Abstract

Several new bio-photonic techniques aim to measure flow in the human vasculature non-destructively. Some of these tools, such as laser speckle imaging or Doppler optical coherence tomography, are now reaching the clinical stage. Therefore appropriate calibration and validation techniques dedicated to these particular measurements are therefore of paramount importance. In this paper we introduce a fast prototyping technique based on laser micromachining for the fabrication of dynamic flow phantoms. Micro-channels smaller than 20 µm in width can be formed in a variety of materials such as epoxies, plastics, and household tape. Vasculature geometries can be easily and quickly modified to accommodate a particular experimental scenario.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. H. Lipowsky and B. W. Zweifach, “Network analysis of microcirculation of cat mesentery,” Microvasc. Res.7(1), 73–83 (1974).
    [CrossRef] [PubMed]
  2. S. S. Kety and C. F. Schmidt, “The nitrous oxide method for the quantitative determination of cerebral blood flow in man: theory, procedure and normal values,” J. Clin. Invest.27(4), 476–483 (1948).
    [CrossRef]
  3. Z. Chen, T. E. Milner, D. Dave, and J. S. Nelson, “Optical Doppler tomographic imaging of fluid flow velocity in highly scattering media,” Opt. Lett.22(1), 64–66 (1997).
    [CrossRef] [PubMed]
  4. J. A. Izatt, M. D. Kulkarni, S. Yazdanfar, J. K. Barton, and A. J. Welch, “In vivo bidirectional color Doppler flow imaging of picoliter blood volumes using optical coherence tomography,” Opt. Lett.22(18), 1439–1441 (1997).
    [CrossRef] [PubMed]
  5. J. E. Grunwald, J. DuPont, and C. E. Riva, “Retinal haemodynamics in patients with early diabetes mellitus,” Br. J. Ophthalmol.80(4), 327–331 (1996).
    [CrossRef] [PubMed]
  6. P. Carmeliet and R. K. Jain, “Angiogenesis in cancer and other diseases,” Nature407(6801), 249–257 (2000).
    [CrossRef] [PubMed]
  7. D. A. Nelson, S. Krupsky, A. Pollack, E. Aloni, M. Belkin, I. Vanzetta, M. Rosner, and A. Grinvald, “Special report: Noninvasive multi-parameter functional optical imaging of the eye,” Ophthalmic Surg. Lasers Imaging36(1), 57–66 (2005).
    [PubMed]
  8. Z. Burgansky-Eliash, D. A. Nelson, O. P. Bar-Tal, A. Lowenstein, A. Grinvald, and A. Barak, “Reduced retinal blood flow velocity in diabetic retinopathy,” Retina30(5), 765–773 (2010).
    [CrossRef] [PubMed]
  9. P. Zakharov, A. C. Völker, M. T. Wyss, F. Haiss, N. Calcinaghi, C. Zunzunegui, A. Buck, F. Scheffold, and B. Weber, “Dynamic laser speckle imaging of cerebral blood flow,” Opt. Express17(16), 13904–13917 (2009).
    [CrossRef] [PubMed]
  10. A. K. Dunn, “Laser speckle contrast imaging of cerebral blood flow,” Ann. Biomed. Eng.40(2), 367–377 (2012).
    [CrossRef] [PubMed]
  11. A. Ponticorvo and A. K. Dunn, “Simultaneous imaging of oxygen tension and blood flow in animals using a digital micromirror device,” Opt. Express18(8), 8160–8170 (2010).
    [CrossRef] [PubMed]
  12. C. Riva, B. Ross, and G. B. Benedek, “Laser Doppler measurements of blood flow in capillary tubes and retinal arteries,” Invest. Ophthalmol.11(11), 936–944 (1972).
    [PubMed]
  13. G. T. Feke and C. E. Rivat, “Laser Doppler measurements of blood velocity in human retinal vessels,” J. Opt. Soc. Am.68(4), 526–531 (1978).
    [CrossRef] [PubMed]
  14. M. Dauzat, J. P. Laroche, G. Deklunder, J. Ayoub, I. Quére, F. M. Lopez, and C. Janbon, “Diagnosis of acute lower limb deep venous thrombosis with ultrasound: trends and controversies,” J. Clin. Ultrasound25(7), 343–358 (1997).
    [CrossRef] [PubMed]
  15. M. R. Hatab, C. A. Giller, and G. D. Clarke, “Evaluation of cerebral arterial flow with transcranial Doppler ultrasound: theoretical development and phantom studies,” Ultrasound Med. Biol.23(7), 1025–1031 (1997).
    [CrossRef] [PubMed]
  16. D. D. Duncan, P. Lemaillet, M. Ibrahim, Q. D. Nguyen, M. Hiller, and J. C. Ramella-Roman, “Absolute blood velocity measured with a modified fundus camera,” J. Biomed. Opt.15(5), 056014 (2010).
    [CrossRef] [PubMed]
  17. A. S. Singh, C. Kolbitsch, T. Schmoll, and R. A. Leitgeb, “Stable absolute flow estimation with Doppler OCT based on virtual circumpapillary scans,” Biomed. Opt. Express1(4), 1047–1058 (2010).
    [CrossRef] [PubMed]
  18. J. Yao, K. I. Maslov, Y. Shi, L. A. Taber, and L. V. Wang, “In vivo photoacoustic imaging of transverse blood flow by using Doppler broadening of bandwidth,” Opt. Lett.35(9), 1419–1421 (2010).
    [CrossRef] [PubMed]
  19. A. K. Dunn, H. Bolay, M. A. Moskowitz, and D. A. Boas, “Dynamic imaging of cerebral blood flow using laser speckle,” J. Cereb. Blood Flow Metab.21(3), 195–201 (2001).
    [CrossRef] [PubMed]
  20. S. L. Chen, T. Ling, S. W. Huang, H. Won Baac, and L. J. Guo, “Photoacoustic correlation spectroscopy and its application to low-speed flow measurement,” Opt. Lett.35(8), 1200–1202 (2010).
    [CrossRef] [PubMed]
  21. D. D. Duncan, S. J. Kirkpatrick, J. C. Gladish, and S. A. Hurst, “Laser speckle contrast imaging for the quantitative assessment of flow,” Proc. SPIE7176(717603), 717603, 717603-8 (2009).
    [CrossRef]
  22. P. Lemaillet and J. C. Ramella-Roman, “Dynamic eye phantom for retinal oximetry measurements,” J. Biomed. Opt.14(6), 064008 (2009).
    [CrossRef] [PubMed]
  23. D. M. de Bruin, R. H. Bremmer, V. M. Kodach, R. de Kinkelder, J. van Marle, T. G. van Leeuwen, and D. J. Faber, “Optical phantoms of varying geometry based on thin building blocks with controlled optical properties,” J. Biomed. Opt.15(2), 025001 (2010).
    [CrossRef] [PubMed]
  24. P. Tabeling, Introduction to Microfluidics (Oxford University, New York, 2005).
  25. N. T. Nguyen and S. Wereley, Fundamentals and Applications of Microfluidics (Artech House: Boston, MA, 2002).
  26. D. C. Duffy, J. C. McDonald, O. J. A. Schueller, and G. M. Whitesides, “Rapid prototyping of microfluidic systems in poly(dimethylsiloxane),” Anal. Chem.70(23), 4974–4984 (1998).
    [CrossRef] [PubMed]
  27. V. Linder, H. K. Wu, X. Y. Jiang, and G. M. Whitesides, “Rapid prototyping of 2D structures with feature sizes larger than 8 microm,” Anal. Chem.75(10), 2522–2527 (2003).
    [CrossRef] [PubMed]
  28. N. Bao, Q. Zhang, J. J. Xu, and H. Y. Chen, “Fabrication of poly(dimethylsiloxane) microfluidic system based on masters directly printed with an office laser printer,” J. Chromatogr. A1089(1-2), 270–275 (2005).
    [CrossRef] [PubMed]
  29. V. I. Vullev, J. Wan, V. Heinrich, P. Landsman, P. E. Bower, B. Xia, B. Millare, and G. Jones, “Nonlithographic fabrication of microfluidic devices,” J. Am. Chem. Soc.128(50), 16062–16072 (2006).
    [CrossRef] [PubMed]
  30. J. C. McDonald, M. L. Chabinyc, S. J. Metallo, J. R. Anderson, A. D. Stroock, and G. M. Whitesides, “Prototyping of microfluidic devices in poly(dimethylsiloxane) using solid-object printing,” Anal. Chem.74(7), 1537–1545 (2002).
    [CrossRef] [PubMed]
  31. P. K. Yuen and V. N. Goral, “Low-cost rapid prototyping of flexible microfluidic devices using a desktop digital craft cutter,” Lab Chip10(3), 384–387 (2010).
    [CrossRef] [PubMed]
  32. D. A. Bartholomeusz, R. W. Boutte, and J. D. Andrade, “Xurography: rapid prototyping of microstructures using a cutting plotter,” J. Microelectromech. Syst.14(6), 1364–1374 (2005).
    [CrossRef]
  33. H. Klank, J. P. Kutter, and O. Geschke, “CO(2)-laser micromachining and back-end processing for rapid production of PMMA-based microfluidic systems,” Lab Chip2(4), 242–246 (2002).
    [CrossRef] [PubMed]
  34. H. B. Liu and H. Q. Gong, “Templateless prototyping of polydimethylsiloxane microfluidic structures using a pulsed CO2 laser,” J. Micromech. Microeng.19(3), 037002 (2009).
    [CrossRef]
  35. X. Gong, X. Yi, K. Xiao, S. Li, R. Kodzius, J. Qin, and W. Wen, “Wax-bonding 3D microfluidic chips,” Lab Chip10(19), 2622–2627 (2010).
    [CrossRef] [PubMed]
  36. P. Nath, D. Fung, Y. A. Kunde, A. Zeytun, B. Branch, and G. Goddard, “Rapid prototyping of robust and versatile microfluidic components using adhesive transfer tapes,” Lab Chip10(17), 2286–2291 (2010).
    [CrossRef] [PubMed]
  37. L.W. Luo, C.Y. Teo, W.L. Ong, K.C. Tang, L.F. Cheow and L. Yobas, “Rapid prototyping of microfluidic systems using a laser-patterned tape,” J. Micromech. Microeng. 17, N107–N111 (2007).
  38. A. B. Parthasarathy, W. G. Shin, X. J. Zhang, and A. K. Dunn, “Laser speckle contrast imaging of flow in a microfluidic device,” Proc. SPIE6446, 644604, 644604-11 (2007).
    [CrossRef]
  39. S. A. Mathews, M. Mirotznik, B. L. Good, and A. Piqué, “Rapid prototyping of frequency selective surfaces by laser direct-write,” Proc. SPIE6458, 64580R, 64580R-14 (2007).
    [CrossRef]
  40. A. Piqué, H. Kim, R. Auyeung, J. Wang, A. Birnbaum, and S. Mathews, “Laser-based digital microfabrication,” in NIP25: International Conference on Digital Printing Technologies and Digital Fabrication (2009).
  41. S. A. Mathews, M. Mirotznik, and A. Piqué, “Development of novel RF and millimeter wave structures by laser direct-write,” in Proceedings of LAMP2009—the 5th International Congress on Laser Advanced Materials Processing (2009).
  42. S. N. Kasarova, N. G. Sultanova, C. D. Ivanov, and I. D. Nikolov, “Analysis of the dispersion of optical plastic materials,” Opt. Mater.29(11), 1481–1490 (2007).
    [CrossRef]
  43. S. A. Prahl, “Light transport in tissue,” Ph.D. thesis (University of Texas at Austin, 1988).
  44. R. Drezek, K. Sokolov, U. Utzinger, I. Boiko, A. Malpica, M. Follen, and R. Richards-Kortum, “Understanding the contributions of NADH and collagen to cervical tissue fluorescence spectra: modeling, measurements, and implications,” J. Biomed. Opt.6(4), 385–396 (2001).
    [CrossRef] [PubMed]
  45. S. K. Chang, D. Arifler, R. Drezek, M. Follen, and R. Richards-Kortum, “Analytical model to describe fluorescence spectra of normal and preneoplastic epithelial tissue: comparison with Monte Carlo simulations and clinical measurements,” J. Biomed. Opt.9(3), 511–522 (2004).
    [CrossRef] [PubMed]
  46. S. Patel, J. Marshall, and F. W. Fitzke, “Refractive index of the human corneal epithelium and stroma,” J. Refract. Surg.11(2), 100–105 (1995).
    [PubMed]
  47. J. W. Goodman, “Statistical properties of laser speckle,” in Laser Speckle and Related Phenomena, J. C. Dainty, ed. (Springer, Berlin, 1995).
  48. J. D. Briers and A. F. Fercher, “Retinal blood-flow visualization by means of laser speckle photography,” Invest. Ophthalmol. Vis. Sci.22(2), 255–259 (1982).
    [PubMed]
  49. D. D. Duncan and S. J. Kirkpatrick, “Can laser speckle flowmetry be made a quantitative tool?” J. Opt. Soc. Am. A25(8), 2088–2094 (2008).
    [CrossRef] [PubMed]
  50. K. J. Schwenzer, S. Srinivas, D. Kim, and J. S. Tiedeman, “Oximetry of retinal vessels by dual-wavelength imaging: calibration and influence of pigmentation,” J. Appl. Physiol.86(2), 748–758 (1996).
  51. S. J. Preece and E. Claridge, “Monte Carlo modelling of the spectral reflectance of the human eye,” Phys. Med. Biol.47(16), 2863–2877 (2002).
    [CrossRef] [PubMed]
  52. A. Rasmussen, C. Mavriplis, M. E. Zaghloul, O. Mikulchenko, and K. Mayaram, “Simulation and optimization of a microfluidic flow sensor,” Sens. Actuators A Phys.88(2), 121–132 (2001).
    [CrossRef]
  53. A. Rasmussen and M. E. Zaghloul, “In the flow with MEMS,” IEEE Circuits Devices Mag.14(4), 12–25 (1998).
    [CrossRef]

2012

A. K. Dunn, “Laser speckle contrast imaging of cerebral blood flow,” Ann. Biomed. Eng.40(2), 367–377 (2012).
[CrossRef] [PubMed]

2010

Z. Burgansky-Eliash, D. A. Nelson, O. P. Bar-Tal, A. Lowenstein, A. Grinvald, and A. Barak, “Reduced retinal blood flow velocity in diabetic retinopathy,” Retina30(5), 765–773 (2010).
[CrossRef] [PubMed]

D. D. Duncan, P. Lemaillet, M. Ibrahim, Q. D. Nguyen, M. Hiller, and J. C. Ramella-Roman, “Absolute blood velocity measured with a modified fundus camera,” J. Biomed. Opt.15(5), 056014 (2010).
[CrossRef] [PubMed]

D. M. de Bruin, R. H. Bremmer, V. M. Kodach, R. de Kinkelder, J. van Marle, T. G. van Leeuwen, and D. J. Faber, “Optical phantoms of varying geometry based on thin building blocks with controlled optical properties,” J. Biomed. Opt.15(2), 025001 (2010).
[CrossRef] [PubMed]

P. K. Yuen and V. N. Goral, “Low-cost rapid prototyping of flexible microfluidic devices using a desktop digital craft cutter,” Lab Chip10(3), 384–387 (2010).
[CrossRef] [PubMed]

X. Gong, X. Yi, K. Xiao, S. Li, R. Kodzius, J. Qin, and W. Wen, “Wax-bonding 3D microfluidic chips,” Lab Chip10(19), 2622–2627 (2010).
[CrossRef] [PubMed]

P. Nath, D. Fung, Y. A. Kunde, A. Zeytun, B. Branch, and G. Goddard, “Rapid prototyping of robust and versatile microfluidic components using adhesive transfer tapes,” Lab Chip10(17), 2286–2291 (2010).
[CrossRef] [PubMed]

A. Ponticorvo and A. K. Dunn, “Simultaneous imaging of oxygen tension and blood flow in animals using a digital micromirror device,” Opt. Express18(8), 8160–8170 (2010).
[CrossRef] [PubMed]

S. L. Chen, T. Ling, S. W. Huang, H. Won Baac, and L. J. Guo, “Photoacoustic correlation spectroscopy and its application to low-speed flow measurement,” Opt. Lett.35(8), 1200–1202 (2010).
[CrossRef] [PubMed]

J. Yao, K. I. Maslov, Y. Shi, L. A. Taber, and L. V. Wang, “In vivo photoacoustic imaging of transverse blood flow by using Doppler broadening of bandwidth,” Opt. Lett.35(9), 1419–1421 (2010).
[CrossRef] [PubMed]

A. S. Singh, C. Kolbitsch, T. Schmoll, and R. A. Leitgeb, “Stable absolute flow estimation with Doppler OCT based on virtual circumpapillary scans,” Biomed. Opt. Express1(4), 1047–1058 (2010).
[CrossRef] [PubMed]

2009

P. Zakharov, A. C. Völker, M. T. Wyss, F. Haiss, N. Calcinaghi, C. Zunzunegui, A. Buck, F. Scheffold, and B. Weber, “Dynamic laser speckle imaging of cerebral blood flow,” Opt. Express17(16), 13904–13917 (2009).
[CrossRef] [PubMed]

H. B. Liu and H. Q. Gong, “Templateless prototyping of polydimethylsiloxane microfluidic structures using a pulsed CO2 laser,” J. Micromech. Microeng.19(3), 037002 (2009).
[CrossRef]

D. D. Duncan, S. J. Kirkpatrick, J. C. Gladish, and S. A. Hurst, “Laser speckle contrast imaging for the quantitative assessment of flow,” Proc. SPIE7176(717603), 717603, 717603-8 (2009).
[CrossRef]

P. Lemaillet and J. C. Ramella-Roman, “Dynamic eye phantom for retinal oximetry measurements,” J. Biomed. Opt.14(6), 064008 (2009).
[CrossRef] [PubMed]

2008

2007

A. B. Parthasarathy, W. G. Shin, X. J. Zhang, and A. K. Dunn, “Laser speckle contrast imaging of flow in a microfluidic device,” Proc. SPIE6446, 644604, 644604-11 (2007).
[CrossRef]

S. A. Mathews, M. Mirotznik, B. L. Good, and A. Piqué, “Rapid prototyping of frequency selective surfaces by laser direct-write,” Proc. SPIE6458, 64580R, 64580R-14 (2007).
[CrossRef]

S. N. Kasarova, N. G. Sultanova, C. D. Ivanov, and I. D. Nikolov, “Analysis of the dispersion of optical plastic materials,” Opt. Mater.29(11), 1481–1490 (2007).
[CrossRef]

2006

V. I. Vullev, J. Wan, V. Heinrich, P. Landsman, P. E. Bower, B. Xia, B. Millare, and G. Jones, “Nonlithographic fabrication of microfluidic devices,” J. Am. Chem. Soc.128(50), 16062–16072 (2006).
[CrossRef] [PubMed]

2005

D. A. Bartholomeusz, R. W. Boutte, and J. D. Andrade, “Xurography: rapid prototyping of microstructures using a cutting plotter,” J. Microelectromech. Syst.14(6), 1364–1374 (2005).
[CrossRef]

N. Bao, Q. Zhang, J. J. Xu, and H. Y. Chen, “Fabrication of poly(dimethylsiloxane) microfluidic system based on masters directly printed with an office laser printer,” J. Chromatogr. A1089(1-2), 270–275 (2005).
[CrossRef] [PubMed]

D. A. Nelson, S. Krupsky, A. Pollack, E. Aloni, M. Belkin, I. Vanzetta, M. Rosner, and A. Grinvald, “Special report: Noninvasive multi-parameter functional optical imaging of the eye,” Ophthalmic Surg. Lasers Imaging36(1), 57–66 (2005).
[PubMed]

2004

S. K. Chang, D. Arifler, R. Drezek, M. Follen, and R. Richards-Kortum, “Analytical model to describe fluorescence spectra of normal and preneoplastic epithelial tissue: comparison with Monte Carlo simulations and clinical measurements,” J. Biomed. Opt.9(3), 511–522 (2004).
[CrossRef] [PubMed]

2003

V. Linder, H. K. Wu, X. Y. Jiang, and G. M. Whitesides, “Rapid prototyping of 2D structures with feature sizes larger than 8 microm,” Anal. Chem.75(10), 2522–2527 (2003).
[CrossRef] [PubMed]

2002

H. Klank, J. P. Kutter, and O. Geschke, “CO(2)-laser micromachining and back-end processing for rapid production of PMMA-based microfluidic systems,” Lab Chip2(4), 242–246 (2002).
[CrossRef] [PubMed]

J. C. McDonald, M. L. Chabinyc, S. J. Metallo, J. R. Anderson, A. D. Stroock, and G. M. Whitesides, “Prototyping of microfluidic devices in poly(dimethylsiloxane) using solid-object printing,” Anal. Chem.74(7), 1537–1545 (2002).
[CrossRef] [PubMed]

S. J. Preece and E. Claridge, “Monte Carlo modelling of the spectral reflectance of the human eye,” Phys. Med. Biol.47(16), 2863–2877 (2002).
[CrossRef] [PubMed]

2001

A. Rasmussen, C. Mavriplis, M. E. Zaghloul, O. Mikulchenko, and K. Mayaram, “Simulation and optimization of a microfluidic flow sensor,” Sens. Actuators A Phys.88(2), 121–132 (2001).
[CrossRef]

R. Drezek, K. Sokolov, U. Utzinger, I. Boiko, A. Malpica, M. Follen, and R. Richards-Kortum, “Understanding the contributions of NADH and collagen to cervical tissue fluorescence spectra: modeling, measurements, and implications,” J. Biomed. Opt.6(4), 385–396 (2001).
[CrossRef] [PubMed]

A. K. Dunn, H. Bolay, M. A. Moskowitz, and D. A. Boas, “Dynamic imaging of cerebral blood flow using laser speckle,” J. Cereb. Blood Flow Metab.21(3), 195–201 (2001).
[CrossRef] [PubMed]

2000

P. Carmeliet and R. K. Jain, “Angiogenesis in cancer and other diseases,” Nature407(6801), 249–257 (2000).
[CrossRef] [PubMed]

1998

D. C. Duffy, J. C. McDonald, O. J. A. Schueller, and G. M. Whitesides, “Rapid prototyping of microfluidic systems in poly(dimethylsiloxane),” Anal. Chem.70(23), 4974–4984 (1998).
[CrossRef] [PubMed]

A. Rasmussen and M. E. Zaghloul, “In the flow with MEMS,” IEEE Circuits Devices Mag.14(4), 12–25 (1998).
[CrossRef]

1997

M. Dauzat, J. P. Laroche, G. Deklunder, J. Ayoub, I. Quére, F. M. Lopez, and C. Janbon, “Diagnosis of acute lower limb deep venous thrombosis with ultrasound: trends and controversies,” J. Clin. Ultrasound25(7), 343–358 (1997).
[CrossRef] [PubMed]

M. R. Hatab, C. A. Giller, and G. D. Clarke, “Evaluation of cerebral arterial flow with transcranial Doppler ultrasound: theoretical development and phantom studies,” Ultrasound Med. Biol.23(7), 1025–1031 (1997).
[CrossRef] [PubMed]

Z. Chen, T. E. Milner, D. Dave, and J. S. Nelson, “Optical Doppler tomographic imaging of fluid flow velocity in highly scattering media,” Opt. Lett.22(1), 64–66 (1997).
[CrossRef] [PubMed]

J. A. Izatt, M. D. Kulkarni, S. Yazdanfar, J. K. Barton, and A. J. Welch, “In vivo bidirectional color Doppler flow imaging of picoliter blood volumes using optical coherence tomography,” Opt. Lett.22(18), 1439–1441 (1997).
[CrossRef] [PubMed]

1996

K. J. Schwenzer, S. Srinivas, D. Kim, and J. S. Tiedeman, “Oximetry of retinal vessels by dual-wavelength imaging: calibration and influence of pigmentation,” J. Appl. Physiol.86(2), 748–758 (1996).

J. E. Grunwald, J. DuPont, and C. E. Riva, “Retinal haemodynamics in patients with early diabetes mellitus,” Br. J. Ophthalmol.80(4), 327–331 (1996).
[CrossRef] [PubMed]

1995

S. Patel, J. Marshall, and F. W. Fitzke, “Refractive index of the human corneal epithelium and stroma,” J. Refract. Surg.11(2), 100–105 (1995).
[PubMed]

1982

J. D. Briers and A. F. Fercher, “Retinal blood-flow visualization by means of laser speckle photography,” Invest. Ophthalmol. Vis. Sci.22(2), 255–259 (1982).
[PubMed]

1978

1974

H. H. Lipowsky and B. W. Zweifach, “Network analysis of microcirculation of cat mesentery,” Microvasc. Res.7(1), 73–83 (1974).
[CrossRef] [PubMed]

1972

C. Riva, B. Ross, and G. B. Benedek, “Laser Doppler measurements of blood flow in capillary tubes and retinal arteries,” Invest. Ophthalmol.11(11), 936–944 (1972).
[PubMed]

1948

S. S. Kety and C. F. Schmidt, “The nitrous oxide method for the quantitative determination of cerebral blood flow in man: theory, procedure and normal values,” J. Clin. Invest.27(4), 476–483 (1948).
[CrossRef]

Aloni, E.

D. A. Nelson, S. Krupsky, A. Pollack, E. Aloni, M. Belkin, I. Vanzetta, M. Rosner, and A. Grinvald, “Special report: Noninvasive multi-parameter functional optical imaging of the eye,” Ophthalmic Surg. Lasers Imaging36(1), 57–66 (2005).
[PubMed]

Anderson, J. R.

J. C. McDonald, M. L. Chabinyc, S. J. Metallo, J. R. Anderson, A. D. Stroock, and G. M. Whitesides, “Prototyping of microfluidic devices in poly(dimethylsiloxane) using solid-object printing,” Anal. Chem.74(7), 1537–1545 (2002).
[CrossRef] [PubMed]

Andrade, J. D.

D. A. Bartholomeusz, R. W. Boutte, and J. D. Andrade, “Xurography: rapid prototyping of microstructures using a cutting plotter,” J. Microelectromech. Syst.14(6), 1364–1374 (2005).
[CrossRef]

Arifler, D.

S. K. Chang, D. Arifler, R. Drezek, M. Follen, and R. Richards-Kortum, “Analytical model to describe fluorescence spectra of normal and preneoplastic epithelial tissue: comparison with Monte Carlo simulations and clinical measurements,” J. Biomed. Opt.9(3), 511–522 (2004).
[CrossRef] [PubMed]

Ayoub, J.

M. Dauzat, J. P. Laroche, G. Deklunder, J. Ayoub, I. Quére, F. M. Lopez, and C. Janbon, “Diagnosis of acute lower limb deep venous thrombosis with ultrasound: trends and controversies,” J. Clin. Ultrasound25(7), 343–358 (1997).
[CrossRef] [PubMed]

Bao, N.

N. Bao, Q. Zhang, J. J. Xu, and H. Y. Chen, “Fabrication of poly(dimethylsiloxane) microfluidic system based on masters directly printed with an office laser printer,” J. Chromatogr. A1089(1-2), 270–275 (2005).
[CrossRef] [PubMed]

Barak, A.

Z. Burgansky-Eliash, D. A. Nelson, O. P. Bar-Tal, A. Lowenstein, A. Grinvald, and A. Barak, “Reduced retinal blood flow velocity in diabetic retinopathy,” Retina30(5), 765–773 (2010).
[CrossRef] [PubMed]

Bar-Tal, O. P.

Z. Burgansky-Eliash, D. A. Nelson, O. P. Bar-Tal, A. Lowenstein, A. Grinvald, and A. Barak, “Reduced retinal blood flow velocity in diabetic retinopathy,” Retina30(5), 765–773 (2010).
[CrossRef] [PubMed]

Bartholomeusz, D. A.

D. A. Bartholomeusz, R. W. Boutte, and J. D. Andrade, “Xurography: rapid prototyping of microstructures using a cutting plotter,” J. Microelectromech. Syst.14(6), 1364–1374 (2005).
[CrossRef]

Barton, J. K.

Belkin, M.

D. A. Nelson, S. Krupsky, A. Pollack, E. Aloni, M. Belkin, I. Vanzetta, M. Rosner, and A. Grinvald, “Special report: Noninvasive multi-parameter functional optical imaging of the eye,” Ophthalmic Surg. Lasers Imaging36(1), 57–66 (2005).
[PubMed]

Benedek, G. B.

C. Riva, B. Ross, and G. B. Benedek, “Laser Doppler measurements of blood flow in capillary tubes and retinal arteries,” Invest. Ophthalmol.11(11), 936–944 (1972).
[PubMed]

Boas, D. A.

A. K. Dunn, H. Bolay, M. A. Moskowitz, and D. A. Boas, “Dynamic imaging of cerebral blood flow using laser speckle,” J. Cereb. Blood Flow Metab.21(3), 195–201 (2001).
[CrossRef] [PubMed]

Boiko, I.

R. Drezek, K. Sokolov, U. Utzinger, I. Boiko, A. Malpica, M. Follen, and R. Richards-Kortum, “Understanding the contributions of NADH and collagen to cervical tissue fluorescence spectra: modeling, measurements, and implications,” J. Biomed. Opt.6(4), 385–396 (2001).
[CrossRef] [PubMed]

Bolay, H.

A. K. Dunn, H. Bolay, M. A. Moskowitz, and D. A. Boas, “Dynamic imaging of cerebral blood flow using laser speckle,” J. Cereb. Blood Flow Metab.21(3), 195–201 (2001).
[CrossRef] [PubMed]

Boutte, R. W.

D. A. Bartholomeusz, R. W. Boutte, and J. D. Andrade, “Xurography: rapid prototyping of microstructures using a cutting plotter,” J. Microelectromech. Syst.14(6), 1364–1374 (2005).
[CrossRef]

Bower, P. E.

V. I. Vullev, J. Wan, V. Heinrich, P. Landsman, P. E. Bower, B. Xia, B. Millare, and G. Jones, “Nonlithographic fabrication of microfluidic devices,” J. Am. Chem. Soc.128(50), 16062–16072 (2006).
[CrossRef] [PubMed]

Branch, B.

P. Nath, D. Fung, Y. A. Kunde, A. Zeytun, B. Branch, and G. Goddard, “Rapid prototyping of robust and versatile microfluidic components using adhesive transfer tapes,” Lab Chip10(17), 2286–2291 (2010).
[CrossRef] [PubMed]

Bremmer, R. H.

D. M. de Bruin, R. H. Bremmer, V. M. Kodach, R. de Kinkelder, J. van Marle, T. G. van Leeuwen, and D. J. Faber, “Optical phantoms of varying geometry based on thin building blocks with controlled optical properties,” J. Biomed. Opt.15(2), 025001 (2010).
[CrossRef] [PubMed]

Briers, J. D.

J. D. Briers and A. F. Fercher, “Retinal blood-flow visualization by means of laser speckle photography,” Invest. Ophthalmol. Vis. Sci.22(2), 255–259 (1982).
[PubMed]

Buck, A.

Burgansky-Eliash, Z.

Z. Burgansky-Eliash, D. A. Nelson, O. P. Bar-Tal, A. Lowenstein, A. Grinvald, and A. Barak, “Reduced retinal blood flow velocity in diabetic retinopathy,” Retina30(5), 765–773 (2010).
[CrossRef] [PubMed]

Calcinaghi, N.

Carmeliet, P.

P. Carmeliet and R. K. Jain, “Angiogenesis in cancer and other diseases,” Nature407(6801), 249–257 (2000).
[CrossRef] [PubMed]

Chabinyc, M. L.

J. C. McDonald, M. L. Chabinyc, S. J. Metallo, J. R. Anderson, A. D. Stroock, and G. M. Whitesides, “Prototyping of microfluidic devices in poly(dimethylsiloxane) using solid-object printing,” Anal. Chem.74(7), 1537–1545 (2002).
[CrossRef] [PubMed]

Chang, S. K.

S. K. Chang, D. Arifler, R. Drezek, M. Follen, and R. Richards-Kortum, “Analytical model to describe fluorescence spectra of normal and preneoplastic epithelial tissue: comparison with Monte Carlo simulations and clinical measurements,” J. Biomed. Opt.9(3), 511–522 (2004).
[CrossRef] [PubMed]

Chen, H. Y.

N. Bao, Q. Zhang, J. J. Xu, and H. Y. Chen, “Fabrication of poly(dimethylsiloxane) microfluidic system based on masters directly printed with an office laser printer,” J. Chromatogr. A1089(1-2), 270–275 (2005).
[CrossRef] [PubMed]

Chen, S. L.

Chen, Z.

Claridge, E.

S. J. Preece and E. Claridge, “Monte Carlo modelling of the spectral reflectance of the human eye,” Phys. Med. Biol.47(16), 2863–2877 (2002).
[CrossRef] [PubMed]

Clarke, G. D.

M. R. Hatab, C. A. Giller, and G. D. Clarke, “Evaluation of cerebral arterial flow with transcranial Doppler ultrasound: theoretical development and phantom studies,” Ultrasound Med. Biol.23(7), 1025–1031 (1997).
[CrossRef] [PubMed]

Dauzat, M.

M. Dauzat, J. P. Laroche, G. Deklunder, J. Ayoub, I. Quére, F. M. Lopez, and C. Janbon, “Diagnosis of acute lower limb deep venous thrombosis with ultrasound: trends and controversies,” J. Clin. Ultrasound25(7), 343–358 (1997).
[CrossRef] [PubMed]

Dave, D.

de Bruin, D. M.

D. M. de Bruin, R. H. Bremmer, V. M. Kodach, R. de Kinkelder, J. van Marle, T. G. van Leeuwen, and D. J. Faber, “Optical phantoms of varying geometry based on thin building blocks with controlled optical properties,” J. Biomed. Opt.15(2), 025001 (2010).
[CrossRef] [PubMed]

de Kinkelder, R.

D. M. de Bruin, R. H. Bremmer, V. M. Kodach, R. de Kinkelder, J. van Marle, T. G. van Leeuwen, and D. J. Faber, “Optical phantoms of varying geometry based on thin building blocks with controlled optical properties,” J. Biomed. Opt.15(2), 025001 (2010).
[CrossRef] [PubMed]

Deklunder, G.

M. Dauzat, J. P. Laroche, G. Deklunder, J. Ayoub, I. Quére, F. M. Lopez, and C. Janbon, “Diagnosis of acute lower limb deep venous thrombosis with ultrasound: trends and controversies,” J. Clin. Ultrasound25(7), 343–358 (1997).
[CrossRef] [PubMed]

Drezek, R.

S. K. Chang, D. Arifler, R. Drezek, M. Follen, and R. Richards-Kortum, “Analytical model to describe fluorescence spectra of normal and preneoplastic epithelial tissue: comparison with Monte Carlo simulations and clinical measurements,” J. Biomed. Opt.9(3), 511–522 (2004).
[CrossRef] [PubMed]

R. Drezek, K. Sokolov, U. Utzinger, I. Boiko, A. Malpica, M. Follen, and R. Richards-Kortum, “Understanding the contributions of NADH and collagen to cervical tissue fluorescence spectra: modeling, measurements, and implications,” J. Biomed. Opt.6(4), 385–396 (2001).
[CrossRef] [PubMed]

Duffy, D. C.

D. C. Duffy, J. C. McDonald, O. J. A. Schueller, and G. M. Whitesides, “Rapid prototyping of microfluidic systems in poly(dimethylsiloxane),” Anal. Chem.70(23), 4974–4984 (1998).
[CrossRef] [PubMed]

Duncan, D. D.

D. D. Duncan, P. Lemaillet, M. Ibrahim, Q. D. Nguyen, M. Hiller, and J. C. Ramella-Roman, “Absolute blood velocity measured with a modified fundus camera,” J. Biomed. Opt.15(5), 056014 (2010).
[CrossRef] [PubMed]

D. D. Duncan, S. J. Kirkpatrick, J. C. Gladish, and S. A. Hurst, “Laser speckle contrast imaging for the quantitative assessment of flow,” Proc. SPIE7176(717603), 717603, 717603-8 (2009).
[CrossRef]

D. D. Duncan and S. J. Kirkpatrick, “Can laser speckle flowmetry be made a quantitative tool?” J. Opt. Soc. Am. A25(8), 2088–2094 (2008).
[CrossRef] [PubMed]

Dunn, A. K.

A. K. Dunn, “Laser speckle contrast imaging of cerebral blood flow,” Ann. Biomed. Eng.40(2), 367–377 (2012).
[CrossRef] [PubMed]

A. Ponticorvo and A. K. Dunn, “Simultaneous imaging of oxygen tension and blood flow in animals using a digital micromirror device,” Opt. Express18(8), 8160–8170 (2010).
[CrossRef] [PubMed]

A. B. Parthasarathy, W. G. Shin, X. J. Zhang, and A. K. Dunn, “Laser speckle contrast imaging of flow in a microfluidic device,” Proc. SPIE6446, 644604, 644604-11 (2007).
[CrossRef]

A. K. Dunn, H. Bolay, M. A. Moskowitz, and D. A. Boas, “Dynamic imaging of cerebral blood flow using laser speckle,” J. Cereb. Blood Flow Metab.21(3), 195–201 (2001).
[CrossRef] [PubMed]

DuPont, J.

J. E. Grunwald, J. DuPont, and C. E. Riva, “Retinal haemodynamics in patients with early diabetes mellitus,” Br. J. Ophthalmol.80(4), 327–331 (1996).
[CrossRef] [PubMed]

Faber, D. J.

D. M. de Bruin, R. H. Bremmer, V. M. Kodach, R. de Kinkelder, J. van Marle, T. G. van Leeuwen, and D. J. Faber, “Optical phantoms of varying geometry based on thin building blocks with controlled optical properties,” J. Biomed. Opt.15(2), 025001 (2010).
[CrossRef] [PubMed]

Feke, G. T.

Fercher, A. F.

J. D. Briers and A. F. Fercher, “Retinal blood-flow visualization by means of laser speckle photography,” Invest. Ophthalmol. Vis. Sci.22(2), 255–259 (1982).
[PubMed]

Fitzke, F. W.

S. Patel, J. Marshall, and F. W. Fitzke, “Refractive index of the human corneal epithelium and stroma,” J. Refract. Surg.11(2), 100–105 (1995).
[PubMed]

Follen, M.

S. K. Chang, D. Arifler, R. Drezek, M. Follen, and R. Richards-Kortum, “Analytical model to describe fluorescence spectra of normal and preneoplastic epithelial tissue: comparison with Monte Carlo simulations and clinical measurements,” J. Biomed. Opt.9(3), 511–522 (2004).
[CrossRef] [PubMed]

R. Drezek, K. Sokolov, U. Utzinger, I. Boiko, A. Malpica, M. Follen, and R. Richards-Kortum, “Understanding the contributions of NADH and collagen to cervical tissue fluorescence spectra: modeling, measurements, and implications,” J. Biomed. Opt.6(4), 385–396 (2001).
[CrossRef] [PubMed]

Fung, D.

P. Nath, D. Fung, Y. A. Kunde, A. Zeytun, B. Branch, and G. Goddard, “Rapid prototyping of robust and versatile microfluidic components using adhesive transfer tapes,” Lab Chip10(17), 2286–2291 (2010).
[CrossRef] [PubMed]

Geschke, O.

H. Klank, J. P. Kutter, and O. Geschke, “CO(2)-laser micromachining and back-end processing for rapid production of PMMA-based microfluidic systems,” Lab Chip2(4), 242–246 (2002).
[CrossRef] [PubMed]

Giller, C. A.

M. R. Hatab, C. A. Giller, and G. D. Clarke, “Evaluation of cerebral arterial flow with transcranial Doppler ultrasound: theoretical development and phantom studies,” Ultrasound Med. Biol.23(7), 1025–1031 (1997).
[CrossRef] [PubMed]

Gladish, J. C.

D. D. Duncan, S. J. Kirkpatrick, J. C. Gladish, and S. A. Hurst, “Laser speckle contrast imaging for the quantitative assessment of flow,” Proc. SPIE7176(717603), 717603, 717603-8 (2009).
[CrossRef]

Goddard, G.

P. Nath, D. Fung, Y. A. Kunde, A. Zeytun, B. Branch, and G. Goddard, “Rapid prototyping of robust and versatile microfluidic components using adhesive transfer tapes,” Lab Chip10(17), 2286–2291 (2010).
[CrossRef] [PubMed]

Gong, H. Q.

H. B. Liu and H. Q. Gong, “Templateless prototyping of polydimethylsiloxane microfluidic structures using a pulsed CO2 laser,” J. Micromech. Microeng.19(3), 037002 (2009).
[CrossRef]

Gong, X.

X. Gong, X. Yi, K. Xiao, S. Li, R. Kodzius, J. Qin, and W. Wen, “Wax-bonding 3D microfluidic chips,” Lab Chip10(19), 2622–2627 (2010).
[CrossRef] [PubMed]

Good, B. L.

S. A. Mathews, M. Mirotznik, B. L. Good, and A. Piqué, “Rapid prototyping of frequency selective surfaces by laser direct-write,” Proc. SPIE6458, 64580R, 64580R-14 (2007).
[CrossRef]

Goral, V. N.

P. K. Yuen and V. N. Goral, “Low-cost rapid prototyping of flexible microfluidic devices using a desktop digital craft cutter,” Lab Chip10(3), 384–387 (2010).
[CrossRef] [PubMed]

Grinvald, A.

Z. Burgansky-Eliash, D. A. Nelson, O. P. Bar-Tal, A. Lowenstein, A. Grinvald, and A. Barak, “Reduced retinal blood flow velocity in diabetic retinopathy,” Retina30(5), 765–773 (2010).
[CrossRef] [PubMed]

D. A. Nelson, S. Krupsky, A. Pollack, E. Aloni, M. Belkin, I. Vanzetta, M. Rosner, and A. Grinvald, “Special report: Noninvasive multi-parameter functional optical imaging of the eye,” Ophthalmic Surg. Lasers Imaging36(1), 57–66 (2005).
[PubMed]

Grunwald, J. E.

J. E. Grunwald, J. DuPont, and C. E. Riva, “Retinal haemodynamics in patients with early diabetes mellitus,” Br. J. Ophthalmol.80(4), 327–331 (1996).
[CrossRef] [PubMed]

Guo, L. J.

Haiss, F.

Hatab, M. R.

M. R. Hatab, C. A. Giller, and G. D. Clarke, “Evaluation of cerebral arterial flow with transcranial Doppler ultrasound: theoretical development and phantom studies,” Ultrasound Med. Biol.23(7), 1025–1031 (1997).
[CrossRef] [PubMed]

Heinrich, V.

V. I. Vullev, J. Wan, V. Heinrich, P. Landsman, P. E. Bower, B. Xia, B. Millare, and G. Jones, “Nonlithographic fabrication of microfluidic devices,” J. Am. Chem. Soc.128(50), 16062–16072 (2006).
[CrossRef] [PubMed]

Hiller, M.

D. D. Duncan, P. Lemaillet, M. Ibrahim, Q. D. Nguyen, M. Hiller, and J. C. Ramella-Roman, “Absolute blood velocity measured with a modified fundus camera,” J. Biomed. Opt.15(5), 056014 (2010).
[CrossRef] [PubMed]

Huang, S. W.

Hurst, S. A.

D. D. Duncan, S. J. Kirkpatrick, J. C. Gladish, and S. A. Hurst, “Laser speckle contrast imaging for the quantitative assessment of flow,” Proc. SPIE7176(717603), 717603, 717603-8 (2009).
[CrossRef]

Ibrahim, M.

D. D. Duncan, P. Lemaillet, M. Ibrahim, Q. D. Nguyen, M. Hiller, and J. C. Ramella-Roman, “Absolute blood velocity measured with a modified fundus camera,” J. Biomed. Opt.15(5), 056014 (2010).
[CrossRef] [PubMed]

Ivanov, C. D.

S. N. Kasarova, N. G. Sultanova, C. D. Ivanov, and I. D. Nikolov, “Analysis of the dispersion of optical plastic materials,” Opt. Mater.29(11), 1481–1490 (2007).
[CrossRef]

Izatt, J. A.

Jain, R. K.

P. Carmeliet and R. K. Jain, “Angiogenesis in cancer and other diseases,” Nature407(6801), 249–257 (2000).
[CrossRef] [PubMed]

Janbon, C.

M. Dauzat, J. P. Laroche, G. Deklunder, J. Ayoub, I. Quére, F. M. Lopez, and C. Janbon, “Diagnosis of acute lower limb deep venous thrombosis with ultrasound: trends and controversies,” J. Clin. Ultrasound25(7), 343–358 (1997).
[CrossRef] [PubMed]

Jiang, X. Y.

V. Linder, H. K. Wu, X. Y. Jiang, and G. M. Whitesides, “Rapid prototyping of 2D structures with feature sizes larger than 8 microm,” Anal. Chem.75(10), 2522–2527 (2003).
[CrossRef] [PubMed]

Jones, G.

V. I. Vullev, J. Wan, V. Heinrich, P. Landsman, P. E. Bower, B. Xia, B. Millare, and G. Jones, “Nonlithographic fabrication of microfluidic devices,” J. Am. Chem. Soc.128(50), 16062–16072 (2006).
[CrossRef] [PubMed]

Kasarova, S. N.

S. N. Kasarova, N. G. Sultanova, C. D. Ivanov, and I. D. Nikolov, “Analysis of the dispersion of optical plastic materials,” Opt. Mater.29(11), 1481–1490 (2007).
[CrossRef]

Kety, S. S.

S. S. Kety and C. F. Schmidt, “The nitrous oxide method for the quantitative determination of cerebral blood flow in man: theory, procedure and normal values,” J. Clin. Invest.27(4), 476–483 (1948).
[CrossRef]

Kim, D.

K. J. Schwenzer, S. Srinivas, D. Kim, and J. S. Tiedeman, “Oximetry of retinal vessels by dual-wavelength imaging: calibration and influence of pigmentation,” J. Appl. Physiol.86(2), 748–758 (1996).

Kirkpatrick, S. J.

D. D. Duncan, S. J. Kirkpatrick, J. C. Gladish, and S. A. Hurst, “Laser speckle contrast imaging for the quantitative assessment of flow,” Proc. SPIE7176(717603), 717603, 717603-8 (2009).
[CrossRef]

D. D. Duncan and S. J. Kirkpatrick, “Can laser speckle flowmetry be made a quantitative tool?” J. Opt. Soc. Am. A25(8), 2088–2094 (2008).
[CrossRef] [PubMed]

Klank, H.

H. Klank, J. P. Kutter, and O. Geschke, “CO(2)-laser micromachining and back-end processing for rapid production of PMMA-based microfluidic systems,” Lab Chip2(4), 242–246 (2002).
[CrossRef] [PubMed]

Kodach, V. M.

D. M. de Bruin, R. H. Bremmer, V. M. Kodach, R. de Kinkelder, J. van Marle, T. G. van Leeuwen, and D. J. Faber, “Optical phantoms of varying geometry based on thin building blocks with controlled optical properties,” J. Biomed. Opt.15(2), 025001 (2010).
[CrossRef] [PubMed]

Kodzius, R.

X. Gong, X. Yi, K. Xiao, S. Li, R. Kodzius, J. Qin, and W. Wen, “Wax-bonding 3D microfluidic chips,” Lab Chip10(19), 2622–2627 (2010).
[CrossRef] [PubMed]

Kolbitsch, C.

Krupsky, S.

D. A. Nelson, S. Krupsky, A. Pollack, E. Aloni, M. Belkin, I. Vanzetta, M. Rosner, and A. Grinvald, “Special report: Noninvasive multi-parameter functional optical imaging of the eye,” Ophthalmic Surg. Lasers Imaging36(1), 57–66 (2005).
[PubMed]

Kulkarni, M. D.

Kunde, Y. A.

P. Nath, D. Fung, Y. A. Kunde, A. Zeytun, B. Branch, and G. Goddard, “Rapid prototyping of robust and versatile microfluidic components using adhesive transfer tapes,” Lab Chip10(17), 2286–2291 (2010).
[CrossRef] [PubMed]

Kutter, J. P.

H. Klank, J. P. Kutter, and O. Geschke, “CO(2)-laser micromachining and back-end processing for rapid production of PMMA-based microfluidic systems,” Lab Chip2(4), 242–246 (2002).
[CrossRef] [PubMed]

Landsman, P.

V. I. Vullev, J. Wan, V. Heinrich, P. Landsman, P. E. Bower, B. Xia, B. Millare, and G. Jones, “Nonlithographic fabrication of microfluidic devices,” J. Am. Chem. Soc.128(50), 16062–16072 (2006).
[CrossRef] [PubMed]

Laroche, J. P.

M. Dauzat, J. P. Laroche, G. Deklunder, J. Ayoub, I. Quére, F. M. Lopez, and C. Janbon, “Diagnosis of acute lower limb deep venous thrombosis with ultrasound: trends and controversies,” J. Clin. Ultrasound25(7), 343–358 (1997).
[CrossRef] [PubMed]

Leitgeb, R. A.

Lemaillet, P.

D. D. Duncan, P. Lemaillet, M. Ibrahim, Q. D. Nguyen, M. Hiller, and J. C. Ramella-Roman, “Absolute blood velocity measured with a modified fundus camera,” J. Biomed. Opt.15(5), 056014 (2010).
[CrossRef] [PubMed]

P. Lemaillet and J. C. Ramella-Roman, “Dynamic eye phantom for retinal oximetry measurements,” J. Biomed. Opt.14(6), 064008 (2009).
[CrossRef] [PubMed]

Li, S.

X. Gong, X. Yi, K. Xiao, S. Li, R. Kodzius, J. Qin, and W. Wen, “Wax-bonding 3D microfluidic chips,” Lab Chip10(19), 2622–2627 (2010).
[CrossRef] [PubMed]

Linder, V.

V. Linder, H. K. Wu, X. Y. Jiang, and G. M. Whitesides, “Rapid prototyping of 2D structures with feature sizes larger than 8 microm,” Anal. Chem.75(10), 2522–2527 (2003).
[CrossRef] [PubMed]

Ling, T.

Lipowsky, H. H.

H. H. Lipowsky and B. W. Zweifach, “Network analysis of microcirculation of cat mesentery,” Microvasc. Res.7(1), 73–83 (1974).
[CrossRef] [PubMed]

Liu, H. B.

H. B. Liu and H. Q. Gong, “Templateless prototyping of polydimethylsiloxane microfluidic structures using a pulsed CO2 laser,” J. Micromech. Microeng.19(3), 037002 (2009).
[CrossRef]

Lopez, F. M.

M. Dauzat, J. P. Laroche, G. Deklunder, J. Ayoub, I. Quére, F. M. Lopez, and C. Janbon, “Diagnosis of acute lower limb deep venous thrombosis with ultrasound: trends and controversies,” J. Clin. Ultrasound25(7), 343–358 (1997).
[CrossRef] [PubMed]

Lowenstein, A.

Z. Burgansky-Eliash, D. A. Nelson, O. P. Bar-Tal, A. Lowenstein, A. Grinvald, and A. Barak, “Reduced retinal blood flow velocity in diabetic retinopathy,” Retina30(5), 765–773 (2010).
[CrossRef] [PubMed]

Malpica, A.

R. Drezek, K. Sokolov, U. Utzinger, I. Boiko, A. Malpica, M. Follen, and R. Richards-Kortum, “Understanding the contributions of NADH and collagen to cervical tissue fluorescence spectra: modeling, measurements, and implications,” J. Biomed. Opt.6(4), 385–396 (2001).
[CrossRef] [PubMed]

Marshall, J.

S. Patel, J. Marshall, and F. W. Fitzke, “Refractive index of the human corneal epithelium and stroma,” J. Refract. Surg.11(2), 100–105 (1995).
[PubMed]

Maslov, K. I.

Mathews, S. A.

S. A. Mathews, M. Mirotznik, B. L. Good, and A. Piqué, “Rapid prototyping of frequency selective surfaces by laser direct-write,” Proc. SPIE6458, 64580R, 64580R-14 (2007).
[CrossRef]

Mavriplis, C.

A. Rasmussen, C. Mavriplis, M. E. Zaghloul, O. Mikulchenko, and K. Mayaram, “Simulation and optimization of a microfluidic flow sensor,” Sens. Actuators A Phys.88(2), 121–132 (2001).
[CrossRef]

Mayaram, K.

A. Rasmussen, C. Mavriplis, M. E. Zaghloul, O. Mikulchenko, and K. Mayaram, “Simulation and optimization of a microfluidic flow sensor,” Sens. Actuators A Phys.88(2), 121–132 (2001).
[CrossRef]

McDonald, J. C.

J. C. McDonald, M. L. Chabinyc, S. J. Metallo, J. R. Anderson, A. D. Stroock, and G. M. Whitesides, “Prototyping of microfluidic devices in poly(dimethylsiloxane) using solid-object printing,” Anal. Chem.74(7), 1537–1545 (2002).
[CrossRef] [PubMed]

D. C. Duffy, J. C. McDonald, O. J. A. Schueller, and G. M. Whitesides, “Rapid prototyping of microfluidic systems in poly(dimethylsiloxane),” Anal. Chem.70(23), 4974–4984 (1998).
[CrossRef] [PubMed]

Metallo, S. J.

J. C. McDonald, M. L. Chabinyc, S. J. Metallo, J. R. Anderson, A. D. Stroock, and G. M. Whitesides, “Prototyping of microfluidic devices in poly(dimethylsiloxane) using solid-object printing,” Anal. Chem.74(7), 1537–1545 (2002).
[CrossRef] [PubMed]

Mikulchenko, O.

A. Rasmussen, C. Mavriplis, M. E. Zaghloul, O. Mikulchenko, and K. Mayaram, “Simulation and optimization of a microfluidic flow sensor,” Sens. Actuators A Phys.88(2), 121–132 (2001).
[CrossRef]

Millare, B.

V. I. Vullev, J. Wan, V. Heinrich, P. Landsman, P. E. Bower, B. Xia, B. Millare, and G. Jones, “Nonlithographic fabrication of microfluidic devices,” J. Am. Chem. Soc.128(50), 16062–16072 (2006).
[CrossRef] [PubMed]

Milner, T. E.

Mirotznik, M.

S. A. Mathews, M. Mirotznik, B. L. Good, and A. Piqué, “Rapid prototyping of frequency selective surfaces by laser direct-write,” Proc. SPIE6458, 64580R, 64580R-14 (2007).
[CrossRef]

Moskowitz, M. A.

A. K. Dunn, H. Bolay, M. A. Moskowitz, and D. A. Boas, “Dynamic imaging of cerebral blood flow using laser speckle,” J. Cereb. Blood Flow Metab.21(3), 195–201 (2001).
[CrossRef] [PubMed]

Nath, P.

P. Nath, D. Fung, Y. A. Kunde, A. Zeytun, B. Branch, and G. Goddard, “Rapid prototyping of robust and versatile microfluidic components using adhesive transfer tapes,” Lab Chip10(17), 2286–2291 (2010).
[CrossRef] [PubMed]

Nelson, D. A.

Z. Burgansky-Eliash, D. A. Nelson, O. P. Bar-Tal, A. Lowenstein, A. Grinvald, and A. Barak, “Reduced retinal blood flow velocity in diabetic retinopathy,” Retina30(5), 765–773 (2010).
[CrossRef] [PubMed]

D. A. Nelson, S. Krupsky, A. Pollack, E. Aloni, M. Belkin, I. Vanzetta, M. Rosner, and A. Grinvald, “Special report: Noninvasive multi-parameter functional optical imaging of the eye,” Ophthalmic Surg. Lasers Imaging36(1), 57–66 (2005).
[PubMed]

Nelson, J. S.

Nguyen, Q. D.

D. D. Duncan, P. Lemaillet, M. Ibrahim, Q. D. Nguyen, M. Hiller, and J. C. Ramella-Roman, “Absolute blood velocity measured with a modified fundus camera,” J. Biomed. Opt.15(5), 056014 (2010).
[CrossRef] [PubMed]

Nikolov, I. D.

S. N. Kasarova, N. G. Sultanova, C. D. Ivanov, and I. D. Nikolov, “Analysis of the dispersion of optical plastic materials,” Opt. Mater.29(11), 1481–1490 (2007).
[CrossRef]

Parthasarathy, A. B.

A. B. Parthasarathy, W. G. Shin, X. J. Zhang, and A. K. Dunn, “Laser speckle contrast imaging of flow in a microfluidic device,” Proc. SPIE6446, 644604, 644604-11 (2007).
[CrossRef]

Patel, S.

S. Patel, J. Marshall, and F. W. Fitzke, “Refractive index of the human corneal epithelium and stroma,” J. Refract. Surg.11(2), 100–105 (1995).
[PubMed]

Piqué, A.

S. A. Mathews, M. Mirotznik, B. L. Good, and A. Piqué, “Rapid prototyping of frequency selective surfaces by laser direct-write,” Proc. SPIE6458, 64580R, 64580R-14 (2007).
[CrossRef]

Pollack, A.

D. A. Nelson, S. Krupsky, A. Pollack, E. Aloni, M. Belkin, I. Vanzetta, M. Rosner, and A. Grinvald, “Special report: Noninvasive multi-parameter functional optical imaging of the eye,” Ophthalmic Surg. Lasers Imaging36(1), 57–66 (2005).
[PubMed]

Ponticorvo, A.

Preece, S. J.

S. J. Preece and E. Claridge, “Monte Carlo modelling of the spectral reflectance of the human eye,” Phys. Med. Biol.47(16), 2863–2877 (2002).
[CrossRef] [PubMed]

Qin, J.

X. Gong, X. Yi, K. Xiao, S. Li, R. Kodzius, J. Qin, and W. Wen, “Wax-bonding 3D microfluidic chips,” Lab Chip10(19), 2622–2627 (2010).
[CrossRef] [PubMed]

Quére, I.

M. Dauzat, J. P. Laroche, G. Deklunder, J. Ayoub, I. Quére, F. M. Lopez, and C. Janbon, “Diagnosis of acute lower limb deep venous thrombosis with ultrasound: trends and controversies,” J. Clin. Ultrasound25(7), 343–358 (1997).
[CrossRef] [PubMed]

Ramella-Roman, J. C.

D. D. Duncan, P. Lemaillet, M. Ibrahim, Q. D. Nguyen, M. Hiller, and J. C. Ramella-Roman, “Absolute blood velocity measured with a modified fundus camera,” J. Biomed. Opt.15(5), 056014 (2010).
[CrossRef] [PubMed]

P. Lemaillet and J. C. Ramella-Roman, “Dynamic eye phantom for retinal oximetry measurements,” J. Biomed. Opt.14(6), 064008 (2009).
[CrossRef] [PubMed]

Rasmussen, A.

A. Rasmussen, C. Mavriplis, M. E. Zaghloul, O. Mikulchenko, and K. Mayaram, “Simulation and optimization of a microfluidic flow sensor,” Sens. Actuators A Phys.88(2), 121–132 (2001).
[CrossRef]

A. Rasmussen and M. E. Zaghloul, “In the flow with MEMS,” IEEE Circuits Devices Mag.14(4), 12–25 (1998).
[CrossRef]

Richards-Kortum, R.

S. K. Chang, D. Arifler, R. Drezek, M. Follen, and R. Richards-Kortum, “Analytical model to describe fluorescence spectra of normal and preneoplastic epithelial tissue: comparison with Monte Carlo simulations and clinical measurements,” J. Biomed. Opt.9(3), 511–522 (2004).
[CrossRef] [PubMed]

R. Drezek, K. Sokolov, U. Utzinger, I. Boiko, A. Malpica, M. Follen, and R. Richards-Kortum, “Understanding the contributions of NADH and collagen to cervical tissue fluorescence spectra: modeling, measurements, and implications,” J. Biomed. Opt.6(4), 385–396 (2001).
[CrossRef] [PubMed]

Riva, C.

C. Riva, B. Ross, and G. B. Benedek, “Laser Doppler measurements of blood flow in capillary tubes and retinal arteries,” Invest. Ophthalmol.11(11), 936–944 (1972).
[PubMed]

Riva, C. E.

J. E. Grunwald, J. DuPont, and C. E. Riva, “Retinal haemodynamics in patients with early diabetes mellitus,” Br. J. Ophthalmol.80(4), 327–331 (1996).
[CrossRef] [PubMed]

Rivat, C. E.

Rosner, M.

D. A. Nelson, S. Krupsky, A. Pollack, E. Aloni, M. Belkin, I. Vanzetta, M. Rosner, and A. Grinvald, “Special report: Noninvasive multi-parameter functional optical imaging of the eye,” Ophthalmic Surg. Lasers Imaging36(1), 57–66 (2005).
[PubMed]

Ross, B.

C. Riva, B. Ross, and G. B. Benedek, “Laser Doppler measurements of blood flow in capillary tubes and retinal arteries,” Invest. Ophthalmol.11(11), 936–944 (1972).
[PubMed]

Scheffold, F.

Schmidt, C. F.

S. S. Kety and C. F. Schmidt, “The nitrous oxide method for the quantitative determination of cerebral blood flow in man: theory, procedure and normal values,” J. Clin. Invest.27(4), 476–483 (1948).
[CrossRef]

Schmoll, T.

Schueller, O. J. A.

D. C. Duffy, J. C. McDonald, O. J. A. Schueller, and G. M. Whitesides, “Rapid prototyping of microfluidic systems in poly(dimethylsiloxane),” Anal. Chem.70(23), 4974–4984 (1998).
[CrossRef] [PubMed]

Schwenzer, K. J.

K. J. Schwenzer, S. Srinivas, D. Kim, and J. S. Tiedeman, “Oximetry of retinal vessels by dual-wavelength imaging: calibration and influence of pigmentation,” J. Appl. Physiol.86(2), 748–758 (1996).

Shi, Y.

Shin, W. G.

A. B. Parthasarathy, W. G. Shin, X. J. Zhang, and A. K. Dunn, “Laser speckle contrast imaging of flow in a microfluidic device,” Proc. SPIE6446, 644604, 644604-11 (2007).
[CrossRef]

Singh, A. S.

Sokolov, K.

R. Drezek, K. Sokolov, U. Utzinger, I. Boiko, A. Malpica, M. Follen, and R. Richards-Kortum, “Understanding the contributions of NADH and collagen to cervical tissue fluorescence spectra: modeling, measurements, and implications,” J. Biomed. Opt.6(4), 385–396 (2001).
[CrossRef] [PubMed]

Srinivas, S.

K. J. Schwenzer, S. Srinivas, D. Kim, and J. S. Tiedeman, “Oximetry of retinal vessels by dual-wavelength imaging: calibration and influence of pigmentation,” J. Appl. Physiol.86(2), 748–758 (1996).

Stroock, A. D.

J. C. McDonald, M. L. Chabinyc, S. J. Metallo, J. R. Anderson, A. D. Stroock, and G. M. Whitesides, “Prototyping of microfluidic devices in poly(dimethylsiloxane) using solid-object printing,” Anal. Chem.74(7), 1537–1545 (2002).
[CrossRef] [PubMed]

Sultanova, N. G.

S. N. Kasarova, N. G. Sultanova, C. D. Ivanov, and I. D. Nikolov, “Analysis of the dispersion of optical plastic materials,” Opt. Mater.29(11), 1481–1490 (2007).
[CrossRef]

Taber, L. A.

Tiedeman, J. S.

K. J. Schwenzer, S. Srinivas, D. Kim, and J. S. Tiedeman, “Oximetry of retinal vessels by dual-wavelength imaging: calibration and influence of pigmentation,” J. Appl. Physiol.86(2), 748–758 (1996).

Utzinger, U.

R. Drezek, K. Sokolov, U. Utzinger, I. Boiko, A. Malpica, M. Follen, and R. Richards-Kortum, “Understanding the contributions of NADH and collagen to cervical tissue fluorescence spectra: modeling, measurements, and implications,” J. Biomed. Opt.6(4), 385–396 (2001).
[CrossRef] [PubMed]

van Leeuwen, T. G.

D. M. de Bruin, R. H. Bremmer, V. M. Kodach, R. de Kinkelder, J. van Marle, T. G. van Leeuwen, and D. J. Faber, “Optical phantoms of varying geometry based on thin building blocks with controlled optical properties,” J. Biomed. Opt.15(2), 025001 (2010).
[CrossRef] [PubMed]

van Marle, J.

D. M. de Bruin, R. H. Bremmer, V. M. Kodach, R. de Kinkelder, J. van Marle, T. G. van Leeuwen, and D. J. Faber, “Optical phantoms of varying geometry based on thin building blocks with controlled optical properties,” J. Biomed. Opt.15(2), 025001 (2010).
[CrossRef] [PubMed]

Vanzetta, I.

D. A. Nelson, S. Krupsky, A. Pollack, E. Aloni, M. Belkin, I. Vanzetta, M. Rosner, and A. Grinvald, “Special report: Noninvasive multi-parameter functional optical imaging of the eye,” Ophthalmic Surg. Lasers Imaging36(1), 57–66 (2005).
[PubMed]

Völker, A. C.

Vullev, V. I.

V. I. Vullev, J. Wan, V. Heinrich, P. Landsman, P. E. Bower, B. Xia, B. Millare, and G. Jones, “Nonlithographic fabrication of microfluidic devices,” J. Am. Chem. Soc.128(50), 16062–16072 (2006).
[CrossRef] [PubMed]

Wan, J.

V. I. Vullev, J. Wan, V. Heinrich, P. Landsman, P. E. Bower, B. Xia, B. Millare, and G. Jones, “Nonlithographic fabrication of microfluidic devices,” J. Am. Chem. Soc.128(50), 16062–16072 (2006).
[CrossRef] [PubMed]

Wang, L. V.

Weber, B.

Welch, A. J.

Wen, W.

X. Gong, X. Yi, K. Xiao, S. Li, R. Kodzius, J. Qin, and W. Wen, “Wax-bonding 3D microfluidic chips,” Lab Chip10(19), 2622–2627 (2010).
[CrossRef] [PubMed]

Whitesides, G. M.

V. Linder, H. K. Wu, X. Y. Jiang, and G. M. Whitesides, “Rapid prototyping of 2D structures with feature sizes larger than 8 microm,” Anal. Chem.75(10), 2522–2527 (2003).
[CrossRef] [PubMed]

J. C. McDonald, M. L. Chabinyc, S. J. Metallo, J. R. Anderson, A. D. Stroock, and G. M. Whitesides, “Prototyping of microfluidic devices in poly(dimethylsiloxane) using solid-object printing,” Anal. Chem.74(7), 1537–1545 (2002).
[CrossRef] [PubMed]

D. C. Duffy, J. C. McDonald, O. J. A. Schueller, and G. M. Whitesides, “Rapid prototyping of microfluidic systems in poly(dimethylsiloxane),” Anal. Chem.70(23), 4974–4984 (1998).
[CrossRef] [PubMed]

Won Baac, H.

Wu, H. K.

V. Linder, H. K. Wu, X. Y. Jiang, and G. M. Whitesides, “Rapid prototyping of 2D structures with feature sizes larger than 8 microm,” Anal. Chem.75(10), 2522–2527 (2003).
[CrossRef] [PubMed]

Wyss, M. T.

Xia, B.

V. I. Vullev, J. Wan, V. Heinrich, P. Landsman, P. E. Bower, B. Xia, B. Millare, and G. Jones, “Nonlithographic fabrication of microfluidic devices,” J. Am. Chem. Soc.128(50), 16062–16072 (2006).
[CrossRef] [PubMed]

Xiao, K.

X. Gong, X. Yi, K. Xiao, S. Li, R. Kodzius, J. Qin, and W. Wen, “Wax-bonding 3D microfluidic chips,” Lab Chip10(19), 2622–2627 (2010).
[CrossRef] [PubMed]

Xu, J. J.

N. Bao, Q. Zhang, J. J. Xu, and H. Y. Chen, “Fabrication of poly(dimethylsiloxane) microfluidic system based on masters directly printed with an office laser printer,” J. Chromatogr. A1089(1-2), 270–275 (2005).
[CrossRef] [PubMed]

Yao, J.

Yazdanfar, S.

Yi, X.

X. Gong, X. Yi, K. Xiao, S. Li, R. Kodzius, J. Qin, and W. Wen, “Wax-bonding 3D microfluidic chips,” Lab Chip10(19), 2622–2627 (2010).
[CrossRef] [PubMed]

Yuen, P. K.

P. K. Yuen and V. N. Goral, “Low-cost rapid prototyping of flexible microfluidic devices using a desktop digital craft cutter,” Lab Chip10(3), 384–387 (2010).
[CrossRef] [PubMed]

Zaghloul, M. E.

A. Rasmussen, C. Mavriplis, M. E. Zaghloul, O. Mikulchenko, and K. Mayaram, “Simulation and optimization of a microfluidic flow sensor,” Sens. Actuators A Phys.88(2), 121–132 (2001).
[CrossRef]

A. Rasmussen and M. E. Zaghloul, “In the flow with MEMS,” IEEE Circuits Devices Mag.14(4), 12–25 (1998).
[CrossRef]

Zakharov, P.

Zeytun, A.

P. Nath, D. Fung, Y. A. Kunde, A. Zeytun, B. Branch, and G. Goddard, “Rapid prototyping of robust and versatile microfluidic components using adhesive transfer tapes,” Lab Chip10(17), 2286–2291 (2010).
[CrossRef] [PubMed]

Zhang, Q.

N. Bao, Q. Zhang, J. J. Xu, and H. Y. Chen, “Fabrication of poly(dimethylsiloxane) microfluidic system based on masters directly printed with an office laser printer,” J. Chromatogr. A1089(1-2), 270–275 (2005).
[CrossRef] [PubMed]

Zhang, X. J.

A. B. Parthasarathy, W. G. Shin, X. J. Zhang, and A. K. Dunn, “Laser speckle contrast imaging of flow in a microfluidic device,” Proc. SPIE6446, 644604, 644604-11 (2007).
[CrossRef]

Zunzunegui, C.

Zweifach, B. W.

H. H. Lipowsky and B. W. Zweifach, “Network analysis of microcirculation of cat mesentery,” Microvasc. Res.7(1), 73–83 (1974).
[CrossRef] [PubMed]

Anal. Chem.

D. C. Duffy, J. C. McDonald, O. J. A. Schueller, and G. M. Whitesides, “Rapid prototyping of microfluidic systems in poly(dimethylsiloxane),” Anal. Chem.70(23), 4974–4984 (1998).
[CrossRef] [PubMed]

V. Linder, H. K. Wu, X. Y. Jiang, and G. M. Whitesides, “Rapid prototyping of 2D structures with feature sizes larger than 8 microm,” Anal. Chem.75(10), 2522–2527 (2003).
[CrossRef] [PubMed]

J. C. McDonald, M. L. Chabinyc, S. J. Metallo, J. R. Anderson, A. D. Stroock, and G. M. Whitesides, “Prototyping of microfluidic devices in poly(dimethylsiloxane) using solid-object printing,” Anal. Chem.74(7), 1537–1545 (2002).
[CrossRef] [PubMed]

Ann. Biomed. Eng.

A. K. Dunn, “Laser speckle contrast imaging of cerebral blood flow,” Ann. Biomed. Eng.40(2), 367–377 (2012).
[CrossRef] [PubMed]

Biomed. Opt. Express

Br. J. Ophthalmol.

J. E. Grunwald, J. DuPont, and C. E. Riva, “Retinal haemodynamics in patients with early diabetes mellitus,” Br. J. Ophthalmol.80(4), 327–331 (1996).
[CrossRef] [PubMed]

IEEE Circuits Devices Mag.

A. Rasmussen and M. E. Zaghloul, “In the flow with MEMS,” IEEE Circuits Devices Mag.14(4), 12–25 (1998).
[CrossRef]

Invest. Ophthalmol.

C. Riva, B. Ross, and G. B. Benedek, “Laser Doppler measurements of blood flow in capillary tubes and retinal arteries,” Invest. Ophthalmol.11(11), 936–944 (1972).
[PubMed]

Invest. Ophthalmol. Vis. Sci.

J. D. Briers and A. F. Fercher, “Retinal blood-flow visualization by means of laser speckle photography,” Invest. Ophthalmol. Vis. Sci.22(2), 255–259 (1982).
[PubMed]

J. Am. Chem. Soc.

V. I. Vullev, J. Wan, V. Heinrich, P. Landsman, P. E. Bower, B. Xia, B. Millare, and G. Jones, “Nonlithographic fabrication of microfluidic devices,” J. Am. Chem. Soc.128(50), 16062–16072 (2006).
[CrossRef] [PubMed]

J. Appl. Physiol.

K. J. Schwenzer, S. Srinivas, D. Kim, and J. S. Tiedeman, “Oximetry of retinal vessels by dual-wavelength imaging: calibration and influence of pigmentation,” J. Appl. Physiol.86(2), 748–758 (1996).

J. Biomed. Opt.

R. Drezek, K. Sokolov, U. Utzinger, I. Boiko, A. Malpica, M. Follen, and R. Richards-Kortum, “Understanding the contributions of NADH and collagen to cervical tissue fluorescence spectra: modeling, measurements, and implications,” J. Biomed. Opt.6(4), 385–396 (2001).
[CrossRef] [PubMed]

S. K. Chang, D. Arifler, R. Drezek, M. Follen, and R. Richards-Kortum, “Analytical model to describe fluorescence spectra of normal and preneoplastic epithelial tissue: comparison with Monte Carlo simulations and clinical measurements,” J. Biomed. Opt.9(3), 511–522 (2004).
[CrossRef] [PubMed]

D. D. Duncan, P. Lemaillet, M. Ibrahim, Q. D. Nguyen, M. Hiller, and J. C. Ramella-Roman, “Absolute blood velocity measured with a modified fundus camera,” J. Biomed. Opt.15(5), 056014 (2010).
[CrossRef] [PubMed]

P. Lemaillet and J. C. Ramella-Roman, “Dynamic eye phantom for retinal oximetry measurements,” J. Biomed. Opt.14(6), 064008 (2009).
[CrossRef] [PubMed]

D. M. de Bruin, R. H. Bremmer, V. M. Kodach, R. de Kinkelder, J. van Marle, T. G. van Leeuwen, and D. J. Faber, “Optical phantoms of varying geometry based on thin building blocks with controlled optical properties,” J. Biomed. Opt.15(2), 025001 (2010).
[CrossRef] [PubMed]

J. Cereb. Blood Flow Metab.

A. K. Dunn, H. Bolay, M. A. Moskowitz, and D. A. Boas, “Dynamic imaging of cerebral blood flow using laser speckle,” J. Cereb. Blood Flow Metab.21(3), 195–201 (2001).
[CrossRef] [PubMed]

J. Chromatogr. A

N. Bao, Q. Zhang, J. J. Xu, and H. Y. Chen, “Fabrication of poly(dimethylsiloxane) microfluidic system based on masters directly printed with an office laser printer,” J. Chromatogr. A1089(1-2), 270–275 (2005).
[CrossRef] [PubMed]

J. Clin. Invest.

S. S. Kety and C. F. Schmidt, “The nitrous oxide method for the quantitative determination of cerebral blood flow in man: theory, procedure and normal values,” J. Clin. Invest.27(4), 476–483 (1948).
[CrossRef]

J. Clin. Ultrasound

M. Dauzat, J. P. Laroche, G. Deklunder, J. Ayoub, I. Quére, F. M. Lopez, and C. Janbon, “Diagnosis of acute lower limb deep venous thrombosis with ultrasound: trends and controversies,” J. Clin. Ultrasound25(7), 343–358 (1997).
[CrossRef] [PubMed]

J. Microelectromech. Syst.

D. A. Bartholomeusz, R. W. Boutte, and J. D. Andrade, “Xurography: rapid prototyping of microstructures using a cutting plotter,” J. Microelectromech. Syst.14(6), 1364–1374 (2005).
[CrossRef]

J. Micromech. Microeng.

H. B. Liu and H. Q. Gong, “Templateless prototyping of polydimethylsiloxane microfluidic structures using a pulsed CO2 laser,” J. Micromech. Microeng.19(3), 037002 (2009).
[CrossRef]

J. Opt. Soc. Am.

J. Opt. Soc. Am. A

J. Refract. Surg.

S. Patel, J. Marshall, and F. W. Fitzke, “Refractive index of the human corneal epithelium and stroma,” J. Refract. Surg.11(2), 100–105 (1995).
[PubMed]

Lab Chip

X. Gong, X. Yi, K. Xiao, S. Li, R. Kodzius, J. Qin, and W. Wen, “Wax-bonding 3D microfluidic chips,” Lab Chip10(19), 2622–2627 (2010).
[CrossRef] [PubMed]

P. Nath, D. Fung, Y. A. Kunde, A. Zeytun, B. Branch, and G. Goddard, “Rapid prototyping of robust and versatile microfluidic components using adhesive transfer tapes,” Lab Chip10(17), 2286–2291 (2010).
[CrossRef] [PubMed]

P. K. Yuen and V. N. Goral, “Low-cost rapid prototyping of flexible microfluidic devices using a desktop digital craft cutter,” Lab Chip10(3), 384–387 (2010).
[CrossRef] [PubMed]

H. Klank, J. P. Kutter, and O. Geschke, “CO(2)-laser micromachining and back-end processing for rapid production of PMMA-based microfluidic systems,” Lab Chip2(4), 242–246 (2002).
[CrossRef] [PubMed]

Microvasc. Res.

H. H. Lipowsky and B. W. Zweifach, “Network analysis of microcirculation of cat mesentery,” Microvasc. Res.7(1), 73–83 (1974).
[CrossRef] [PubMed]

Nature

P. Carmeliet and R. K. Jain, “Angiogenesis in cancer and other diseases,” Nature407(6801), 249–257 (2000).
[CrossRef] [PubMed]

Ophthalmic Surg. Lasers Imaging

D. A. Nelson, S. Krupsky, A. Pollack, E. Aloni, M. Belkin, I. Vanzetta, M. Rosner, and A. Grinvald, “Special report: Noninvasive multi-parameter functional optical imaging of the eye,” Ophthalmic Surg. Lasers Imaging36(1), 57–66 (2005).
[PubMed]

Opt. Express

Opt. Lett.

Opt. Mater.

S. N. Kasarova, N. G. Sultanova, C. D. Ivanov, and I. D. Nikolov, “Analysis of the dispersion of optical plastic materials,” Opt. Mater.29(11), 1481–1490 (2007).
[CrossRef]

Phys. Med. Biol.

S. J. Preece and E. Claridge, “Monte Carlo modelling of the spectral reflectance of the human eye,” Phys. Med. Biol.47(16), 2863–2877 (2002).
[CrossRef] [PubMed]

Proc. SPIE

A. B. Parthasarathy, W. G. Shin, X. J. Zhang, and A. K. Dunn, “Laser speckle contrast imaging of flow in a microfluidic device,” Proc. SPIE6446, 644604, 644604-11 (2007).
[CrossRef]

S. A. Mathews, M. Mirotznik, B. L. Good, and A. Piqué, “Rapid prototyping of frequency selective surfaces by laser direct-write,” Proc. SPIE6458, 64580R, 64580R-14 (2007).
[CrossRef]

D. D. Duncan, S. J. Kirkpatrick, J. C. Gladish, and S. A. Hurst, “Laser speckle contrast imaging for the quantitative assessment of flow,” Proc. SPIE7176(717603), 717603, 717603-8 (2009).
[CrossRef]

Retina

Z. Burgansky-Eliash, D. A. Nelson, O. P. Bar-Tal, A. Lowenstein, A. Grinvald, and A. Barak, “Reduced retinal blood flow velocity in diabetic retinopathy,” Retina30(5), 765–773 (2010).
[CrossRef] [PubMed]

Sens. Actuators A Phys.

A. Rasmussen, C. Mavriplis, M. E. Zaghloul, O. Mikulchenko, and K. Mayaram, “Simulation and optimization of a microfluidic flow sensor,” Sens. Actuators A Phys.88(2), 121–132 (2001).
[CrossRef]

Ultrasound Med. Biol.

M. R. Hatab, C. A. Giller, and G. D. Clarke, “Evaluation of cerebral arterial flow with transcranial Doppler ultrasound: theoretical development and phantom studies,” Ultrasound Med. Biol.23(7), 1025–1031 (1997).
[CrossRef] [PubMed]

Other

P. Tabeling, Introduction to Microfluidics (Oxford University, New York, 2005).

N. T. Nguyen and S. Wereley, Fundamentals and Applications of Microfluidics (Artech House: Boston, MA, 2002).

A. Piqué, H. Kim, R. Auyeung, J. Wang, A. Birnbaum, and S. Mathews, “Laser-based digital microfabrication,” in NIP25: International Conference on Digital Printing Technologies and Digital Fabrication (2009).

S. A. Mathews, M. Mirotznik, and A. Piqué, “Development of novel RF and millimeter wave structures by laser direct-write,” in Proceedings of LAMP2009—the 5th International Congress on Laser Advanced Materials Processing (2009).

S. A. Prahl, “Light transport in tissue,” Ph.D. thesis (University of Texas at Austin, 1988).

L.W. Luo, C.Y. Teo, W.L. Ong, K.C. Tang, L.F. Cheow and L. Yobas, “Rapid prototyping of microfluidic systems using a laser-patterned tape,” J. Micromech. Microeng. 17, N107–N111 (2007).

J. W. Goodman, “Statistical properties of laser speckle,” in Laser Speckle and Related Phenomena, J. C. Dainty, ed. (Springer, Berlin, 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (16)

Fig. 1
Fig. 1

Laser micro-machining system.

Fig. 2
Fig. 2

Basic microfluidic fabrication steps.

Fig. 3
Fig. 3

Layout (top) and implementation (bottom right) of universal interface block, along with microfluidic architecture (bottom left), units on drawing are in mm.

Fig. 4
Fig. 4

Experimental layout used in the measurement of flow. A syringe pump is interfaced to the microfluidic phantom through a universal interface block. On the right hand side a simple speckle flow imaging system (explained later in the paper) consisting of a fast acquisition camera, a laser source and an imaging lens.

Fig. 5
Fig. 5

Design of microfluidics network and corresponding substrate.

Fig. 6
Fig. 6

SEM images of the channels made of one-sided tape.

Fig. 7
Fig. 7

Optical properties of three types of Scotch tape, absorption coefficient is close to 0 (left hand side) the reduced scattering coefficient is similar to the one found in human epithelium.

Fig. 8
Fig. 8

Simple branching of a microfluidic system.

Fig. 9
Fig. 9

Blood velocity estimate in microfluidic using an FEM approach.

Fig. 10
Fig. 10

Comparison of local speckle contrast with FEM simulation, 4 regions are captured in the data.

Fig. 11
Fig. 11

Speckle contrast at one vessel location (200 µm width) decreases with increasing flow rate at inlet.

Fig. 12
Fig. 12

Two level vasculature structure.

Fig. 13
Fig. 13

Two level overlapping vasculature structure.

Fig. 14
Fig. 14

Two layers phantom, where the second layer is an extended reservoir.

Fig. 15
Fig. 15

One layer vasculature phantom overlaid to an absorbing and scattering epoxy layer. The optical properties of the epoxy layer where chosen to mimic the retina RPI and choroid.

Fig. 16
Fig. 16

A vasculature phantom mimicking the retina of a healthy volunteer. Top left figure a, an original fundus image acquired with a commercial fundus camera. b, The same image after filtering with Photoshop. c, The realized phantom on an absorbing and scattering epoxy layer. Ruler divisions on the right hand side are in mm.

Tables (1)

Tables Icon

Table 1 Channel width and associated experimental error

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

C= σ I μ I

Metrics