnostic imaging with contrast agents,” Curr. Opin. Chem. Biol.6(5), 642–650 (2002).
[CrossRef] [PubMed]

D. J. Hawrysz and E. M. Sevick-Muraca, “Developments toward diagnostic breast cancer imaging using near-infrared optical measurements and fluorescent contrast agents,” Neoplasia2(5), 388–417 (2000).
[CrossRef] [PubMed]

Sinclair, M. B.

Sloboda, R. D.

B. W. Pogue, J. D. Pitts, M. A. Mycek, R. D. Sloboda, C. M. Wilmot, J. F. Brandsema, and J. A. O’Hara, “In vivo NADH fluorescence monitoring as an assay for cellular damage in photodynamic therapy,” Photochem. Photobiol.74(6), 817–824 (2001).
[CrossRef] [PubMed]

Soelkner, G.

Sorg, B. S.

B. S. Sorg, B. J. Moeller, O. Donovan, Y. Cao, and M. W. Dewhirst, “Hyperspectral imaging of hemoglobin saturation in tumor microvasculature and tumor hypoxia development,” J. Biomed. Opt.10(4), 044004 (2005).
[CrossRef] [PubMed]

Springett, R.

C. E. Cooper and R. Springett, “Measurement of cytochrome oxidase and mitochondrial energetics by near-infrared spectroscopy,” Philos. Trans. R. Soc. Lond. B Biol. Sci.352(1354), 669–676 (1997).
[CrossRef] [PubMed]

Star, W. M.

S. T. Flock, S. L. Jacques, B. C. Wilson, W. M. Star, and M. J. van Gemert, “Optical properties of Intralipid: a phantom medium for light propagation studies,” Lasers Surg. Med.12(5), 510–519 (1992).
[CrossRef] [PubMed]

W. M. Star, J. P. Marijnissen, and M. J. C. van Gemert, “Light dosimetry in optical phantoms and in tissues: I. Multiple flux and transport theory,” Phys. Med. Biol.33(4), 437–454 (1988).
[CrossRef] [PubMed]

Steenbergen, W.

M. Larsson, W. Steenbergen, and T. Strömberg, “Influence of optical properties and fiber separation on laser doppler flowmetry,” J. Biomed. Opt.7(2), 236–243 (2002).
[CrossRef] [PubMed]

Storm, G.

W. J. M. Mulder, G. J. Strijkers, J. W. Habets, E. J. W. Bleeker, D. W. J. van der Schaft, G. Storm, G. A. Koning, A. W. Griffioen, and K. Nicolay, “MR molecular imaging and fluorescence microscopy for identification of activated tumor endothelium using a bimodal lipidic nanoparticle,” FASEB J.19(14), 2008–2010 (2005).
[PubMed]

Strijkers, G. J.

W. J. M. Mulder, G. J. Strijkers, J. W. Habets, E. J. W. Bleeker, D. W. J. van der Schaft, G. Storm, G. A. Koning, A. W. Griffioen, and K. Nicolay, “MR molecular imaging and fluorescence microscopy for identification of activated tumor endothelium using a bimodal lipidic nanoparticle,” FASEB J.19(14), 2008–2010 (2005).
[PubMed]

Strömberg, T.

M. Larsson, W. Steenbergen, and T. Strömberg, “Influence of optical properties and fiber separation on laser doppler flowmetry,” J. Biomed. Opt.7(2), 236–243 (2002).
[CrossRef] [PubMed]

Swanson, E. A.

Swensson, R. G.

S. E. Seltzer, R. G. Swensson, P. F. Judy, and R. D. Nawfel, “Size discrimination in computed tomographic images. Effects of feature contrast and display window,” Invest. Radiol.23(6), 455–462 (1988).
[CrossRef] [PubMed]

Tibshirani, R.

R. Tibshirani, “Regression shrinkage and selection via the Lasso,” J. R. Stat. Soc. Ser. B Methodological58, 267–288 (1996).

Timlin, J. A.

Tokumasu, F.

J. Y. Lee, M. L. Clarke, F. Tokumasu, J. F. Lesoine, D. W. Allen, R. Chang, M. Litorja, and J. Hwang, “Absorption-based hyperspectral imaging and analysis of single erythrocytes,” IEEE J. Sel. Top. Quantum Electron. (early access).

Tung, C. H.

V. Ntziachristos, C. H. Tung, C. Bremer, and R. Weissleder, “Fluorescence molecular tomography resolves protease activity in vivo,” Nat. Med.8(7), 757–761 (2002).
[CrossRef] [PubMed]

Turgeon, D. K.

Uddin, J.

Ulyanov, S.

A. Bednov, S. Ulyanov, C. Cheung, and A. G. Yodh, “Correlation properties of multiple scattered light: implication to coherent diagnostics of burned skin,” J. Biomed. Opt.9(2), 347–352 (2004).
[CrossRef] [PubMed]

van der Schaft, D. W. J.

W. J. M. Mulder, G. J. Strijkers, J. W. Habets, E. J. W. Bleeker, D. W. J. van der Schaft, G. Storm, G. A. Koning, A. W. Griffioen, and K. Nicolay, “MR molecular imaging and fluorescence microscopy for identification of activated tumor endothelium using a bimodal lipidic nanoparticle,” FASEB J.19(14), 2008–2010 (2005).
[PubMed]

van Gemert, M. J.

S. T. Flock, S. L. Jacques, B. C. Wilson, W. M. Star, and M. J. van Gemert, “Optical properties of Intralipid: a phantom medium for light propagation studies,” Lasers Surg. Med.12(5), 510–519 (1992).
[CrossRef] [PubMed]

van Gemert, M. J. C.

W. M. Star, J. P. Marijnissen, and M. J. C. van Gemert, “Light dosimetry in optical phantoms and in tissues: I. Multiple flux and transport theory,” Phys. Med. Biol.33(4), 437–454 (1988).
[CrossRef] [PubMed]

Wang, K.

Wang, L. V.

Wang, T.

Wehner, E.

D. W. Allen, S. Maxwell, J. P. Rice, R. C. Chang, M. Litorja, J. Hwang, J. Cadeddu, E. Livingston, E. Wehner, and K. J. Zuzak, “Hyperspectral image projection of a pig kidney for the evaluation of imagers used for oximetry,” Proc. SPIE7906, 79060V, 79060V-9 (2011).
[CrossRef]

Weissleder, R.

V. Ntziachristos, C. H. Tung, C. Bremer, and R. Weissleder, “Fluorescence molecular tomography resolves protease activity in vivo,” Nat. Med.8(7), 757–761 (2002).
[CrossRef] [PubMed]

V. Ntziachristos, C. Bremer, E. E. Graves, J. Ripoll, and R. Weissleder, “In vivo tomographic imaging of near-infrared fluorescent probes,” Mol. Imaging1(2), 82–88 (2002).
[CrossRef] [PubMed]

Werner-Washburne, M.

Wilmot, C. M.

B. W. Pogue, J. D. Pitts, M. A. Mycek, R. D. Sloboda, C. M. Wilmot, J. F. Brandsema, and J. A. O’Hara, “In vivo NADH fluorescence monitoring as an assay for cellular damage in photodynamic therapy,” Photochem. Photobiol.74(6), 817–824 (2001).
[CrossRef] [PubMed]

Wilson, B. C.

M. Roy, A. Kim, F. Dadani, and B. C. Wilson, “Homogenized tissue phantoms for quantitative evaluation of subsurface fluorescence contrast,” J. Biomed. Opt.16(1), 016013 (2011).
[CrossRef] [PubMed]

S. J. Madsen, B. C. Wilson, M. S. Patterson, Y. D. Park, S. L. Jacques, and Y. Hefetz, “Experimental tests of a simple diffusion model for the estimation of scattering and absorption coefficients of turbid media from time-resolved diffuse reflectance measurements,” Appl. Opt.31(18), 3509–3517 (1992).
[CrossRef] [PubMed]

S. T. Flock, S. L. Jacques, B. C. Wilson, W. M. Star, and M. J. van Gemert, “Optical properties of Intralipid: a phantom medium for light propagation studies,” Lasers Surg. Med.12(5), 510–519 (1992).
[CrossRef] [PubMed]

D. R. Wyman, M. S. Patterson, and B. C. Wilson, “Similarity relations for the interaction parameters in radiation transport,” Appl. Opt.28(24), 5243–5249 (1989).
[CrossRef] [PubMed]

B. C. Wilson, P. J. Muller, and J. C. Yanch, “Instrumentation and light dosimetry for intra-operative photodynamic therapy (PDT) of malignant brain tumours,” Phys. Med. Biol.31(2), 125–133 (1986).
[CrossRef] [PubMed]

Wyman, D. R.

V. G. Peters, D. R. Wyman, M. S. Patterson, and G. L. Frank, “Optical properties of normal and diseased human breast tissues in the visible and near infrared,” Phys. Med. Biol.35(9), 1317–1334 (1990).
[CrossRef] [PubMed]

D. R. Wyman, M. S. Patterson, and B. C. Wilson, “Similarity relations for the interaction parameters in radiation transport,” Appl. Opt.28(24), 5243–5249 (1989).
[CrossRef] [PubMed]

Yanch, J. C.

B. C. Wilson, P. J. Muller, and J. C. Yanch, “Instrumentation and light dosimetry for intra-operative photodynamic therapy (PDT) of malignant brain tumours,” Phys. Med. Biol.31(2), 125–133 (1986).
[CrossRef] [PubMed]

Yodh, A. G.

A. Bednov, S. Ulyanov, C. Cheung, and A. G. Yodh, “Correlation properties of multiple scattered light: implication to coherent diagnostics of burned skin,” J. Biomed. Opt.9(2), 347–352 (2004).
[CrossRef] [PubMed]

J. P. Culver, T. Durduran, D. Furuya, C. Cheung, J. H. Greenberg, and A. G. Yodh, “Diffuse optical tomography of cerebral blood flow, oxygenation, and metabolism in rat during focal ischemia,” J. Cereb. Blood Flow Metab.23(8), 911–924 (2003).
[CrossRef] [PubMed]

Zong, Y. Q.

D. W. Allen, M. Litorja, S. W. Brown, and Y. Q. Zong, “Evaluation of a portable hyperspectral imager for medical imaging applications,” Proc. SPIE3765, 67650F, 67650F-10 (2007).
[CrossRef]

Zuzak, K. J.

D. W. Allen, S. Maxwell, J. P. Rice, R. C. Chang, M. Litorja, J. Hwang, J. Cadeddu, E. Livingston, E. Wehner, and K. J. Zuzak, “Hyperspectral image projection of a pig kidney for the evaluation of imagers used for oximetry,” Proc. SPIE7906, 79060V, 79060V-9 (2011).
[CrossRef]

Am. J. Ophthalmol. (1)

A. F. Fercher, C. K. Hitzenberger, W. Drexler, G. Kamp, and H. Sattmann, “In vivo optical coherence tomography,” Am. J. Ophthalmol.116(1), 113–114 (1993).
[PubMed]

Annu. Rev. Biomed. Eng. (1)

C. H. Contag and M. H. Bachmann, “Advances in in vivo bioluminescence imaging of gene expression,” Annu. Rev. Biomed. Eng.4(1), 235–260 (2002).
[CrossRef] [PubMed]

Appl. Opt. (4)

Biomed. Opt. Express (1)

Br. J. Radiol. (1)

J. B. Olsen and E. M. Sager, “Subjective evaluation of image quality based on images obtained with a breast tissue phantom: comparison with a conventional image quality phantom,” Br. J. Radiol.68(806), 160–164 (1995).
[CrossRef] [PubMed]

Curr. Opin. Chem. Biol. (1)

E. M. Sevick-Muraca, J. P. Houston, and M. Gurfinkel, “Fluorescence-enhanced, near infrared diagnostic imaging with contrast agents,” Curr. Opin. Chem. Biol.6(5), 642–650 (2002).
[CrossRef] [PubMed]

FASEB J. (1)

W. J. M. Mulder, G. J. Strijkers, J. W. Habets, E. J. W. Bleeker, D. W. J. van der Schaft, G. Storm, G. A. Koning, A. W. Griffioen, and K. Nicolay, “MR molecular imaging and fluorescence microscopy for identification of activated tumor endothelium using a bimodal lipidic nanoparticle,” FASEB J.19(14), 2008–2010 (2005).
[PubMed]

IEEE Eng. Med. Biol. Mag. (1)

M. L. Huebschman, R. A. Schultz, and H. R. Garner, “Characteristics and capabilities of the hyperspectral imaging microscope,” IEEE Eng. Med. Biol. Mag.21(4), 104–117 (2002).
[CrossRef] [PubMed]

IEEE J. Sel. Top. Quantum Electron. (1)

J. Y. Lee, M. L. Clarke, F. Tokumasu, J. F. Lesoine, D. W. Allen, R. Chang, M. Litorja, and J. Hwang, “Absorption-based hyperspectral imaging and analysis of single erythrocytes,” IEEE J. Sel. Top. Quantum Electron. (early access).

Invest. Radiol. (1)

S. E. Seltzer, R. G. Swensson, P. F. Judy, and R. D. Nawfel, “Size discrimination in computed tomographic images. Effects of feature contrast and display window,” Invest. Radiol.23(6), 455–462 (1988).
[CrossRef] [PubMed]

J. Biomed. Opt. (5)

B. W. Pogue and M. S. Patterson, “Review of tissue simulating phantoms for optical spectroscopy, imaging and dosimetry,” J. Biomed. Opt.11(4), 041102 (2006).
[CrossRef] [PubMed]

B. S. Sorg, B. J. Moeller, O. Donovan, Y. Cao, and M. W. Dewhirst, “Hyperspectral imaging of hemoglobin saturation in tumor microvasculature and tumor hypoxia development,” J. Biomed. Opt.10(4), 044004 (2005).
[CrossRef] [PubMed]

M. Roy, A. Kim, F. Dadani, and B. C. Wilson, “Homogenized tissue phantoms for quantitative evaluation of subsurface fluorescence contrast,” J. Biomed. Opt.16(1), 016013 (2011).
[CrossRef] [PubMed]

A. Bednov, S. Ulyanov, C. Cheung, and A. G. Yodh, “Correlation properties of multiple scattered light: implication to coherent diagnostics of burned skin,” J. Biomed. Opt.9(2), 347–352 (2004).
[CrossRef] [PubMed]

M. Larsson, W. Steenbergen, and T. Strömberg, “Influence of optical properties and fiber separation on laser doppler flowmetry,” J. Biomed. Opt.7(2), 236–243 (2002).
[CrossRef] [PubMed]

J. Cereb. Blood Flow Metab. (1)

J. P. Culver, T. Durduran, D. Furuya, C. Cheung, J. H. Greenberg, and A. G. Yodh, “Diffuse optical tomography of cerebral blood flow, oxygenation, and metabolism in rat during focal ischemia,” J. Cereb. Blood Flow Metab.23(8), 911–924 (2003).
[CrossRef] [PubMed]

J. Comput. Assist. Tomogr. (1)

G. Cohen, “Contrast--detail--dose analysis of six different computed tomographic scanners,” J. Comput. Assist. Tomogr.3(2), 197–203 (1979).
[CrossRef] [PubMed]

J. Magn. Reson. Imaging (1)

C. H. Contag and B. D. Ross, “It’s not just about anatomy: in vivo bioluminescence imaging as an eyepiece into biology,” J. Magn. Reson. Imaging16(4), 378–387 (2002).
[CrossRef] [PubMed]

J. Nucl. Med. (1)

W. B. Cai and X. Y. Chen, “Multimodality molecular imaging of tumor angiogenesis,” J. Nucl. Med.49(Suppl 2), 113S–128S (2008).
[CrossRef] [PubMed]

J. R. Stat. Soc. Ser. B Methodological (1)

R. Tibshirani, “Regression shrinkage and selection via the Lasso,” J. R. Stat. Soc. Ser. B Methodological58, 267–288 (1996).

Lasers Surg. Med. (1)

S. T. Flock, S. L. Jacques, B. C. Wilson, W. M. Star, and M. J. van Gemert, “Optical properties of Intralipid: a phantom medium for light propagation studies,” Lasers Surg. Med.12(5), 510–519 (1992).
[CrossRef] [PubMed]

Mol. Imaging (1)

V. Ntziachristos, C. Bremer, E. E. Graves, J. Ripoll, and R. Weissleder, “In vivo tomographic imaging of near-infrared fluorescent probes,” Mol. Imaging1(2), 82–88 (2002).
[CrossRef] [PubMed]

Nat. Med. (1)

V. Ntziachristos, C. H. Tung, C. Bremer, and R. Weissleder, “Fluorescence molecular tomography resolves protease activity in vivo,” Nat. Med.8(7), 757–761 (2002).
[CrossRef] [PubMed]

Neoplasia (2)

D. J. Hawrysz and E. M. Sevick-Muraca, “Developments toward diagnostic breast cancer imaging using near-infrared optical measurements and fluorescent contrast agents,” Neoplasia2(5), 388–417 (2000).
[CrossRef] [PubMed]

J. G. Fujimoto, C. Pitris, S. A. Boppart, and M. E. Brezinski, “Optical coherence tomography: an emerging technology for biomedical imaging and optical biopsy,” Neoplasia2(1/2), 9–25 (2000).
[CrossRef] [PubMed]

Opt. Lett. (3)

Philos. Trans. R. Soc. Lond. B Biol. Sci. (2)

E. Gratton, S. Fantini, M. A. Franceschini, G. Gratton, and M. Fabiani, “Measurements of scattering and absorption changes in muscle and brain,” Philos. Trans. R. Soc. Lond. B Biol. Sci.352(1354), 727–735 (1997).
[CrossRef] [PubMed]

C. E. Cooper and R. Springett, “Measurement of cytochrome oxidase and mitochondrial energetics by near-infrared spectroscopy,” Philos. Trans. R. Soc. Lond. B Biol. Sci.352(1354), 669–676 (1997).
[CrossRef] [PubMed]

Photochem. Photobiol. (1)

B. W. Pogue, J. D. Pitts, M. A. Mycek, R. D. Sloboda, C. M. Wilmot, J. F. Brandsema, and J. A. O’Hara, “In vivo NADH fluorescence monitoring as an assay for cellular damage in photodynamic therapy,” Photochem. Photobiol.74(6), 817–824 (2001).
[CrossRef] [PubMed]

Phys. Med. Biol. (4)

B. C. Wilson, P. J. Muller, and J. C. Yanch, “Instrumentation and light dosimetry for intra-operative photodynamic therapy (PDT) of malignant brain tumours,” Phys. Med. Biol.31(2), 125–133 (1986).
[CrossRef] [PubMed]

S. R. Arridge, M. Cope, and D. T. Delpy, “The theoretical basis for the determination of optical pathlengths in tissue: temporal and frequency analysis,” Phys. Med. Biol.37(7), 1531–1560 (1992).
[CrossRef] [PubMed]

V. G. Peters, D. R. Wyman, M. S. Patterson, and G. L. Frank, “Optical properties of normal and diseased human breast tissues in the visible and near infrared,” Phys. Med. Biol.35(9), 1317–1334 (1990).
[CrossRef] [PubMed]

W. M. Star, J. P. Marijnissen, and M. J. C. van Gemert, “Light dosimetry in optical phantoms and in tissues: I. Multiple flux and transport theory,” Phys. Med. Biol.33(4), 437–454 (1988).
[CrossRef] [PubMed]

Proc. SPIE (3)

D. Samarov, M. L. Clarke, J. Lee, D. W. Allen, M. Litorja, and J. Hwang, “Validating the lasso algorithm by unmixing spectral signatures in multicolor phantoms,” Proc. SPIE8229, 82290Z, 82290Z-9 (2012).
[CrossRef]

D. W. Allen, S. Maxwell, J. P. Rice, R. C. Chang, M. Litorja, J. Hwang, J. Cadeddu, E. Livingston, E. Wehner, and K. J. Zuzak, “Hyperspectral image projection of a pig kidney for the evaluation of imagers used for oximetry,” Proc. SPIE7906, 79060V, 79060V-9 (2011).
[CrossRef]

D. W. Allen, M. Litorja, S. W. Brown, and Y. Q. Zong, “Evaluation of a portable hyperspectral imager for medical imaging applications,” Proc. SPIE3765, 67650F, 67650F-10 (2007).
[CrossRef]

Psychophysiology (1)

J. C. Hebden, “Advances in optical imaging of the newborn infant brain,” Psychophysiology40(4), 501–510 (2003).
[CrossRef] [PubMed]

Stroke (1)

M. Moseley and G. Donnan, “Multimodality imaging - Introduction,” Stroke35(11_suppl_1), 2632–2634 (2004).
[CrossRef]

Surg. Clin. North Am. (1)

S. L. Jacques, “Laser-tissue interactions. Photochemical, photothermal, and photomechanical,” Surg. Clin. North Am.72(3), 531–558 (1992).
[PubMed]

Trans. Cambridge Philos.l Soc. (1)

G. B. Airy, “On the diffraction of an object-glass with circular aperture,” Trans. Cambridge Philos.l Soc.5, 283–291 (1835).

Other (3)

US FDA Guidance documents on “General and Cross-Cutting Topics,” http://www.fda.gov/RegulatoryInformation/Guidances/ucm122044.htm

“Traceability - NIST Policy and Supplementary Materials” http://www.nist.gov/traceability/

“About NIST Standard Reference Materials®, SRM,” http://www.nist.gov/srm/definitions.cfm

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (1)

Fig. 1
Fig. 1

Translational research map of medical devices from the basic research state to practical application in clinical settings.

Metrics