P. L. Bollyky, J. B. Bice, I. R. Sweet, B. A. Falk, J. A. Gebe, A. E. Clark, V. H. Gersuk, A. Aderem, T. R. Hawn, and G. T. Nepom, “The toll-like receptor signaling molecule Myd88 contributes to pancreatic beta-cell homeostasis in response to injury.” PloS ONE 4, e5063 (2009).
[Crossref]
[PubMed]
A. Hörnblad, A. Cheddad, and U. Ahlgren, “An improved protocol for optical projection tomography imaging reveals lobular heterogeneities in pancreatic islet and β-cell mass distribution,” Islets 3, 1–5 (2011).
[Crossref]
T. Alanentalo, A. Hörnblad, S. Mayans, A. K. Nilsson, J. Sharpe, A. Larefalk, U. Ahlgren, and D. Holmberg, “Quantification and three-dimensional imaging of the insulitis-induced destruction of β-cells in murine type 1 diabetes,” Diabetes 59, 1756–1764 (2010).
[Crossref]
[PubMed]
T. Alanentalo, C. E. Lorén, A. Larefalk, J. Sharpe, D. Holmberg, and U. Ahlgren, “High-resolution three-dimensional imaging of islet-infiltrate interactions based on optical projection tomography assessments of the intact adult mouse pancreas,” J. Biomed. Opt. 13, 054070 (2008).
[Crossref]
[PubMed]
T. Alanentalo, A. Asayesh, H. Morrison, C. E. Lorén, D. Holmberg, J. Sharpe, and U. Ahlgren, “Tomographic molecular imaging and 3D quantification within adult mouse organs,” Nat. Methods 4, 31–33 (2007).
[Crossref]
E. M. Akirav, M.-T. Baquero, L. W. Opare-Addo, M. Akirav, E. Galvan, J. A. Kushner, D. L. Rimm, and K. C. Herold, “Glucose and inflammation control islet vascular density and β-cell function in NOD mice: control of islet vasculature and vascular endothelial growth factor by glucose,” Diabetes 60, 876–883 (2011).
[Crossref]
[PubMed]
E. M. Akirav, M.-T. Baquero, L. W. Opare-Addo, M. Akirav, E. Galvan, J. A. Kushner, D. L. Rimm, and K. C. Herold, “Glucose and inflammation control islet vascular density and β-cell function in NOD mice: control of islet vasculature and vascular endothelial growth factor by glucose,” Diabetes 60, 876–883 (2011).
[Crossref]
[PubMed]
T. Alanentalo, A. Hörnblad, S. Mayans, A. K. Nilsson, J. Sharpe, A. Larefalk, U. Ahlgren, and D. Holmberg, “Quantification and three-dimensional imaging of the insulitis-induced destruction of β-cells in murine type 1 diabetes,” Diabetes 59, 1756–1764 (2010).
[Crossref]
[PubMed]
T. Alanentalo, C. E. Lorén, A. Larefalk, J. Sharpe, D. Holmberg, and U. Ahlgren, “High-resolution three-dimensional imaging of islet-infiltrate interactions based on optical projection tomography assessments of the intact adult mouse pancreas,” J. Biomed. Opt. 13, 054070 (2008).
[Crossref]
[PubMed]
T. Alanentalo, A. Asayesh, H. Morrison, C. E. Lorén, D. Holmberg, J. Sharpe, and U. Ahlgren, “Tomographic molecular imaging and 3D quantification within adult mouse organs,” Nat. Methods 4, 31–33 (2007).
[Crossref]
P. A. Testoni, B. Mangiavillano, L. Albarello, A. Mariani, P. G. Arcidiacono, E. Masci, and C. Doglioni, “Optical coherence tomography compared with histology of the main pancreatic duct structure in normal and pathological conditions: an ex vivo study,” Digest. Liver Dis. 38, 688–695 (2006).
[Crossref]
M. S. Anderson and J. A. Bluestone, “The NOD mouse: a model of immune dysregulation,” Annu. Rev. Immunol. 23, 447–485 (2005).
[Crossref]
[PubMed]
M. Brom, K. Andralojć, W. J. G. Oyen, O. C. Boerman, and M. Gotthardt, “Development of radiotracers for the determination of the beta-cell mass in vivo,” Curr. Pharm. Design 16, 1561–1567 (2010).
[Crossref]
P. F. Antkowiak, M. H. Vandsburger, and F. H. Epstein, “Quantitative pancreatic β cell MRI using manganese-enhanced look-locker imaging and two-site water exchange analysis,” Magn. Reson. Med. (Aug.16, 2011) (e-pub ahead of print).
[Crossref]
[PubMed]
Y. Hori, Y. Yasuno, S. Sakai, M. Matsumoto, T. Sugawara, V. D. Madjarova, M. Yamanari, S. Makita, T. Yasui, T. Araki, M. Itoh, and T. Yatagai, “Automatic characterization and segmentation of human skin using three-dimensional optical coherence tomography,” Opt. Express 14, 1862–1877 (2006).
[Crossref]
[PubMed]
P. A. Testoni, B. Mangiavillano, L. Albarello, A. Mariani, P. G. Arcidiacono, E. Masci, and C. Doglioni, “Optical coherence tomography compared with histology of the main pancreatic duct structure in normal and pathological conditions: an ex vivo study,” Digest. Liver Dis. 38, 688–695 (2006).
[Crossref]
D. Bosco, M. Armanet, P. Morel, N. Niclauss, A. Sgroi, Y. D. Muller, L. Giovannoni, and T. Berney, “Unique Arrangement of α- and β-cells in Human Islets of Langerhans,” Diabetes 59, 1202–1210 (2010).
[Crossref]
[PubMed]
T. Alanentalo, A. Asayesh, H. Morrison, C. E. Lorén, D. Holmberg, J. Sharpe, and U. Ahlgren, “Tomographic molecular imaging and 3D quantification within adult mouse organs,” Nat. Methods 4, 31–33 (2007).
[Crossref]
E. M. Akirav, M.-T. Baquero, L. W. Opare-Addo, M. Akirav, E. Galvan, J. A. Kushner, D. L. Rimm, and K. C. Herold, “Glucose and inflammation control islet vascular density and β-cell function in NOD mice: control of islet vasculature and vascular endothelial growth factor by glucose,” Diabetes 60, 876–883 (2011).
[Crossref]
[PubMed]
P.-O. Bastien-Dionne, L. Valenti, N. Kon, W. Gu, and J. Buteau, “Glucagon-like peptide 1 inhibits the sirtuin deacetylase SirT1 to stimulate pancreatic β-cell mass expansion,” Diabetes 60, 3217–3222 (2011).
[Crossref]
[PubMed]
D. Wild, A. Wicki, R. Mansi, M. Béhé, B. Keil, P. Bernhardt, G. Christofori, P. J. Ell, and H. R. Mäcke, “Exendin-4-based radiopharmaceuticals for glucagonlike peptide-1 receptor PET/CT and SPECT/CT,” J. Nucl. Med. 51, 1059–1067 (2010).
[Crossref]
[PubMed]
D. Bosco, M. Armanet, P. Morel, N. Niclauss, A. Sgroi, Y. D. Muller, L. Giovannoni, and T. Berney, “Unique Arrangement of α- and β-cells in Human Islets of Langerhans,” Diabetes 59, 1202–1210 (2010).
[Crossref]
[PubMed]
D. Wild, A. Wicki, R. Mansi, M. Béhé, B. Keil, P. Bernhardt, G. Christofori, P. J. Ell, and H. R. Mäcke, “Exendin-4-based radiopharmaceuticals for glucagonlike peptide-1 receptor PET/CT and SPECT/CT,” J. Nucl. Med. 51, 1059–1067 (2010).
[Crossref]
[PubMed]
P. L. Bollyky, J. B. Bice, I. R. Sweet, B. A. Falk, J. A. Gebe, A. E. Clark, V. H. Gersuk, A. Aderem, T. R. Hawn, and G. T. Nepom, “The toll-like receptor signaling molecule Myd88 contributes to pancreatic beta-cell homeostasis in response to injury.” PloS ONE 4, e5063 (2009).
[Crossref]
[PubMed]
M. Hara, R. F. Dizon, B. S. Glick, C. S. Lee, K. H. Kaestner, D. W. Piston, and V. P. Bindokas, “Imaging pancreatic β-cells in the intact pancreas,” Am. J. Physiol. Endocrinol. Metab. 290, E1041–E1047 (2006).
[Crossref]
I. Ghorbel, F. Rossant, I. Bloch, S. Tick, and M. Paques, “Automated segmentation of macular layers in OCT images and quantitative evaluation of performances,” Pattern Recogn. 44, 1590–1603 (2011).
[Crossref]
J. A. Bluestone, K. Herold, and G. Eisenbarth, “Genetics, pathogenesis and clinical interventions in type 1 diabetes,” Nature 464, 1293–1300 (2010).
[Crossref]
[PubMed]
M. S. Anderson and J. A. Bluestone, “The NOD mouse: a model of immune dysregulation,” Annu. Rev. Immunol. 23, 447–485 (2005).
[Crossref]
[PubMed]
T. Bock, B. Pakkenberg, and K. Buschard, “Genetic background determines the size and structure of the endocrine pancreas,” Diabetes 54, 133–137 (2005).
[Crossref]
T. Bock, K. Svenstrup, B. Pakkenberg, and K. Buschard, “Unbiased estimation of total β-cell number and mean β-cell volume in rodent pancreas,” APMIS 107, 791–799 (1999).
[Crossref]
[PubMed]
M. Brom, K. Andralojć, W. J. G. Oyen, O. C. Boerman, and M. Gotthardt, “Development of radiotracers for the determination of the beta-cell mass in vivo,” Curr. Pharm. Design 16, 1561–1567 (2010).
[Crossref]
P. L. Bollyky, J. B. Bice, I. R. Sweet, B. A. Falk, J. A. Gebe, A. E. Clark, V. H. Gersuk, A. Aderem, T. R. Hawn, and G. T. Nepom, “The toll-like receptor signaling molecule Myd88 contributes to pancreatic beta-cell homeostasis in response to injury.” PloS ONE 4, e5063 (2009).
[Crossref]
[PubMed]
G. J. Tearney, M. E. Brezinski, J. F. Southern, B. E. Bouma, S. A. Boppart, and J. G. Fujimoto, “Optical biopsy in human pancreatobiliary tissue using optical coherence tomography,” Digest. Dis. Sci. 43, 1193–1199 (1998).
[Crossref]
[PubMed]
D. Bosco, M. Armanet, P. Morel, N. Niclauss, A. Sgroi, Y. D. Muller, L. Giovannoni, and T. Berney, “Unique Arrangement of α- and β-cells in Human Islets of Langerhans,” Diabetes 59, 1202–1210 (2010).
[Crossref]
[PubMed]
G. J. Tearney, M. E. Brezinski, J. F. Southern, B. E. Bouma, S. A. Boppart, and J. G. Fujimoto, “Optical biopsy in human pancreatobiliary tissue using optical coherence tomography,” Digest. Dis. Sci. 43, 1193–1199 (1998).
[Crossref]
[PubMed]
G. J. Tearney, M. E. Brezinski, J. F. Southern, B. E. Bouma, S. A. Boppart, and J. G. Fujimoto, “Optical biopsy in human pancreatobiliary tissue using optical coherence tomography,” Digest. Dis. Sci. 43, 1193–1199 (1998).
[Crossref]
[PubMed]
M. Brissova, M. J. Fowler, W. E. Nicholson, A. Chu, B. Hirshberg, D. M. Harlan, and A. C. Powers, “Assessment of human pancreatic islet architecture and composition by laser scanning confocal microscopy.” J. Histochem. Cytochem. 53, 1087–1097 (2005).
[Crossref]
[PubMed]
M. Brom, K. Andralojć, W. J. G. Oyen, O. C. Boerman, and M. Gotthardt, “Development of radiotracers for the determination of the beta-cell mass in vivo,” Curr. Pharm. Design 16, 1561–1567 (2010).
[Crossref]
N. Iftimia, S. Cizginer, V. Deshpande, M. Pitman, S. Tatli, N. A. Iftimia, D. X. Hammer, M. Mujat, T. Ustun, R. D. Ferguson, and W. R. Brugge, “Differentiation of pancreatic cysts with optical coherence tomography (OCT) imaging: an ex vivo pilot study,” Biomed. Opt. Express 2, 2372–2382 (2011).
[Crossref]
[PubMed]
L. D. Shultz, B. L. Lyons, L. M. Burzenski, B. Gott, X. Chen, S. Chaleff, M. Kotb, S. D. Gillies, M. King, J. Mangada, D. L. Greiner, and R. Handgretinger, “Human lymphoid and myeloid cell development in NOD/LtSz-scid IL2Rγnull mice engrafted with mobilized human hemopoietic stem cells,” J. Immunol. 174, 6477–6489 (2005).
[PubMed]
T. Bock, B. Pakkenberg, and K. Buschard, “Genetic background determines the size and structure of the endocrine pancreas,” Diabetes 54, 133–137 (2005).
[Crossref]
T. Bock, K. Svenstrup, B. Pakkenberg, and K. Buschard, “Unbiased estimation of total β-cell number and mean β-cell volume in rodent pancreas,” APMIS 107, 791–799 (1999).
[Crossref]
[PubMed]
P.-O. Bastien-Dionne, L. Valenti, N. Kon, W. Gu, and J. Buteau, “Glucagon-like peptide 1 inhibits the sirtuin deacetylase SirT1 to stimulate pancreatic β-cell mass expansion,” Diabetes 60, 3217–3222 (2011).
[Crossref]
[PubMed]
D. Choi, E. P. Cai, S. A. Schroer, L. Wang, and M. Woo, “Vhl is required for normal pancreatic β cell function and the maintenance of β cell mass with age in mice,” Lab. Invest. 91, 527–538 (2011).
[Crossref]
[PubMed]
L. D. Shultz, B. L. Lyons, L. M. Burzenski, B. Gott, X. Chen, S. Chaleff, M. Kotb, S. D. Gillies, M. King, J. Mangada, D. L. Greiner, and R. Handgretinger, “Human lymphoid and myeloid cell development in NOD/LtSz-scid IL2Rγnull mice engrafted with mobilized human hemopoietic stem cells,” J. Immunol. 174, 6477–6489 (2005).
[PubMed]
T. F. Chan and L. A. Vese, “Active contours without edges,” IEEE Trans. Image Process. 10, 266–277 (2001).
[Crossref]
A. Hörnblad, A. Cheddad, and U. Ahlgren, “An improved protocol for optical projection tomography imaging reveals lobular heterogeneities in pancreatic islet and β-cell mass distribution,” Islets 3, 1–5 (2011).
[Crossref]
L. D. Shultz, B. L. Lyons, L. M. Burzenski, B. Gott, X. Chen, S. Chaleff, M. Kotb, S. D. Gillies, M. King, J. Mangada, D. L. Greiner, and R. Handgretinger, “Human lymphoid and myeloid cell development in NOD/LtSz-scid IL2Rγnull mice engrafted with mobilized human hemopoietic stem cells,” J. Immunol. 174, 6477–6489 (2005).
[PubMed]
M. Chintinne, G. Stangé, B. Denys, P. In ’t Veld, K. Hellemans, M. Pipeleers-Marichal, Z. Ling, and D. Pipeleers, “Contribution of postnatally formed small beta cell aggregates to functional beta cell mass in adult rat pancreas,” Diabetologia 53, 2380–2388 (2010).
[Crossref]
[PubMed]
D. Choi, E. P. Cai, S. A. Schroer, L. Wang, and M. Woo, “Vhl is required for normal pancreatic β cell function and the maintenance of β cell mass with age in mice,” Lab. Invest. 91, 527–538 (2011).
[Crossref]
[PubMed]
D. Wild, A. Wicki, R. Mansi, M. Béhé, B. Keil, P. Bernhardt, G. Christofori, P. J. Ell, and H. R. Mäcke, “Exendin-4-based radiopharmaceuticals for glucagonlike peptide-1 receptor PET/CT and SPECT/CT,” J. Nucl. Med. 51, 1059–1067 (2010).
[Crossref]
[PubMed]
M. Brissova, M. J. Fowler, W. E. Nicholson, A. Chu, B. Hirshberg, D. M. Harlan, and A. C. Powers, “Assessment of human pancreatic islet architecture and composition by laser scanning confocal microscopy.” J. Histochem. Cytochem. 53, 1087–1097 (2005).
[Crossref]
[PubMed]
N. Iftimia, S. Cizginer, V. Deshpande, M. Pitman, S. Tatli, N. A. Iftimia, D. X. Hammer, M. Mujat, T. Ustun, R. D. Ferguson, and W. R. Brugge, “Differentiation of pancreatic cysts with optical coherence tomography (OCT) imaging: an ex vivo pilot study,” Biomed. Opt. Express 2, 2372–2382 (2011).
[Crossref]
[PubMed]
P. L. Bollyky, J. B. Bice, I. R. Sweet, B. A. Falk, J. A. Gebe, A. E. Clark, V. H. Gersuk, A. Aderem, T. R. Hawn, and G. T. Nepom, “The toll-like receptor signaling molecule Myd88 contributes to pancreatic beta-cell homeostasis in response to injury.” PloS ONE 4, e5063 (2009).
[Crossref]
[PubMed]
A. Clauset, C. R. Shalizi, and M. E. J. Newman, “Power-law distributions in empirical data,” SIAM Rev. 51, 661–703 (2009).
[Crossref]
A. C. Davison and D. V. Hinkley, Bootstrap Methods and their Application (Cambridge University Press, 1997).
M. Chintinne, G. Stangé, B. Denys, P. In ’t Veld, K. Hellemans, M. Pipeleers-Marichal, Z. Ling, and D. Pipeleers, “Contribution of postnatally formed small beta cell aggregates to functional beta cell mass in adult rat pancreas,” Diabetologia 53, 2380–2388 (2010).
[Crossref]
[PubMed]
N. Iftimia, S. Cizginer, V. Deshpande, M. Pitman, S. Tatli, N. A. Iftimia, D. X. Hammer, M. Mujat, T. Ustun, R. D. Ferguson, and W. R. Brugge, “Differentiation of pancreatic cysts with optical coherence tomography (OCT) imaging: an ex vivo pilot study,” Biomed. Opt. Express 2, 2372–2382 (2011).
[Crossref]
[PubMed]
M. Hara, R. F. Dizon, B. S. Glick, C. S. Lee, K. H. Kaestner, D. W. Piston, and V. P. Bindokas, “Imaging pancreatic β-cells in the intact pancreas,” Am. J. Physiol. Endocrinol. Metab. 290, E1041–E1047 (2006).
[Crossref]
P. A. Testoni, B. Mangiavillano, L. Albarello, A. Mariani, P. G. Arcidiacono, E. Masci, and C. Doglioni, “Optical coherence tomography compared with histology of the main pancreatic duct structure in normal and pathological conditions: an ex vivo study,” Digest. Liver Dis. 38, 688–695 (2006).
[Crossref]
A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography - principles and applications,” Rep. Prog. Phys. 66, 239–303 (2003).
[Crossref]
J. A. Bluestone, K. Herold, and G. Eisenbarth, “Genetics, pathogenesis and clinical interventions in type 1 diabetes,” Nature 464, 1293–1300 (2010).
[Crossref]
[PubMed]
D. Wild, A. Wicki, R. Mansi, M. Béhé, B. Keil, P. Bernhardt, G. Christofori, P. J. Ell, and H. R. Mäcke, “Exendin-4-based radiopharmaceuticals for glucagonlike peptide-1 receptor PET/CT and SPECT/CT,” J. Nucl. Med. 51, 1059–1067 (2010).
[Crossref]
[PubMed]
P. F. Antkowiak, M. H. Vandsburger, and F. H. Epstein, “Quantitative pancreatic β cell MRI using manganese-enhanced look-locker imaging and two-site water exchange analysis,” Magn. Reson. Med. (Aug.16, 2011) (e-pub ahead of print).
[Crossref]
[PubMed]
P. L. Bollyky, J. B. Bice, I. R. Sweet, B. A. Falk, J. A. Gebe, A. E. Clark, V. H. Gersuk, A. Aderem, T. R. Hawn, and G. T. Nepom, “The toll-like receptor signaling molecule Myd88 contributes to pancreatic beta-cell homeostasis in response to injury.” PloS ONE 4, e5063 (2009).
[Crossref]
[PubMed]
S. Osher and R. P. Fedkiw, Level Set Methods and Dynamic Implicit Surfaces (Springer-Verlag, 2003).
A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography - principles and applications,” Rep. Prog. Phys. 66, 239–303 (2003).
[Crossref]
N. Iftimia, S. Cizginer, V. Deshpande, M. Pitman, S. Tatli, N. A. Iftimia, D. X. Hammer, M. Mujat, T. Ustun, R. D. Ferguson, and W. R. Brugge, “Differentiation of pancreatic cysts with optical coherence tomography (OCT) imaging: an ex vivo pilot study,” Biomed. Opt. Express 2, 2372–2382 (2011).
[Crossref]
[PubMed]
L. R. Nyman, E. Ford, A. C. Powers, and D. W. Piston, “Glucose-dependent blood flow dynamics in murine pancreatic islets in vivo,” Am. J. Physiol.-Endoc. M. 298, E807–E814 (2010).
M. Brissova, M. J. Fowler, W. E. Nicholson, A. Chu, B. Hirshberg, D. M. Harlan, and A. C. Powers, “Assessment of human pancreatic islet architecture and composition by laser scanning confocal microscopy.” J. Histochem. Cytochem. 53, 1087–1097 (2005).
[Crossref]
[PubMed]
M. Villiger, J. Goulley, M. Friedrich, A. Grapin-Botton, P. Meda, T. Lasser, and R. A. Leitgeb, “In vivo imaging of murine endocrine islets of Langerhans with extended-focus optical coherence microscopy,” Diabetologia 52, 1599–1607 (2009).
[Crossref]
[PubMed]
J. G. Fujimoto, “Optical coherence tomography for ultrahigh resolution in vivo imaging,” Nat. Biotechnol. 21, 1361–1367 (2003).
[Crossref]
[PubMed]
G. J. Tearney, M. E. Brezinski, J. F. Southern, B. E. Bouma, S. A. Boppart, and J. G. Fujimoto, “Optical biopsy in human pancreatobiliary tissue using optical coherence tomography,” Digest. Dis. Sci. 43, 1193–1199 (1998).
[Crossref]
[PubMed]
J. A. Izatt, M. R. Hee, G. M. Owen, E. A. Swanson, and J. G. Fujimoto, “Optical coherence microscopy in scattering media,” Opt. Lett. 19, 590–592 (1994).
[Crossref]
[PubMed]
E. M. Akirav, M.-T. Baquero, L. W. Opare-Addo, M. Akirav, E. Galvan, J. A. Kushner, D. L. Rimm, and K. C. Herold, “Glucose and inflammation control islet vascular density and β-cell function in NOD mice: control of islet vasculature and vascular endothelial growth factor by glucose,” Diabetes 60, 876–883 (2011).
[Crossref]
[PubMed]
P. L. Bollyky, J. B. Bice, I. R. Sweet, B. A. Falk, J. A. Gebe, A. E. Clark, V. H. Gersuk, A. Aderem, T. R. Hawn, and G. T. Nepom, “The toll-like receptor signaling molecule Myd88 contributes to pancreatic beta-cell homeostasis in response to injury.” PloS ONE 4, e5063 (2009).
[Crossref]
[PubMed]
P. L. Bollyky, J. B. Bice, I. R. Sweet, B. A. Falk, J. A. Gebe, A. E. Clark, V. H. Gersuk, A. Aderem, T. R. Hawn, and G. T. Nepom, “The toll-like receptor signaling molecule Myd88 contributes to pancreatic beta-cell homeostasis in response to injury.” PloS ONE 4, e5063 (2009).
[Crossref]
[PubMed]
I. Ghorbel, F. Rossant, I. Bloch, S. Tick, and M. Paques, “Automated segmentation of macular layers in OCT images and quantitative evaluation of performances,” Pattern Recogn. 44, 1590–1603 (2011).
[Crossref]
L. D. Shultz, B. L. Lyons, L. M. Burzenski, B. Gott, X. Chen, S. Chaleff, M. Kotb, S. D. Gillies, M. King, J. Mangada, D. L. Greiner, and R. Handgretinger, “Human lymphoid and myeloid cell development in NOD/LtSz-scid IL2Rγnull mice engrafted with mobilized human hemopoietic stem cells,” J. Immunol. 174, 6477–6489 (2005).
[PubMed]
D. Bosco, M. Armanet, P. Morel, N. Niclauss, A. Sgroi, Y. D. Muller, L. Giovannoni, and T. Berney, “Unique Arrangement of α- and β-cells in Human Islets of Langerhans,” Diabetes 59, 1202–1210 (2010).
[Crossref]
[PubMed]
M. Hara, R. F. Dizon, B. S. Glick, C. S. Lee, K. H. Kaestner, D. W. Piston, and V. P. Bindokas, “Imaging pancreatic β-cells in the intact pancreas,” Am. J. Physiol. Endocrinol. Metab. 290, E1041–E1047 (2006).
[Crossref]
F. Souza, N. Simpson, A. Raffo, C. Saxena, A. Maffei, M. Hardy, M. Kilbourn, R. Goland, R. Leibel, J. Mann, R. Van Heertum, and P. E. Harris, “Longitudinal noninvasive PET-based β cell mass estimates in a spontaneous diabetes rat model,” J. Clin. Invest. 116, 1506–1513 (2006).
[Crossref]
[PubMed]
L. D. Shultz, B. L. Lyons, L. M. Burzenski, B. Gott, X. Chen, S. Chaleff, M. Kotb, S. D. Gillies, M. King, J. Mangada, D. L. Greiner, and R. Handgretinger, “Human lymphoid and myeloid cell development in NOD/LtSz-scid IL2Rγnull mice engrafted with mobilized human hemopoietic stem cells,” J. Immunol. 174, 6477–6489 (2005).
[PubMed]
M. Brom, K. Andralojć, W. J. G. Oyen, O. C. Boerman, and M. Gotthardt, “Development of radiotracers for the determination of the beta-cell mass in vivo,” Curr. Pharm. Design 16, 1561–1567 (2010).
[Crossref]
M. Villiger, J. Goulley, E. J. Martin-Williams, A. Grapin-Botton, and T. Lasser, “Towards high resolution optical imaging of beta cells in vivo,” Curr. Pharm. Design 16, 1595–1608 (2010).
[Crossref]
M. Villiger, J. Goulley, M. Friedrich, A. Grapin-Botton, P. Meda, T. Lasser, and R. A. Leitgeb, “In vivo imaging of murine endocrine islets of Langerhans with extended-focus optical coherence microscopy,” Diabetologia 52, 1599–1607 (2009).
[Crossref]
[PubMed]
M. Villiger, J. Goulley, E. J. Martin-Williams, A. Grapin-Botton, and T. Lasser, “Towards high resolution optical imaging of beta cells in vivo,” Curr. Pharm. Design 16, 1595–1608 (2010).
[Crossref]
M. Villiger, J. Goulley, M. Friedrich, A. Grapin-Botton, P. Meda, T. Lasser, and R. A. Leitgeb, “In vivo imaging of murine endocrine islets of Langerhans with extended-focus optical coherence microscopy,” Diabetologia 52, 1599–1607 (2009).
[Crossref]
[PubMed]
L. D. Shultz, B. L. Lyons, L. M. Burzenski, B. Gott, X. Chen, S. Chaleff, M. Kotb, S. D. Gillies, M. King, J. Mangada, D. L. Greiner, and R. Handgretinger, “Human lymphoid and myeloid cell development in NOD/LtSz-scid IL2Rγnull mice engrafted with mobilized human hemopoietic stem cells,” J. Immunol. 174, 6477–6489 (2005).
[PubMed]
P.-O. Bastien-Dionne, L. Valenti, N. Kon, W. Gu, and J. Buteau, “Glucagon-like peptide 1 inhibits the sirtuin deacetylase SirT1 to stimulate pancreatic β-cell mass expansion,” Diabetes 60, 3217–3222 (2011).
[Crossref]
[PubMed]
S. Hamada, K. Hara, T. Hamada, H. Yasuda, H. Moriyama, R. Nakayama, M. Nagata, and K. Yokono, “Upregulation of the mammalian target of rapamycin complex 1 pathway by ras homolog enriched in brain in pancreatic β-cells leads to increased β-cell mass and prevention of hyperglycemia,” Diabetes 58, 1321–1332 (2009).
[Crossref]
[PubMed]
S. Hamada, K. Hara, T. Hamada, H. Yasuda, H. Moriyama, R. Nakayama, M. Nagata, and K. Yokono, “Upregulation of the mammalian target of rapamycin complex 1 pathway by ras homolog enriched in brain in pancreatic β-cells leads to increased β-cell mass and prevention of hyperglycemia,” Diabetes 58, 1321–1332 (2009).
[Crossref]
[PubMed]
N. Iftimia, S. Cizginer, V. Deshpande, M. Pitman, S. Tatli, N. A. Iftimia, D. X. Hammer, M. Mujat, T. Ustun, R. D. Ferguson, and W. R. Brugge, “Differentiation of pancreatic cysts with optical coherence tomography (OCT) imaging: an ex vivo pilot study,” Biomed. Opt. Express 2, 2372–2382 (2011).
[Crossref]
[PubMed]
L. D. Shultz, B. L. Lyons, L. M. Burzenski, B. Gott, X. Chen, S. Chaleff, M. Kotb, S. D. Gillies, M. King, J. Mangada, D. L. Greiner, and R. Handgretinger, “Human lymphoid and myeloid cell development in NOD/LtSz-scid IL2Rγnull mice engrafted with mobilized human hemopoietic stem cells,” J. Immunol. 174, 6477–6489 (2005).
[PubMed]
S. Hamada, K. Hara, T. Hamada, H. Yasuda, H. Moriyama, R. Nakayama, M. Nagata, and K. Yokono, “Upregulation of the mammalian target of rapamycin complex 1 pathway by ras homolog enriched in brain in pancreatic β-cells leads to increased β-cell mass and prevention of hyperglycemia,” Diabetes 58, 1321–1332 (2009).
[Crossref]
[PubMed]
M. Hara, R. F. Dizon, B. S. Glick, C. S. Lee, K. H. Kaestner, D. W. Piston, and V. P. Bindokas, “Imaging pancreatic β-cells in the intact pancreas,” Am. J. Physiol. Endocrinol. Metab. 290, E1041–E1047 (2006).
[Crossref]
F. Souza, N. Simpson, A. Raffo, C. Saxena, A. Maffei, M. Hardy, M. Kilbourn, R. Goland, R. Leibel, J. Mann, R. Van Heertum, and P. E. Harris, “Longitudinal noninvasive PET-based β cell mass estimates in a spontaneous diabetes rat model,” J. Clin. Invest. 116, 1506–1513 (2006).
[Crossref]
[PubMed]
M. Brissova, M. J. Fowler, W. E. Nicholson, A. Chu, B. Hirshberg, D. M. Harlan, and A. C. Powers, “Assessment of human pancreatic islet architecture and composition by laser scanning confocal microscopy.” J. Histochem. Cytochem. 53, 1087–1097 (2005).
[Crossref]
[PubMed]
F. Souza, N. Simpson, A. Raffo, C. Saxena, A. Maffei, M. Hardy, M. Kilbourn, R. Goland, R. Leibel, J. Mann, R. Van Heertum, and P. E. Harris, “Longitudinal noninvasive PET-based β cell mass estimates in a spontaneous diabetes rat model,” J. Clin. Invest. 116, 1506–1513 (2006).
[Crossref]
[PubMed]
P. L. Bollyky, J. B. Bice, I. R. Sweet, B. A. Falk, J. A. Gebe, A. E. Clark, V. H. Gersuk, A. Aderem, T. R. Hawn, and G. T. Nepom, “The toll-like receptor signaling molecule Myd88 contributes to pancreatic beta-cell homeostasis in response to injury.” PloS ONE 4, e5063 (2009).
[Crossref]
[PubMed]
M. Chintinne, G. Stangé, B. Denys, P. In ’t Veld, K. Hellemans, M. Pipeleers-Marichal, Z. Ling, and D. Pipeleers, “Contribution of postnatally formed small beta cell aggregates to functional beta cell mass in adult rat pancreas,” Diabetologia 53, 2380–2388 (2010).
[Crossref]
[PubMed]
J. A. Bluestone, K. Herold, and G. Eisenbarth, “Genetics, pathogenesis and clinical interventions in type 1 diabetes,” Nature 464, 1293–1300 (2010).
[Crossref]
[PubMed]
E. M. Akirav, M.-T. Baquero, L. W. Opare-Addo, M. Akirav, E. Galvan, J. A. Kushner, D. L. Rimm, and K. C. Herold, “Glucose and inflammation control islet vascular density and β-cell function in NOD mice: control of islet vasculature and vascular endothelial growth factor by glucose,” Diabetes 60, 876–883 (2011).
[Crossref]
[PubMed]
A. C. Davison and D. V. Hinkley, Bootstrap Methods and their Application (Cambridge University Press, 1997).
M. Brissova, M. J. Fowler, W. E. Nicholson, A. Chu, B. Hirshberg, D. M. Harlan, and A. C. Powers, “Assessment of human pancreatic islet architecture and composition by laser scanning confocal microscopy.” J. Histochem. Cytochem. 53, 1087–1097 (2005).
[Crossref]
[PubMed]
A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography - principles and applications,” Rep. Prog. Phys. 66, 239–303 (2003).
[Crossref]
T. Alanentalo, A. Hörnblad, S. Mayans, A. K. Nilsson, J. Sharpe, A. Larefalk, U. Ahlgren, and D. Holmberg, “Quantification and three-dimensional imaging of the insulitis-induced destruction of β-cells in murine type 1 diabetes,” Diabetes 59, 1756–1764 (2010).
[Crossref]
[PubMed]
T. Alanentalo, C. E. Lorén, A. Larefalk, J. Sharpe, D. Holmberg, and U. Ahlgren, “High-resolution three-dimensional imaging of islet-infiltrate interactions based on optical projection tomography assessments of the intact adult mouse pancreas,” J. Biomed. Opt. 13, 054070 (2008).
[Crossref]
[PubMed]
T. Alanentalo, A. Asayesh, H. Morrison, C. E. Lorén, D. Holmberg, J. Sharpe, and U. Ahlgren, “Tomographic molecular imaging and 3D quantification within adult mouse organs,” Nat. Methods 4, 31–33 (2007).
[Crossref]
Y. Hori, Y. Yasuno, S. Sakai, M. Matsumoto, T. Sugawara, V. D. Madjarova, M. Yamanari, S. Makita, T. Yasui, T. Araki, M. Itoh, and T. Yatagai, “Automatic characterization and segmentation of human skin using three-dimensional optical coherence tomography,” Opt. Express 14, 1862–1877 (2006).
[Crossref]
[PubMed]
A. Hörnblad, A. Cheddad, and U. Ahlgren, “An improved protocol for optical projection tomography imaging reveals lobular heterogeneities in pancreatic islet and β-cell mass distribution,” Islets 3, 1–5 (2011).
[Crossref]
T. Alanentalo, A. Hörnblad, S. Mayans, A. K. Nilsson, J. Sharpe, A. Larefalk, U. Ahlgren, and D. Holmberg, “Quantification and three-dimensional imaging of the insulitis-induced destruction of β-cells in murine type 1 diabetes,” Diabetes 59, 1756–1764 (2010).
[Crossref]
[PubMed]
N. Iftimia, S. Cizginer, V. Deshpande, M. Pitman, S. Tatli, N. A. Iftimia, D. X. Hammer, M. Mujat, T. Ustun, R. D. Ferguson, and W. R. Brugge, “Differentiation of pancreatic cysts with optical coherence tomography (OCT) imaging: an ex vivo pilot study,” Biomed. Opt. Express 2, 2372–2382 (2011).
[Crossref]
[PubMed]
N. Iftimia, S. Cizginer, V. Deshpande, M. Pitman, S. Tatli, N. A. Iftimia, D. X. Hammer, M. Mujat, T. Ustun, R. D. Ferguson, and W. R. Brugge, “Differentiation of pancreatic cysts with optical coherence tomography (OCT) imaging: an ex vivo pilot study,” Biomed. Opt. Express 2, 2372–2382 (2011).
[Crossref]
[PubMed]
M. Chintinne, G. Stangé, B. Denys, P. In ’t Veld, K. Hellemans, M. Pipeleers-Marichal, Z. Ling, and D. Pipeleers, “Contribution of postnatally formed small beta cell aggregates to functional beta cell mass in adult rat pancreas,” Diabetologia 53, 2380–2388 (2010).
[Crossref]
[PubMed]
Y. Hori, Y. Yasuno, S. Sakai, M. Matsumoto, T. Sugawara, V. D. Madjarova, M. Yamanari, S. Makita, T. Yasui, T. Araki, M. Itoh, and T. Yatagai, “Automatic characterization and segmentation of human skin using three-dimensional optical coherence tomography,” Opt. Express 14, 1862–1877 (2006).
[Crossref]
[PubMed]
S. J. Chiu, X. T. Li, P. Nicholas, C. A. Toth, J. A. Izatt, and S. Farsiu, “Automatic segmentation of seven retinal layers in SDOCT images congruent with expert manual segmentation,” Opt. Express 18, 19413–19428 (2010).
[Crossref]
[PubMed]
J. A. Izatt, M. R. Hee, G. M. Owen, E. A. Swanson, and J. G. Fujimoto, “Optical coherence microscopy in scattering media,” Opt. Lett. 19, 590–592 (1994).
[Crossref]
[PubMed]
M. Hara, R. F. Dizon, B. S. Glick, C. S. Lee, K. H. Kaestner, D. W. Piston, and V. P. Bindokas, “Imaging pancreatic β-cells in the intact pancreas,” Am. J. Physiol. Endocrinol. Metab. 290, E1041–E1047 (2006).
[Crossref]
D. Wild, A. Wicki, R. Mansi, M. Béhé, B. Keil, P. Bernhardt, G. Christofori, P. J. Ell, and H. R. Mäcke, “Exendin-4-based radiopharmaceuticals for glucagonlike peptide-1 receptor PET/CT and SPECT/CT,” J. Nucl. Med. 51, 1059–1067 (2010).
[Crossref]
[PubMed]
F. Souza, N. Simpson, A. Raffo, C. Saxena, A. Maffei, M. Hardy, M. Kilbourn, R. Goland, R. Leibel, J. Mann, R. Van Heertum, and P. E. Harris, “Longitudinal noninvasive PET-based β cell mass estimates in a spontaneous diabetes rat model,” J. Clin. Invest. 116, 1506–1513 (2006).
[Crossref]
[PubMed]
L. D. Shultz, B. L. Lyons, L. M. Burzenski, B. Gott, X. Chen, S. Chaleff, M. Kotb, S. D. Gillies, M. King, J. Mangada, D. L. Greiner, and R. Handgretinger, “Human lymphoid and myeloid cell development in NOD/LtSz-scid IL2Rγnull mice engrafted with mobilized human hemopoietic stem cells,” J. Immunol. 174, 6477–6489 (2005).
[PubMed]
P.-O. Bastien-Dionne, L. Valenti, N. Kon, W. Gu, and J. Buteau, “Glucagon-like peptide 1 inhibits the sirtuin deacetylase SirT1 to stimulate pancreatic β-cell mass expansion,” Diabetes 60, 3217–3222 (2011).
[Crossref]
[PubMed]
L. D. Shultz, B. L. Lyons, L. M. Burzenski, B. Gott, X. Chen, S. Chaleff, M. Kotb, S. D. Gillies, M. King, J. Mangada, D. L. Greiner, and R. Handgretinger, “Human lymphoid and myeloid cell development in NOD/LtSz-scid IL2Rγnull mice engrafted with mobilized human hemopoietic stem cells,” J. Immunol. 174, 6477–6489 (2005).
[PubMed]
M. Riopel, M. Krishnamurthy, J. Li, S. Liu, A. Leask, and R. Wang, “Conditional β1-integrin-deficient mice display impaired pancreatic β cell function,” J. Pathol. 224, 45–55 (2011).
[Crossref]
[PubMed]
E. M. Akirav, M.-T. Baquero, L. W. Opare-Addo, M. Akirav, E. Galvan, J. A. Kushner, D. L. Rimm, and K. C. Herold, “Glucose and inflammation control islet vascular density and β-cell function in NOD mice: control of islet vasculature and vascular endothelial growth factor by glucose,” Diabetes 60, 876–883 (2011).
[Crossref]
[PubMed]
S. Lankton, “Sparse Field Methods,” Technical Report, Georgia Institute of Technology (July6, 2009).
T. Alanentalo, A. Hörnblad, S. Mayans, A. K. Nilsson, J. Sharpe, A. Larefalk, U. Ahlgren, and D. Holmberg, “Quantification and three-dimensional imaging of the insulitis-induced destruction of β-cells in murine type 1 diabetes,” Diabetes 59, 1756–1764 (2010).
[Crossref]
[PubMed]
T. Alanentalo, C. E. Lorén, A. Larefalk, J. Sharpe, D. Holmberg, and U. Ahlgren, “High-resolution three-dimensional imaging of islet-infiltrate interactions based on optical projection tomography assessments of the intact adult mouse pancreas,” J. Biomed. Opt. 13, 054070 (2008).
[Crossref]
[PubMed]
M. Villiger, J. Goulley, E. J. Martin-Williams, A. Grapin-Botton, and T. Lasser, “Towards high resolution optical imaging of beta cells in vivo,” Curr. Pharm. Design 16, 1595–1608 (2010).
[Crossref]
M. Villiger, J. Goulley, M. Friedrich, A. Grapin-Botton, P. Meda, T. Lasser, and R. A. Leitgeb, “In vivo imaging of murine endocrine islets of Langerhans with extended-focus optical coherence microscopy,” Diabetologia 52, 1599–1607 (2009).
[Crossref]
[PubMed]
R. A. Leitgeb, M. Villiger, A. Bachmann, L. Steinmann, and T. Lasser, “Extended focus depth for Fourier domain optical coherence microscopy,” Opt. Lett. 31, 2450–2452 (2006).
[Crossref]
[PubMed]
A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography - principles and applications,” Rep. Prog. Phys. 66, 239–303 (2003).
[Crossref]
M. Riopel, M. Krishnamurthy, J. Li, S. Liu, A. Leask, and R. Wang, “Conditional β1-integrin-deficient mice display impaired pancreatic β cell function,” J. Pathol. 224, 45–55 (2011).
[Crossref]
[PubMed]
M. Hara, R. F. Dizon, B. S. Glick, C. S. Lee, K. H. Kaestner, D. W. Piston, and V. P. Bindokas, “Imaging pancreatic β-cells in the intact pancreas,” Am. J. Physiol. Endocrinol. Metab. 290, E1041–E1047 (2006).
[Crossref]
F. Souza, N. Simpson, A. Raffo, C. Saxena, A. Maffei, M. Hardy, M. Kilbourn, R. Goland, R. Leibel, J. Mann, R. Van Heertum, and P. E. Harris, “Longitudinal noninvasive PET-based β cell mass estimates in a spontaneous diabetes rat model,” J. Clin. Invest. 116, 1506–1513 (2006).
[Crossref]
[PubMed]
M. Villiger, J. Goulley, M. Friedrich, A. Grapin-Botton, P. Meda, T. Lasser, and R. A. Leitgeb, “In vivo imaging of murine endocrine islets of Langerhans with extended-focus optical coherence microscopy,” Diabetologia 52, 1599–1607 (2009).
[Crossref]
[PubMed]
R. A. Leitgeb, M. Villiger, A. Bachmann, L. Steinmann, and T. Lasser, “Extended focus depth for Fourier domain optical coherence microscopy,” Opt. Lett. 31, 2450–2452 (2006).
[Crossref]
[PubMed]
M. Riopel, M. Krishnamurthy, J. Li, S. Liu, A. Leask, and R. Wang, “Conditional β1-integrin-deficient mice display impaired pancreatic β cell function,” J. Pathol. 224, 45–55 (2011).
[Crossref]
[PubMed]
Y. Lin and S. Zhongjie, “Current views on type 2 diabetes,” J. Endocrinol. 204, 1–11 (2010).
[Crossref]
M. Chintinne, G. Stangé, B. Denys, P. In ’t Veld, K. Hellemans, M. Pipeleers-Marichal, Z. Ling, and D. Pipeleers, “Contribution of postnatally formed small beta cell aggregates to functional beta cell mass in adult rat pancreas,” Diabetologia 53, 2380–2388 (2010).
[Crossref]
[PubMed]
M. Riopel, M. Krishnamurthy, J. Li, S. Liu, A. Leask, and R. Wang, “Conditional β1-integrin-deficient mice display impaired pancreatic β cell function,” J. Pathol. 224, 45–55 (2011).
[Crossref]
[PubMed]
T. Alanentalo, C. E. Lorén, A. Larefalk, J. Sharpe, D. Holmberg, and U. Ahlgren, “High-resolution three-dimensional imaging of islet-infiltrate interactions based on optical projection tomography assessments of the intact adult mouse pancreas,” J. Biomed. Opt. 13, 054070 (2008).
[Crossref]
[PubMed]
T. Alanentalo, A. Asayesh, H. Morrison, C. E. Lorén, D. Holmberg, J. Sharpe, and U. Ahlgren, “Tomographic molecular imaging and 3D quantification within adult mouse organs,” Nat. Methods 4, 31–33 (2007).
[Crossref]
L. D. Shultz, B. L. Lyons, L. M. Burzenski, B. Gott, X. Chen, S. Chaleff, M. Kotb, S. D. Gillies, M. King, J. Mangada, D. L. Greiner, and R. Handgretinger, “Human lymphoid and myeloid cell development in NOD/LtSz-scid IL2Rγnull mice engrafted with mobilized human hemopoietic stem cells,” J. Immunol. 174, 6477–6489 (2005).
[PubMed]
D. Wild, A. Wicki, R. Mansi, M. Béhé, B. Keil, P. Bernhardt, G. Christofori, P. J. Ell, and H. R. Mäcke, “Exendin-4-based radiopharmaceuticals for glucagonlike peptide-1 receptor PET/CT and SPECT/CT,” J. Nucl. Med. 51, 1059–1067 (2010).
[Crossref]
[PubMed]
Y. Hori, Y. Yasuno, S. Sakai, M. Matsumoto, T. Sugawara, V. D. Madjarova, M. Yamanari, S. Makita, T. Yasui, T. Araki, M. Itoh, and T. Yatagai, “Automatic characterization and segmentation of human skin using three-dimensional optical coherence tomography,” Opt. Express 14, 1862–1877 (2006).
[Crossref]
[PubMed]
F. Souza, N. Simpson, A. Raffo, C. Saxena, A. Maffei, M. Hardy, M. Kilbourn, R. Goland, R. Leibel, J. Mann, R. Van Heertum, and P. E. Harris, “Longitudinal noninvasive PET-based β cell mass estimates in a spontaneous diabetes rat model,” J. Clin. Invest. 116, 1506–1513 (2006).
[Crossref]
[PubMed]
Y. Hori, Y. Yasuno, S. Sakai, M. Matsumoto, T. Sugawara, V. D. Madjarova, M. Yamanari, S. Makita, T. Yasui, T. Araki, M. Itoh, and T. Yatagai, “Automatic characterization and segmentation of human skin using three-dimensional optical coherence tomography,” Opt. Express 14, 1862–1877 (2006).
[Crossref]
[PubMed]
J. Malcolm, Y. Rathi, A. Yezzi, and A. Tannenbaum, “Fast approximate surface evolution in arbitrary dimension,” Proc. SPIE 6914, 69144C (2008).
[Crossref]
L. D. Shultz, B. L. Lyons, L. M. Burzenski, B. Gott, X. Chen, S. Chaleff, M. Kotb, S. D. Gillies, M. King, J. Mangada, D. L. Greiner, and R. Handgretinger, “Human lymphoid and myeloid cell development in NOD/LtSz-scid IL2Rγnull mice engrafted with mobilized human hemopoietic stem cells,” J. Immunol. 174, 6477–6489 (2005).
[PubMed]
P. A. Testoni, B. Mangiavillano, L. Albarello, A. Mariani, P. G. Arcidiacono, E. Masci, and C. Doglioni, “Optical coherence tomography compared with histology of the main pancreatic duct structure in normal and pathological conditions: an ex vivo study,” Digest. Liver Dis. 38, 688–695 (2006).
[Crossref]
F. Souza, N. Simpson, A. Raffo, C. Saxena, A. Maffei, M. Hardy, M. Kilbourn, R. Goland, R. Leibel, J. Mann, R. Van Heertum, and P. E. Harris, “Longitudinal noninvasive PET-based β cell mass estimates in a spontaneous diabetes rat model,” J. Clin. Invest. 116, 1506–1513 (2006).
[Crossref]
[PubMed]
D. Wild, A. Wicki, R. Mansi, M. Béhé, B. Keil, P. Bernhardt, G. Christofori, P. J. Ell, and H. R. Mäcke, “Exendin-4-based radiopharmaceuticals for glucagonlike peptide-1 receptor PET/CT and SPECT/CT,” J. Nucl. Med. 51, 1059–1067 (2010).
[Crossref]
[PubMed]
P. A. Testoni, B. Mangiavillano, L. Albarello, A. Mariani, P. G. Arcidiacono, E. Masci, and C. Doglioni, “Optical coherence tomography compared with histology of the main pancreatic duct structure in normal and pathological conditions: an ex vivo study,” Digest. Liver Dis. 38, 688–695 (2006).
[Crossref]
M. M. Martinic and M. G. von Herrath, “Real-time imaging of the pancreas during development of diabetes,” Immunol. Rev. 221, 200–213 (2008).
[Crossref]
[PubMed]
M. Villiger, J. Goulley, E. J. Martin-Williams, A. Grapin-Botton, and T. Lasser, “Towards high resolution optical imaging of beta cells in vivo,” Curr. Pharm. Design 16, 1595–1608 (2010).
[Crossref]
P. A. Testoni, B. Mangiavillano, L. Albarello, A. Mariani, P. G. Arcidiacono, E. Masci, and C. Doglioni, “Optical coherence tomography compared with histology of the main pancreatic duct structure in normal and pathological conditions: an ex vivo study,” Digest. Liver Dis. 38, 688–695 (2006).
[Crossref]
Y. Hori, Y. Yasuno, S. Sakai, M. Matsumoto, T. Sugawara, V. D. Madjarova, M. Yamanari, S. Makita, T. Yasui, T. Araki, M. Itoh, and T. Yatagai, “Automatic characterization and segmentation of human skin using three-dimensional optical coherence tomography,” Opt. Express 14, 1862–1877 (2006).
[Crossref]
[PubMed]
T. Alanentalo, A. Hörnblad, S. Mayans, A. K. Nilsson, J. Sharpe, A. Larefalk, U. Ahlgren, and D. Holmberg, “Quantification and three-dimensional imaging of the insulitis-induced destruction of β-cells in murine type 1 diabetes,” Diabetes 59, 1756–1764 (2010).
[Crossref]
[PubMed]
M. Villiger, J. Goulley, M. Friedrich, A. Grapin-Botton, P. Meda, T. Lasser, and R. A. Leitgeb, “In vivo imaging of murine endocrine islets of Langerhans with extended-focus optical coherence microscopy,” Diabetologia 52, 1599–1607 (2009).
[Crossref]
[PubMed]
D. Bosco, M. Armanet, P. Morel, N. Niclauss, A. Sgroi, Y. D. Muller, L. Giovannoni, and T. Berney, “Unique Arrangement of α- and β-cells in Human Islets of Langerhans,” Diabetes 59, 1202–1210 (2010).
[Crossref]
[PubMed]
S. Hamada, K. Hara, T. Hamada, H. Yasuda, H. Moriyama, R. Nakayama, M. Nagata, and K. Yokono, “Upregulation of the mammalian target of rapamycin complex 1 pathway by ras homolog enriched in brain in pancreatic β-cells leads to increased β-cell mass and prevention of hyperglycemia,” Diabetes 58, 1321–1332 (2009).
[Crossref]
[PubMed]
T. Alanentalo, A. Asayesh, H. Morrison, C. E. Lorén, D. Holmberg, J. Sharpe, and U. Ahlgren, “Tomographic molecular imaging and 3D quantification within adult mouse organs,” Nat. Methods 4, 31–33 (2007).
[Crossref]
N. Iftimia, S. Cizginer, V. Deshpande, M. Pitman, S. Tatli, N. A. Iftimia, D. X. Hammer, M. Mujat, T. Ustun, R. D. Ferguson, and W. R. Brugge, “Differentiation of pancreatic cysts with optical coherence tomography (OCT) imaging: an ex vivo pilot study,” Biomed. Opt. Express 2, 2372–2382 (2011).
[Crossref]
[PubMed]
D. Bosco, M. Armanet, P. Morel, N. Niclauss, A. Sgroi, Y. D. Muller, L. Giovannoni, and T. Berney, “Unique Arrangement of α- and β-cells in Human Islets of Langerhans,” Diabetes 59, 1202–1210 (2010).
[Crossref]
[PubMed]
H. Nagai, “Configurational anatomy of the pancreas: its surgical relevance from ontogenetic and comparative-anatomical viewpoints,” J. Hepatobiliary Pancreat, Surg, ( 10, 48–56 (2003).
S. Hamada, K. Hara, T. Hamada, H. Yasuda, H. Moriyama, R. Nakayama, M. Nagata, and K. Yokono, “Upregulation of the mammalian target of rapamycin complex 1 pathway by ras homolog enriched in brain in pancreatic β-cells leads to increased β-cell mass and prevention of hyperglycemia,” Diabetes 58, 1321–1332 (2009).
[Crossref]
[PubMed]
S. Hamada, K. Hara, T. Hamada, H. Yasuda, H. Moriyama, R. Nakayama, M. Nagata, and K. Yokono, “Upregulation of the mammalian target of rapamycin complex 1 pathway by ras homolog enriched in brain in pancreatic β-cells leads to increased β-cell mass and prevention of hyperglycemia,” Diabetes 58, 1321–1332 (2009).
[Crossref]
[PubMed]
P. L. Bollyky, J. B. Bice, I. R. Sweet, B. A. Falk, J. A. Gebe, A. E. Clark, V. H. Gersuk, A. Aderem, T. R. Hawn, and G. T. Nepom, “The toll-like receptor signaling molecule Myd88 contributes to pancreatic beta-cell homeostasis in response to injury.” PloS ONE 4, e5063 (2009).
[Crossref]
[PubMed]
A. Clauset, C. R. Shalizi, and M. E. J. Newman, “Power-law distributions in empirical data,” SIAM Rev. 51, 661–703 (2009).
[Crossref]
M. Brissova, M. J. Fowler, W. E. Nicholson, A. Chu, B. Hirshberg, D. M. Harlan, and A. C. Powers, “Assessment of human pancreatic islet architecture and composition by laser scanning confocal microscopy.” J. Histochem. Cytochem. 53, 1087–1097 (2005).
[Crossref]
[PubMed]
D. Bosco, M. Armanet, P. Morel, N. Niclauss, A. Sgroi, Y. D. Muller, L. Giovannoni, and T. Berney, “Unique Arrangement of α- and β-cells in Human Islets of Langerhans,” Diabetes 59, 1202–1210 (2010).
[Crossref]
[PubMed]
T. Alanentalo, A. Hörnblad, S. Mayans, A. K. Nilsson, J. Sharpe, A. Larefalk, U. Ahlgren, and D. Holmberg, “Quantification and three-dimensional imaging of the insulitis-induced destruction of β-cells in murine type 1 diabetes,” Diabetes 59, 1756–1764 (2010).
[Crossref]
[PubMed]
L. R. Nyman, E. Ford, A. C. Powers, and D. W. Piston, “Glucose-dependent blood flow dynamics in murine pancreatic islets in vivo,” Am. J. Physiol.-Endoc. M. 298, E807–E814 (2010).
E. M. Akirav, M.-T. Baquero, L. W. Opare-Addo, M. Akirav, E. Galvan, J. A. Kushner, D. L. Rimm, and K. C. Herold, “Glucose and inflammation control islet vascular density and β-cell function in NOD mice: control of islet vasculature and vascular endothelial growth factor by glucose,” Diabetes 60, 876–883 (2011).
[Crossref]
[PubMed]
S. Osher and R. P. Fedkiw, Level Set Methods and Dynamic Implicit Surfaces (Springer-Verlag, 2003).
M. Brom, K. Andralojć, W. J. G. Oyen, O. C. Boerman, and M. Gotthardt, “Development of radiotracers for the determination of the beta-cell mass in vivo,” Curr. Pharm. Design 16, 1561–1567 (2010).
[Crossref]
T. Bock, B. Pakkenberg, and K. Buschard, “Genetic background determines the size and structure of the endocrine pancreas,” Diabetes 54, 133–137 (2005).
[Crossref]
T. Bock, K. Svenstrup, B. Pakkenberg, and K. Buschard, “Unbiased estimation of total β-cell number and mean β-cell volume in rodent pancreas,” APMIS 107, 791–799 (1999).
[Crossref]
[PubMed]
I. Ghorbel, F. Rossant, I. Bloch, S. Tick, and M. Paques, “Automated segmentation of macular layers in OCT images and quantitative evaluation of performances,” Pattern Recogn. 44, 1590–1603 (2011).
[Crossref]
M. Chintinne, G. Stangé, B. Denys, P. In ’t Veld, K. Hellemans, M. Pipeleers-Marichal, Z. Ling, and D. Pipeleers, “Contribution of postnatally formed small beta cell aggregates to functional beta cell mass in adult rat pancreas,” Diabetologia 53, 2380–2388 (2010).
[Crossref]
[PubMed]
M. Chintinne, G. Stangé, B. Denys, P. In ’t Veld, K. Hellemans, M. Pipeleers-Marichal, Z. Ling, and D. Pipeleers, “Contribution of postnatally formed small beta cell aggregates to functional beta cell mass in adult rat pancreas,” Diabetologia 53, 2380–2388 (2010).
[Crossref]
[PubMed]
L. R. Nyman, E. Ford, A. C. Powers, and D. W. Piston, “Glucose-dependent blood flow dynamics in murine pancreatic islets in vivo,” Am. J. Physiol.-Endoc. M. 298, E807–E814 (2010).
M. Hara, R. F. Dizon, B. S. Glick, C. S. Lee, K. H. Kaestner, D. W. Piston, and V. P. Bindokas, “Imaging pancreatic β-cells in the intact pancreas,” Am. J. Physiol. Endocrinol. Metab. 290, E1041–E1047 (2006).
[Crossref]
N. Iftimia, S. Cizginer, V. Deshpande, M. Pitman, S. Tatli, N. A. Iftimia, D. X. Hammer, M. Mujat, T. Ustun, R. D. Ferguson, and W. R. Brugge, “Differentiation of pancreatic cysts with optical coherence tomography (OCT) imaging: an ex vivo pilot study,” Biomed. Opt. Express 2, 2372–2382 (2011).
[Crossref]
[PubMed]
L. R. Nyman, E. Ford, A. C. Powers, and D. W. Piston, “Glucose-dependent blood flow dynamics in murine pancreatic islets in vivo,” Am. J. Physiol.-Endoc. M. 298, E807–E814 (2010).
M. Brissova, M. J. Fowler, W. E. Nicholson, A. Chu, B. Hirshberg, D. M. Harlan, and A. C. Powers, “Assessment of human pancreatic islet architecture and composition by laser scanning confocal microscopy.” J. Histochem. Cytochem. 53, 1087–1097 (2005).
[Crossref]
[PubMed]
F. Souza, N. Simpson, A. Raffo, C. Saxena, A. Maffei, M. Hardy, M. Kilbourn, R. Goland, R. Leibel, J. Mann, R. Van Heertum, and P. E. Harris, “Longitudinal noninvasive PET-based β cell mass estimates in a spontaneous diabetes rat model,” J. Clin. Invest. 116, 1506–1513 (2006).
[Crossref]
[PubMed]
J. Malcolm, Y. Rathi, A. Yezzi, and A. Tannenbaum, “Fast approximate surface evolution in arbitrary dimension,” Proc. SPIE 6914, 69144C (2008).
[Crossref]
E. M. Akirav, M.-T. Baquero, L. W. Opare-Addo, M. Akirav, E. Galvan, J. A. Kushner, D. L. Rimm, and K. C. Herold, “Glucose and inflammation control islet vascular density and β-cell function in NOD mice: control of islet vasculature and vascular endothelial growth factor by glucose,” Diabetes 60, 876–883 (2011).
[Crossref]
[PubMed]
M. Riopel, M. Krishnamurthy, J. Li, S. Liu, A. Leask, and R. Wang, “Conditional β1-integrin-deficient mice display impaired pancreatic β cell function,” J. Pathol. 224, 45–55 (2011).
[Crossref]
[PubMed]
I. Ghorbel, F. Rossant, I. Bloch, S. Tick, and M. Paques, “Automated segmentation of macular layers in OCT images and quantitative evaluation of performances,” Pattern Recogn. 44, 1590–1603 (2011).
[Crossref]
Y. Hori, Y. Yasuno, S. Sakai, M. Matsumoto, T. Sugawara, V. D. Madjarova, M. Yamanari, S. Makita, T. Yasui, T. Araki, M. Itoh, and T. Yatagai, “Automatic characterization and segmentation of human skin using three-dimensional optical coherence tomography,” Opt. Express 14, 1862–1877 (2006).
[Crossref]
[PubMed]
F. Souza, N. Simpson, A. Raffo, C. Saxena, A. Maffei, M. Hardy, M. Kilbourn, R. Goland, R. Leibel, J. Mann, R. Van Heertum, and P. E. Harris, “Longitudinal noninvasive PET-based β cell mass estimates in a spontaneous diabetes rat model,” J. Clin. Invest. 116, 1506–1513 (2006).
[Crossref]
[PubMed]
D. Choi, E. P. Cai, S. A. Schroer, L. Wang, and M. Woo, “Vhl is required for normal pancreatic β cell function and the maintenance of β cell mass with age in mice,” Lab. Invest. 91, 527–538 (2011).
[Crossref]
[PubMed]
D. Bosco, M. Armanet, P. Morel, N. Niclauss, A. Sgroi, Y. D. Muller, L. Giovannoni, and T. Berney, “Unique Arrangement of α- and β-cells in Human Islets of Langerhans,” Diabetes 59, 1202–1210 (2010).
[Crossref]
[PubMed]
A. Clauset, C. R. Shalizi, and M. E. J. Newman, “Power-law distributions in empirical data,” SIAM Rev. 51, 661–703 (2009).
[Crossref]
T. Alanentalo, A. Hörnblad, S. Mayans, A. K. Nilsson, J. Sharpe, A. Larefalk, U. Ahlgren, and D. Holmberg, “Quantification and three-dimensional imaging of the insulitis-induced destruction of β-cells in murine type 1 diabetes,” Diabetes 59, 1756–1764 (2010).
[Crossref]
[PubMed]
T. Alanentalo, C. E. Lorén, A. Larefalk, J. Sharpe, D. Holmberg, and U. Ahlgren, “High-resolution three-dimensional imaging of islet-infiltrate interactions based on optical projection tomography assessments of the intact adult mouse pancreas,” J. Biomed. Opt. 13, 054070 (2008).
[Crossref]
[PubMed]
T. Alanentalo, A. Asayesh, H. Morrison, C. E. Lorén, D. Holmberg, J. Sharpe, and U. Ahlgren, “Tomographic molecular imaging and 3D quantification within adult mouse organs,” Nat. Methods 4, 31–33 (2007).
[Crossref]
L. D. Shultz, B. L. Lyons, L. M. Burzenski, B. Gott, X. Chen, S. Chaleff, M. Kotb, S. D. Gillies, M. King, J. Mangada, D. L. Greiner, and R. Handgretinger, “Human lymphoid and myeloid cell development in NOD/LtSz-scid IL2Rγnull mice engrafted with mobilized human hemopoietic stem cells,” J. Immunol. 174, 6477–6489 (2005).
[PubMed]
F. Souza, N. Simpson, A. Raffo, C. Saxena, A. Maffei, M. Hardy, M. Kilbourn, R. Goland, R. Leibel, J. Mann, R. Van Heertum, and P. E. Harris, “Longitudinal noninvasive PET-based β cell mass estimates in a spontaneous diabetes rat model,” J. Clin. Invest. 116, 1506–1513 (2006).
[Crossref]
[PubMed]
G. J. Tearney, M. E. Brezinski, J. F. Southern, B. E. Bouma, S. A. Boppart, and J. G. Fujimoto, “Optical biopsy in human pancreatobiliary tissue using optical coherence tomography,” Digest. Dis. Sci. 43, 1193–1199 (1998).
[Crossref]
[PubMed]
F. Souza, N. Simpson, A. Raffo, C. Saxena, A. Maffei, M. Hardy, M. Kilbourn, R. Goland, R. Leibel, J. Mann, R. Van Heertum, and P. E. Harris, “Longitudinal noninvasive PET-based β cell mass estimates in a spontaneous diabetes rat model,” J. Clin. Invest. 116, 1506–1513 (2006).
[Crossref]
[PubMed]
M. Chintinne, G. Stangé, B. Denys, P. In ’t Veld, K. Hellemans, M. Pipeleers-Marichal, Z. Ling, and D. Pipeleers, “Contribution of postnatally formed small beta cell aggregates to functional beta cell mass in adult rat pancreas,” Diabetologia 53, 2380–2388 (2010).
[Crossref]
[PubMed]
Y. Hori, Y. Yasuno, S. Sakai, M. Matsumoto, T. Sugawara, V. D. Madjarova, M. Yamanari, S. Makita, T. Yasui, T. Araki, M. Itoh, and T. Yatagai, “Automatic characterization and segmentation of human skin using three-dimensional optical coherence tomography,” Opt. Express 14, 1862–1877 (2006).
[Crossref]
[PubMed]
T. Bock, K. Svenstrup, B. Pakkenberg, and K. Buschard, “Unbiased estimation of total β-cell number and mean β-cell volume in rodent pancreas,” APMIS 107, 791–799 (1999).
[Crossref]
[PubMed]
P. L. Bollyky, J. B. Bice, I. R. Sweet, B. A. Falk, J. A. Gebe, A. E. Clark, V. H. Gersuk, A. Aderem, T. R. Hawn, and G. T. Nepom, “The toll-like receptor signaling molecule Myd88 contributes to pancreatic beta-cell homeostasis in response to injury.” PloS ONE 4, e5063 (2009).
[Crossref]
[PubMed]
J. Malcolm, Y. Rathi, A. Yezzi, and A. Tannenbaum, “Fast approximate surface evolution in arbitrary dimension,” Proc. SPIE 6914, 69144C (2008).
[Crossref]
N. Iftimia, S. Cizginer, V. Deshpande, M. Pitman, S. Tatli, N. A. Iftimia, D. X. Hammer, M. Mujat, T. Ustun, R. D. Ferguson, and W. R. Brugge, “Differentiation of pancreatic cysts with optical coherence tomography (OCT) imaging: an ex vivo pilot study,” Biomed. Opt. Express 2, 2372–2382 (2011).
[Crossref]
[PubMed]
G. J. Tearney, M. E. Brezinski, J. F. Southern, B. E. Bouma, S. A. Boppart, and J. G. Fujimoto, “Optical biopsy in human pancreatobiliary tissue using optical coherence tomography,” Digest. Dis. Sci. 43, 1193–1199 (1998).
[Crossref]
[PubMed]
P. A. Testoni, B. Mangiavillano, L. Albarello, A. Mariani, P. G. Arcidiacono, E. Masci, and C. Doglioni, “Optical coherence tomography compared with histology of the main pancreatic duct structure in normal and pathological conditions: an ex vivo study,” Digest. Liver Dis. 38, 688–695 (2006).
[Crossref]
I. Ghorbel, F. Rossant, I. Bloch, S. Tick, and M. Paques, “Automated segmentation of macular layers in OCT images and quantitative evaluation of performances,” Pattern Recogn. 44, 1590–1603 (2011).
[Crossref]
N. Iftimia, S. Cizginer, V. Deshpande, M. Pitman, S. Tatli, N. A. Iftimia, D. X. Hammer, M. Mujat, T. Ustun, R. D. Ferguson, and W. R. Brugge, “Differentiation of pancreatic cysts with optical coherence tomography (OCT) imaging: an ex vivo pilot study,” Biomed. Opt. Express 2, 2372–2382 (2011).
[Crossref]
[PubMed]
P.-O. Bastien-Dionne, L. Valenti, N. Kon, W. Gu, and J. Buteau, “Glucagon-like peptide 1 inhibits the sirtuin deacetylase SirT1 to stimulate pancreatic β-cell mass expansion,” Diabetes 60, 3217–3222 (2011).
[Crossref]
[PubMed]
F. Souza, N. Simpson, A. Raffo, C. Saxena, A. Maffei, M. Hardy, M. Kilbourn, R. Goland, R. Leibel, J. Mann, R. Van Heertum, and P. E. Harris, “Longitudinal noninvasive PET-based β cell mass estimates in a spontaneous diabetes rat model,” J. Clin. Invest. 116, 1506–1513 (2006).
[Crossref]
[PubMed]
P. F. Antkowiak, M. H. Vandsburger, and F. H. Epstein, “Quantitative pancreatic β cell MRI using manganese-enhanced look-locker imaging and two-site water exchange analysis,” Magn. Reson. Med. (Aug.16, 2011) (e-pub ahead of print).
[Crossref]
[PubMed]
T. F. Chan and L. A. Vese, “Active contours without edges,” IEEE Trans. Image Process. 10, 266–277 (2001).
[Crossref]
M. Villiger, J. Goulley, E. J. Martin-Williams, A. Grapin-Botton, and T. Lasser, “Towards high resolution optical imaging of beta cells in vivo,” Curr. Pharm. Design 16, 1595–1608 (2010).
[Crossref]
M. Villiger, J. Goulley, M. Friedrich, A. Grapin-Botton, P. Meda, T. Lasser, and R. A. Leitgeb, “In vivo imaging of murine endocrine islets of Langerhans with extended-focus optical coherence microscopy,” Diabetologia 52, 1599–1607 (2009).
[Crossref]
[PubMed]
R. A. Leitgeb, M. Villiger, A. Bachmann, L. Steinmann, and T. Lasser, “Extended focus depth for Fourier domain optical coherence microscopy,” Opt. Lett. 31, 2450–2452 (2006).
[Crossref]
[PubMed]
M. M. Martinic and M. G. von Herrath, “Real-time imaging of the pancreas during development of diabetes,” Immunol. Rev. 221, 200–213 (2008).
[Crossref]
[PubMed]
D. Choi, E. P. Cai, S. A. Schroer, L. Wang, and M. Woo, “Vhl is required for normal pancreatic β cell function and the maintenance of β cell mass with age in mice,” Lab. Invest. 91, 527–538 (2011).
[Crossref]
[PubMed]
M. Riopel, M. Krishnamurthy, J. Li, S. Liu, A. Leask, and R. Wang, “Conditional β1-integrin-deficient mice display impaired pancreatic β cell function,” J. Pathol. 224, 45–55 (2011).
[Crossref]
[PubMed]
R. T. Whitaker, “A level-set approach to 3D reconstruction from range data,” Int. J. Comput. Vision 29, 203–231 (1998).
[Crossref]
D. Wild, A. Wicki, R. Mansi, M. Béhé, B. Keil, P. Bernhardt, G. Christofori, P. J. Ell, and H. R. Mäcke, “Exendin-4-based radiopharmaceuticals for glucagonlike peptide-1 receptor PET/CT and SPECT/CT,” J. Nucl. Med. 51, 1059–1067 (2010).
[Crossref]
[PubMed]
D. Wild, A. Wicki, R. Mansi, M. Béhé, B. Keil, P. Bernhardt, G. Christofori, P. J. Ell, and H. R. Mäcke, “Exendin-4-based radiopharmaceuticals for glucagonlike peptide-1 receptor PET/CT and SPECT/CT,” J. Nucl. Med. 51, 1059–1067 (2010).
[Crossref]
[PubMed]
D. Choi, E. P. Cai, S. A. Schroer, L. Wang, and M. Woo, “Vhl is required for normal pancreatic β cell function and the maintenance of β cell mass with age in mice,” Lab. Invest. 91, 527–538 (2011).
[Crossref]
[PubMed]
Y. Hori, Y. Yasuno, S. Sakai, M. Matsumoto, T. Sugawara, V. D. Madjarova, M. Yamanari, S. Makita, T. Yasui, T. Araki, M. Itoh, and T. Yatagai, “Automatic characterization and segmentation of human skin using three-dimensional optical coherence tomography,” Opt. Express 14, 1862–1877 (2006).
[Crossref]
[PubMed]
S. Hamada, K. Hara, T. Hamada, H. Yasuda, H. Moriyama, R. Nakayama, M. Nagata, and K. Yokono, “Upregulation of the mammalian target of rapamycin complex 1 pathway by ras homolog enriched in brain in pancreatic β-cells leads to increased β-cell mass and prevention of hyperglycemia,” Diabetes 58, 1321–1332 (2009).
[Crossref]
[PubMed]
Y. Hori, Y. Yasuno, S. Sakai, M. Matsumoto, T. Sugawara, V. D. Madjarova, M. Yamanari, S. Makita, T. Yasui, T. Araki, M. Itoh, and T. Yatagai, “Automatic characterization and segmentation of human skin using three-dimensional optical coherence tomography,” Opt. Express 14, 1862–1877 (2006).
[Crossref]
[PubMed]
Y. Hori, Y. Yasuno, S. Sakai, M. Matsumoto, T. Sugawara, V. D. Madjarova, M. Yamanari, S. Makita, T. Yasui, T. Araki, M. Itoh, and T. Yatagai, “Automatic characterization and segmentation of human skin using three-dimensional optical coherence tomography,” Opt. Express 14, 1862–1877 (2006).
[Crossref]
[PubMed]
Y. Hori, Y. Yasuno, S. Sakai, M. Matsumoto, T. Sugawara, V. D. Madjarova, M. Yamanari, S. Makita, T. Yasui, T. Araki, M. Itoh, and T. Yatagai, “Automatic characterization and segmentation of human skin using three-dimensional optical coherence tomography,” Opt. Express 14, 1862–1877 (2006).
[Crossref]
[PubMed]
J. Malcolm, Y. Rathi, A. Yezzi, and A. Tannenbaum, “Fast approximate surface evolution in arbitrary dimension,” Proc. SPIE 6914, 69144C (2008).
[Crossref]
S. Hamada, K. Hara, T. Hamada, H. Yasuda, H. Moriyama, R. Nakayama, M. Nagata, and K. Yokono, “Upregulation of the mammalian target of rapamycin complex 1 pathway by ras homolog enriched in brain in pancreatic β-cells leads to increased β-cell mass and prevention of hyperglycemia,” Diabetes 58, 1321–1332 (2009).
[Crossref]
[PubMed]
Y. Lin and S. Zhongjie, “Current views on type 2 diabetes,” J. Endocrinol. 204, 1–11 (2010).
[Crossref]