Abstract

We present a comparison of corneal biometric values from dense volumetric spectral domain optical coherence tomography (SDOCT) scans to reference values in both phantoms and clinical subjects. We also present a new optically based “keratometric equivalent power” formula for SDOCT that eliminates previously described discrepancies between corneal power form SDOCT and existing clinical modalities. Phantom objects of varying radii of curvature and corneas of normal subjects were imaged with a clinical SDOCT system. The optically corrected three-dimensional surfaces were used to recover radii of curvature and power as appropriate. These were then compared to the manufacturer’s reference values in phantoms and to measurements from topography and Scheimpflug photography in subjects. In phantom objects, paired differences between SDOCT and reference values for radii of curvature were not statistically significant. In subjects, there were no significant paired differences between SDOCT and reference values from the other modalities for anterior radius and corneal keratometric power. In contrast to other studies, we found that dense volumetric scans with available SDOCT can be used to recover corneal biometric values—including power—that correspond well with existing clinical measurements.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Olsen, “On the calculation of power from curvature of the cornea,” Br. J. Ophthalmol.70(2), 152–154 (1986).
    [CrossRef] [PubMed]
  2. E. Hecht, Optics (Addison Wesley, New York, NY, 2002).
  3. J. Schwiegerling, Field Guide to Visual and Ophthalmic Optics (SPIE Press, Bellingham, WA, 2004).
  4. B. Seitz, A. Langenbucher, N. X. Nguyen, M. M. Kus, and M. Küchle, “Underestimation of intraocular lens power for cataract surgery after myopic photorefractive keratectomy,” Ophthalmology106(4), 693–702 (1999).
    [CrossRef] [PubMed]
  5. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
    [CrossRef] [PubMed]
  6. E. A. Swanson, J. A. Izatt, M. R. Hee, D. Huang, C. P. Lin, J. S. Schuman, C. A. Puliafito, and J. G. Fujimoto, “In vivo retinal imaging by optical coherence tomography,” Opt. Lett.18(21), 1864–1866 (1993).
    [CrossRef] [PubMed]
  7. J. A. Izatt, M. R. Hee, E. A. Swanson, C. P. Lin, D. Huang, J. S. Schuman, C. A. Puliafito, and J. G. Fujimoto, “Micrometer-scale resolution imaging of the anterior eye in vivo with optical coherence tomography,” Arch. Ophthalmol.112(12), 1584–1589 (1994).
    [CrossRef] [PubMed]
  8. M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, “In vivo human retinal imaging by Fourier domain optical coherence tomography,” J. Biomed. Opt.7(3), 457–463 (2002).
    [CrossRef] [PubMed]
  9. K. Bizheva, N. Hutchings, L. Sorbara, A. A. Moayed, and T. Simpson, “In vivo volumetric imaging of the human corneo-scleral limbus with spectral domain OCT,” Biomed. Opt. Express2(7), 1794–1802 (2011).
    [CrossRef] [PubMed]
  10. M. L. Gabriele, G. Wollstein, H. Ishikawa, L. Kagemann, J. Xu, L. S. Folio, and J. S. Schuman, “Optical coherence tomography: history, current status, and laboratory work,” Invest. Ophthalmol. Vis. Sci.52(5), 2425–2436 (2011).
    [CrossRef] [PubMed]
  11. M. Tang, Y. Li, M. Avila, and D. Huang, “Measuring total corneal power before and after laser in situ keratomileusis with high-speed optical coherence tomography,” J. Cataract Refract. Surg.32(11), 1843–1850 (2006).
    [CrossRef] [PubMed]
  12. M. Tang, A. Chen, Y. Li, and D. Huang, “Corneal power measurement with Fourier-domain optical coherence tomography,” J. Cataract Refract. Surg.36(12), 2115–2122 (2010).
    [CrossRef] [PubMed]
  13. M. Gora, K. Karnowski, M. Szkulmowski, B. J. Kaluzny, R. Huber, A. Kowalczyk, and M. Wojtkowski, “Ultra high-speed swept source OCT imaging of the anterior segment of human eye at 200 kHz with adjustable imaging range,” Opt. Express17(17), 14880–14894 (2009).
    [CrossRef] [PubMed]
  14. K. Karnowski, B. J. Kaluzny, M. Szkulmowski, M. Gora, and M. Wojtkowski, “Corneal topography with high-speed swept source OCT in clinical examination,” Biomed. Opt. Express2(9), 2709–2720 (2011).
    [CrossRef] [PubMed]
  15. F. LaRocca, S. J. Chiu, R. P. McNabb, A. N. Kuo, J. A. Izatt, and S. Farsiu, “Robust automatic segmentation of corneal layer boundaries in SDOCT images using graph theory and dynamic programming,” Biomed. Opt. Express2(6), 1524–1538 (2011).
    [CrossRef] [PubMed]
  16. M. Zhao, A. N. Kuo, and J. A. Izatt, “3D refraction correction and extraction of clinical parameters from spectral domain optical coherence tomography of the cornea,” Opt. Express18(9), 8923–8936 (2010).
    [CrossRef] [PubMed]
  17. S. Ortiz, D. Siedlecki, I. Grulkowski, L. Remon, D. Pascual, M. Wojtkowski, and S. Marcos, “Optical distortion correction in optical coherence tomography for quantitative ocular anterior segment by three-dimensional imaging,” Opt. Express18(3), 2782–2796 (2010).
    [CrossRef] [PubMed]
  18. R. C. Lin, M. A. Shure, A. M. Rollins, J. A. Izatt, and D. Huang, “Group index of the human cornea at 1.3-microm wavelength obtained in vitro by optical coherence domain reflectometry,” Opt. Lett.29(1), 83–85 (2004).
    [CrossRef] [PubMed]
  19. D. Malacara and Z. Malacara, Handbook of Optical Design (Marcel Dekker, New York, NY, 2004).
  20. V. A. Sicam, M. Dubbelman, and R. G. van der Heijde, “Spherical aberration of the anterior and posterior surfaces of the human cornea,” J. Opt. Soc. Am. A23(3), 544–549 (2006).
    [CrossRef] [PubMed]
  21. D. A. Atchison and G. Smith, Optics of the Human Eye (Butterworth-Heinemann, Boston, MA, 2002).
  22. N. E. Norrby, “Unfortunate discrepancies,” J. Cataract Refract. Surg.24(4), 433–434 (1998).
    [PubMed]
  23. F. A. Jenkins and H. E. White, Fundamentals of Optics (McGraw-Hill, New York, NY, 1950).
  24. J. M. Bland and D. G. Altman, “Statistical methods for assessing agreement between two methods of clinical measurement,” Lancet327(8476), 307–310 (1986).
    [CrossRef] [PubMed]
  25. B. Efron and R. J. Tibshirani, An Introduction to the Bootstrap (Chapman & Hall/CRC, Washington, D.C., 1993).
  26. L. Wang, A. M. Mahmoud, B. L. Anderson, D. D. Koch, and C. J. Roberts, “Total corneal power estimation: ray tracing method versus gaussian optics formula,” Invest. Ophthalmol. Vis. Sci.52(3), 1716–1722 (2011).
    [CrossRef] [PubMed]
  27. J. D. Ho, C. Y. Tsai, R. J. Tsai, L. L. Kuo, I. L. Tsai, and S. W. Liou, “Validity of the keratometric index: evaluation by the Pentacam rotating Scheimpflug camera,” J. Cataract Refract. Surg.34(1), 137–145 (2008).
    [CrossRef] [PubMed]
  28. J. T. Holladay, W. E. Hill, and A. Steinmueller, “Corneal power measurements using scheimpflug imaging in eyes with prior corneal refractive surgery,” J. Refract. Surg.25(10), 862–868 (2009).
    [CrossRef] [PubMed]
  29. M. Dubbelman, H. A. Weeber, R. G. van der Heijde, and H. J. Völker-Dieben, “Radius and asphericity of the posterior corneal surface determined by corrected Scheimpflug photography,” Acta Ophthalmol. Scand.80(4), 379–383 (2002).
    [CrossRef] [PubMed]
  30. J. M. Royston, M. C. Dunne, and D. A. Barnes, “Measurement of the posterior corneal radius using slit lamp and Purkinje image techniques,” Ophthalmic Physiol. Opt.10(4), 385–388 (1990).
    [CrossRef] [PubMed]
  31. R. F. Lowe and B. A. Clark, “Posterior corneal curvature. Correlations in normal eyes and in eyes involved with primary angle-closure glaucoma,” Br. J. Ophthalmol.57(7), 464–470 (1973).
    [CrossRef] [PubMed]
  32. C. Edmund, “Posterior corneal curvature and its influence on corneal dioptric power,” Acta Ophthalmol. (Copenh.)72(6), 715–720 (1994).
    [CrossRef] [PubMed]
  33. M. Doors, L. P. J. Cruysberg, T. T. J. M. Berendschot, J. Brabander, F. Verbakel, C. A. B. Webers, and R. M. M. A. Nuijts, “Comparison of central corneal thickness and anterior chamber depth measurements using three imaging technologies in normal eyes and after phakic intraocular lens implantation,” Graefes Arch. Clin. Exp. Ophthalmol.247(8), 1139–1146 (2009).
    [CrossRef] [PubMed]
  34. S. Fukuda, K. Kawana, Y. Yasuno, and T. Oshika, “Anterior ocular biometry using 3-dimensional optical coherence tomography,” Ophthalmology116(5), 882–889 (2009).
    [CrossRef] [PubMed]
  35. D. S. Grewal, G. S. Brar, and S. P. Grewal, “Assessment of central corneal thickness in normal, keratoconus, and post-laser in situ keratomileusis eyes using Scheimpflug imaging, spectral domain optical coherence tomography, and ultrasound pachymetry,” J. Cataract Refract. Surg.36(6), 954–964 (2010).
    [CrossRef] [PubMed]
  36. C. M. Prospero Ponce, K. M. Rocha, S. D. Smith, and R. R. Krueger, “Central and peripheral corneal thickness measured with optical coherence tomography, Scheimpflug imaging, and ultrasound pachymetry in normal, keratoconus-suspect, and post-laser in situ keratomileusis eyes,” J. Cataract Refract. Surg.35(6), 1055–1062 (2009).
    [CrossRef] [PubMed]
  37. S. Ortiz, D. Siedlecki, P. Pérez-Merino, N. Chia, A. de Castro, M. Szkulmowski, M. Wojtkowski, and S. Marcos, “Corneal topography from spectral optical coherence tomography (sOCT),” Biomed. Opt. Express2(12), 3232–3247 (2011).
    [CrossRef] [PubMed]
  38. B. Potsaid, B. Baumann, D. Huang, S. Barry, A. E. Cable, J. S. Schuman, J. S. Duker, and J. G. Fujimoto, “Ultrahigh speed 1050nm swept source/Fourier domain OCT retinal and anterior segment imaging at 100,000 to 400,000 axial scans per second,” Opt. Express18(19), 20029–20048 (2010).
    [CrossRef] [PubMed]
  39. M. Shen, M. R. Wang, J. Wang, Y. Yuan, and F. Chen, “Entire contact lens imaged in vivo and in vitro with spectral domain optical coherence tomography,” Eye Contact Lens36(2), 73–76 (2010).
    [CrossRef] [PubMed]
  40. A. M. Davis, M. A. Choma, and J. A. Izatt, “Heterodyne swept-source optical coherence tomography for complete complex conjugate ambiguity removal,” J. Biomed. Opt.10(6), 064005 (2005).
    [CrossRef] [PubMed]
  41. B. Hofer, B. Povazay, B. Hermann, A. Unterhuber, G. Matz, and W. Drexler, “Dispersion encoded full range frequency domain optical coherence tomography,” Opt. Express17(1), 7–24 (2009).
    [CrossRef] [PubMed]
  42. M. Yamanari, S. Makita, Y. Lim, and Y. Yasuno, “Full-range polarization-sensitive swept-source optical coherence tomography by simultaneous transversal and spectral modulation,” Opt. Express18(13), 13964–13980 (2010).
    [CrossRef] [PubMed]
  43. A. H. Dhalla, D. Nankivil, and J. A. Izatt, “Complex conjugate resolved heterodyne swept source optical coherence tomography using coherence revival,” Biomed. Opt. Express3(3), 633–649 (2012).
    [CrossRef] [PubMed]
  44. T. O. Salmon and L. N. Thibos, “Videokeratoscope-line-of-sight misalignment and its effect on measurements of corneal and internal ocular aberrations,” J. Opt. Soc. Am. A19(4), 657–669 (2002).
    [CrossRef] [PubMed]

2012 (1)

2011 (6)

2010 (7)

B. Potsaid, B. Baumann, D. Huang, S. Barry, A. E. Cable, J. S. Schuman, J. S. Duker, and J. G. Fujimoto, “Ultrahigh speed 1050nm swept source/Fourier domain OCT retinal and anterior segment imaging at 100,000 to 400,000 axial scans per second,” Opt. Express18(19), 20029–20048 (2010).
[CrossRef] [PubMed]

M. Shen, M. R. Wang, J. Wang, Y. Yuan, and F. Chen, “Entire contact lens imaged in vivo and in vitro with spectral domain optical coherence tomography,” Eye Contact Lens36(2), 73–76 (2010).
[CrossRef] [PubMed]

D. S. Grewal, G. S. Brar, and S. P. Grewal, “Assessment of central corneal thickness in normal, keratoconus, and post-laser in situ keratomileusis eyes using Scheimpflug imaging, spectral domain optical coherence tomography, and ultrasound pachymetry,” J. Cataract Refract. Surg.36(6), 954–964 (2010).
[CrossRef] [PubMed]

M. Zhao, A. N. Kuo, and J. A. Izatt, “3D refraction correction and extraction of clinical parameters from spectral domain optical coherence tomography of the cornea,” Opt. Express18(9), 8923–8936 (2010).
[CrossRef] [PubMed]

S. Ortiz, D. Siedlecki, I. Grulkowski, L. Remon, D. Pascual, M. Wojtkowski, and S. Marcos, “Optical distortion correction in optical coherence tomography for quantitative ocular anterior segment by three-dimensional imaging,” Opt. Express18(3), 2782–2796 (2010).
[CrossRef] [PubMed]

M. Tang, A. Chen, Y. Li, and D. Huang, “Corneal power measurement with Fourier-domain optical coherence tomography,” J. Cataract Refract. Surg.36(12), 2115–2122 (2010).
[CrossRef] [PubMed]

M. Yamanari, S. Makita, Y. Lim, and Y. Yasuno, “Full-range polarization-sensitive swept-source optical coherence tomography by simultaneous transversal and spectral modulation,” Opt. Express18(13), 13964–13980 (2010).
[CrossRef] [PubMed]

2009 (6)

M. Gora, K. Karnowski, M. Szkulmowski, B. J. Kaluzny, R. Huber, A. Kowalczyk, and M. Wojtkowski, “Ultra high-speed swept source OCT imaging of the anterior segment of human eye at 200 kHz with adjustable imaging range,” Opt. Express17(17), 14880–14894 (2009).
[CrossRef] [PubMed]

C. M. Prospero Ponce, K. M. Rocha, S. D. Smith, and R. R. Krueger, “Central and peripheral corneal thickness measured with optical coherence tomography, Scheimpflug imaging, and ultrasound pachymetry in normal, keratoconus-suspect, and post-laser in situ keratomileusis eyes,” J. Cataract Refract. Surg.35(6), 1055–1062 (2009).
[CrossRef] [PubMed]

B. Hofer, B. Povazay, B. Hermann, A. Unterhuber, G. Matz, and W. Drexler, “Dispersion encoded full range frequency domain optical coherence tomography,” Opt. Express17(1), 7–24 (2009).
[CrossRef] [PubMed]

M. Doors, L. P. J. Cruysberg, T. T. J. M. Berendschot, J. Brabander, F. Verbakel, C. A. B. Webers, and R. M. M. A. Nuijts, “Comparison of central corneal thickness and anterior chamber depth measurements using three imaging technologies in normal eyes and after phakic intraocular lens implantation,” Graefes Arch. Clin. Exp. Ophthalmol.247(8), 1139–1146 (2009).
[CrossRef] [PubMed]

S. Fukuda, K. Kawana, Y. Yasuno, and T. Oshika, “Anterior ocular biometry using 3-dimensional optical coherence tomography,” Ophthalmology116(5), 882–889 (2009).
[CrossRef] [PubMed]

J. T. Holladay, W. E. Hill, and A. Steinmueller, “Corneal power measurements using scheimpflug imaging in eyes with prior corneal refractive surgery,” J. Refract. Surg.25(10), 862–868 (2009).
[CrossRef] [PubMed]

2008 (1)

J. D. Ho, C. Y. Tsai, R. J. Tsai, L. L. Kuo, I. L. Tsai, and S. W. Liou, “Validity of the keratometric index: evaluation by the Pentacam rotating Scheimpflug camera,” J. Cataract Refract. Surg.34(1), 137–145 (2008).
[CrossRef] [PubMed]

2006 (2)

V. A. Sicam, M. Dubbelman, and R. G. van der Heijde, “Spherical aberration of the anterior and posterior surfaces of the human cornea,” J. Opt. Soc. Am. A23(3), 544–549 (2006).
[CrossRef] [PubMed]

M. Tang, Y. Li, M. Avila, and D. Huang, “Measuring total corneal power before and after laser in situ keratomileusis with high-speed optical coherence tomography,” J. Cataract Refract. Surg.32(11), 1843–1850 (2006).
[CrossRef] [PubMed]

2005 (1)

A. M. Davis, M. A. Choma, and J. A. Izatt, “Heterodyne swept-source optical coherence tomography for complete complex conjugate ambiguity removal,” J. Biomed. Opt.10(6), 064005 (2005).
[CrossRef] [PubMed]

2004 (1)

2002 (3)

M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, “In vivo human retinal imaging by Fourier domain optical coherence tomography,” J. Biomed. Opt.7(3), 457–463 (2002).
[CrossRef] [PubMed]

M. Dubbelman, H. A. Weeber, R. G. van der Heijde, and H. J. Völker-Dieben, “Radius and asphericity of the posterior corneal surface determined by corrected Scheimpflug photography,” Acta Ophthalmol. Scand.80(4), 379–383 (2002).
[CrossRef] [PubMed]

T. O. Salmon and L. N. Thibos, “Videokeratoscope-line-of-sight misalignment and its effect on measurements of corneal and internal ocular aberrations,” J. Opt. Soc. Am. A19(4), 657–669 (2002).
[CrossRef] [PubMed]

1999 (1)

B. Seitz, A. Langenbucher, N. X. Nguyen, M. M. Kus, and M. Küchle, “Underestimation of intraocular lens power for cataract surgery after myopic photorefractive keratectomy,” Ophthalmology106(4), 693–702 (1999).
[CrossRef] [PubMed]

1998 (1)

N. E. Norrby, “Unfortunate discrepancies,” J. Cataract Refract. Surg.24(4), 433–434 (1998).
[PubMed]

1994 (2)

J. A. Izatt, M. R. Hee, E. A. Swanson, C. P. Lin, D. Huang, J. S. Schuman, C. A. Puliafito, and J. G. Fujimoto, “Micrometer-scale resolution imaging of the anterior eye in vivo with optical coherence tomography,” Arch. Ophthalmol.112(12), 1584–1589 (1994).
[CrossRef] [PubMed]

C. Edmund, “Posterior corneal curvature and its influence on corneal dioptric power,” Acta Ophthalmol. (Copenh.)72(6), 715–720 (1994).
[CrossRef] [PubMed]

1993 (1)

1991 (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

1990 (1)

J. M. Royston, M. C. Dunne, and D. A. Barnes, “Measurement of the posterior corneal radius using slit lamp and Purkinje image techniques,” Ophthalmic Physiol. Opt.10(4), 385–388 (1990).
[CrossRef] [PubMed]

1986 (2)

T. Olsen, “On the calculation of power from curvature of the cornea,” Br. J. Ophthalmol.70(2), 152–154 (1986).
[CrossRef] [PubMed]

J. M. Bland and D. G. Altman, “Statistical methods for assessing agreement between two methods of clinical measurement,” Lancet327(8476), 307–310 (1986).
[CrossRef] [PubMed]

1973 (1)

R. F. Lowe and B. A. Clark, “Posterior corneal curvature. Correlations in normal eyes and in eyes involved with primary angle-closure glaucoma,” Br. J. Ophthalmol.57(7), 464–470 (1973).
[CrossRef] [PubMed]

Altman, D. G.

J. M. Bland and D. G. Altman, “Statistical methods for assessing agreement between two methods of clinical measurement,” Lancet327(8476), 307–310 (1986).
[CrossRef] [PubMed]

Anderson, B. L.

L. Wang, A. M. Mahmoud, B. L. Anderson, D. D. Koch, and C. J. Roberts, “Total corneal power estimation: ray tracing method versus gaussian optics formula,” Invest. Ophthalmol. Vis. Sci.52(3), 1716–1722 (2011).
[CrossRef] [PubMed]

Avila, M.

M. Tang, Y. Li, M. Avila, and D. Huang, “Measuring total corneal power before and after laser in situ keratomileusis with high-speed optical coherence tomography,” J. Cataract Refract. Surg.32(11), 1843–1850 (2006).
[CrossRef] [PubMed]

Bajraszewski, T.

M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, “In vivo human retinal imaging by Fourier domain optical coherence tomography,” J. Biomed. Opt.7(3), 457–463 (2002).
[CrossRef] [PubMed]

Barnes, D. A.

J. M. Royston, M. C. Dunne, and D. A. Barnes, “Measurement of the posterior corneal radius using slit lamp and Purkinje image techniques,” Ophthalmic Physiol. Opt.10(4), 385–388 (1990).
[CrossRef] [PubMed]

Barry, S.

Baumann, B.

Berendschot, T. T. J. M.

M. Doors, L. P. J. Cruysberg, T. T. J. M. Berendschot, J. Brabander, F. Verbakel, C. A. B. Webers, and R. M. M. A. Nuijts, “Comparison of central corneal thickness and anterior chamber depth measurements using three imaging technologies in normal eyes and after phakic intraocular lens implantation,” Graefes Arch. Clin. Exp. Ophthalmol.247(8), 1139–1146 (2009).
[CrossRef] [PubMed]

Bizheva, K.

Bland, J. M.

J. M. Bland and D. G. Altman, “Statistical methods for assessing agreement between two methods of clinical measurement,” Lancet327(8476), 307–310 (1986).
[CrossRef] [PubMed]

Brabander, J.

M. Doors, L. P. J. Cruysberg, T. T. J. M. Berendschot, J. Brabander, F. Verbakel, C. A. B. Webers, and R. M. M. A. Nuijts, “Comparison of central corneal thickness and anterior chamber depth measurements using three imaging technologies in normal eyes and after phakic intraocular lens implantation,” Graefes Arch. Clin. Exp. Ophthalmol.247(8), 1139–1146 (2009).
[CrossRef] [PubMed]

Brar, G. S.

D. S. Grewal, G. S. Brar, and S. P. Grewal, “Assessment of central corneal thickness in normal, keratoconus, and post-laser in situ keratomileusis eyes using Scheimpflug imaging, spectral domain optical coherence tomography, and ultrasound pachymetry,” J. Cataract Refract. Surg.36(6), 954–964 (2010).
[CrossRef] [PubMed]

Cable, A. E.

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Chen, A.

M. Tang, A. Chen, Y. Li, and D. Huang, “Corneal power measurement with Fourier-domain optical coherence tomography,” J. Cataract Refract. Surg.36(12), 2115–2122 (2010).
[CrossRef] [PubMed]

Chen, F.

M. Shen, M. R. Wang, J. Wang, Y. Yuan, and F. Chen, “Entire contact lens imaged in vivo and in vitro with spectral domain optical coherence tomography,” Eye Contact Lens36(2), 73–76 (2010).
[CrossRef] [PubMed]

Chia, N.

Chiu, S. J.

Choma, M. A.

A. M. Davis, M. A. Choma, and J. A. Izatt, “Heterodyne swept-source optical coherence tomography for complete complex conjugate ambiguity removal,” J. Biomed. Opt.10(6), 064005 (2005).
[CrossRef] [PubMed]

Clark, B. A.

R. F. Lowe and B. A. Clark, “Posterior corneal curvature. Correlations in normal eyes and in eyes involved with primary angle-closure glaucoma,” Br. J. Ophthalmol.57(7), 464–470 (1973).
[CrossRef] [PubMed]

Cruysberg, L. P. J.

M. Doors, L. P. J. Cruysberg, T. T. J. M. Berendschot, J. Brabander, F. Verbakel, C. A. B. Webers, and R. M. M. A. Nuijts, “Comparison of central corneal thickness and anterior chamber depth measurements using three imaging technologies in normal eyes and after phakic intraocular lens implantation,” Graefes Arch. Clin. Exp. Ophthalmol.247(8), 1139–1146 (2009).
[CrossRef] [PubMed]

Davis, A. M.

A. M. Davis, M. A. Choma, and J. A. Izatt, “Heterodyne swept-source optical coherence tomography for complete complex conjugate ambiguity removal,” J. Biomed. Opt.10(6), 064005 (2005).
[CrossRef] [PubMed]

de Castro, A.

Dhalla, A. H.

Doors, M.

M. Doors, L. P. J. Cruysberg, T. T. J. M. Berendschot, J. Brabander, F. Verbakel, C. A. B. Webers, and R. M. M. A. Nuijts, “Comparison of central corneal thickness and anterior chamber depth measurements using three imaging technologies in normal eyes and after phakic intraocular lens implantation,” Graefes Arch. Clin. Exp. Ophthalmol.247(8), 1139–1146 (2009).
[CrossRef] [PubMed]

Drexler, W.

Dubbelman, M.

V. A. Sicam, M. Dubbelman, and R. G. van der Heijde, “Spherical aberration of the anterior and posterior surfaces of the human cornea,” J. Opt. Soc. Am. A23(3), 544–549 (2006).
[CrossRef] [PubMed]

M. Dubbelman, H. A. Weeber, R. G. van der Heijde, and H. J. Völker-Dieben, “Radius and asphericity of the posterior corneal surface determined by corrected Scheimpflug photography,” Acta Ophthalmol. Scand.80(4), 379–383 (2002).
[CrossRef] [PubMed]

Duker, J. S.

Dunne, M. C.

J. M. Royston, M. C. Dunne, and D. A. Barnes, “Measurement of the posterior corneal radius using slit lamp and Purkinje image techniques,” Ophthalmic Physiol. Opt.10(4), 385–388 (1990).
[CrossRef] [PubMed]

Edmund, C.

C. Edmund, “Posterior corneal curvature and its influence on corneal dioptric power,” Acta Ophthalmol. (Copenh.)72(6), 715–720 (1994).
[CrossRef] [PubMed]

Farsiu, S.

Fercher, A. F.

M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, “In vivo human retinal imaging by Fourier domain optical coherence tomography,” J. Biomed. Opt.7(3), 457–463 (2002).
[CrossRef] [PubMed]

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Folio, L. S.

M. L. Gabriele, G. Wollstein, H. Ishikawa, L. Kagemann, J. Xu, L. S. Folio, and J. S. Schuman, “Optical coherence tomography: history, current status, and laboratory work,” Invest. Ophthalmol. Vis. Sci.52(5), 2425–2436 (2011).
[CrossRef] [PubMed]

Fujimoto, J. G.

B. Potsaid, B. Baumann, D. Huang, S. Barry, A. E. Cable, J. S. Schuman, J. S. Duker, and J. G. Fujimoto, “Ultrahigh speed 1050nm swept source/Fourier domain OCT retinal and anterior segment imaging at 100,000 to 400,000 axial scans per second,” Opt. Express18(19), 20029–20048 (2010).
[CrossRef] [PubMed]

J. A. Izatt, M. R. Hee, E. A. Swanson, C. P. Lin, D. Huang, J. S. Schuman, C. A. Puliafito, and J. G. Fujimoto, “Micrometer-scale resolution imaging of the anterior eye in vivo with optical coherence tomography,” Arch. Ophthalmol.112(12), 1584–1589 (1994).
[CrossRef] [PubMed]

E. A. Swanson, J. A. Izatt, M. R. Hee, D. Huang, C. P. Lin, J. S. Schuman, C. A. Puliafito, and J. G. Fujimoto, “In vivo retinal imaging by optical coherence tomography,” Opt. Lett.18(21), 1864–1866 (1993).
[CrossRef] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Fukuda, S.

S. Fukuda, K. Kawana, Y. Yasuno, and T. Oshika, “Anterior ocular biometry using 3-dimensional optical coherence tomography,” Ophthalmology116(5), 882–889 (2009).
[CrossRef] [PubMed]

Gabriele, M. L.

M. L. Gabriele, G. Wollstein, H. Ishikawa, L. Kagemann, J. Xu, L. S. Folio, and J. S. Schuman, “Optical coherence tomography: history, current status, and laboratory work,” Invest. Ophthalmol. Vis. Sci.52(5), 2425–2436 (2011).
[CrossRef] [PubMed]

Gora, M.

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Grewal, D. S.

D. S. Grewal, G. S. Brar, and S. P. Grewal, “Assessment of central corneal thickness in normal, keratoconus, and post-laser in situ keratomileusis eyes using Scheimpflug imaging, spectral domain optical coherence tomography, and ultrasound pachymetry,” J. Cataract Refract. Surg.36(6), 954–964 (2010).
[CrossRef] [PubMed]

Grewal, S. P.

D. S. Grewal, G. S. Brar, and S. P. Grewal, “Assessment of central corneal thickness in normal, keratoconus, and post-laser in situ keratomileusis eyes using Scheimpflug imaging, spectral domain optical coherence tomography, and ultrasound pachymetry,” J. Cataract Refract. Surg.36(6), 954–964 (2010).
[CrossRef] [PubMed]

Grulkowski, I.

Hee, M. R.

J. A. Izatt, M. R. Hee, E. A. Swanson, C. P. Lin, D. Huang, J. S. Schuman, C. A. Puliafito, and J. G. Fujimoto, “Micrometer-scale resolution imaging of the anterior eye in vivo with optical coherence tomography,” Arch. Ophthalmol.112(12), 1584–1589 (1994).
[CrossRef] [PubMed]

E. A. Swanson, J. A. Izatt, M. R. Hee, D. Huang, C. P. Lin, J. S. Schuman, C. A. Puliafito, and J. G. Fujimoto, “In vivo retinal imaging by optical coherence tomography,” Opt. Lett.18(21), 1864–1866 (1993).
[CrossRef] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Hermann, B.

Hill, W. E.

J. T. Holladay, W. E. Hill, and A. Steinmueller, “Corneal power measurements using scheimpflug imaging in eyes with prior corneal refractive surgery,” J. Refract. Surg.25(10), 862–868 (2009).
[CrossRef] [PubMed]

Ho, J. D.

J. D. Ho, C. Y. Tsai, R. J. Tsai, L. L. Kuo, I. L. Tsai, and S. W. Liou, “Validity of the keratometric index: evaluation by the Pentacam rotating Scheimpflug camera,” J. Cataract Refract. Surg.34(1), 137–145 (2008).
[CrossRef] [PubMed]

Hofer, B.

Holladay, J. T.

J. T. Holladay, W. E. Hill, and A. Steinmueller, “Corneal power measurements using scheimpflug imaging in eyes with prior corneal refractive surgery,” J. Refract. Surg.25(10), 862–868 (2009).
[CrossRef] [PubMed]

Huang, D.

M. Tang, A. Chen, Y. Li, and D. Huang, “Corneal power measurement with Fourier-domain optical coherence tomography,” J. Cataract Refract. Surg.36(12), 2115–2122 (2010).
[CrossRef] [PubMed]

B. Potsaid, B. Baumann, D. Huang, S. Barry, A. E. Cable, J. S. Schuman, J. S. Duker, and J. G. Fujimoto, “Ultrahigh speed 1050nm swept source/Fourier domain OCT retinal and anterior segment imaging at 100,000 to 400,000 axial scans per second,” Opt. Express18(19), 20029–20048 (2010).
[CrossRef] [PubMed]

M. Tang, Y. Li, M. Avila, and D. Huang, “Measuring total corneal power before and after laser in situ keratomileusis with high-speed optical coherence tomography,” J. Cataract Refract. Surg.32(11), 1843–1850 (2006).
[CrossRef] [PubMed]

R. C. Lin, M. A. Shure, A. M. Rollins, J. A. Izatt, and D. Huang, “Group index of the human cornea at 1.3-microm wavelength obtained in vitro by optical coherence domain reflectometry,” Opt. Lett.29(1), 83–85 (2004).
[CrossRef] [PubMed]

J. A. Izatt, M. R. Hee, E. A. Swanson, C. P. Lin, D. Huang, J. S. Schuman, C. A. Puliafito, and J. G. Fujimoto, “Micrometer-scale resolution imaging of the anterior eye in vivo with optical coherence tomography,” Arch. Ophthalmol.112(12), 1584–1589 (1994).
[CrossRef] [PubMed]

E. A. Swanson, J. A. Izatt, M. R. Hee, D. Huang, C. P. Lin, J. S. Schuman, C. A. Puliafito, and J. G. Fujimoto, “In vivo retinal imaging by optical coherence tomography,” Opt. Lett.18(21), 1864–1866 (1993).
[CrossRef] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Huber, R.

Hutchings, N.

Ishikawa, H.

M. L. Gabriele, G. Wollstein, H. Ishikawa, L. Kagemann, J. Xu, L. S. Folio, and J. S. Schuman, “Optical coherence tomography: history, current status, and laboratory work,” Invest. Ophthalmol. Vis. Sci.52(5), 2425–2436 (2011).
[CrossRef] [PubMed]

Izatt, J. A.

A. H. Dhalla, D. Nankivil, and J. A. Izatt, “Complex conjugate resolved heterodyne swept source optical coherence tomography using coherence revival,” Biomed. Opt. Express3(3), 633–649 (2012).
[CrossRef] [PubMed]

F. LaRocca, S. J. Chiu, R. P. McNabb, A. N. Kuo, J. A. Izatt, and S. Farsiu, “Robust automatic segmentation of corneal layer boundaries in SDOCT images using graph theory and dynamic programming,” Biomed. Opt. Express2(6), 1524–1538 (2011).
[CrossRef] [PubMed]

M. Zhao, A. N. Kuo, and J. A. Izatt, “3D refraction correction and extraction of clinical parameters from spectral domain optical coherence tomography of the cornea,” Opt. Express18(9), 8923–8936 (2010).
[CrossRef] [PubMed]

A. M. Davis, M. A. Choma, and J. A. Izatt, “Heterodyne swept-source optical coherence tomography for complete complex conjugate ambiguity removal,” J. Biomed. Opt.10(6), 064005 (2005).
[CrossRef] [PubMed]

R. C. Lin, M. A. Shure, A. M. Rollins, J. A. Izatt, and D. Huang, “Group index of the human cornea at 1.3-microm wavelength obtained in vitro by optical coherence domain reflectometry,” Opt. Lett.29(1), 83–85 (2004).
[CrossRef] [PubMed]

J. A. Izatt, M. R. Hee, E. A. Swanson, C. P. Lin, D. Huang, J. S. Schuman, C. A. Puliafito, and J. G. Fujimoto, “Micrometer-scale resolution imaging of the anterior eye in vivo with optical coherence tomography,” Arch. Ophthalmol.112(12), 1584–1589 (1994).
[CrossRef] [PubMed]

E. A. Swanson, J. A. Izatt, M. R. Hee, D. Huang, C. P. Lin, J. S. Schuman, C. A. Puliafito, and J. G. Fujimoto, “In vivo retinal imaging by optical coherence tomography,” Opt. Lett.18(21), 1864–1866 (1993).
[CrossRef] [PubMed]

Kagemann, L.

M. L. Gabriele, G. Wollstein, H. Ishikawa, L. Kagemann, J. Xu, L. S. Folio, and J. S. Schuman, “Optical coherence tomography: history, current status, and laboratory work,” Invest. Ophthalmol. Vis. Sci.52(5), 2425–2436 (2011).
[CrossRef] [PubMed]

Kaluzny, B. J.

Karnowski, K.

Kawana, K.

S. Fukuda, K. Kawana, Y. Yasuno, and T. Oshika, “Anterior ocular biometry using 3-dimensional optical coherence tomography,” Ophthalmology116(5), 882–889 (2009).
[CrossRef] [PubMed]

Koch, D. D.

L. Wang, A. M. Mahmoud, B. L. Anderson, D. D. Koch, and C. J. Roberts, “Total corneal power estimation: ray tracing method versus gaussian optics formula,” Invest. Ophthalmol. Vis. Sci.52(3), 1716–1722 (2011).
[CrossRef] [PubMed]

Kowalczyk, A.

Krueger, R. R.

C. M. Prospero Ponce, K. M. Rocha, S. D. Smith, and R. R. Krueger, “Central and peripheral corneal thickness measured with optical coherence tomography, Scheimpflug imaging, and ultrasound pachymetry in normal, keratoconus-suspect, and post-laser in situ keratomileusis eyes,” J. Cataract Refract. Surg.35(6), 1055–1062 (2009).
[CrossRef] [PubMed]

Küchle, M.

B. Seitz, A. Langenbucher, N. X. Nguyen, M. M. Kus, and M. Küchle, “Underestimation of intraocular lens power for cataract surgery after myopic photorefractive keratectomy,” Ophthalmology106(4), 693–702 (1999).
[CrossRef] [PubMed]

Kuo, A. N.

Kuo, L. L.

J. D. Ho, C. Y. Tsai, R. J. Tsai, L. L. Kuo, I. L. Tsai, and S. W. Liou, “Validity of the keratometric index: evaluation by the Pentacam rotating Scheimpflug camera,” J. Cataract Refract. Surg.34(1), 137–145 (2008).
[CrossRef] [PubMed]

Kus, M. M.

B. Seitz, A. Langenbucher, N. X. Nguyen, M. M. Kus, and M. Küchle, “Underestimation of intraocular lens power for cataract surgery after myopic photorefractive keratectomy,” Ophthalmology106(4), 693–702 (1999).
[CrossRef] [PubMed]

Langenbucher, A.

B. Seitz, A. Langenbucher, N. X. Nguyen, M. M. Kus, and M. Küchle, “Underestimation of intraocular lens power for cataract surgery after myopic photorefractive keratectomy,” Ophthalmology106(4), 693–702 (1999).
[CrossRef] [PubMed]

LaRocca, F.

Leitgeb, R.

M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, “In vivo human retinal imaging by Fourier domain optical coherence tomography,” J. Biomed. Opt.7(3), 457–463 (2002).
[CrossRef] [PubMed]

Li, Y.

M. Tang, A. Chen, Y. Li, and D. Huang, “Corneal power measurement with Fourier-domain optical coherence tomography,” J. Cataract Refract. Surg.36(12), 2115–2122 (2010).
[CrossRef] [PubMed]

M. Tang, Y. Li, M. Avila, and D. Huang, “Measuring total corneal power before and after laser in situ keratomileusis with high-speed optical coherence tomography,” J. Cataract Refract. Surg.32(11), 1843–1850 (2006).
[CrossRef] [PubMed]

Lim, Y.

Lin, C. P.

J. A. Izatt, M. R. Hee, E. A. Swanson, C. P. Lin, D. Huang, J. S. Schuman, C. A. Puliafito, and J. G. Fujimoto, “Micrometer-scale resolution imaging of the anterior eye in vivo with optical coherence tomography,” Arch. Ophthalmol.112(12), 1584–1589 (1994).
[CrossRef] [PubMed]

E. A. Swanson, J. A. Izatt, M. R. Hee, D. Huang, C. P. Lin, J. S. Schuman, C. A. Puliafito, and J. G. Fujimoto, “In vivo retinal imaging by optical coherence tomography,” Opt. Lett.18(21), 1864–1866 (1993).
[CrossRef] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Lin, R. C.

Liou, S. W.

J. D. Ho, C. Y. Tsai, R. J. Tsai, L. L. Kuo, I. L. Tsai, and S. W. Liou, “Validity of the keratometric index: evaluation by the Pentacam rotating Scheimpflug camera,” J. Cataract Refract. Surg.34(1), 137–145 (2008).
[CrossRef] [PubMed]

Lowe, R. F.

R. F. Lowe and B. A. Clark, “Posterior corneal curvature. Correlations in normal eyes and in eyes involved with primary angle-closure glaucoma,” Br. J. Ophthalmol.57(7), 464–470 (1973).
[CrossRef] [PubMed]

Mahmoud, A. M.

L. Wang, A. M. Mahmoud, B. L. Anderson, D. D. Koch, and C. J. Roberts, “Total corneal power estimation: ray tracing method versus gaussian optics formula,” Invest. Ophthalmol. Vis. Sci.52(3), 1716–1722 (2011).
[CrossRef] [PubMed]

Makita, S.

Marcos, S.

Matz, G.

McNabb, R. P.

Moayed, A. A.

Nankivil, D.

Nguyen, N. X.

B. Seitz, A. Langenbucher, N. X. Nguyen, M. M. Kus, and M. Küchle, “Underestimation of intraocular lens power for cataract surgery after myopic photorefractive keratectomy,” Ophthalmology106(4), 693–702 (1999).
[CrossRef] [PubMed]

Norrby, N. E.

N. E. Norrby, “Unfortunate discrepancies,” J. Cataract Refract. Surg.24(4), 433–434 (1998).
[PubMed]

Nuijts, R. M. M. A.

M. Doors, L. P. J. Cruysberg, T. T. J. M. Berendschot, J. Brabander, F. Verbakel, C. A. B. Webers, and R. M. M. A. Nuijts, “Comparison of central corneal thickness and anterior chamber depth measurements using three imaging technologies in normal eyes and after phakic intraocular lens implantation,” Graefes Arch. Clin. Exp. Ophthalmol.247(8), 1139–1146 (2009).
[CrossRef] [PubMed]

Olsen, T.

T. Olsen, “On the calculation of power from curvature of the cornea,” Br. J. Ophthalmol.70(2), 152–154 (1986).
[CrossRef] [PubMed]

Ortiz, S.

Oshika, T.

S. Fukuda, K. Kawana, Y. Yasuno, and T. Oshika, “Anterior ocular biometry using 3-dimensional optical coherence tomography,” Ophthalmology116(5), 882–889 (2009).
[CrossRef] [PubMed]

Pascual, D.

Pérez-Merino, P.

Potsaid, B.

Povazay, B.

Prospero Ponce, C. M.

C. M. Prospero Ponce, K. M. Rocha, S. D. Smith, and R. R. Krueger, “Central and peripheral corneal thickness measured with optical coherence tomography, Scheimpflug imaging, and ultrasound pachymetry in normal, keratoconus-suspect, and post-laser in situ keratomileusis eyes,” J. Cataract Refract. Surg.35(6), 1055–1062 (2009).
[CrossRef] [PubMed]

Puliafito, C. A.

J. A. Izatt, M. R. Hee, E. A. Swanson, C. P. Lin, D. Huang, J. S. Schuman, C. A. Puliafito, and J. G. Fujimoto, “Micrometer-scale resolution imaging of the anterior eye in vivo with optical coherence tomography,” Arch. Ophthalmol.112(12), 1584–1589 (1994).
[CrossRef] [PubMed]

E. A. Swanson, J. A. Izatt, M. R. Hee, D. Huang, C. P. Lin, J. S. Schuman, C. A. Puliafito, and J. G. Fujimoto, “In vivo retinal imaging by optical coherence tomography,” Opt. Lett.18(21), 1864–1866 (1993).
[CrossRef] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Remon, L.

Roberts, C. J.

L. Wang, A. M. Mahmoud, B. L. Anderson, D. D. Koch, and C. J. Roberts, “Total corneal power estimation: ray tracing method versus gaussian optics formula,” Invest. Ophthalmol. Vis. Sci.52(3), 1716–1722 (2011).
[CrossRef] [PubMed]

Rocha, K. M.

C. M. Prospero Ponce, K. M. Rocha, S. D. Smith, and R. R. Krueger, “Central and peripheral corneal thickness measured with optical coherence tomography, Scheimpflug imaging, and ultrasound pachymetry in normal, keratoconus-suspect, and post-laser in situ keratomileusis eyes,” J. Cataract Refract. Surg.35(6), 1055–1062 (2009).
[CrossRef] [PubMed]

Rollins, A. M.

Royston, J. M.

J. M. Royston, M. C. Dunne, and D. A. Barnes, “Measurement of the posterior corneal radius using slit lamp and Purkinje image techniques,” Ophthalmic Physiol. Opt.10(4), 385–388 (1990).
[CrossRef] [PubMed]

Salmon, T. O.

Schuman, J. S.

M. L. Gabriele, G. Wollstein, H. Ishikawa, L. Kagemann, J. Xu, L. S. Folio, and J. S. Schuman, “Optical coherence tomography: history, current status, and laboratory work,” Invest. Ophthalmol. Vis. Sci.52(5), 2425–2436 (2011).
[CrossRef] [PubMed]

B. Potsaid, B. Baumann, D. Huang, S. Barry, A. E. Cable, J. S. Schuman, J. S. Duker, and J. G. Fujimoto, “Ultrahigh speed 1050nm swept source/Fourier domain OCT retinal and anterior segment imaging at 100,000 to 400,000 axial scans per second,” Opt. Express18(19), 20029–20048 (2010).
[CrossRef] [PubMed]

J. A. Izatt, M. R. Hee, E. A. Swanson, C. P. Lin, D. Huang, J. S. Schuman, C. A. Puliafito, and J. G. Fujimoto, “Micrometer-scale resolution imaging of the anterior eye in vivo with optical coherence tomography,” Arch. Ophthalmol.112(12), 1584–1589 (1994).
[CrossRef] [PubMed]

E. A. Swanson, J. A. Izatt, M. R. Hee, D. Huang, C. P. Lin, J. S. Schuman, C. A. Puliafito, and J. G. Fujimoto, “In vivo retinal imaging by optical coherence tomography,” Opt. Lett.18(21), 1864–1866 (1993).
[CrossRef] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Seitz, B.

B. Seitz, A. Langenbucher, N. X. Nguyen, M. M. Kus, and M. Küchle, “Underestimation of intraocular lens power for cataract surgery after myopic photorefractive keratectomy,” Ophthalmology106(4), 693–702 (1999).
[CrossRef] [PubMed]

Shen, M.

M. Shen, M. R. Wang, J. Wang, Y. Yuan, and F. Chen, “Entire contact lens imaged in vivo and in vitro with spectral domain optical coherence tomography,” Eye Contact Lens36(2), 73–76 (2010).
[CrossRef] [PubMed]

Shure, M. A.

Sicam, V. A.

Siedlecki, D.

Simpson, T.

Smith, S. D.

C. M. Prospero Ponce, K. M. Rocha, S. D. Smith, and R. R. Krueger, “Central and peripheral corneal thickness measured with optical coherence tomography, Scheimpflug imaging, and ultrasound pachymetry in normal, keratoconus-suspect, and post-laser in situ keratomileusis eyes,” J. Cataract Refract. Surg.35(6), 1055–1062 (2009).
[CrossRef] [PubMed]

Sorbara, L.

Steinmueller, A.

J. T. Holladay, W. E. Hill, and A. Steinmueller, “Corneal power measurements using scheimpflug imaging in eyes with prior corneal refractive surgery,” J. Refract. Surg.25(10), 862–868 (2009).
[CrossRef] [PubMed]

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Swanson, E. A.

J. A. Izatt, M. R. Hee, E. A. Swanson, C. P. Lin, D. Huang, J. S. Schuman, C. A. Puliafito, and J. G. Fujimoto, “Micrometer-scale resolution imaging of the anterior eye in vivo with optical coherence tomography,” Arch. Ophthalmol.112(12), 1584–1589 (1994).
[CrossRef] [PubMed]

E. A. Swanson, J. A. Izatt, M. R. Hee, D. Huang, C. P. Lin, J. S. Schuman, C. A. Puliafito, and J. G. Fujimoto, “In vivo retinal imaging by optical coherence tomography,” Opt. Lett.18(21), 1864–1866 (1993).
[CrossRef] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Szkulmowski, M.

Tang, M.

M. Tang, A. Chen, Y. Li, and D. Huang, “Corneal power measurement with Fourier-domain optical coherence tomography,” J. Cataract Refract. Surg.36(12), 2115–2122 (2010).
[CrossRef] [PubMed]

M. Tang, Y. Li, M. Avila, and D. Huang, “Measuring total corneal power before and after laser in situ keratomileusis with high-speed optical coherence tomography,” J. Cataract Refract. Surg.32(11), 1843–1850 (2006).
[CrossRef] [PubMed]

Thibos, L. N.

Tsai, C. Y.

J. D. Ho, C. Y. Tsai, R. J. Tsai, L. L. Kuo, I. L. Tsai, and S. W. Liou, “Validity of the keratometric index: evaluation by the Pentacam rotating Scheimpflug camera,” J. Cataract Refract. Surg.34(1), 137–145 (2008).
[CrossRef] [PubMed]

Tsai, I. L.

J. D. Ho, C. Y. Tsai, R. J. Tsai, L. L. Kuo, I. L. Tsai, and S. W. Liou, “Validity of the keratometric index: evaluation by the Pentacam rotating Scheimpflug camera,” J. Cataract Refract. Surg.34(1), 137–145 (2008).
[CrossRef] [PubMed]

Tsai, R. J.

J. D. Ho, C. Y. Tsai, R. J. Tsai, L. L. Kuo, I. L. Tsai, and S. W. Liou, “Validity of the keratometric index: evaluation by the Pentacam rotating Scheimpflug camera,” J. Cataract Refract. Surg.34(1), 137–145 (2008).
[CrossRef] [PubMed]

Unterhuber, A.

van der Heijde, R. G.

V. A. Sicam, M. Dubbelman, and R. G. van der Heijde, “Spherical aberration of the anterior and posterior surfaces of the human cornea,” J. Opt. Soc. Am. A23(3), 544–549 (2006).
[CrossRef] [PubMed]

M. Dubbelman, H. A. Weeber, R. G. van der Heijde, and H. J. Völker-Dieben, “Radius and asphericity of the posterior corneal surface determined by corrected Scheimpflug photography,” Acta Ophthalmol. Scand.80(4), 379–383 (2002).
[CrossRef] [PubMed]

Verbakel, F.

M. Doors, L. P. J. Cruysberg, T. T. J. M. Berendschot, J. Brabander, F. Verbakel, C. A. B. Webers, and R. M. M. A. Nuijts, “Comparison of central corneal thickness and anterior chamber depth measurements using three imaging technologies in normal eyes and after phakic intraocular lens implantation,” Graefes Arch. Clin. Exp. Ophthalmol.247(8), 1139–1146 (2009).
[CrossRef] [PubMed]

Völker-Dieben, H. J.

M. Dubbelman, H. A. Weeber, R. G. van der Heijde, and H. J. Völker-Dieben, “Radius and asphericity of the posterior corneal surface determined by corrected Scheimpflug photography,” Acta Ophthalmol. Scand.80(4), 379–383 (2002).
[CrossRef] [PubMed]

Wang, J.

M. Shen, M. R. Wang, J. Wang, Y. Yuan, and F. Chen, “Entire contact lens imaged in vivo and in vitro with spectral domain optical coherence tomography,” Eye Contact Lens36(2), 73–76 (2010).
[CrossRef] [PubMed]

Wang, L.

L. Wang, A. M. Mahmoud, B. L. Anderson, D. D. Koch, and C. J. Roberts, “Total corneal power estimation: ray tracing method versus gaussian optics formula,” Invest. Ophthalmol. Vis. Sci.52(3), 1716–1722 (2011).
[CrossRef] [PubMed]

Wang, M. R.

M. Shen, M. R. Wang, J. Wang, Y. Yuan, and F. Chen, “Entire contact lens imaged in vivo and in vitro with spectral domain optical coherence tomography,” Eye Contact Lens36(2), 73–76 (2010).
[CrossRef] [PubMed]

Webers, C. A. B.

M. Doors, L. P. J. Cruysberg, T. T. J. M. Berendschot, J. Brabander, F. Verbakel, C. A. B. Webers, and R. M. M. A. Nuijts, “Comparison of central corneal thickness and anterior chamber depth measurements using three imaging technologies in normal eyes and after phakic intraocular lens implantation,” Graefes Arch. Clin. Exp. Ophthalmol.247(8), 1139–1146 (2009).
[CrossRef] [PubMed]

Weeber, H. A.

M. Dubbelman, H. A. Weeber, R. G. van der Heijde, and H. J. Völker-Dieben, “Radius and asphericity of the posterior corneal surface determined by corrected Scheimpflug photography,” Acta Ophthalmol. Scand.80(4), 379–383 (2002).
[CrossRef] [PubMed]

Wojtkowski, M.

Wollstein, G.

M. L. Gabriele, G. Wollstein, H. Ishikawa, L. Kagemann, J. Xu, L. S. Folio, and J. S. Schuman, “Optical coherence tomography: history, current status, and laboratory work,” Invest. Ophthalmol. Vis. Sci.52(5), 2425–2436 (2011).
[CrossRef] [PubMed]

Xu, J.

M. L. Gabriele, G. Wollstein, H. Ishikawa, L. Kagemann, J. Xu, L. S. Folio, and J. S. Schuman, “Optical coherence tomography: history, current status, and laboratory work,” Invest. Ophthalmol. Vis. Sci.52(5), 2425–2436 (2011).
[CrossRef] [PubMed]

Yamanari, M.

Yasuno, Y.

Yuan, Y.

M. Shen, M. R. Wang, J. Wang, Y. Yuan, and F. Chen, “Entire contact lens imaged in vivo and in vitro with spectral domain optical coherence tomography,” Eye Contact Lens36(2), 73–76 (2010).
[CrossRef] [PubMed]

Zhao, M.

Acta Ophthalmol. (Copenh.) (1)

C. Edmund, “Posterior corneal curvature and its influence on corneal dioptric power,” Acta Ophthalmol. (Copenh.)72(6), 715–720 (1994).
[CrossRef] [PubMed]

Acta Ophthalmol. Scand. (1)

M. Dubbelman, H. A. Weeber, R. G. van der Heijde, and H. J. Völker-Dieben, “Radius and asphericity of the posterior corneal surface determined by corrected Scheimpflug photography,” Acta Ophthalmol. Scand.80(4), 379–383 (2002).
[CrossRef] [PubMed]

Arch. Ophthalmol. (1)

J. A. Izatt, M. R. Hee, E. A. Swanson, C. P. Lin, D. Huang, J. S. Schuman, C. A. Puliafito, and J. G. Fujimoto, “Micrometer-scale resolution imaging of the anterior eye in vivo with optical coherence tomography,” Arch. Ophthalmol.112(12), 1584–1589 (1994).
[CrossRef] [PubMed]

Biomed. Opt. Express (5)

Br. J. Ophthalmol. (2)

R. F. Lowe and B. A. Clark, “Posterior corneal curvature. Correlations in normal eyes and in eyes involved with primary angle-closure glaucoma,” Br. J. Ophthalmol.57(7), 464–470 (1973).
[CrossRef] [PubMed]

T. Olsen, “On the calculation of power from curvature of the cornea,” Br. J. Ophthalmol.70(2), 152–154 (1986).
[CrossRef] [PubMed]

Eye Contact Lens (1)

M. Shen, M. R. Wang, J. Wang, Y. Yuan, and F. Chen, “Entire contact lens imaged in vivo and in vitro with spectral domain optical coherence tomography,” Eye Contact Lens36(2), 73–76 (2010).
[CrossRef] [PubMed]

Graefes Arch. Clin. Exp. Ophthalmol. (1)

M. Doors, L. P. J. Cruysberg, T. T. J. M. Berendschot, J. Brabander, F. Verbakel, C. A. B. Webers, and R. M. M. A. Nuijts, “Comparison of central corneal thickness and anterior chamber depth measurements using three imaging technologies in normal eyes and after phakic intraocular lens implantation,” Graefes Arch. Clin. Exp. Ophthalmol.247(8), 1139–1146 (2009).
[CrossRef] [PubMed]

Invest. Ophthalmol. Vis. Sci. (2)

L. Wang, A. M. Mahmoud, B. L. Anderson, D. D. Koch, and C. J. Roberts, “Total corneal power estimation: ray tracing method versus gaussian optics formula,” Invest. Ophthalmol. Vis. Sci.52(3), 1716–1722 (2011).
[CrossRef] [PubMed]

M. L. Gabriele, G. Wollstein, H. Ishikawa, L. Kagemann, J. Xu, L. S. Folio, and J. S. Schuman, “Optical coherence tomography: history, current status, and laboratory work,” Invest. Ophthalmol. Vis. Sci.52(5), 2425–2436 (2011).
[CrossRef] [PubMed]

J. Biomed. Opt. (2)

M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, “In vivo human retinal imaging by Fourier domain optical coherence tomography,” J. Biomed. Opt.7(3), 457–463 (2002).
[CrossRef] [PubMed]

A. M. Davis, M. A. Choma, and J. A. Izatt, “Heterodyne swept-source optical coherence tomography for complete complex conjugate ambiguity removal,” J. Biomed. Opt.10(6), 064005 (2005).
[CrossRef] [PubMed]

J. Cataract Refract. Surg. (6)

M. Tang, Y. Li, M. Avila, and D. Huang, “Measuring total corneal power before and after laser in situ keratomileusis with high-speed optical coherence tomography,” J. Cataract Refract. Surg.32(11), 1843–1850 (2006).
[CrossRef] [PubMed]

M. Tang, A. Chen, Y. Li, and D. Huang, “Corneal power measurement with Fourier-domain optical coherence tomography,” J. Cataract Refract. Surg.36(12), 2115–2122 (2010).
[CrossRef] [PubMed]

J. D. Ho, C. Y. Tsai, R. J. Tsai, L. L. Kuo, I. L. Tsai, and S. W. Liou, “Validity of the keratometric index: evaluation by the Pentacam rotating Scheimpflug camera,” J. Cataract Refract. Surg.34(1), 137–145 (2008).
[CrossRef] [PubMed]

N. E. Norrby, “Unfortunate discrepancies,” J. Cataract Refract. Surg.24(4), 433–434 (1998).
[PubMed]

D. S. Grewal, G. S. Brar, and S. P. Grewal, “Assessment of central corneal thickness in normal, keratoconus, and post-laser in situ keratomileusis eyes using Scheimpflug imaging, spectral domain optical coherence tomography, and ultrasound pachymetry,” J. Cataract Refract. Surg.36(6), 954–964 (2010).
[CrossRef] [PubMed]

C. M. Prospero Ponce, K. M. Rocha, S. D. Smith, and R. R. Krueger, “Central and peripheral corneal thickness measured with optical coherence tomography, Scheimpflug imaging, and ultrasound pachymetry in normal, keratoconus-suspect, and post-laser in situ keratomileusis eyes,” J. Cataract Refract. Surg.35(6), 1055–1062 (2009).
[CrossRef] [PubMed]

J. Opt. Soc. Am. A (2)

J. Refract. Surg. (1)

J. T. Holladay, W. E. Hill, and A. Steinmueller, “Corneal power measurements using scheimpflug imaging in eyes with prior corneal refractive surgery,” J. Refract. Surg.25(10), 862–868 (2009).
[CrossRef] [PubMed]

Lancet (1)

J. M. Bland and D. G. Altman, “Statistical methods for assessing agreement between two methods of clinical measurement,” Lancet327(8476), 307–310 (1986).
[CrossRef] [PubMed]

Ophthalmic Physiol. Opt. (1)

J. M. Royston, M. C. Dunne, and D. A. Barnes, “Measurement of the posterior corneal radius using slit lamp and Purkinje image techniques,” Ophthalmic Physiol. Opt.10(4), 385–388 (1990).
[CrossRef] [PubMed]

Ophthalmology (2)

S. Fukuda, K. Kawana, Y. Yasuno, and T. Oshika, “Anterior ocular biometry using 3-dimensional optical coherence tomography,” Ophthalmology116(5), 882–889 (2009).
[CrossRef] [PubMed]

B. Seitz, A. Langenbucher, N. X. Nguyen, M. M. Kus, and M. Küchle, “Underestimation of intraocular lens power for cataract surgery after myopic photorefractive keratectomy,” Ophthalmology106(4), 693–702 (1999).
[CrossRef] [PubMed]

Opt. Express (6)

M. Gora, K. Karnowski, M. Szkulmowski, B. J. Kaluzny, R. Huber, A. Kowalczyk, and M. Wojtkowski, “Ultra high-speed swept source OCT imaging of the anterior segment of human eye at 200 kHz with adjustable imaging range,” Opt. Express17(17), 14880–14894 (2009).
[CrossRef] [PubMed]

M. Zhao, A. N. Kuo, and J. A. Izatt, “3D refraction correction and extraction of clinical parameters from spectral domain optical coherence tomography of the cornea,” Opt. Express18(9), 8923–8936 (2010).
[CrossRef] [PubMed]

S. Ortiz, D. Siedlecki, I. Grulkowski, L. Remon, D. Pascual, M. Wojtkowski, and S. Marcos, “Optical distortion correction in optical coherence tomography for quantitative ocular anterior segment by three-dimensional imaging,” Opt. Express18(3), 2782–2796 (2010).
[CrossRef] [PubMed]

B. Potsaid, B. Baumann, D. Huang, S. Barry, A. E. Cable, J. S. Schuman, J. S. Duker, and J. G. Fujimoto, “Ultrahigh speed 1050nm swept source/Fourier domain OCT retinal and anterior segment imaging at 100,000 to 400,000 axial scans per second,” Opt. Express18(19), 20029–20048 (2010).
[CrossRef] [PubMed]

B. Hofer, B. Povazay, B. Hermann, A. Unterhuber, G. Matz, and W. Drexler, “Dispersion encoded full range frequency domain optical coherence tomography,” Opt. Express17(1), 7–24 (2009).
[CrossRef] [PubMed]

M. Yamanari, S. Makita, Y. Lim, and Y. Yasuno, “Full-range polarization-sensitive swept-source optical coherence tomography by simultaneous transversal and spectral modulation,” Opt. Express18(13), 13964–13980 (2010).
[CrossRef] [PubMed]

Opt. Lett. (2)

Science (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Other (6)

E. Hecht, Optics (Addison Wesley, New York, NY, 2002).

J. Schwiegerling, Field Guide to Visual and Ophthalmic Optics (SPIE Press, Bellingham, WA, 2004).

D. Malacara and Z. Malacara, Handbook of Optical Design (Marcel Dekker, New York, NY, 2004).

D. A. Atchison and G. Smith, Optics of the Human Eye (Butterworth-Heinemann, Boston, MA, 2002).

B. Efron and R. J. Tibshirani, An Introduction to the Bootstrap (Chapman & Hall/CRC, Washington, D.C., 1993).

F. A. Jenkins and H. E. White, Fundamentals of Optics (McGraw-Hill, New York, NY, 1950).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Acquisition and post-processing of volumetric corneal SDOCT data. For each phantom and imaged eye, 50 radially oriented B-scans were captured. (Only 3 B-scans are shown in the figure for clarity). Each B-scan was then automatically segmented and corrected for optical artifacts in post-processing to generate the three-dimensional epithelial and endothelial surfaces. These surfaces were used to determine the corneal biometric measures (radii or curvature, power, and central thickness) for SDOCT.

Fig. 2
Fig. 2

SDOCT measurements of corneal anterior radius compared to topography (A,B) and Scheimpflug photography (C,D). For each comparison, the left figures (A,C) are direct plots of all the mean SDOCT measurements with all the mean measurements from the other modality. The vertical error bars represent ±1 standard deviation from the repeated SDOCT measures for that eye. The horizontal error bars represent ±1 standard deviation from the repeated other modality measures for that eye. The solid diagonal line represents the ideal 1:1 case. For the Bland-Altman plots on the right (B,D), the mean of the paired differences is represented by the solid line. The thinner lines above and below represent ±1.96 standard deviations from the mean of the paired differences. The SDOCT pairwise intraclass correlation coefficient to topography was 0.96 and to Scheimpflug photography was 0.98.

Fig. 3
Fig. 3

SDOCT measurements of keratometric equivalent power compared to topography SimK (A,B) and Scheimpflug photography EKR (C,D). Similar to devices using 1.3375 as the keratometric index of refraction, keratometric equivalent power for SDOCT references the focal point to the posterior vertex (Eq. (3). For each comparison, the left figures (A,C) are direct plots of the mean SDOCT measurements with the mean measurements from the other modality. The vertical error bars represent ±1 standard deviation from the repeated SDOCT measures for that eye. The horizontal error bars represent ±1 standard deviation from the repeated other modality measures for that eye. The solid diagonal line represents the ideal 1:1 case. For the Bland-Altman plots on the right (B,D), the mean of the paired differences is represented by the solid line. The thinner lines above and below represent ±1.96 standard deviations from the mean of the paired differences. The SDOCT pairwise intraclass correlation coefficient to topography was 0.94 and to Scheimpflug photography was 0.98.

Fig. 4
Fig. 4

Variability of Repeated Measures. Variability here is the standard deviation for a group of triplicate measures (except for 3 eyes which were duplicate measures). The bold face number is the mean of the standard deviations of repeated measures with the associated range shown in parentheses. The keratometric power (SimK for topography, keratometric equivalent power for SDOCT, and EKR for Scheimpflug photography) is listed first and then the anterior radius below it. Pooled standard deviations have been used in other works to describe repeatability. For comparison, the repeatability of SDOCT keratometric power in our population as expressed by pooled standard deviation is 0.14 D.

Fig. 5
Fig. 5

Differences between keratometric measures. (left: topography, top right: SDOCT, bottom right: Scheimpflug photography.) The bold numbers are the mean paired differences between the devices connected by the arrows with the standard deviation of the paired differences. The sign corresponds to the direction of the arrow. The keratometric power is listed on top with the corneal anterior radius below.

Tables (1)

Tables Icon

Table 1 Mean of Triplicate Base Curve Measurements (in mm) by SDOCT in Contact Lens Phantomsa

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

( z z 0 )= c ( ( x x 0 ) 2 + ( y y 0 ) 2 ) 2 1+ 1 c 2 ( ( x x 0 ) 2 + ( y y 0 ) 2 ) 2
Φ= n cornea n air r anterior + n aqueous n cornea r posterior CCT n cornea n cornea n air r anterior n aqueous n cornea r posterior
Φ KEP = Φ 1 CCT n cornea n cornea n air r anterior

Metrics