Abstract

We report on a novel fabrication approach to build multilayered optical tissue phantoms that serve as independently validated test targets for axial resolution and contrast in scattering measurements by depth-resolving optical coherent tomography (OCT) with general applicability to a variety of three-dimensional optical sectioning platforms. We implement a combinatorial bottom-up approach to prepare monolayers of light-scattering microspheres with interspersed layers of transparent polymer. A dense monolayer assembly of monodispersed microspheres is achieved via a combined methodology of polyelectrolyte multilayers (PEMs) for particle-substrate binding and convective particle flux for two-dimensional crystal array formation on a glass substrate. Modifications of key parameters in the layer-by-layer polyelectrolyte deposition approach are applied to optimize particle monolayer transfer from a glass substrate into an elastomer while preserving the relative axial positioning in the particle monolayer. Varying the dimensions of the scattering microspheres and the thickness of the intervening transparent polymer layers enables different spatial frequencies to be realized in the transverse dimension of the solid phantoms. Step-wise determination of the phantom dimensions is performed independently of the optical system under test to enable precise spatial calibration, independent validation, and quantitative dimensional measurements.

© 2012 OSA

Full Article  |  PDF Article
OSA Recommended Articles
Femtosecond laser micromachining of fused silica molds

Frédéric Madani-Grasset and Yves Bellouard
Opt. Express 18(21) 21826-21840 (2010)

Multilayer thin-film phantoms for axial contrast transfer function measurement in optical coherence tomography

Anant Agrawal, Chao-Wei Chen, Jigesh Baxi, Yu Chen, and T. Joshua Pfefer
Biomed. Opt. Express 4(7) 1166-1175 (2013)

Patterning flood illumination with microlens arrays

Ming-Hsien Wu, Kateri E. Paul, and George M. Whitesides
Appl. Opt. 41(13) 2575-2585 (2002)

References

  • View by:
  • |
  • |
  • |

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
    [Crossref] [PubMed]
  2. J. G. Fujimoto, C. Pitris, S. A. Boppart, and M. E. Brezinski, “Optical coherence tomography: an emerging technology for biomedical imaging and optical biopsy,” Neoplasia 2(1/2), 9–25 (2000).
    [Crossref] [PubMed]
  3. A. M. Zysk, F. T. Nguyen, A. L. Oldenburg, D. L. Marks, and S. A. Boppart, “Optical coherence tomography: a review of clinical development from bench to bedside,” J. Biomed. Opt. 12(5), 051403 (2007).
    [Crossref] [PubMed]
  4. P. D. Woolliams, R. A. Ferguson, C. Hart, A. Grimwood, and P. H. Tomlins, “Spatially deconvolved optical coherence tomography,” Appl. Opt. 49(11), 2014–2021 (2010).
    [Crossref] [PubMed]
  5. P. D. Woolliams and P. H. Tomlins, “Estimating the resolution of a commercial optical coherence tomography system with limited spatial sampling,” Meas. Sci. Technol. 22(6), 065502 (2011).
    [Crossref]
  6. P. D. Woolliams and P. H. Tomlins, “The modulation transfer function of an optical coherence tomography imaging system in turbid media,” Phys. Med. Biol. 56(9), 2855–2871 (2011).
    [Crossref] [PubMed]
  7. W. F. Cheong, S. A. Prahl, and A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26(12), 2166–2185 (1990).
    [Crossref]
  8. B. W. Pogue and M. S. Patterson, “Review of tissue simulating phantoms for optical spectroscopy, imaging and dosimetry,” J. Biomed. Opt. 11(4), 041102 (2006).
    [Crossref] [PubMed]
  9. R. Nordstrom, “The need for validation standards in medical imaging,” Proc. SPIE 7567, 756702, 756702-7 (2010).
    [Crossref]
  10. R. Nordstrom, “Phantoms as standards in optical measurements,” Proc. SPIE 7906, 79060H (2011).
    [Crossref]
  11. W. Drexler, U. Morgner, F. X. Kärtner, C. Pitris, S. A. Boppart, X. D. Li, E. P. Ippen, and J. G. Fujimoto, “In vivo ultrahigh-resolution optical coherence tomography,” Opt. Lett. 24(17), 1221–1223 (1999).
    [Crossref] [PubMed]
  12. R. Yadav, K. S. Lee, J. P. Rolland, J. M. Zavislan, J. V. Aquavella, and G. Yoon, “Micrometer axial resolution OCT for corneal imaging,” Biomed. Opt. Express 2(11), 3037–3046 (2011).
    [Crossref] [PubMed]
  13. J. S. Schuman, T. Pedut-Kloizman, E. Hertzmark, M. R. Hee, J. R. Wilkins, J. G. Coker, C. A. Puliafito, J. G. Fujimoto, and E. A. Swanson, “Reproducibility of nerve fiber layer thickness measurements using optical coherence tomography,” Ophthalmology 103(11), 1889–1898 (1996).
    [PubMed]
  14. O. D. Velev and S. Gupta, “Materials fabricated by micro- and nanoparticle assembly – the challenging path from science to engineering,” Adv. Mater. (Deerfield Beach Fla.) 21(19), 1897–1905 (2009).
    [Crossref]
  15. T. T. Chastek, S. D. Hudson, and V. A. Hackley, “Preparation and characterization of patchy particles,” Langmuir 24(24), 13897–13903 (2008).
    [Crossref] [PubMed]
  16. A. Sofla, E. Seker, J. P. Landers, and M. R. Begley, “PDMS–glass interface adhesion energy determined via comprehensive solutions for thin film bulge/blister tests,” J. Appl. Mech. 77(3), 031007 (2010).
    [Crossref]
  17. J. C. McDonald and G. M. Whitesides, “Poly(dimethylsiloxane) as a material for fabricating microfluidic devices,” Acc. Chem. Res. 35(7), 491–499 (2002).
    [Crossref] [PubMed]
  18. W. Burchard, M. Frank, and E. Michel, “Particularities in static and dynamic light scattering from branched polyelectrolytes in comparison to their linear analogs,” Ber. Bunsen-Ges. 100(6), 807–814 (1996).
  19. N. D. Denkov, O. D. Velev, P. A. Kralchevsky, I. B. Ivanov, H. Yoshimura, and K. Nagayama, “Two-dimensional crystallization,” Nature 361(6407), 26 (1993).
    [Crossref] [PubMed]
  20. C. M. Stafford, K. E. Roskov, T. H. Epps, and M. J. Fasolka, “Generating thickness gradients of thin polymer films via flow coating,” Rev. Sci. Instrum. 77(2), 023908 (2006).
    [Crossref]

2011 (4)

P. D. Woolliams and P. H. Tomlins, “Estimating the resolution of a commercial optical coherence tomography system with limited spatial sampling,” Meas. Sci. Technol. 22(6), 065502 (2011).
[Crossref]

P. D. Woolliams and P. H. Tomlins, “The modulation transfer function of an optical coherence tomography imaging system in turbid media,” Phys. Med. Biol. 56(9), 2855–2871 (2011).
[Crossref] [PubMed]

R. Nordstrom, “Phantoms as standards in optical measurements,” Proc. SPIE 7906, 79060H (2011).
[Crossref]

R. Yadav, K. S. Lee, J. P. Rolland, J. M. Zavislan, J. V. Aquavella, and G. Yoon, “Micrometer axial resolution OCT for corneal imaging,” Biomed. Opt. Express 2(11), 3037–3046 (2011).
[Crossref] [PubMed]

2010 (3)

A. Sofla, E. Seker, J. P. Landers, and M. R. Begley, “PDMS–glass interface adhesion energy determined via comprehensive solutions for thin film bulge/blister tests,” J. Appl. Mech. 77(3), 031007 (2010).
[Crossref]

R. Nordstrom, “The need for validation standards in medical imaging,” Proc. SPIE 7567, 756702, 756702-7 (2010).
[Crossref]

P. D. Woolliams, R. A. Ferguson, C. Hart, A. Grimwood, and P. H. Tomlins, “Spatially deconvolved optical coherence tomography,” Appl. Opt. 49(11), 2014–2021 (2010).
[Crossref] [PubMed]

2009 (1)

O. D. Velev and S. Gupta, “Materials fabricated by micro- and nanoparticle assembly – the challenging path from science to engineering,” Adv. Mater. (Deerfield Beach Fla.) 21(19), 1897–1905 (2009).
[Crossref]

2008 (1)

T. T. Chastek, S. D. Hudson, and V. A. Hackley, “Preparation and characterization of patchy particles,” Langmuir 24(24), 13897–13903 (2008).
[Crossref] [PubMed]

2007 (1)

A. M. Zysk, F. T. Nguyen, A. L. Oldenburg, D. L. Marks, and S. A. Boppart, “Optical coherence tomography: a review of clinical development from bench to bedside,” J. Biomed. Opt. 12(5), 051403 (2007).
[Crossref] [PubMed]

2006 (2)

B. W. Pogue and M. S. Patterson, “Review of tissue simulating phantoms for optical spectroscopy, imaging and dosimetry,” J. Biomed. Opt. 11(4), 041102 (2006).
[Crossref] [PubMed]

C. M. Stafford, K. E. Roskov, T. H. Epps, and M. J. Fasolka, “Generating thickness gradients of thin polymer films via flow coating,” Rev. Sci. Instrum. 77(2), 023908 (2006).
[Crossref]

2002 (1)

J. C. McDonald and G. M. Whitesides, “Poly(dimethylsiloxane) as a material for fabricating microfluidic devices,” Acc. Chem. Res. 35(7), 491–499 (2002).
[Crossref] [PubMed]

2000 (1)

J. G. Fujimoto, C. Pitris, S. A. Boppart, and M. E. Brezinski, “Optical coherence tomography: an emerging technology for biomedical imaging and optical biopsy,” Neoplasia 2(1/2), 9–25 (2000).
[Crossref] [PubMed]

1999 (1)

1996 (2)

J. S. Schuman, T. Pedut-Kloizman, E. Hertzmark, M. R. Hee, J. R. Wilkins, J. G. Coker, C. A. Puliafito, J. G. Fujimoto, and E. A. Swanson, “Reproducibility of nerve fiber layer thickness measurements using optical coherence tomography,” Ophthalmology 103(11), 1889–1898 (1996).
[PubMed]

W. Burchard, M. Frank, and E. Michel, “Particularities in static and dynamic light scattering from branched polyelectrolytes in comparison to their linear analogs,” Ber. Bunsen-Ges. 100(6), 807–814 (1996).

1993 (1)

N. D. Denkov, O. D. Velev, P. A. Kralchevsky, I. B. Ivanov, H. Yoshimura, and K. Nagayama, “Two-dimensional crystallization,” Nature 361(6407), 26 (1993).
[Crossref] [PubMed]

1991 (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

1990 (1)

W. F. Cheong, S. A. Prahl, and A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26(12), 2166–2185 (1990).
[Crossref]

Aquavella, J. V.

Begley, M. R.

A. Sofla, E. Seker, J. P. Landers, and M. R. Begley, “PDMS–glass interface adhesion energy determined via comprehensive solutions for thin film bulge/blister tests,” J. Appl. Mech. 77(3), 031007 (2010).
[Crossref]

Boppart, S. A.

A. M. Zysk, F. T. Nguyen, A. L. Oldenburg, D. L. Marks, and S. A. Boppart, “Optical coherence tomography: a review of clinical development from bench to bedside,” J. Biomed. Opt. 12(5), 051403 (2007).
[Crossref] [PubMed]

J. G. Fujimoto, C. Pitris, S. A. Boppart, and M. E. Brezinski, “Optical coherence tomography: an emerging technology for biomedical imaging and optical biopsy,” Neoplasia 2(1/2), 9–25 (2000).
[Crossref] [PubMed]

W. Drexler, U. Morgner, F. X. Kärtner, C. Pitris, S. A. Boppart, X. D. Li, E. P. Ippen, and J. G. Fujimoto, “In vivo ultrahigh-resolution optical coherence tomography,” Opt. Lett. 24(17), 1221–1223 (1999).
[Crossref] [PubMed]

Brezinski, M. E.

J. G. Fujimoto, C. Pitris, S. A. Boppart, and M. E. Brezinski, “Optical coherence tomography: an emerging technology for biomedical imaging and optical biopsy,” Neoplasia 2(1/2), 9–25 (2000).
[Crossref] [PubMed]

Burchard, W.

W. Burchard, M. Frank, and E. Michel, “Particularities in static and dynamic light scattering from branched polyelectrolytes in comparison to their linear analogs,” Ber. Bunsen-Ges. 100(6), 807–814 (1996).

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Chastek, T. T.

T. T. Chastek, S. D. Hudson, and V. A. Hackley, “Preparation and characterization of patchy particles,” Langmuir 24(24), 13897–13903 (2008).
[Crossref] [PubMed]

Cheong, W. F.

W. F. Cheong, S. A. Prahl, and A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26(12), 2166–2185 (1990).
[Crossref]

Coker, J. G.

J. S. Schuman, T. Pedut-Kloizman, E. Hertzmark, M. R. Hee, J. R. Wilkins, J. G. Coker, C. A. Puliafito, J. G. Fujimoto, and E. A. Swanson, “Reproducibility of nerve fiber layer thickness measurements using optical coherence tomography,” Ophthalmology 103(11), 1889–1898 (1996).
[PubMed]

Denkov, N. D.

N. D. Denkov, O. D. Velev, P. A. Kralchevsky, I. B. Ivanov, H. Yoshimura, and K. Nagayama, “Two-dimensional crystallization,” Nature 361(6407), 26 (1993).
[Crossref] [PubMed]

Drexler, W.

Epps, T. H.

C. M. Stafford, K. E. Roskov, T. H. Epps, and M. J. Fasolka, “Generating thickness gradients of thin polymer films via flow coating,” Rev. Sci. Instrum. 77(2), 023908 (2006).
[Crossref]

Fasolka, M. J.

C. M. Stafford, K. E. Roskov, T. H. Epps, and M. J. Fasolka, “Generating thickness gradients of thin polymer films via flow coating,” Rev. Sci. Instrum. 77(2), 023908 (2006).
[Crossref]

Ferguson, R. A.

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Frank, M.

W. Burchard, M. Frank, and E. Michel, “Particularities in static and dynamic light scattering from branched polyelectrolytes in comparison to their linear analogs,” Ber. Bunsen-Ges. 100(6), 807–814 (1996).

Fujimoto, J. G.

J. G. Fujimoto, C. Pitris, S. A. Boppart, and M. E. Brezinski, “Optical coherence tomography: an emerging technology for biomedical imaging and optical biopsy,” Neoplasia 2(1/2), 9–25 (2000).
[Crossref] [PubMed]

W. Drexler, U. Morgner, F. X. Kärtner, C. Pitris, S. A. Boppart, X. D. Li, E. P. Ippen, and J. G. Fujimoto, “In vivo ultrahigh-resolution optical coherence tomography,” Opt. Lett. 24(17), 1221–1223 (1999).
[Crossref] [PubMed]

J. S. Schuman, T. Pedut-Kloizman, E. Hertzmark, M. R. Hee, J. R. Wilkins, J. G. Coker, C. A. Puliafito, J. G. Fujimoto, and E. A. Swanson, “Reproducibility of nerve fiber layer thickness measurements using optical coherence tomography,” Ophthalmology 103(11), 1889–1898 (1996).
[PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Grimwood, A.

Gupta, S.

O. D. Velev and S. Gupta, “Materials fabricated by micro- and nanoparticle assembly – the challenging path from science to engineering,” Adv. Mater. (Deerfield Beach Fla.) 21(19), 1897–1905 (2009).
[Crossref]

Hackley, V. A.

T. T. Chastek, S. D. Hudson, and V. A. Hackley, “Preparation and characterization of patchy particles,” Langmuir 24(24), 13897–13903 (2008).
[Crossref] [PubMed]

Hart, C.

Hee, M. R.

J. S. Schuman, T. Pedut-Kloizman, E. Hertzmark, M. R. Hee, J. R. Wilkins, J. G. Coker, C. A. Puliafito, J. G. Fujimoto, and E. A. Swanson, “Reproducibility of nerve fiber layer thickness measurements using optical coherence tomography,” Ophthalmology 103(11), 1889–1898 (1996).
[PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Hertzmark, E.

J. S. Schuman, T. Pedut-Kloizman, E. Hertzmark, M. R. Hee, J. R. Wilkins, J. G. Coker, C. A. Puliafito, J. G. Fujimoto, and E. A. Swanson, “Reproducibility of nerve fiber layer thickness measurements using optical coherence tomography,” Ophthalmology 103(11), 1889–1898 (1996).
[PubMed]

Huang, D.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Hudson, S. D.

T. T. Chastek, S. D. Hudson, and V. A. Hackley, “Preparation and characterization of patchy particles,” Langmuir 24(24), 13897–13903 (2008).
[Crossref] [PubMed]

Ippen, E. P.

Ivanov, I. B.

N. D. Denkov, O. D. Velev, P. A. Kralchevsky, I. B. Ivanov, H. Yoshimura, and K. Nagayama, “Two-dimensional crystallization,” Nature 361(6407), 26 (1993).
[Crossref] [PubMed]

Kärtner, F. X.

Kralchevsky, P. A.

N. D. Denkov, O. D. Velev, P. A. Kralchevsky, I. B. Ivanov, H. Yoshimura, and K. Nagayama, “Two-dimensional crystallization,” Nature 361(6407), 26 (1993).
[Crossref] [PubMed]

Landers, J. P.

A. Sofla, E. Seker, J. P. Landers, and M. R. Begley, “PDMS–glass interface adhesion energy determined via comprehensive solutions for thin film bulge/blister tests,” J. Appl. Mech. 77(3), 031007 (2010).
[Crossref]

Lee, K. S.

Li, X. D.

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Marks, D. L.

A. M. Zysk, F. T. Nguyen, A. L. Oldenburg, D. L. Marks, and S. A. Boppart, “Optical coherence tomography: a review of clinical development from bench to bedside,” J. Biomed. Opt. 12(5), 051403 (2007).
[Crossref] [PubMed]

McDonald, J. C.

J. C. McDonald and G. M. Whitesides, “Poly(dimethylsiloxane) as a material for fabricating microfluidic devices,” Acc. Chem. Res. 35(7), 491–499 (2002).
[Crossref] [PubMed]

Michel, E.

W. Burchard, M. Frank, and E. Michel, “Particularities in static and dynamic light scattering from branched polyelectrolytes in comparison to their linear analogs,” Ber. Bunsen-Ges. 100(6), 807–814 (1996).

Morgner, U.

Nagayama, K.

N. D. Denkov, O. D. Velev, P. A. Kralchevsky, I. B. Ivanov, H. Yoshimura, and K. Nagayama, “Two-dimensional crystallization,” Nature 361(6407), 26 (1993).
[Crossref] [PubMed]

Nguyen, F. T.

A. M. Zysk, F. T. Nguyen, A. L. Oldenburg, D. L. Marks, and S. A. Boppart, “Optical coherence tomography: a review of clinical development from bench to bedside,” J. Biomed. Opt. 12(5), 051403 (2007).
[Crossref] [PubMed]

Nordstrom, R.

R. Nordstrom, “Phantoms as standards in optical measurements,” Proc. SPIE 7906, 79060H (2011).
[Crossref]

R. Nordstrom, “The need for validation standards in medical imaging,” Proc. SPIE 7567, 756702, 756702-7 (2010).
[Crossref]

Oldenburg, A. L.

A. M. Zysk, F. T. Nguyen, A. L. Oldenburg, D. L. Marks, and S. A. Boppart, “Optical coherence tomography: a review of clinical development from bench to bedside,” J. Biomed. Opt. 12(5), 051403 (2007).
[Crossref] [PubMed]

Patterson, M. S.

B. W. Pogue and M. S. Patterson, “Review of tissue simulating phantoms for optical spectroscopy, imaging and dosimetry,” J. Biomed. Opt. 11(4), 041102 (2006).
[Crossref] [PubMed]

Pedut-Kloizman, T.

J. S. Schuman, T. Pedut-Kloizman, E. Hertzmark, M. R. Hee, J. R. Wilkins, J. G. Coker, C. A. Puliafito, J. G. Fujimoto, and E. A. Swanson, “Reproducibility of nerve fiber layer thickness measurements using optical coherence tomography,” Ophthalmology 103(11), 1889–1898 (1996).
[PubMed]

Pitris, C.

J. G. Fujimoto, C. Pitris, S. A. Boppart, and M. E. Brezinski, “Optical coherence tomography: an emerging technology for biomedical imaging and optical biopsy,” Neoplasia 2(1/2), 9–25 (2000).
[Crossref] [PubMed]

W. Drexler, U. Morgner, F. X. Kärtner, C. Pitris, S. A. Boppart, X. D. Li, E. P. Ippen, and J. G. Fujimoto, “In vivo ultrahigh-resolution optical coherence tomography,” Opt. Lett. 24(17), 1221–1223 (1999).
[Crossref] [PubMed]

Pogue, B. W.

B. W. Pogue and M. S. Patterson, “Review of tissue simulating phantoms for optical spectroscopy, imaging and dosimetry,” J. Biomed. Opt. 11(4), 041102 (2006).
[Crossref] [PubMed]

Prahl, S. A.

W. F. Cheong, S. A. Prahl, and A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26(12), 2166–2185 (1990).
[Crossref]

Puliafito, C. A.

J. S. Schuman, T. Pedut-Kloizman, E. Hertzmark, M. R. Hee, J. R. Wilkins, J. G. Coker, C. A. Puliafito, J. G. Fujimoto, and E. A. Swanson, “Reproducibility of nerve fiber layer thickness measurements using optical coherence tomography,” Ophthalmology 103(11), 1889–1898 (1996).
[PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Rolland, J. P.

Roskov, K. E.

C. M. Stafford, K. E. Roskov, T. H. Epps, and M. J. Fasolka, “Generating thickness gradients of thin polymer films via flow coating,” Rev. Sci. Instrum. 77(2), 023908 (2006).
[Crossref]

Schuman, J. S.

J. S. Schuman, T. Pedut-Kloizman, E. Hertzmark, M. R. Hee, J. R. Wilkins, J. G. Coker, C. A. Puliafito, J. G. Fujimoto, and E. A. Swanson, “Reproducibility of nerve fiber layer thickness measurements using optical coherence tomography,” Ophthalmology 103(11), 1889–1898 (1996).
[PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Seker, E.

A. Sofla, E. Seker, J. P. Landers, and M. R. Begley, “PDMS–glass interface adhesion energy determined via comprehensive solutions for thin film bulge/blister tests,” J. Appl. Mech. 77(3), 031007 (2010).
[Crossref]

Sofla, A.

A. Sofla, E. Seker, J. P. Landers, and M. R. Begley, “PDMS–glass interface adhesion energy determined via comprehensive solutions for thin film bulge/blister tests,” J. Appl. Mech. 77(3), 031007 (2010).
[Crossref]

Stafford, C. M.

C. M. Stafford, K. E. Roskov, T. H. Epps, and M. J. Fasolka, “Generating thickness gradients of thin polymer films via flow coating,” Rev. Sci. Instrum. 77(2), 023908 (2006).
[Crossref]

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Swanson, E. A.

J. S. Schuman, T. Pedut-Kloizman, E. Hertzmark, M. R. Hee, J. R. Wilkins, J. G. Coker, C. A. Puliafito, J. G. Fujimoto, and E. A. Swanson, “Reproducibility of nerve fiber layer thickness measurements using optical coherence tomography,” Ophthalmology 103(11), 1889–1898 (1996).
[PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Tomlins, P. H.

P. D. Woolliams and P. H. Tomlins, “The modulation transfer function of an optical coherence tomography imaging system in turbid media,” Phys. Med. Biol. 56(9), 2855–2871 (2011).
[Crossref] [PubMed]

P. D. Woolliams and P. H. Tomlins, “Estimating the resolution of a commercial optical coherence tomography system with limited spatial sampling,” Meas. Sci. Technol. 22(6), 065502 (2011).
[Crossref]

P. D. Woolliams, R. A. Ferguson, C. Hart, A. Grimwood, and P. H. Tomlins, “Spatially deconvolved optical coherence tomography,” Appl. Opt. 49(11), 2014–2021 (2010).
[Crossref] [PubMed]

Velev, O. D.

O. D. Velev and S. Gupta, “Materials fabricated by micro- and nanoparticle assembly – the challenging path from science to engineering,” Adv. Mater. (Deerfield Beach Fla.) 21(19), 1897–1905 (2009).
[Crossref]

N. D. Denkov, O. D. Velev, P. A. Kralchevsky, I. B. Ivanov, H. Yoshimura, and K. Nagayama, “Two-dimensional crystallization,” Nature 361(6407), 26 (1993).
[Crossref] [PubMed]

Welch, A. J.

W. F. Cheong, S. A. Prahl, and A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26(12), 2166–2185 (1990).
[Crossref]

Whitesides, G. M.

J. C. McDonald and G. M. Whitesides, “Poly(dimethylsiloxane) as a material for fabricating microfluidic devices,” Acc. Chem. Res. 35(7), 491–499 (2002).
[Crossref] [PubMed]

Wilkins, J. R.

J. S. Schuman, T. Pedut-Kloizman, E. Hertzmark, M. R. Hee, J. R. Wilkins, J. G. Coker, C. A. Puliafito, J. G. Fujimoto, and E. A. Swanson, “Reproducibility of nerve fiber layer thickness measurements using optical coherence tomography,” Ophthalmology 103(11), 1889–1898 (1996).
[PubMed]

Woolliams, P. D.

P. D. Woolliams and P. H. Tomlins, “Estimating the resolution of a commercial optical coherence tomography system with limited spatial sampling,” Meas. Sci. Technol. 22(6), 065502 (2011).
[Crossref]

P. D. Woolliams and P. H. Tomlins, “The modulation transfer function of an optical coherence tomography imaging system in turbid media,” Phys. Med. Biol. 56(9), 2855–2871 (2011).
[Crossref] [PubMed]

P. D. Woolliams, R. A. Ferguson, C. Hart, A. Grimwood, and P. H. Tomlins, “Spatially deconvolved optical coherence tomography,” Appl. Opt. 49(11), 2014–2021 (2010).
[Crossref] [PubMed]

Yadav, R.

Yoon, G.

Yoshimura, H.

N. D. Denkov, O. D. Velev, P. A. Kralchevsky, I. B. Ivanov, H. Yoshimura, and K. Nagayama, “Two-dimensional crystallization,” Nature 361(6407), 26 (1993).
[Crossref] [PubMed]

Zavislan, J. M.

Zysk, A. M.

A. M. Zysk, F. T. Nguyen, A. L. Oldenburg, D. L. Marks, and S. A. Boppart, “Optical coherence tomography: a review of clinical development from bench to bedside,” J. Biomed. Opt. 12(5), 051403 (2007).
[Crossref] [PubMed]

Acc. Chem. Res. (1)

J. C. McDonald and G. M. Whitesides, “Poly(dimethylsiloxane) as a material for fabricating microfluidic devices,” Acc. Chem. Res. 35(7), 491–499 (2002).
[Crossref] [PubMed]

Adv. Mater. (Deerfield Beach Fla.) (1)

O. D. Velev and S. Gupta, “Materials fabricated by micro- and nanoparticle assembly – the challenging path from science to engineering,” Adv. Mater. (Deerfield Beach Fla.) 21(19), 1897–1905 (2009).
[Crossref]

Appl. Opt. (1)

Ber. Bunsen-Ges. (1)

W. Burchard, M. Frank, and E. Michel, “Particularities in static and dynamic light scattering from branched polyelectrolytes in comparison to their linear analogs,” Ber. Bunsen-Ges. 100(6), 807–814 (1996).

Biomed. Opt. Express (1)

IEEE J. Quantum Electron. (1)

W. F. Cheong, S. A. Prahl, and A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26(12), 2166–2185 (1990).
[Crossref]

J. Appl. Mech. (1)

A. Sofla, E. Seker, J. P. Landers, and M. R. Begley, “PDMS–glass interface adhesion energy determined via comprehensive solutions for thin film bulge/blister tests,” J. Appl. Mech. 77(3), 031007 (2010).
[Crossref]

J. Biomed. Opt. (2)

B. W. Pogue and M. S. Patterson, “Review of tissue simulating phantoms for optical spectroscopy, imaging and dosimetry,” J. Biomed. Opt. 11(4), 041102 (2006).
[Crossref] [PubMed]

A. M. Zysk, F. T. Nguyen, A. L. Oldenburg, D. L. Marks, and S. A. Boppart, “Optical coherence tomography: a review of clinical development from bench to bedside,” J. Biomed. Opt. 12(5), 051403 (2007).
[Crossref] [PubMed]

Langmuir (1)

T. T. Chastek, S. D. Hudson, and V. A. Hackley, “Preparation and characterization of patchy particles,” Langmuir 24(24), 13897–13903 (2008).
[Crossref] [PubMed]

Meas. Sci. Technol. (1)

P. D. Woolliams and P. H. Tomlins, “Estimating the resolution of a commercial optical coherence tomography system with limited spatial sampling,” Meas. Sci. Technol. 22(6), 065502 (2011).
[Crossref]

Nature (1)

N. D. Denkov, O. D. Velev, P. A. Kralchevsky, I. B. Ivanov, H. Yoshimura, and K. Nagayama, “Two-dimensional crystallization,” Nature 361(6407), 26 (1993).
[Crossref] [PubMed]

Neoplasia (1)

J. G. Fujimoto, C. Pitris, S. A. Boppart, and M. E. Brezinski, “Optical coherence tomography: an emerging technology for biomedical imaging and optical biopsy,” Neoplasia 2(1/2), 9–25 (2000).
[Crossref] [PubMed]

Ophthalmology (1)

J. S. Schuman, T. Pedut-Kloizman, E. Hertzmark, M. R. Hee, J. R. Wilkins, J. G. Coker, C. A. Puliafito, J. G. Fujimoto, and E. A. Swanson, “Reproducibility of nerve fiber layer thickness measurements using optical coherence tomography,” Ophthalmology 103(11), 1889–1898 (1996).
[PubMed]

Opt. Lett. (1)

Phys. Med. Biol. (1)

P. D. Woolliams and P. H. Tomlins, “The modulation transfer function of an optical coherence tomography imaging system in turbid media,” Phys. Med. Biol. 56(9), 2855–2871 (2011).
[Crossref] [PubMed]

Proc. SPIE (2)

R. Nordstrom, “The need for validation standards in medical imaging,” Proc. SPIE 7567, 756702, 756702-7 (2010).
[Crossref]

R. Nordstrom, “Phantoms as standards in optical measurements,” Proc. SPIE 7906, 79060H (2011).
[Crossref]

Rev. Sci. Instrum. (1)

C. M. Stafford, K. E. Roskov, T. H. Epps, and M. J. Fasolka, “Generating thickness gradients of thin polymer films via flow coating,” Rev. Sci. Instrum. 77(2), 023908 (2006).
[Crossref]

Science (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Procedure for dip-coating bilayers of polyelectrolytes

Fig. 2
Fig. 2

Convective particle flux via induced evaporation on a pre-heated PEM-modified substrate

Fig. 3
Fig. 3

Step-wise schematic for multilayered phantom fabrication approach. Step 1: flow coat PS microspheres onto glass substrates modified with 3.5 polyelectrolyte bilayers; Step 2: cast ~1 mm thickness PDMS base on glass substrate with PS microspheres and delaminate PS microspheres/polymer construct from glass substrate to transfer particles to polymer surface (top surface of PS microspheres exposed to illustrate monodispersed distribution); Step 3: flow coat intervening layer of polymer onto first PS/polymer construct; allow to cure and cap with other construct.

Fig. 4
Fig. 4

Brightfield optical images of PS microspheres. (A) 2.0 mol/L NaCl polyelectrolyte salt concentration at room temperature showed nonplanar sporadic clustering typified by bright microspheres with dark halo formation positioned at variable focal distances. (B) 1.0 mol/L NaCl polyelectrolyte salt concentration at room temperature showed no clustering and closer particle packing. (C) 1.0 mol/L NaCl at a temperature of 70°C inducing convective flux showed no clustering with hexagonal particle packing. The size of images is 65 μm x 70 μm.

Fig. 5
Fig. 5

XZ-scanned confocal reflectance images of 2 μm PS microspheres. Comparison of molar salt concentrations of polyelectrolyte solution and effect on particle transfer yield in polymer.

Fig. 6
Fig. 6

Variants of microsphere axial distributions within polymer

Fig. 7
Fig. 7

Surface profilometry of PS-embedded elastomer constructs. Five constructs were fabricated for each experimental group with surface profile sampling at four randomly selected regions. Contour plots shown were 1.50 mm x 1.10 mm in size. Traces for the height measurements or XZ profiles representing samples with maximum total deviation from flat surface are provided in the Supplemental Information. (A) A contour plot and corresponding height measurement for embedded 5 μm diameter PS microspheres in 2.0 mol/L NaCl polyelectrolyte solvent showed presence of buried aggregates leading to localized bowing of the elastomeric material. (B) Lower polyelectrolyte solvent concentration increasing charged PS-PEM interactions resulting in greater number of surface particle protrusions. (C) Modified experimental condition of pre-heating substrate to initiate convective particle flux flattened profile. (D) 10 μm embedded PS microspheres for particle size comparison showing similar profile flattening.

Fig. 8
Fig. 8

6 mm x 6 mm wide rectangular OCT scan of multilayered phantom constructs with 100 linear B-scans at 1000 A-scans per B-scan for 3 μm and 2 μm scattering PS particles. The scattering and intervening transparent layer thicknesses were validated with confocal microscopy and surface profilometry, respectively. (A, C) Representative OCT cross-sectional B-scans with accompanying axial profiles in (B, D) respectively are plotted as an average sampling of 50 A-scans along lateral extent of phantom to minimize effect of bending of phantom sample on the mean axial intensity measurement. The axial distance between two layers was calibrated from the sample in (B) by equating the peak-to-peak axial pixel separation between the particle monolayers to the transparent intervening layer thickness of 4.2 μm measured by surface profilometry. The OCT measured axial distance of 3.3 μm between two scattering monolayers in (D) was in statistical agreement with the result, 3.1 μm ± 0.2 μm, validated independently by surface profilometry. (E-F) 3D OCT image reconstructions highlight the separation between particle monolayers extending to the entire field of view of 500 μm x 500 μm.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

κ 1 = ( 4π N A L b C p 1 ξ ) 0.5
L b = e 2 4πεkT
κ 2 c+2 z s 2 c s
L p = L 2 ( C +1 )
ξ= L b b
R OCT = l c 2 0.44 λ 0 2 Δλ

Metrics