Abstract

Laser Speckle Imaging (LSI) is fast, noninvasive technique to image particle dynamics in scattering media such as biological tissue. While LSI measurements are independent of the overall intensity of the laser source, we find that spatial variations in the laser source profile can impact measured flow rates. This occurs due to differences in average photon path length across the profile, and is of significant concern because all lasers have some degree of natural Gaussian profile in addition to artifacts potentially caused by projecting optics. Two in vivo measurement are performed to show that flow rates differ based on location with respect to the beam profile. A quantitative analysis is then done through a speckle contrast forward model generated within a coherent Spatial Frequency Domain Imaging (cSFDI) formalism. The model predicts remitted speckle contrast as a function of spatial frequency, optical properties, and scattering dynamics. Comparison with experimental speckle contrast images were done using liquid phantoms with known optical properties for three common beam shapes. cSFDI is found to accurately predict speckle contrast for all beam shapes to within 5% root mean square error. Suggestions for improving beam homogeneity are given, including a widening of the natural beam Gaussian, proper diffusing glass spreading, and flat top shaping using microlens arrays.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. J. Berne and R. Pecora, Dynamic Light Scattering: with Applications to Chemistry, Biology, and Physics (Dover, Mineola, NY, 2000).
  2. R. Pecora, Dynamic Light Scattering: Applications of Photon Correlation Spectroscopy (Plenum, New York, 1985).
  3. A. Wax and V. Backman, Biomedical Applications of Light Scattering, Biophotonics Series (McGraw-Hill, New York, 2010).
  4. G. E. Nilsson, T. Tenland, and P. A. Oberg, “Evaluation of a laser Doppler flowmeter for measurement of tissue blood flow,” IEEE Trans. Biomed. Eng.BME-27(10), 597–604 (1980).
    [CrossRef] [PubMed]
  5. M. H. Koelink, F. F. M. de Mul, J. Greve, R. Graaff, A. C. M. Dassel, and J. G. Aarnoudse, “Laser Doppler blood flowmetry using two wavelengths: Monte Carlo simulations and measurements,” Appl. Opt.33(16), 3549–3558 (1994).
    [CrossRef] [PubMed]
  6. P. A. Oberg, “Laser-Doppler flowmetry,” Crit. Rev. Biomed. Eng.18(2), 125–163 (1990).
    [PubMed]
  7. D. J. Pine, D. A. Weitz, P. M. Chaikin, and E. Herbolzheimer, “Diffusing wave spectroscopy,” Phys. Rev. Lett.60(12), 1134–1137 (1988).
    [CrossRef] [PubMed]
  8. D. J. Pine, D. A. Weitz, J. X. Zhu, and E. Herbolzheimer, “Diffusing-wave spectroscopy: dynamic light scattering in the multiple scattering limit,” J. Phys. (Paris)51(18), 2101–2127 (1990).
    [CrossRef]
  9. D. J. Durian, “Accuracy of diffusing-wave spectroscopy theories,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics51(4), 3350–3358 (1995).
    [CrossRef] [PubMed]
  10. D. A. Boas and A. G. Yodh, “Spatially varying dynamical properties of turbid media probed with diffusing temporal light correlation,” J. Opt. Soc. Am. A14(1), 192–215 (1997).
    [CrossRef]
  11. B. Choi, N. M. Kang, and J. S. Nelson, “Laser speckle imaging for monitoring blood flow dynamics in the in vivo rodent dorsal skin fold model,” Microvasc. Res.68(2), 143–146 (2004).
    [CrossRef] [PubMed]
  12. A. F. Fercher and J. D. Briers, “Flow visualization by means of single-exposure speckle photography,” Opt. Commun.37(5), 326–330 (1981).
    [CrossRef]
  13. J. D. Briers, G. Richards, and X. W. He, “Capillary blood flow monitoring using Laser Speckle Contrast Analysis (LASCA),” J. Biomed. Opt.4(1), 164–175 (1999).
    [CrossRef]
  14. R. Bandyopadhyay, A. S. Gittings, S. S. Suh, P. K. Dixon, and D. J. Durian, “Speckle-visibility spectroscopy: A tool to study time-varying dynamics,” Rev. Sci. Instrum.76(9), 093110–093111 (2005).
    [CrossRef]
  15. D. A. Boas and A. K. Dunn, “Laser speckle contrast imaging in biomedical optics,” J. Biomed. Opt.15(1), 011109–011112 (2010).
    [CrossRef] [PubMed]
  16. R. L. Dougherty, B. J. Ackerson, N. M. Reguigui, F. Dorri-Nowkoorani, and U. Nobbmann, “Correlation transfer: Development and application,” J. Quant. Spectrosc. Radiat. Transf.52(6), 713–727 (1994).
    [CrossRef]
  17. D. Cuccia, B. Tromberg, R. Frostig, and D. Abookasis, “Quantitative in vivo imaging of tissue absorption, scattering, and hemoglobin concentration in rat cortex using spatially modulated structured light,” in In vivo Optical Imaging of Brain Function, 2nd ed. (CRC Press, 2009).
  18. D. J. Cuccia, F. Bevilacqua, A. J. Durkin, F. R. Ayers, and B. J. Tromberg, “Quantitation and mapping of tissue optical properties using modulated imaging,” J. Biomed. Opt.14(2), 024012 (2009).
    [CrossRef] [PubMed]
  19. D. J. Cuccia, F. Bevilacqua, A. J. Durkin, and B. J. Tromberg, “Modulated imaging: quantitative analysis and tomography of turbid media in the spatial-frequency domain,” Opt. Lett.30(11), 1354–1356 (2005).
    [CrossRef] [PubMed]
  20. S. D. Konecky, A. Mazhar, D. Cuccia, A. J. Durkin, J. C. Schotland, and B. J. Tromberg, “Quantitative optical tomography of sub-surface heterogeneities using spatially modulated structured light,” Opt. Express17(17), 14780–14790 (2009).
    [CrossRef] [PubMed]
  21. A. Mazhar, D. J. Cuccia, S. Gioux, A. J. Durkin, J. V. Frangioni, and B. J. Tromberg, “Structured illumination enhances resolution and contrast in thick tissue fluorescence imaging,” J. Biomed. Opt.15(1), 010506 (2010).
    [CrossRef] [PubMed]
  22. J. R. Weber, D. J. Cuccia, A. J. Durkin, and B. J. Tromberg, “Noncontact imaging of absorption and scattering in layered tissue using spatially modulated structured light,” J. Appl. Phys.105(10), 102028 (2009).
    [CrossRef]
  23. J. R. Weber, D. J. Cuccia, W. R. Johnson, G. H. Bearman, A. J. Durkin, M. Hsu, A. Lin, D. K. Binder, D. Wilson, and B. J. Tromberg, “Multispectral imaging of tissue absorption and scattering using spatial frequency domain imaging and a computed-tomography imaging spectrometer,” J. Biomed. Opt.16(1), 011015–011017 (2011).
    [CrossRef] [PubMed]
  24. T. B. Rice, S. D. Konecky, A. Mazhar, D. J. Cuccia, A. J. Durkin, B. Choi, and B. J. Tromberg, “Quantitative determination of dynamical properties using coherent spatial frequency domain imaging,” J. Opt. Soc. Am. A28(10), 2108–2114 (2011).
    [CrossRef] [PubMed]
  25. A. Mazhar, D. J. Cuccia, T. B. Rice, S. A. Carp, A. J. Durkin, D. A. Boas, B. Choi, and B. J. Tromberg, “Laser speckle imaging in the spatial frequency domain,” Biomed. Opt. Express2(6), 1553–1563 (2011).
    [CrossRef] [PubMed]
  26. J. W. Goodman, Speckle Phenomena in Optics: Theory and Applications (Roberts & Co., Englewood, Colo., 2007).
  27. P. Zakharov, A. Völker, A. Buck, B. Weber, and F. Scheffold, “Quantitative modeling of laser speckle imaging,” Opt. Lett.31(23), 3465–3467 (2006).
    [CrossRef] [PubMed]
  28. A. A. Middleton and D. S. Fisher, “Discrete scatterers and autocorrelations of multiply scattered light,” Phys. Rev. B Condens. Matter43(7), 5934–5938 (1991).
    [CrossRef] [PubMed]
  29. G. Maret and P. E. Wolf, “Multiple light scattering from disordered media. The effect of brownian motion of scatterers,” Z. Phys. B Condens. Matter65(4), 409–413 (1987).
    [CrossRef]
  30. D. D. Duncan, S. J. Kirkpatrick, and R. K. Wang, “Statistics of local speckle contrast,” J. Opt. Soc. Am. A25(1), 9–15 (2008).
    [CrossRef] [PubMed]
  31. S. Prahl, “Drop-dead simple Monte Carlo codes,” retrieved May 1, 2010, http://omlc.ogi.edu/software/mc/ .
  32. R. Voelkel and K. J. Weible, “Laser beam homogenizing: limitations and constraints,” Proc. SPIE7102, 71020J, 71020J-12 (2008).
    [CrossRef]

2011 (3)

2010 (2)

D. A. Boas and A. K. Dunn, “Laser speckle contrast imaging in biomedical optics,” J. Biomed. Opt.15(1), 011109–011112 (2010).
[CrossRef] [PubMed]

A. Mazhar, D. J. Cuccia, S. Gioux, A. J. Durkin, J. V. Frangioni, and B. J. Tromberg, “Structured illumination enhances resolution and contrast in thick tissue fluorescence imaging,” J. Biomed. Opt.15(1), 010506 (2010).
[CrossRef] [PubMed]

2009 (3)

J. R. Weber, D. J. Cuccia, A. J. Durkin, and B. J. Tromberg, “Noncontact imaging of absorption and scattering in layered tissue using spatially modulated structured light,” J. Appl. Phys.105(10), 102028 (2009).
[CrossRef]

D. J. Cuccia, F. Bevilacqua, A. J. Durkin, F. R. Ayers, and B. J. Tromberg, “Quantitation and mapping of tissue optical properties using modulated imaging,” J. Biomed. Opt.14(2), 024012 (2009).
[CrossRef] [PubMed]

S. D. Konecky, A. Mazhar, D. Cuccia, A. J. Durkin, J. C. Schotland, and B. J. Tromberg, “Quantitative optical tomography of sub-surface heterogeneities using spatially modulated structured light,” Opt. Express17(17), 14780–14790 (2009).
[CrossRef] [PubMed]

2008 (2)

D. D. Duncan, S. J. Kirkpatrick, and R. K. Wang, “Statistics of local speckle contrast,” J. Opt. Soc. Am. A25(1), 9–15 (2008).
[CrossRef] [PubMed]

R. Voelkel and K. J. Weible, “Laser beam homogenizing: limitations and constraints,” Proc. SPIE7102, 71020J, 71020J-12 (2008).
[CrossRef]

2006 (1)

2005 (2)

D. J. Cuccia, F. Bevilacqua, A. J. Durkin, and B. J. Tromberg, “Modulated imaging: quantitative analysis and tomography of turbid media in the spatial-frequency domain,” Opt. Lett.30(11), 1354–1356 (2005).
[CrossRef] [PubMed]

R. Bandyopadhyay, A. S. Gittings, S. S. Suh, P. K. Dixon, and D. J. Durian, “Speckle-visibility spectroscopy: A tool to study time-varying dynamics,” Rev. Sci. Instrum.76(9), 093110–093111 (2005).
[CrossRef]

2004 (1)

B. Choi, N. M. Kang, and J. S. Nelson, “Laser speckle imaging for monitoring blood flow dynamics in the in vivo rodent dorsal skin fold model,” Microvasc. Res.68(2), 143–146 (2004).
[CrossRef] [PubMed]

1999 (1)

J. D. Briers, G. Richards, and X. W. He, “Capillary blood flow monitoring using Laser Speckle Contrast Analysis (LASCA),” J. Biomed. Opt.4(1), 164–175 (1999).
[CrossRef]

1997 (1)

1995 (1)

D. J. Durian, “Accuracy of diffusing-wave spectroscopy theories,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics51(4), 3350–3358 (1995).
[CrossRef] [PubMed]

1994 (2)

M. H. Koelink, F. F. M. de Mul, J. Greve, R. Graaff, A. C. M. Dassel, and J. G. Aarnoudse, “Laser Doppler blood flowmetry using two wavelengths: Monte Carlo simulations and measurements,” Appl. Opt.33(16), 3549–3558 (1994).
[CrossRef] [PubMed]

R. L. Dougherty, B. J. Ackerson, N. M. Reguigui, F. Dorri-Nowkoorani, and U. Nobbmann, “Correlation transfer: Development and application,” J. Quant. Spectrosc. Radiat. Transf.52(6), 713–727 (1994).
[CrossRef]

1991 (1)

A. A. Middleton and D. S. Fisher, “Discrete scatterers and autocorrelations of multiply scattered light,” Phys. Rev. B Condens. Matter43(7), 5934–5938 (1991).
[CrossRef] [PubMed]

1990 (2)

P. A. Oberg, “Laser-Doppler flowmetry,” Crit. Rev. Biomed. Eng.18(2), 125–163 (1990).
[PubMed]

D. J. Pine, D. A. Weitz, J. X. Zhu, and E. Herbolzheimer, “Diffusing-wave spectroscopy: dynamic light scattering in the multiple scattering limit,” J. Phys. (Paris)51(18), 2101–2127 (1990).
[CrossRef]

1988 (1)

D. J. Pine, D. A. Weitz, P. M. Chaikin, and E. Herbolzheimer, “Diffusing wave spectroscopy,” Phys. Rev. Lett.60(12), 1134–1137 (1988).
[CrossRef] [PubMed]

1987 (1)

G. Maret and P. E. Wolf, “Multiple light scattering from disordered media. The effect of brownian motion of scatterers,” Z. Phys. B Condens. Matter65(4), 409–413 (1987).
[CrossRef]

1981 (1)

A. F. Fercher and J. D. Briers, “Flow visualization by means of single-exposure speckle photography,” Opt. Commun.37(5), 326–330 (1981).
[CrossRef]

1980 (1)

G. E. Nilsson, T. Tenland, and P. A. Oberg, “Evaluation of a laser Doppler flowmeter for measurement of tissue blood flow,” IEEE Trans. Biomed. Eng.BME-27(10), 597–604 (1980).
[CrossRef] [PubMed]

Aarnoudse, J. G.

Ackerson, B. J.

R. L. Dougherty, B. J. Ackerson, N. M. Reguigui, F. Dorri-Nowkoorani, and U. Nobbmann, “Correlation transfer: Development and application,” J. Quant. Spectrosc. Radiat. Transf.52(6), 713–727 (1994).
[CrossRef]

Ayers, F. R.

D. J. Cuccia, F. Bevilacqua, A. J. Durkin, F. R. Ayers, and B. J. Tromberg, “Quantitation and mapping of tissue optical properties using modulated imaging,” J. Biomed. Opt.14(2), 024012 (2009).
[CrossRef] [PubMed]

Bandyopadhyay, R.

R. Bandyopadhyay, A. S. Gittings, S. S. Suh, P. K. Dixon, and D. J. Durian, “Speckle-visibility spectroscopy: A tool to study time-varying dynamics,” Rev. Sci. Instrum.76(9), 093110–093111 (2005).
[CrossRef]

Bearman, G. H.

J. R. Weber, D. J. Cuccia, W. R. Johnson, G. H. Bearman, A. J. Durkin, M. Hsu, A. Lin, D. K. Binder, D. Wilson, and B. J. Tromberg, “Multispectral imaging of tissue absorption and scattering using spatial frequency domain imaging and a computed-tomography imaging spectrometer,” J. Biomed. Opt.16(1), 011015–011017 (2011).
[CrossRef] [PubMed]

Bevilacqua, F.

D. J. Cuccia, F. Bevilacqua, A. J. Durkin, F. R. Ayers, and B. J. Tromberg, “Quantitation and mapping of tissue optical properties using modulated imaging,” J. Biomed. Opt.14(2), 024012 (2009).
[CrossRef] [PubMed]

D. J. Cuccia, F. Bevilacqua, A. J. Durkin, and B. J. Tromberg, “Modulated imaging: quantitative analysis and tomography of turbid media in the spatial-frequency domain,” Opt. Lett.30(11), 1354–1356 (2005).
[CrossRef] [PubMed]

Binder, D. K.

J. R. Weber, D. J. Cuccia, W. R. Johnson, G. H. Bearman, A. J. Durkin, M. Hsu, A. Lin, D. K. Binder, D. Wilson, and B. J. Tromberg, “Multispectral imaging of tissue absorption and scattering using spatial frequency domain imaging and a computed-tomography imaging spectrometer,” J. Biomed. Opt.16(1), 011015–011017 (2011).
[CrossRef] [PubMed]

Boas, D. A.

Briers, J. D.

J. D. Briers, G. Richards, and X. W. He, “Capillary blood flow monitoring using Laser Speckle Contrast Analysis (LASCA),” J. Biomed. Opt.4(1), 164–175 (1999).
[CrossRef]

A. F. Fercher and J. D. Briers, “Flow visualization by means of single-exposure speckle photography,” Opt. Commun.37(5), 326–330 (1981).
[CrossRef]

Buck, A.

Carp, S. A.

Chaikin, P. M.

D. J. Pine, D. A. Weitz, P. M. Chaikin, and E. Herbolzheimer, “Diffusing wave spectroscopy,” Phys. Rev. Lett.60(12), 1134–1137 (1988).
[CrossRef] [PubMed]

Choi, B.

Cuccia, D.

Cuccia, D. J.

J. R. Weber, D. J. Cuccia, W. R. Johnson, G. H. Bearman, A. J. Durkin, M. Hsu, A. Lin, D. K. Binder, D. Wilson, and B. J. Tromberg, “Multispectral imaging of tissue absorption and scattering using spatial frequency domain imaging and a computed-tomography imaging spectrometer,” J. Biomed. Opt.16(1), 011015–011017 (2011).
[CrossRef] [PubMed]

T. B. Rice, S. D. Konecky, A. Mazhar, D. J. Cuccia, A. J. Durkin, B. Choi, and B. J. Tromberg, “Quantitative determination of dynamical properties using coherent spatial frequency domain imaging,” J. Opt. Soc. Am. A28(10), 2108–2114 (2011).
[CrossRef] [PubMed]

A. Mazhar, D. J. Cuccia, T. B. Rice, S. A. Carp, A. J. Durkin, D. A. Boas, B. Choi, and B. J. Tromberg, “Laser speckle imaging in the spatial frequency domain,” Biomed. Opt. Express2(6), 1553–1563 (2011).
[CrossRef] [PubMed]

A. Mazhar, D. J. Cuccia, S. Gioux, A. J. Durkin, J. V. Frangioni, and B. J. Tromberg, “Structured illumination enhances resolution and contrast in thick tissue fluorescence imaging,” J. Biomed. Opt.15(1), 010506 (2010).
[CrossRef] [PubMed]

J. R. Weber, D. J. Cuccia, A. J. Durkin, and B. J. Tromberg, “Noncontact imaging of absorption and scattering in layered tissue using spatially modulated structured light,” J. Appl. Phys.105(10), 102028 (2009).
[CrossRef]

D. J. Cuccia, F. Bevilacqua, A. J. Durkin, F. R. Ayers, and B. J. Tromberg, “Quantitation and mapping of tissue optical properties using modulated imaging,” J. Biomed. Opt.14(2), 024012 (2009).
[CrossRef] [PubMed]

D. J. Cuccia, F. Bevilacqua, A. J. Durkin, and B. J. Tromberg, “Modulated imaging: quantitative analysis and tomography of turbid media in the spatial-frequency domain,” Opt. Lett.30(11), 1354–1356 (2005).
[CrossRef] [PubMed]

Dassel, A. C. M.

de Mul, F. F. M.

Dixon, P. K.

R. Bandyopadhyay, A. S. Gittings, S. S. Suh, P. K. Dixon, and D. J. Durian, “Speckle-visibility spectroscopy: A tool to study time-varying dynamics,” Rev. Sci. Instrum.76(9), 093110–093111 (2005).
[CrossRef]

Dorri-Nowkoorani, F.

R. L. Dougherty, B. J. Ackerson, N. M. Reguigui, F. Dorri-Nowkoorani, and U. Nobbmann, “Correlation transfer: Development and application,” J. Quant. Spectrosc. Radiat. Transf.52(6), 713–727 (1994).
[CrossRef]

Dougherty, R. L.

R. L. Dougherty, B. J. Ackerson, N. M. Reguigui, F. Dorri-Nowkoorani, and U. Nobbmann, “Correlation transfer: Development and application,” J. Quant. Spectrosc. Radiat. Transf.52(6), 713–727 (1994).
[CrossRef]

Duncan, D. D.

Dunn, A. K.

D. A. Boas and A. K. Dunn, “Laser speckle contrast imaging in biomedical optics,” J. Biomed. Opt.15(1), 011109–011112 (2010).
[CrossRef] [PubMed]

Durian, D. J.

R. Bandyopadhyay, A. S. Gittings, S. S. Suh, P. K. Dixon, and D. J. Durian, “Speckle-visibility spectroscopy: A tool to study time-varying dynamics,” Rev. Sci. Instrum.76(9), 093110–093111 (2005).
[CrossRef]

D. J. Durian, “Accuracy of diffusing-wave spectroscopy theories,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics51(4), 3350–3358 (1995).
[CrossRef] [PubMed]

Durkin, A. J.

A. Mazhar, D. J. Cuccia, T. B. Rice, S. A. Carp, A. J. Durkin, D. A. Boas, B. Choi, and B. J. Tromberg, “Laser speckle imaging in the spatial frequency domain,” Biomed. Opt. Express2(6), 1553–1563 (2011).
[CrossRef] [PubMed]

T. B. Rice, S. D. Konecky, A. Mazhar, D. J. Cuccia, A. J. Durkin, B. Choi, and B. J. Tromberg, “Quantitative determination of dynamical properties using coherent spatial frequency domain imaging,” J. Opt. Soc. Am. A28(10), 2108–2114 (2011).
[CrossRef] [PubMed]

J. R. Weber, D. J. Cuccia, W. R. Johnson, G. H. Bearman, A. J. Durkin, M. Hsu, A. Lin, D. K. Binder, D. Wilson, and B. J. Tromberg, “Multispectral imaging of tissue absorption and scattering using spatial frequency domain imaging and a computed-tomography imaging spectrometer,” J. Biomed. Opt.16(1), 011015–011017 (2011).
[CrossRef] [PubMed]

A. Mazhar, D. J. Cuccia, S. Gioux, A. J. Durkin, J. V. Frangioni, and B. J. Tromberg, “Structured illumination enhances resolution and contrast in thick tissue fluorescence imaging,” J. Biomed. Opt.15(1), 010506 (2010).
[CrossRef] [PubMed]

S. D. Konecky, A. Mazhar, D. Cuccia, A. J. Durkin, J. C. Schotland, and B. J. Tromberg, “Quantitative optical tomography of sub-surface heterogeneities using spatially modulated structured light,” Opt. Express17(17), 14780–14790 (2009).
[CrossRef] [PubMed]

J. R. Weber, D. J. Cuccia, A. J. Durkin, and B. J. Tromberg, “Noncontact imaging of absorption and scattering in layered tissue using spatially modulated structured light,” J. Appl. Phys.105(10), 102028 (2009).
[CrossRef]

D. J. Cuccia, F. Bevilacqua, A. J. Durkin, F. R. Ayers, and B. J. Tromberg, “Quantitation and mapping of tissue optical properties using modulated imaging,” J. Biomed. Opt.14(2), 024012 (2009).
[CrossRef] [PubMed]

D. J. Cuccia, F. Bevilacqua, A. J. Durkin, and B. J. Tromberg, “Modulated imaging: quantitative analysis and tomography of turbid media in the spatial-frequency domain,” Opt. Lett.30(11), 1354–1356 (2005).
[CrossRef] [PubMed]

Fercher, A. F.

A. F. Fercher and J. D. Briers, “Flow visualization by means of single-exposure speckle photography,” Opt. Commun.37(5), 326–330 (1981).
[CrossRef]

Fisher, D. S.

A. A. Middleton and D. S. Fisher, “Discrete scatterers and autocorrelations of multiply scattered light,” Phys. Rev. B Condens. Matter43(7), 5934–5938 (1991).
[CrossRef] [PubMed]

Frangioni, J. V.

A. Mazhar, D. J. Cuccia, S. Gioux, A. J. Durkin, J. V. Frangioni, and B. J. Tromberg, “Structured illumination enhances resolution and contrast in thick tissue fluorescence imaging,” J. Biomed. Opt.15(1), 010506 (2010).
[CrossRef] [PubMed]

Gioux, S.

A. Mazhar, D. J. Cuccia, S. Gioux, A. J. Durkin, J. V. Frangioni, and B. J. Tromberg, “Structured illumination enhances resolution and contrast in thick tissue fluorescence imaging,” J. Biomed. Opt.15(1), 010506 (2010).
[CrossRef] [PubMed]

Gittings, A. S.

R. Bandyopadhyay, A. S. Gittings, S. S. Suh, P. K. Dixon, and D. J. Durian, “Speckle-visibility spectroscopy: A tool to study time-varying dynamics,” Rev. Sci. Instrum.76(9), 093110–093111 (2005).
[CrossRef]

Graaff, R.

Greve, J.

He, X. W.

J. D. Briers, G. Richards, and X. W. He, “Capillary blood flow monitoring using Laser Speckle Contrast Analysis (LASCA),” J. Biomed. Opt.4(1), 164–175 (1999).
[CrossRef]

Herbolzheimer, E.

D. J. Pine, D. A. Weitz, J. X. Zhu, and E. Herbolzheimer, “Diffusing-wave spectroscopy: dynamic light scattering in the multiple scattering limit,” J. Phys. (Paris)51(18), 2101–2127 (1990).
[CrossRef]

D. J. Pine, D. A. Weitz, P. M. Chaikin, and E. Herbolzheimer, “Diffusing wave spectroscopy,” Phys. Rev. Lett.60(12), 1134–1137 (1988).
[CrossRef] [PubMed]

Hsu, M.

J. R. Weber, D. J. Cuccia, W. R. Johnson, G. H. Bearman, A. J. Durkin, M. Hsu, A. Lin, D. K. Binder, D. Wilson, and B. J. Tromberg, “Multispectral imaging of tissue absorption and scattering using spatial frequency domain imaging and a computed-tomography imaging spectrometer,” J. Biomed. Opt.16(1), 011015–011017 (2011).
[CrossRef] [PubMed]

Johnson, W. R.

J. R. Weber, D. J. Cuccia, W. R. Johnson, G. H. Bearman, A. J. Durkin, M. Hsu, A. Lin, D. K. Binder, D. Wilson, and B. J. Tromberg, “Multispectral imaging of tissue absorption and scattering using spatial frequency domain imaging and a computed-tomography imaging spectrometer,” J. Biomed. Opt.16(1), 011015–011017 (2011).
[CrossRef] [PubMed]

Kang, N. M.

B. Choi, N. M. Kang, and J. S. Nelson, “Laser speckle imaging for monitoring blood flow dynamics in the in vivo rodent dorsal skin fold model,” Microvasc. Res.68(2), 143–146 (2004).
[CrossRef] [PubMed]

Kirkpatrick, S. J.

Koelink, M. H.

Konecky, S. D.

Lin, A.

J. R. Weber, D. J. Cuccia, W. R. Johnson, G. H. Bearman, A. J. Durkin, M. Hsu, A. Lin, D. K. Binder, D. Wilson, and B. J. Tromberg, “Multispectral imaging of tissue absorption and scattering using spatial frequency domain imaging and a computed-tomography imaging spectrometer,” J. Biomed. Opt.16(1), 011015–011017 (2011).
[CrossRef] [PubMed]

Maret, G.

G. Maret and P. E. Wolf, “Multiple light scattering from disordered media. The effect of brownian motion of scatterers,” Z. Phys. B Condens. Matter65(4), 409–413 (1987).
[CrossRef]

Mazhar, A.

Middleton, A. A.

A. A. Middleton and D. S. Fisher, “Discrete scatterers and autocorrelations of multiply scattered light,” Phys. Rev. B Condens. Matter43(7), 5934–5938 (1991).
[CrossRef] [PubMed]

Nelson, J. S.

B. Choi, N. M. Kang, and J. S. Nelson, “Laser speckle imaging for monitoring blood flow dynamics in the in vivo rodent dorsal skin fold model,” Microvasc. Res.68(2), 143–146 (2004).
[CrossRef] [PubMed]

Nilsson, G. E.

G. E. Nilsson, T. Tenland, and P. A. Oberg, “Evaluation of a laser Doppler flowmeter for measurement of tissue blood flow,” IEEE Trans. Biomed. Eng.BME-27(10), 597–604 (1980).
[CrossRef] [PubMed]

Nobbmann, U.

R. L. Dougherty, B. J. Ackerson, N. M. Reguigui, F. Dorri-Nowkoorani, and U. Nobbmann, “Correlation transfer: Development and application,” J. Quant. Spectrosc. Radiat. Transf.52(6), 713–727 (1994).
[CrossRef]

Oberg, P. A.

P. A. Oberg, “Laser-Doppler flowmetry,” Crit. Rev. Biomed. Eng.18(2), 125–163 (1990).
[PubMed]

G. E. Nilsson, T. Tenland, and P. A. Oberg, “Evaluation of a laser Doppler flowmeter for measurement of tissue blood flow,” IEEE Trans. Biomed. Eng.BME-27(10), 597–604 (1980).
[CrossRef] [PubMed]

Pine, D. J.

D. J. Pine, D. A. Weitz, J. X. Zhu, and E. Herbolzheimer, “Diffusing-wave spectroscopy: dynamic light scattering in the multiple scattering limit,” J. Phys. (Paris)51(18), 2101–2127 (1990).
[CrossRef]

D. J. Pine, D. A. Weitz, P. M. Chaikin, and E. Herbolzheimer, “Diffusing wave spectroscopy,” Phys. Rev. Lett.60(12), 1134–1137 (1988).
[CrossRef] [PubMed]

Reguigui, N. M.

R. L. Dougherty, B. J. Ackerson, N. M. Reguigui, F. Dorri-Nowkoorani, and U. Nobbmann, “Correlation transfer: Development and application,” J. Quant. Spectrosc. Radiat. Transf.52(6), 713–727 (1994).
[CrossRef]

Rice, T. B.

Richards, G.

J. D. Briers, G. Richards, and X. W. He, “Capillary blood flow monitoring using Laser Speckle Contrast Analysis (LASCA),” J. Biomed. Opt.4(1), 164–175 (1999).
[CrossRef]

Scheffold, F.

Schotland, J. C.

Suh, S. S.

R. Bandyopadhyay, A. S. Gittings, S. S. Suh, P. K. Dixon, and D. J. Durian, “Speckle-visibility spectroscopy: A tool to study time-varying dynamics,” Rev. Sci. Instrum.76(9), 093110–093111 (2005).
[CrossRef]

Tenland, T.

G. E. Nilsson, T. Tenland, and P. A. Oberg, “Evaluation of a laser Doppler flowmeter for measurement of tissue blood flow,” IEEE Trans. Biomed. Eng.BME-27(10), 597–604 (1980).
[CrossRef] [PubMed]

Tromberg, B. J.

A. Mazhar, D. J. Cuccia, T. B. Rice, S. A. Carp, A. J. Durkin, D. A. Boas, B. Choi, and B. J. Tromberg, “Laser speckle imaging in the spatial frequency domain,” Biomed. Opt. Express2(6), 1553–1563 (2011).
[CrossRef] [PubMed]

T. B. Rice, S. D. Konecky, A. Mazhar, D. J. Cuccia, A. J. Durkin, B. Choi, and B. J. Tromberg, “Quantitative determination of dynamical properties using coherent spatial frequency domain imaging,” J. Opt. Soc. Am. A28(10), 2108–2114 (2011).
[CrossRef] [PubMed]

J. R. Weber, D. J. Cuccia, W. R. Johnson, G. H. Bearman, A. J. Durkin, M. Hsu, A. Lin, D. K. Binder, D. Wilson, and B. J. Tromberg, “Multispectral imaging of tissue absorption and scattering using spatial frequency domain imaging and a computed-tomography imaging spectrometer,” J. Biomed. Opt.16(1), 011015–011017 (2011).
[CrossRef] [PubMed]

A. Mazhar, D. J. Cuccia, S. Gioux, A. J. Durkin, J. V. Frangioni, and B. J. Tromberg, “Structured illumination enhances resolution and contrast in thick tissue fluorescence imaging,” J. Biomed. Opt.15(1), 010506 (2010).
[CrossRef] [PubMed]

S. D. Konecky, A. Mazhar, D. Cuccia, A. J. Durkin, J. C. Schotland, and B. J. Tromberg, “Quantitative optical tomography of sub-surface heterogeneities using spatially modulated structured light,” Opt. Express17(17), 14780–14790 (2009).
[CrossRef] [PubMed]

J. R. Weber, D. J. Cuccia, A. J. Durkin, and B. J. Tromberg, “Noncontact imaging of absorption and scattering in layered tissue using spatially modulated structured light,” J. Appl. Phys.105(10), 102028 (2009).
[CrossRef]

D. J. Cuccia, F. Bevilacqua, A. J. Durkin, F. R. Ayers, and B. J. Tromberg, “Quantitation and mapping of tissue optical properties using modulated imaging,” J. Biomed. Opt.14(2), 024012 (2009).
[CrossRef] [PubMed]

D. J. Cuccia, F. Bevilacqua, A. J. Durkin, and B. J. Tromberg, “Modulated imaging: quantitative analysis and tomography of turbid media in the spatial-frequency domain,” Opt. Lett.30(11), 1354–1356 (2005).
[CrossRef] [PubMed]

Voelkel, R.

R. Voelkel and K. J. Weible, “Laser beam homogenizing: limitations and constraints,” Proc. SPIE7102, 71020J, 71020J-12 (2008).
[CrossRef]

Völker, A.

Wang, R. K.

Weber, B.

Weber, J. R.

J. R. Weber, D. J. Cuccia, W. R. Johnson, G. H. Bearman, A. J. Durkin, M. Hsu, A. Lin, D. K. Binder, D. Wilson, and B. J. Tromberg, “Multispectral imaging of tissue absorption and scattering using spatial frequency domain imaging and a computed-tomography imaging spectrometer,” J. Biomed. Opt.16(1), 011015–011017 (2011).
[CrossRef] [PubMed]

J. R. Weber, D. J. Cuccia, A. J. Durkin, and B. J. Tromberg, “Noncontact imaging of absorption and scattering in layered tissue using spatially modulated structured light,” J. Appl. Phys.105(10), 102028 (2009).
[CrossRef]

Weible, K. J.

R. Voelkel and K. J. Weible, “Laser beam homogenizing: limitations and constraints,” Proc. SPIE7102, 71020J, 71020J-12 (2008).
[CrossRef]

Weitz, D. A.

D. J. Pine, D. A. Weitz, J. X. Zhu, and E. Herbolzheimer, “Diffusing-wave spectroscopy: dynamic light scattering in the multiple scattering limit,” J. Phys. (Paris)51(18), 2101–2127 (1990).
[CrossRef]

D. J. Pine, D. A. Weitz, P. M. Chaikin, and E. Herbolzheimer, “Diffusing wave spectroscopy,” Phys. Rev. Lett.60(12), 1134–1137 (1988).
[CrossRef] [PubMed]

Wilson, D.

J. R. Weber, D. J. Cuccia, W. R. Johnson, G. H. Bearman, A. J. Durkin, M. Hsu, A. Lin, D. K. Binder, D. Wilson, and B. J. Tromberg, “Multispectral imaging of tissue absorption and scattering using spatial frequency domain imaging and a computed-tomography imaging spectrometer,” J. Biomed. Opt.16(1), 011015–011017 (2011).
[CrossRef] [PubMed]

Wolf, P. E.

G. Maret and P. E. Wolf, “Multiple light scattering from disordered media. The effect of brownian motion of scatterers,” Z. Phys. B Condens. Matter65(4), 409–413 (1987).
[CrossRef]

Yodh, A. G.

Zakharov, P.

Zhu, J. X.

D. J. Pine, D. A. Weitz, J. X. Zhu, and E. Herbolzheimer, “Diffusing-wave spectroscopy: dynamic light scattering in the multiple scattering limit,” J. Phys. (Paris)51(18), 2101–2127 (1990).
[CrossRef]

Appl. Opt. (1)

Biomed. Opt. Express (1)

Crit. Rev. Biomed. Eng. (1)

P. A. Oberg, “Laser-Doppler flowmetry,” Crit. Rev. Biomed. Eng.18(2), 125–163 (1990).
[PubMed]

IEEE Trans. Biomed. Eng. (1)

G. E. Nilsson, T. Tenland, and P. A. Oberg, “Evaluation of a laser Doppler flowmeter for measurement of tissue blood flow,” IEEE Trans. Biomed. Eng.BME-27(10), 597–604 (1980).
[CrossRef] [PubMed]

J. Appl. Phys. (1)

J. R. Weber, D. J. Cuccia, A. J. Durkin, and B. J. Tromberg, “Noncontact imaging of absorption and scattering in layered tissue using spatially modulated structured light,” J. Appl. Phys.105(10), 102028 (2009).
[CrossRef]

J. Biomed. Opt. (5)

J. R. Weber, D. J. Cuccia, W. R. Johnson, G. H. Bearman, A. J. Durkin, M. Hsu, A. Lin, D. K. Binder, D. Wilson, and B. J. Tromberg, “Multispectral imaging of tissue absorption and scattering using spatial frequency domain imaging and a computed-tomography imaging spectrometer,” J. Biomed. Opt.16(1), 011015–011017 (2011).
[CrossRef] [PubMed]

A. Mazhar, D. J. Cuccia, S. Gioux, A. J. Durkin, J. V. Frangioni, and B. J. Tromberg, “Structured illumination enhances resolution and contrast in thick tissue fluorescence imaging,” J. Biomed. Opt.15(1), 010506 (2010).
[CrossRef] [PubMed]

D. J. Cuccia, F. Bevilacqua, A. J. Durkin, F. R. Ayers, and B. J. Tromberg, “Quantitation and mapping of tissue optical properties using modulated imaging,” J. Biomed. Opt.14(2), 024012 (2009).
[CrossRef] [PubMed]

J. D. Briers, G. Richards, and X. W. He, “Capillary blood flow monitoring using Laser Speckle Contrast Analysis (LASCA),” J. Biomed. Opt.4(1), 164–175 (1999).
[CrossRef]

D. A. Boas and A. K. Dunn, “Laser speckle contrast imaging in biomedical optics,” J. Biomed. Opt.15(1), 011109–011112 (2010).
[CrossRef] [PubMed]

J. Opt. Soc. Am. A (3)

J. Phys. (Paris) (1)

D. J. Pine, D. A. Weitz, J. X. Zhu, and E. Herbolzheimer, “Diffusing-wave spectroscopy: dynamic light scattering in the multiple scattering limit,” J. Phys. (Paris)51(18), 2101–2127 (1990).
[CrossRef]

J. Quant. Spectrosc. Radiat. Transf. (1)

R. L. Dougherty, B. J. Ackerson, N. M. Reguigui, F. Dorri-Nowkoorani, and U. Nobbmann, “Correlation transfer: Development and application,” J. Quant. Spectrosc. Radiat. Transf.52(6), 713–727 (1994).
[CrossRef]

Microvasc. Res. (1)

B. Choi, N. M. Kang, and J. S. Nelson, “Laser speckle imaging for monitoring blood flow dynamics in the in vivo rodent dorsal skin fold model,” Microvasc. Res.68(2), 143–146 (2004).
[CrossRef] [PubMed]

Opt. Commun. (1)

A. F. Fercher and J. D. Briers, “Flow visualization by means of single-exposure speckle photography,” Opt. Commun.37(5), 326–330 (1981).
[CrossRef]

Opt. Express (1)

Opt. Lett. (2)

Phys. Rev. B Condens. Matter (1)

A. A. Middleton and D. S. Fisher, “Discrete scatterers and autocorrelations of multiply scattered light,” Phys. Rev. B Condens. Matter43(7), 5934–5938 (1991).
[CrossRef] [PubMed]

Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics (1)

D. J. Durian, “Accuracy of diffusing-wave spectroscopy theories,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics51(4), 3350–3358 (1995).
[CrossRef] [PubMed]

Phys. Rev. Lett. (1)

D. J. Pine, D. A. Weitz, P. M. Chaikin, and E. Herbolzheimer, “Diffusing wave spectroscopy,” Phys. Rev. Lett.60(12), 1134–1137 (1988).
[CrossRef] [PubMed]

Proc. SPIE (1)

R. Voelkel and K. J. Weible, “Laser beam homogenizing: limitations and constraints,” Proc. SPIE7102, 71020J, 71020J-12 (2008).
[CrossRef]

Rev. Sci. Instrum. (1)

R. Bandyopadhyay, A. S. Gittings, S. S. Suh, P. K. Dixon, and D. J. Durian, “Speckle-visibility spectroscopy: A tool to study time-varying dynamics,” Rev. Sci. Instrum.76(9), 093110–093111 (2005).
[CrossRef]

Z. Phys. B Condens. Matter (1)

G. Maret and P. E. Wolf, “Multiple light scattering from disordered media. The effect of brownian motion of scatterers,” Z. Phys. B Condens. Matter65(4), 409–413 (1987).
[CrossRef]

Other (6)

S. Prahl, “Drop-dead simple Monte Carlo codes,” retrieved May 1, 2010, http://omlc.ogi.edu/software/mc/ .

J. W. Goodman, Speckle Phenomena in Optics: Theory and Applications (Roberts & Co., Englewood, Colo., 2007).

D. Cuccia, B. Tromberg, R. Frostig, and D. Abookasis, “Quantitative in vivo imaging of tissue absorption, scattering, and hemoglobin concentration in rat cortex using spatially modulated structured light,” in In vivo Optical Imaging of Brain Function, 2nd ed. (CRC Press, 2009).

B. J. Berne and R. Pecora, Dynamic Light Scattering: with Applications to Chemistry, Biology, and Physics (Dover, Mineola, NY, 2000).

R. Pecora, Dynamic Light Scattering: Applications of Photon Correlation Spectroscopy (Plenum, New York, 1985).

A. Wax and V. Backman, Biomedical Applications of Light Scattering, Biophotonics Series (McGraw-Hill, New York, 2010).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Plot of speckle contrast as a function of spatial frequency using Monte Carlo simulations. This is the “speckle contrast modulation transfer function” KMTF(f), which is applied as a spectral filter on beam profile images to predict remitted speckle contrast.

Fig. 2
Fig. 2

a) Human radial artery illuminated with a Gaussian beam. b) Arterial branch placed directly beneath the peak (left), then moved diagonally and placed underneath the Gaussian tail (right). Dark ellipses represent fiducial markers. c) Visual differences in flow index are seen between the two locations. These depend on region of interest, but can reach 13% in the high flow arterial sections. d) A profile plot taken horizontally across the image starting at the vertical center further illustrates differences.

Fig. 3
Fig. 3

(a) Intensity image for three distinct beam shapes, a Gaussian shape, output through a frosted glass diffuser, and flat top. (b) Experimental speckle contrast images computed using 7x7 neighborhoods. (c) Predicted speckle contrast using the forward cSFDI model based on the spatial frequencies of the beam shape. Note that artifacts within the beam shape are amplified due to the high pass nature of the speckle MTF. (d) (e) Effects from systematic variables such as vignetting, sliding window filter response, or low counts are shown to be negligible by direct comparison with a static object, where the speckle contrast is seen to be constant and approximately equal to β, as expected.

Fig. 4
Fig. 4

Images of mouse brain with a Gaussian beam shape (left) and flattened beam shape (right). (a) Raw images are shown where the shape of the beam is evident. (b) Flow index maps and (c) a specific ROI of super saggital sinus vessel illustrate a difference in perceived venous flow that depends on the beam shape. (d) The percentage difference between flow maps show significant variation across the field.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

K = σ I ,
K 2 = 2 β 2 T 0 T ( 1 τ T ) | G 1 ( τ ) G 1 ( 0 ) | 2 d τ .
G 1 ( τ , ρ i ) = 0 P ( Y ) exp [ k 0 2 Y Δ r 2 ( τ ) 3 ] d Y .
G 1 ( τ , f ) = 2 π 0 G 1 ( τ , ρ ) J 0 ( 2 π f ρ ) ρ d ρ .
I i m a g e = n = 0 N m = 0 M I n m e i ( 2 π f x n x + 2 π f y m y ) .
σ n m = K M T F ( | f n m | ) I n m σ i m a g e = n = 0 N m = 0 M K M T F ( | f n m | ) I n m e i ( 2 π f x n x + 2 π f y m y ) .
f b = D λ z .
x p > 1 2 f b = λ z 2 D .

Metrics