Abstract

The ability to accurately measure layered biological tissue optical properties (OPs) may improve understanding of spectroscopic device performance and facilitate early cancer detection. Towards these goals, we have performed theoretical and experimental evaluations of an approach for broadband measurement of absorption and reduced scattering coefficients at ultraviolet-visible wavelengths. Our technique is based on neural network (NN) inverse models trained with diffuse reflectance data from condensed Monte Carlo simulations. Experimental measurements were performed from 350 to 600 nm with a fiber-optic-based reflectance spectroscopy system. Two-layer phantoms incorporating OPs relevant to normal and dysplastic mucosal tissue and superficial layer thicknesses of 0.22 and 0.44 mm were used to assess prediction accuracy. Results showed mean OP estimation errors of 19% from the theoretical analysis and 27% from experiments. Two-step NN modeling and nonlinear spectral fitting approaches helped improve prediction accuracy. While limitations and challenges remain, the results of this study indicate that our technique can provide moderately accurate estimates of OPs in layered turbid media.

© 2012 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Jemal, R. Siegel, E. Ward, Y. P. Hao, J. Q. Xu, and M. J. Thun, “Cancer statistics, 2009,” CA Cancer J. Clin.59(4), 225–249 (2009).
    [CrossRef] [PubMed]
  2. J. A. Freeberg, J. L. Benedet, C. MacAulay, L. A. West, and M. Follen, “The performance of fluorescence and reflectance spectroscopy for the in vivo diagnosis of cervical neoplasia; point probe versus multispectral approaches,” Gynecol. Oncol.107(1Suppl 1), S248–S255 (2007).
    [CrossRef] [PubMed]
  3. P. R. Bargo, S. A. Prahl, T. T. Goodell, R. A. Sleven, G. Koval, G. Blair, and S. L. Jacques, “In vivo determination of optical properties of normal and tumor tissue with white light reflectance and an empirical light transport model during endoscopy,” J. Biomed. Opt.10(3), 034018 (2005).
    [CrossRef] [PubMed]
  4. T. J. Farrell, M. S. Patterson, and B. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys.19(4), 879–888 (1992).
    [CrossRef] [PubMed]
  5. N. Rajaram, T. H. Nguyen, and J. W. Tunnell, “Lookup table-based inverse model for determining optical properties of turbid media,” J. Biomed. Opt.13(5), 050501 (2008).
    [CrossRef] [PubMed]
  6. D. Arifler, R. A. Schwarz, S. K. Chang, and R. Richards-Kortum, “Reflectance spectroscopy for diagnosis of epithelial precancer: model-based analysis of fiber-optic probe designs to resolve spectral information from epithelium and stroma,” Appl. Opt.44(20), 4291–4305 (2005).
    [CrossRef] [PubMed]
  7. T. J. Farrell, M. S. Patterson, and M. Essenpreis, “Influence of layered tissue architecture on estimates of tissue optical properties obtained from spatially resolved diffuse reflectometry,” Appl. Opt.37(10), 1958–1972 (1998).
    [CrossRef] [PubMed]
  8. S. K. Chang, D. Arifler, R. Drezek, M. Follen, and R. Richards-Kortum, “Analytical model to describe fluorescence spectra of normal and preneoplastic epithelial tissue: comparison with Monte Carlo simulations and clinical measurements,” J. Biomed. Opt.9(3), 511–522 (2004).
    [CrossRef] [PubMed]
  9. G. Alexandrakis, T. J. Farrell, and M. S. Patterson, “Accuracy of the diffusion approximation in determining the optical properties of a two-layer turbid medium,” Appl. Opt.37(31), 7401–7409 (1998).
    [CrossRef] [PubMed]
  10. T.-Y. Tseng, C.-Y. Chen, Y.-S. Li, and K.-B. Sung, “Quantification of the optical properties of two-layered turbid media by simultaneously analyzing the spectral and spatial information of steady-state diffuse reflectance spectroscopy,” Biomed. Opt. Express2(4), 901–914 (2011).
    [CrossRef] [PubMed]
  11. Y. S. Fawzi, A. B. M. Youssef, M. H. el-Batanony, and Y. M. Kadah, “Determination of the optical properties of a two-layer tissue model by detecting photons migrating at progressively increasing depths,” Appl. Opt.42(31), 6398–6411 (2003).
    [CrossRef] [PubMed]
  12. Q. Wang, K. Shastri, and T. J. Pfefer, “Experimental and theoretical evaluation of a fiber-optic approach for optical property measurement in layered epithelial tissue,” Appl. Opt.49(28), 5309–5320 (2010).
    [CrossRef] [PubMed]
  13. G. M. Palmer and N. Ramanujam, “Monte Carlo-based inverse model for calculating tissue optical properties. Part I: Theory and validation on synthetic phantoms,” Appl. Opt.45(5), 1062–1071 (2006).
    [CrossRef] [PubMed]
  14. Q. Liu and N. Ramanujam, “Scaling method for fast Monte Carlo simulation of diffuse reflectance spectra from multilayered turbid media,” J. Opt. Soc. Am. A24(4), 1011–1025 (2007).
    [CrossRef] [PubMed]
  15. Q. Wang, A. Agrawal, N. S. Wang, and T. J. Pfefer, “Condensed Monte Carlo modeling of reflectance from biological tissue with a single illumination-detection fiber,” IEEE J. Sel. Top. Quantum Electron.16(3), 627–634 (2010).
    [CrossRef]
  16. D. C. Walker, B. H. Brown, A. D. Blackett, J. Tidy, and R. H. Smallwood, “A study of the morphological parameters of cervical squamous epithelium,” Physiol. Meas.24(1), 121–135 (2003).
    [CrossRef] [PubMed]
  17. S. Lam, B. Standish, C. Baldwin, A. McWilliams, J. leRiche, A. Gazdar, A. I. Vitkin, V. Yang, N. Ikeda, and C. MacAulay, “In vivo optical coherence tomography imaging of preinvasive bronchial lesions,” Clin. Cancer Res.14(7), 2006–2011 (2008).
    [CrossRef] [PubMed]
  18. R. Reif, O. A’Amar, and I. J. Bigio, “Analytical model of light reflectance for extraction of the optical properties in small volumes of turbid media,” Appl. Opt.46(29), 7317–7328 (2007).
    [CrossRef] [PubMed]
  19. P. Di Ninni, F. Martelli, and G. Zaccanti, “The use of India ink in tissue-simulating phantoms,” Opt. Express18(26), 26854–26865 (2010).
    [CrossRef] [PubMed]
  20. S. K. Chang, N. Marin, M. Follen, and R. Richards-Kortum, “Model-based analysis of clinical fluorescence spectroscopy for in vivo detection of cervical intraepithelial dysplasia,” J. Biomed. Opt.11(2), 024008 (2006).
    [CrossRef] [PubMed]
  21. M. Nitzan, A. Babchenko, B. Khanokh, and H. Taitelbaum, “Measurement of oxygen saturation in venous blood by dynamic near infrared spectroscopy,” J. Biomed. Opt.5(2), 155–162 (2000).
    [CrossRef] [PubMed]
  22. R. Drezek, K. Sokolov, U. Utzinger, I. Boiko, A. Malpica, M. Follen, and R. Richards-Kortum, “Understanding the contributions of NADH and collagen to cervical tissue fluorescence spectra: modeling, measurements, and implications,” J. Biomed. Opt.6(4), 385–396 (2001).
    [CrossRef] [PubMed]
  23. Q. Liu, C. F. Zhu, and N. Ramanujam, “Experimental validation of Monte Carlo modeling of fluorescence in tissues in the UV-visible spectrum,” J. Biomed. Opt.8(2), 223–236 (2003).
    [CrossRef] [PubMed]
  24. Q. Z. Wang, H. Z. Yang, A. Agrawal, N. S. Wang, and T. J. Pfefer, “Measurement of internal tissue optical properties at ultraviolet and visible wavelengths: Development and implementation of a fiberoptic-based system,” Opt. Express16(12), 8685–8703 (2008).
    [CrossRef] [PubMed]
  25. T. H. Pham, T. Spott, L. O. Svaasand, and B. J. Tromberg, “Quantifying the properties of two-layer turbid media with frequency-domain diffuse reflectance,” Appl. Opt.39(25), 4733–4745 (2000).
    [CrossRef] [PubMed]
  26. J. C. Ramella-Roman and J. M. Hidler, “The impact of autonomic dysreflexia on blood flow and skin response in individuals with spinal cord injury,” Adv. Opt. Technol.2008, 797214 (2008).
    [CrossRef]
  27. M. Kraft, K. Lüerßen, H. Lubatschowski, J. Woenckhaus, S. Schöberlein, H. Glanz, and C. Arens, “Schleimhautveränderungen im Kehlkopf: Prädiktionswert neuerer bildgebender Verfahren für eine histologische Diagnose [Mucosal lesions in the larynx: predictive value of new imaging modalities for a histological diagnosis],” HNO56(6), 609–613 (2008).
    [CrossRef] [PubMed]
  28. C. Arens, H. Glanz, J. Wönckhaus, K. Hersemeyer, and M. Kraft, “Histologic assessment of epithelial thickness in early laryngeal cancer or precursor lesions and its impact on endoscopic imaging,” Eur. Arch. Otorhinolaryngol.264(6), 645–649 (2007).
    [CrossRef] [PubMed]
  29. P. R. F. Bonan, E. Kaminagakura, F. R. Pires, P. A. Vargas, and O. P. de Almeida, “Histomorphometry and immunohistochemical features of grade I (WHO) oral radiomucositis,” Oral Dis.13(2), 170–176 (2007).
    [CrossRef] [PubMed]
  30. Q. Liu and N. Ramanujam, “Sequential estimation of optical properties of a two-layered epithelial tissue model from depth-resolved ultraviolet-visible diffuse reflectance spectra,” Appl. Opt.45(19), 4776–4790 (2006).
    [CrossRef] [PubMed]
  31. J. E. Bender, K. Vishwanath, L. K. Moore, J. Q. Brown, V. Chang, G. M. Palmer, and N. Ramanujam, “A robust Monte Carlo model for the extraction of biological absorption and scattering in vivo,” IEEE Trans. Biomed. Eng.56(4), 960–968 (2009).
    [CrossRef] [PubMed]

2011 (1)

2010 (3)

2009 (2)

J. E. Bender, K. Vishwanath, L. K. Moore, J. Q. Brown, V. Chang, G. M. Palmer, and N. Ramanujam, “A robust Monte Carlo model for the extraction of biological absorption and scattering in vivo,” IEEE Trans. Biomed. Eng.56(4), 960–968 (2009).
[CrossRef] [PubMed]

A. Jemal, R. Siegel, E. Ward, Y. P. Hao, J. Q. Xu, and M. J. Thun, “Cancer statistics, 2009,” CA Cancer J. Clin.59(4), 225–249 (2009).
[CrossRef] [PubMed]

2008 (5)

J. C. Ramella-Roman and J. M. Hidler, “The impact of autonomic dysreflexia on blood flow and skin response in individuals with spinal cord injury,” Adv. Opt. Technol.2008, 797214 (2008).
[CrossRef]

N. Rajaram, T. H. Nguyen, and J. W. Tunnell, “Lookup table-based inverse model for determining optical properties of turbid media,” J. Biomed. Opt.13(5), 050501 (2008).
[CrossRef] [PubMed]

M. Kraft, K. Lüerßen, H. Lubatschowski, J. Woenckhaus, S. Schöberlein, H. Glanz, and C. Arens, “Schleimhautveränderungen im Kehlkopf: Prädiktionswert neuerer bildgebender Verfahren für eine histologische Diagnose [Mucosal lesions in the larynx: predictive value of new imaging modalities for a histological diagnosis],” HNO56(6), 609–613 (2008).
[CrossRef] [PubMed]

S. Lam, B. Standish, C. Baldwin, A. McWilliams, J. leRiche, A. Gazdar, A. I. Vitkin, V. Yang, N. Ikeda, and C. MacAulay, “In vivo optical coherence tomography imaging of preinvasive bronchial lesions,” Clin. Cancer Res.14(7), 2006–2011 (2008).
[CrossRef] [PubMed]

Q. Z. Wang, H. Z. Yang, A. Agrawal, N. S. Wang, and T. J. Pfefer, “Measurement of internal tissue optical properties at ultraviolet and visible wavelengths: Development and implementation of a fiberoptic-based system,” Opt. Express16(12), 8685–8703 (2008).
[CrossRef] [PubMed]

2007 (5)

C. Arens, H. Glanz, J. Wönckhaus, K. Hersemeyer, and M. Kraft, “Histologic assessment of epithelial thickness in early laryngeal cancer or precursor lesions and its impact on endoscopic imaging,” Eur. Arch. Otorhinolaryngol.264(6), 645–649 (2007).
[CrossRef] [PubMed]

J. A. Freeberg, J. L. Benedet, C. MacAulay, L. A. West, and M. Follen, “The performance of fluorescence and reflectance spectroscopy for the in vivo diagnosis of cervical neoplasia; point probe versus multispectral approaches,” Gynecol. Oncol.107(1Suppl 1), S248–S255 (2007).
[CrossRef] [PubMed]

R. Reif, O. A’Amar, and I. J. Bigio, “Analytical model of light reflectance for extraction of the optical properties in small volumes of turbid media,” Appl. Opt.46(29), 7317–7328 (2007).
[CrossRef] [PubMed]

Q. Liu and N. Ramanujam, “Scaling method for fast Monte Carlo simulation of diffuse reflectance spectra from multilayered turbid media,” J. Opt. Soc. Am. A24(4), 1011–1025 (2007).
[CrossRef] [PubMed]

P. R. F. Bonan, E. Kaminagakura, F. R. Pires, P. A. Vargas, and O. P. de Almeida, “Histomorphometry and immunohistochemical features of grade I (WHO) oral radiomucositis,” Oral Dis.13(2), 170–176 (2007).
[CrossRef] [PubMed]

2006 (3)

2005 (2)

P. R. Bargo, S. A. Prahl, T. T. Goodell, R. A. Sleven, G. Koval, G. Blair, and S. L. Jacques, “In vivo determination of optical properties of normal and tumor tissue with white light reflectance and an empirical light transport model during endoscopy,” J. Biomed. Opt.10(3), 034018 (2005).
[CrossRef] [PubMed]

D. Arifler, R. A. Schwarz, S. K. Chang, and R. Richards-Kortum, “Reflectance spectroscopy for diagnosis of epithelial precancer: model-based analysis of fiber-optic probe designs to resolve spectral information from epithelium and stroma,” Appl. Opt.44(20), 4291–4305 (2005).
[CrossRef] [PubMed]

2004 (1)

S. K. Chang, D. Arifler, R. Drezek, M. Follen, and R. Richards-Kortum, “Analytical model to describe fluorescence spectra of normal and preneoplastic epithelial tissue: comparison with Monte Carlo simulations and clinical measurements,” J. Biomed. Opt.9(3), 511–522 (2004).
[CrossRef] [PubMed]

2003 (3)

Q. Liu, C. F. Zhu, and N. Ramanujam, “Experimental validation of Monte Carlo modeling of fluorescence in tissues in the UV-visible spectrum,” J. Biomed. Opt.8(2), 223–236 (2003).
[CrossRef] [PubMed]

D. C. Walker, B. H. Brown, A. D. Blackett, J. Tidy, and R. H. Smallwood, “A study of the morphological parameters of cervical squamous epithelium,” Physiol. Meas.24(1), 121–135 (2003).
[CrossRef] [PubMed]

Y. S. Fawzi, A. B. M. Youssef, M. H. el-Batanony, and Y. M. Kadah, “Determination of the optical properties of a two-layer tissue model by detecting photons migrating at progressively increasing depths,” Appl. Opt.42(31), 6398–6411 (2003).
[CrossRef] [PubMed]

2001 (1)

R. Drezek, K. Sokolov, U. Utzinger, I. Boiko, A. Malpica, M. Follen, and R. Richards-Kortum, “Understanding the contributions of NADH and collagen to cervical tissue fluorescence spectra: modeling, measurements, and implications,” J. Biomed. Opt.6(4), 385–396 (2001).
[CrossRef] [PubMed]

2000 (2)

T. H. Pham, T. Spott, L. O. Svaasand, and B. J. Tromberg, “Quantifying the properties of two-layer turbid media with frequency-domain diffuse reflectance,” Appl. Opt.39(25), 4733–4745 (2000).
[CrossRef] [PubMed]

M. Nitzan, A. Babchenko, B. Khanokh, and H. Taitelbaum, “Measurement of oxygen saturation in venous blood by dynamic near infrared spectroscopy,” J. Biomed. Opt.5(2), 155–162 (2000).
[CrossRef] [PubMed]

1998 (2)

1992 (1)

T. J. Farrell, M. S. Patterson, and B. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys.19(4), 879–888 (1992).
[CrossRef] [PubMed]

Lüerßen, K.

M. Kraft, K. Lüerßen, H. Lubatschowski, J. Woenckhaus, S. Schöberlein, H. Glanz, and C. Arens, “Schleimhautveränderungen im Kehlkopf: Prädiktionswert neuerer bildgebender Verfahren für eine histologische Diagnose [Mucosal lesions in the larynx: predictive value of new imaging modalities for a histological diagnosis],” HNO56(6), 609–613 (2008).
[CrossRef] [PubMed]

A’Amar, O.

Agrawal, A.

Q. Wang, A. Agrawal, N. S. Wang, and T. J. Pfefer, “Condensed Monte Carlo modeling of reflectance from biological tissue with a single illumination-detection fiber,” IEEE J. Sel. Top. Quantum Electron.16(3), 627–634 (2010).
[CrossRef]

Q. Z. Wang, H. Z. Yang, A. Agrawal, N. S. Wang, and T. J. Pfefer, “Measurement of internal tissue optical properties at ultraviolet and visible wavelengths: Development and implementation of a fiberoptic-based system,” Opt. Express16(12), 8685–8703 (2008).
[CrossRef] [PubMed]

Alexandrakis, G.

Arens, C.

M. Kraft, K. Lüerßen, H. Lubatschowski, J. Woenckhaus, S. Schöberlein, H. Glanz, and C. Arens, “Schleimhautveränderungen im Kehlkopf: Prädiktionswert neuerer bildgebender Verfahren für eine histologische Diagnose [Mucosal lesions in the larynx: predictive value of new imaging modalities for a histological diagnosis],” HNO56(6), 609–613 (2008).
[CrossRef] [PubMed]

C. Arens, H. Glanz, J. Wönckhaus, K. Hersemeyer, and M. Kraft, “Histologic assessment of epithelial thickness in early laryngeal cancer or precursor lesions and its impact on endoscopic imaging,” Eur. Arch. Otorhinolaryngol.264(6), 645–649 (2007).
[CrossRef] [PubMed]

Arifler, D.

D. Arifler, R. A. Schwarz, S. K. Chang, and R. Richards-Kortum, “Reflectance spectroscopy for diagnosis of epithelial precancer: model-based analysis of fiber-optic probe designs to resolve spectral information from epithelium and stroma,” Appl. Opt.44(20), 4291–4305 (2005).
[CrossRef] [PubMed]

S. K. Chang, D. Arifler, R. Drezek, M. Follen, and R. Richards-Kortum, “Analytical model to describe fluorescence spectra of normal and preneoplastic epithelial tissue: comparison with Monte Carlo simulations and clinical measurements,” J. Biomed. Opt.9(3), 511–522 (2004).
[CrossRef] [PubMed]

Babchenko, A.

M. Nitzan, A. Babchenko, B. Khanokh, and H. Taitelbaum, “Measurement of oxygen saturation in venous blood by dynamic near infrared spectroscopy,” J. Biomed. Opt.5(2), 155–162 (2000).
[CrossRef] [PubMed]

Baldwin, C.

S. Lam, B. Standish, C. Baldwin, A. McWilliams, J. leRiche, A. Gazdar, A. I. Vitkin, V. Yang, N. Ikeda, and C. MacAulay, “In vivo optical coherence tomography imaging of preinvasive bronchial lesions,” Clin. Cancer Res.14(7), 2006–2011 (2008).
[CrossRef] [PubMed]

Bargo, P. R.

P. R. Bargo, S. A. Prahl, T. T. Goodell, R. A. Sleven, G. Koval, G. Blair, and S. L. Jacques, “In vivo determination of optical properties of normal and tumor tissue with white light reflectance and an empirical light transport model during endoscopy,” J. Biomed. Opt.10(3), 034018 (2005).
[CrossRef] [PubMed]

Bender, J. E.

J. E. Bender, K. Vishwanath, L. K. Moore, J. Q. Brown, V. Chang, G. M. Palmer, and N. Ramanujam, “A robust Monte Carlo model for the extraction of biological absorption and scattering in vivo,” IEEE Trans. Biomed. Eng.56(4), 960–968 (2009).
[CrossRef] [PubMed]

Benedet, J. L.

J. A. Freeberg, J. L. Benedet, C. MacAulay, L. A. West, and M. Follen, “The performance of fluorescence and reflectance spectroscopy for the in vivo diagnosis of cervical neoplasia; point probe versus multispectral approaches,” Gynecol. Oncol.107(1Suppl 1), S248–S255 (2007).
[CrossRef] [PubMed]

Bigio, I. J.

Blackett, A. D.

D. C. Walker, B. H. Brown, A. D. Blackett, J. Tidy, and R. H. Smallwood, “A study of the morphological parameters of cervical squamous epithelium,” Physiol. Meas.24(1), 121–135 (2003).
[CrossRef] [PubMed]

Blair, G.

P. R. Bargo, S. A. Prahl, T. T. Goodell, R. A. Sleven, G. Koval, G. Blair, and S. L. Jacques, “In vivo determination of optical properties of normal and tumor tissue with white light reflectance and an empirical light transport model during endoscopy,” J. Biomed. Opt.10(3), 034018 (2005).
[CrossRef] [PubMed]

Boiko, I.

R. Drezek, K. Sokolov, U. Utzinger, I. Boiko, A. Malpica, M. Follen, and R. Richards-Kortum, “Understanding the contributions of NADH and collagen to cervical tissue fluorescence spectra: modeling, measurements, and implications,” J. Biomed. Opt.6(4), 385–396 (2001).
[CrossRef] [PubMed]

Bonan, P. R. F.

P. R. F. Bonan, E. Kaminagakura, F. R. Pires, P. A. Vargas, and O. P. de Almeida, “Histomorphometry and immunohistochemical features of grade I (WHO) oral radiomucositis,” Oral Dis.13(2), 170–176 (2007).
[CrossRef] [PubMed]

Brown, B. H.

D. C. Walker, B. H. Brown, A. D. Blackett, J. Tidy, and R. H. Smallwood, “A study of the morphological parameters of cervical squamous epithelium,” Physiol. Meas.24(1), 121–135 (2003).
[CrossRef] [PubMed]

Brown, J. Q.

J. E. Bender, K. Vishwanath, L. K. Moore, J. Q. Brown, V. Chang, G. M. Palmer, and N. Ramanujam, “A robust Monte Carlo model for the extraction of biological absorption and scattering in vivo,” IEEE Trans. Biomed. Eng.56(4), 960–968 (2009).
[CrossRef] [PubMed]

Chang, S. K.

S. K. Chang, N. Marin, M. Follen, and R. Richards-Kortum, “Model-based analysis of clinical fluorescence spectroscopy for in vivo detection of cervical intraepithelial dysplasia,” J. Biomed. Opt.11(2), 024008 (2006).
[CrossRef] [PubMed]

D. Arifler, R. A. Schwarz, S. K. Chang, and R. Richards-Kortum, “Reflectance spectroscopy for diagnosis of epithelial precancer: model-based analysis of fiber-optic probe designs to resolve spectral information from epithelium and stroma,” Appl. Opt.44(20), 4291–4305 (2005).
[CrossRef] [PubMed]

S. K. Chang, D. Arifler, R. Drezek, M. Follen, and R. Richards-Kortum, “Analytical model to describe fluorescence spectra of normal and preneoplastic epithelial tissue: comparison with Monte Carlo simulations and clinical measurements,” J. Biomed. Opt.9(3), 511–522 (2004).
[CrossRef] [PubMed]

Chang, V.

J. E. Bender, K. Vishwanath, L. K. Moore, J. Q. Brown, V. Chang, G. M. Palmer, and N. Ramanujam, “A robust Monte Carlo model for the extraction of biological absorption and scattering in vivo,” IEEE Trans. Biomed. Eng.56(4), 960–968 (2009).
[CrossRef] [PubMed]

Chen, C.-Y.

de Almeida, O. P.

P. R. F. Bonan, E. Kaminagakura, F. R. Pires, P. A. Vargas, and O. P. de Almeida, “Histomorphometry and immunohistochemical features of grade I (WHO) oral radiomucositis,” Oral Dis.13(2), 170–176 (2007).
[CrossRef] [PubMed]

Di Ninni, P.

Drezek, R.

S. K. Chang, D. Arifler, R. Drezek, M. Follen, and R. Richards-Kortum, “Analytical model to describe fluorescence spectra of normal and preneoplastic epithelial tissue: comparison with Monte Carlo simulations and clinical measurements,” J. Biomed. Opt.9(3), 511–522 (2004).
[CrossRef] [PubMed]

R. Drezek, K. Sokolov, U. Utzinger, I. Boiko, A. Malpica, M. Follen, and R. Richards-Kortum, “Understanding the contributions of NADH and collagen to cervical tissue fluorescence spectra: modeling, measurements, and implications,” J. Biomed. Opt.6(4), 385–396 (2001).
[CrossRef] [PubMed]

el-Batanony, M. H.

Essenpreis, M.

Farrell, T. J.

Fawzi, Y. S.

Follen, M.

J. A. Freeberg, J. L. Benedet, C. MacAulay, L. A. West, and M. Follen, “The performance of fluorescence and reflectance spectroscopy for the in vivo diagnosis of cervical neoplasia; point probe versus multispectral approaches,” Gynecol. Oncol.107(1Suppl 1), S248–S255 (2007).
[CrossRef] [PubMed]

S. K. Chang, N. Marin, M. Follen, and R. Richards-Kortum, “Model-based analysis of clinical fluorescence spectroscopy for in vivo detection of cervical intraepithelial dysplasia,” J. Biomed. Opt.11(2), 024008 (2006).
[CrossRef] [PubMed]

S. K. Chang, D. Arifler, R. Drezek, M. Follen, and R. Richards-Kortum, “Analytical model to describe fluorescence spectra of normal and preneoplastic epithelial tissue: comparison with Monte Carlo simulations and clinical measurements,” J. Biomed. Opt.9(3), 511–522 (2004).
[CrossRef] [PubMed]

R. Drezek, K. Sokolov, U. Utzinger, I. Boiko, A. Malpica, M. Follen, and R. Richards-Kortum, “Understanding the contributions of NADH and collagen to cervical tissue fluorescence spectra: modeling, measurements, and implications,” J. Biomed. Opt.6(4), 385–396 (2001).
[CrossRef] [PubMed]

Freeberg, J. A.

J. A. Freeberg, J. L. Benedet, C. MacAulay, L. A. West, and M. Follen, “The performance of fluorescence and reflectance spectroscopy for the in vivo diagnosis of cervical neoplasia; point probe versus multispectral approaches,” Gynecol. Oncol.107(1Suppl 1), S248–S255 (2007).
[CrossRef] [PubMed]

Gazdar, A.

S. Lam, B. Standish, C. Baldwin, A. McWilliams, J. leRiche, A. Gazdar, A. I. Vitkin, V. Yang, N. Ikeda, and C. MacAulay, “In vivo optical coherence tomography imaging of preinvasive bronchial lesions,” Clin. Cancer Res.14(7), 2006–2011 (2008).
[CrossRef] [PubMed]

Glanz, H.

M. Kraft, K. Lüerßen, H. Lubatschowski, J. Woenckhaus, S. Schöberlein, H. Glanz, and C. Arens, “Schleimhautveränderungen im Kehlkopf: Prädiktionswert neuerer bildgebender Verfahren für eine histologische Diagnose [Mucosal lesions in the larynx: predictive value of new imaging modalities for a histological diagnosis],” HNO56(6), 609–613 (2008).
[CrossRef] [PubMed]

C. Arens, H. Glanz, J. Wönckhaus, K. Hersemeyer, and M. Kraft, “Histologic assessment of epithelial thickness in early laryngeal cancer or precursor lesions and its impact on endoscopic imaging,” Eur. Arch. Otorhinolaryngol.264(6), 645–649 (2007).
[CrossRef] [PubMed]

Goodell, T. T.

P. R. Bargo, S. A. Prahl, T. T. Goodell, R. A. Sleven, G. Koval, G. Blair, and S. L. Jacques, “In vivo determination of optical properties of normal and tumor tissue with white light reflectance and an empirical light transport model during endoscopy,” J. Biomed. Opt.10(3), 034018 (2005).
[CrossRef] [PubMed]

Hao, Y. P.

A. Jemal, R. Siegel, E. Ward, Y. P. Hao, J. Q. Xu, and M. J. Thun, “Cancer statistics, 2009,” CA Cancer J. Clin.59(4), 225–249 (2009).
[CrossRef] [PubMed]

Hersemeyer, K.

C. Arens, H. Glanz, J. Wönckhaus, K. Hersemeyer, and M. Kraft, “Histologic assessment of epithelial thickness in early laryngeal cancer or precursor lesions and its impact on endoscopic imaging,” Eur. Arch. Otorhinolaryngol.264(6), 645–649 (2007).
[CrossRef] [PubMed]

Hidler, J. M.

J. C. Ramella-Roman and J. M. Hidler, “The impact of autonomic dysreflexia on blood flow and skin response in individuals with spinal cord injury,” Adv. Opt. Technol.2008, 797214 (2008).
[CrossRef]

Ikeda, N.

S. Lam, B. Standish, C. Baldwin, A. McWilliams, J. leRiche, A. Gazdar, A. I. Vitkin, V. Yang, N. Ikeda, and C. MacAulay, “In vivo optical coherence tomography imaging of preinvasive bronchial lesions,” Clin. Cancer Res.14(7), 2006–2011 (2008).
[CrossRef] [PubMed]

Jacques, S. L.

P. R. Bargo, S. A. Prahl, T. T. Goodell, R. A. Sleven, G. Koval, G. Blair, and S. L. Jacques, “In vivo determination of optical properties of normal and tumor tissue with white light reflectance and an empirical light transport model during endoscopy,” J. Biomed. Opt.10(3), 034018 (2005).
[CrossRef] [PubMed]

Jemal, A.

A. Jemal, R. Siegel, E. Ward, Y. P. Hao, J. Q. Xu, and M. J. Thun, “Cancer statistics, 2009,” CA Cancer J. Clin.59(4), 225–249 (2009).
[CrossRef] [PubMed]

Kadah, Y. M.

Kaminagakura, E.

P. R. F. Bonan, E. Kaminagakura, F. R. Pires, P. A. Vargas, and O. P. de Almeida, “Histomorphometry and immunohistochemical features of grade I (WHO) oral radiomucositis,” Oral Dis.13(2), 170–176 (2007).
[CrossRef] [PubMed]

Khanokh, B.

M. Nitzan, A. Babchenko, B. Khanokh, and H. Taitelbaum, “Measurement of oxygen saturation in venous blood by dynamic near infrared spectroscopy,” J. Biomed. Opt.5(2), 155–162 (2000).
[CrossRef] [PubMed]

Koval, G.

P. R. Bargo, S. A. Prahl, T. T. Goodell, R. A. Sleven, G. Koval, G. Blair, and S. L. Jacques, “In vivo determination of optical properties of normal and tumor tissue with white light reflectance and an empirical light transport model during endoscopy,” J. Biomed. Opt.10(3), 034018 (2005).
[CrossRef] [PubMed]

Kraft, M.

M. Kraft, K. Lüerßen, H. Lubatschowski, J. Woenckhaus, S. Schöberlein, H. Glanz, and C. Arens, “Schleimhautveränderungen im Kehlkopf: Prädiktionswert neuerer bildgebender Verfahren für eine histologische Diagnose [Mucosal lesions in the larynx: predictive value of new imaging modalities for a histological diagnosis],” HNO56(6), 609–613 (2008).
[CrossRef] [PubMed]

C. Arens, H. Glanz, J. Wönckhaus, K. Hersemeyer, and M. Kraft, “Histologic assessment of epithelial thickness in early laryngeal cancer or precursor lesions and its impact on endoscopic imaging,” Eur. Arch. Otorhinolaryngol.264(6), 645–649 (2007).
[CrossRef] [PubMed]

Lam, S.

S. Lam, B. Standish, C. Baldwin, A. McWilliams, J. leRiche, A. Gazdar, A. I. Vitkin, V. Yang, N. Ikeda, and C. MacAulay, “In vivo optical coherence tomography imaging of preinvasive bronchial lesions,” Clin. Cancer Res.14(7), 2006–2011 (2008).
[CrossRef] [PubMed]

leRiche, J.

S. Lam, B. Standish, C. Baldwin, A. McWilliams, J. leRiche, A. Gazdar, A. I. Vitkin, V. Yang, N. Ikeda, and C. MacAulay, “In vivo optical coherence tomography imaging of preinvasive bronchial lesions,” Clin. Cancer Res.14(7), 2006–2011 (2008).
[CrossRef] [PubMed]

Li, Y.-S.

Liu, Q.

Lubatschowski, H.

M. Kraft, K. Lüerßen, H. Lubatschowski, J. Woenckhaus, S. Schöberlein, H. Glanz, and C. Arens, “Schleimhautveränderungen im Kehlkopf: Prädiktionswert neuerer bildgebender Verfahren für eine histologische Diagnose [Mucosal lesions in the larynx: predictive value of new imaging modalities for a histological diagnosis],” HNO56(6), 609–613 (2008).
[CrossRef] [PubMed]

MacAulay, C.

S. Lam, B. Standish, C. Baldwin, A. McWilliams, J. leRiche, A. Gazdar, A. I. Vitkin, V. Yang, N. Ikeda, and C. MacAulay, “In vivo optical coherence tomography imaging of preinvasive bronchial lesions,” Clin. Cancer Res.14(7), 2006–2011 (2008).
[CrossRef] [PubMed]

J. A. Freeberg, J. L. Benedet, C. MacAulay, L. A. West, and M. Follen, “The performance of fluorescence and reflectance spectroscopy for the in vivo diagnosis of cervical neoplasia; point probe versus multispectral approaches,” Gynecol. Oncol.107(1Suppl 1), S248–S255 (2007).
[CrossRef] [PubMed]

Malpica, A.

R. Drezek, K. Sokolov, U. Utzinger, I. Boiko, A. Malpica, M. Follen, and R. Richards-Kortum, “Understanding the contributions of NADH and collagen to cervical tissue fluorescence spectra: modeling, measurements, and implications,” J. Biomed. Opt.6(4), 385–396 (2001).
[CrossRef] [PubMed]

Marin, N.

S. K. Chang, N. Marin, M. Follen, and R. Richards-Kortum, “Model-based analysis of clinical fluorescence spectroscopy for in vivo detection of cervical intraepithelial dysplasia,” J. Biomed. Opt.11(2), 024008 (2006).
[CrossRef] [PubMed]

Martelli, F.

McWilliams, A.

S. Lam, B. Standish, C. Baldwin, A. McWilliams, J. leRiche, A. Gazdar, A. I. Vitkin, V. Yang, N. Ikeda, and C. MacAulay, “In vivo optical coherence tomography imaging of preinvasive bronchial lesions,” Clin. Cancer Res.14(7), 2006–2011 (2008).
[CrossRef] [PubMed]

Moore, L. K.

J. E. Bender, K. Vishwanath, L. K. Moore, J. Q. Brown, V. Chang, G. M. Palmer, and N. Ramanujam, “A robust Monte Carlo model for the extraction of biological absorption and scattering in vivo,” IEEE Trans. Biomed. Eng.56(4), 960–968 (2009).
[CrossRef] [PubMed]

Nguyen, T. H.

N. Rajaram, T. H. Nguyen, and J. W. Tunnell, “Lookup table-based inverse model for determining optical properties of turbid media,” J. Biomed. Opt.13(5), 050501 (2008).
[CrossRef] [PubMed]

Nitzan, M.

M. Nitzan, A. Babchenko, B. Khanokh, and H. Taitelbaum, “Measurement of oxygen saturation in venous blood by dynamic near infrared spectroscopy,” J. Biomed. Opt.5(2), 155–162 (2000).
[CrossRef] [PubMed]

Palmer, G. M.

J. E. Bender, K. Vishwanath, L. K. Moore, J. Q. Brown, V. Chang, G. M. Palmer, and N. Ramanujam, “A robust Monte Carlo model for the extraction of biological absorption and scattering in vivo,” IEEE Trans. Biomed. Eng.56(4), 960–968 (2009).
[CrossRef] [PubMed]

G. M. Palmer and N. Ramanujam, “Monte Carlo-based inverse model for calculating tissue optical properties. Part I: Theory and validation on synthetic phantoms,” Appl. Opt.45(5), 1062–1071 (2006).
[CrossRef] [PubMed]

Patterson, M. S.

Pfefer, T. J.

Pham, T. H.

Pires, F. R.

P. R. F. Bonan, E. Kaminagakura, F. R. Pires, P. A. Vargas, and O. P. de Almeida, “Histomorphometry and immunohistochemical features of grade I (WHO) oral radiomucositis,” Oral Dis.13(2), 170–176 (2007).
[CrossRef] [PubMed]

Prahl, S. A.

P. R. Bargo, S. A. Prahl, T. T. Goodell, R. A. Sleven, G. Koval, G. Blair, and S. L. Jacques, “In vivo determination of optical properties of normal and tumor tissue with white light reflectance and an empirical light transport model during endoscopy,” J. Biomed. Opt.10(3), 034018 (2005).
[CrossRef] [PubMed]

Rajaram, N.

N. Rajaram, T. H. Nguyen, and J. W. Tunnell, “Lookup table-based inverse model for determining optical properties of turbid media,” J. Biomed. Opt.13(5), 050501 (2008).
[CrossRef] [PubMed]

Ramanujam, N.

Ramella-Roman, J. C.

J. C. Ramella-Roman and J. M. Hidler, “The impact of autonomic dysreflexia on blood flow and skin response in individuals with spinal cord injury,” Adv. Opt. Technol.2008, 797214 (2008).
[CrossRef]

Reif, R.

Richards-Kortum, R.

S. K. Chang, N. Marin, M. Follen, and R. Richards-Kortum, “Model-based analysis of clinical fluorescence spectroscopy for in vivo detection of cervical intraepithelial dysplasia,” J. Biomed. Opt.11(2), 024008 (2006).
[CrossRef] [PubMed]

D. Arifler, R. A. Schwarz, S. K. Chang, and R. Richards-Kortum, “Reflectance spectroscopy for diagnosis of epithelial precancer: model-based analysis of fiber-optic probe designs to resolve spectral information from epithelium and stroma,” Appl. Opt.44(20), 4291–4305 (2005).
[CrossRef] [PubMed]

S. K. Chang, D. Arifler, R. Drezek, M. Follen, and R. Richards-Kortum, “Analytical model to describe fluorescence spectra of normal and preneoplastic epithelial tissue: comparison with Monte Carlo simulations and clinical measurements,” J. Biomed. Opt.9(3), 511–522 (2004).
[CrossRef] [PubMed]

R. Drezek, K. Sokolov, U. Utzinger, I. Boiko, A. Malpica, M. Follen, and R. Richards-Kortum, “Understanding the contributions of NADH and collagen to cervical tissue fluorescence spectra: modeling, measurements, and implications,” J. Biomed. Opt.6(4), 385–396 (2001).
[CrossRef] [PubMed]

Schöberlein, S.

M. Kraft, K. Lüerßen, H. Lubatschowski, J. Woenckhaus, S. Schöberlein, H. Glanz, and C. Arens, “Schleimhautveränderungen im Kehlkopf: Prädiktionswert neuerer bildgebender Verfahren für eine histologische Diagnose [Mucosal lesions in the larynx: predictive value of new imaging modalities for a histological diagnosis],” HNO56(6), 609–613 (2008).
[CrossRef] [PubMed]

Schwarz, R. A.

Shastri, K.

Siegel, R.

A. Jemal, R. Siegel, E. Ward, Y. P. Hao, J. Q. Xu, and M. J. Thun, “Cancer statistics, 2009,” CA Cancer J. Clin.59(4), 225–249 (2009).
[CrossRef] [PubMed]

Sleven, R. A.

P. R. Bargo, S. A. Prahl, T. T. Goodell, R. A. Sleven, G. Koval, G. Blair, and S. L. Jacques, “In vivo determination of optical properties of normal and tumor tissue with white light reflectance and an empirical light transport model during endoscopy,” J. Biomed. Opt.10(3), 034018 (2005).
[CrossRef] [PubMed]

Smallwood, R. H.

D. C. Walker, B. H. Brown, A. D. Blackett, J. Tidy, and R. H. Smallwood, “A study of the morphological parameters of cervical squamous epithelium,” Physiol. Meas.24(1), 121–135 (2003).
[CrossRef] [PubMed]

Sokolov, K.

R. Drezek, K. Sokolov, U. Utzinger, I. Boiko, A. Malpica, M. Follen, and R. Richards-Kortum, “Understanding the contributions of NADH and collagen to cervical tissue fluorescence spectra: modeling, measurements, and implications,” J. Biomed. Opt.6(4), 385–396 (2001).
[CrossRef] [PubMed]

Spott, T.

Standish, B.

S. Lam, B. Standish, C. Baldwin, A. McWilliams, J. leRiche, A. Gazdar, A. I. Vitkin, V. Yang, N. Ikeda, and C. MacAulay, “In vivo optical coherence tomography imaging of preinvasive bronchial lesions,” Clin. Cancer Res.14(7), 2006–2011 (2008).
[CrossRef] [PubMed]

Sung, K.-B.

Svaasand, L. O.

Taitelbaum, H.

M. Nitzan, A. Babchenko, B. Khanokh, and H. Taitelbaum, “Measurement of oxygen saturation in venous blood by dynamic near infrared spectroscopy,” J. Biomed. Opt.5(2), 155–162 (2000).
[CrossRef] [PubMed]

Thun, M. J.

A. Jemal, R. Siegel, E. Ward, Y. P. Hao, J. Q. Xu, and M. J. Thun, “Cancer statistics, 2009,” CA Cancer J. Clin.59(4), 225–249 (2009).
[CrossRef] [PubMed]

Tidy, J.

D. C. Walker, B. H. Brown, A. D. Blackett, J. Tidy, and R. H. Smallwood, “A study of the morphological parameters of cervical squamous epithelium,” Physiol. Meas.24(1), 121–135 (2003).
[CrossRef] [PubMed]

Tromberg, B. J.

Tseng, T.-Y.

Tunnell, J. W.

N. Rajaram, T. H. Nguyen, and J. W. Tunnell, “Lookup table-based inverse model for determining optical properties of turbid media,” J. Biomed. Opt.13(5), 050501 (2008).
[CrossRef] [PubMed]

Utzinger, U.

R. Drezek, K. Sokolov, U. Utzinger, I. Boiko, A. Malpica, M. Follen, and R. Richards-Kortum, “Understanding the contributions of NADH and collagen to cervical tissue fluorescence spectra: modeling, measurements, and implications,” J. Biomed. Opt.6(4), 385–396 (2001).
[CrossRef] [PubMed]

Vargas, P. A.

P. R. F. Bonan, E. Kaminagakura, F. R. Pires, P. A. Vargas, and O. P. de Almeida, “Histomorphometry and immunohistochemical features of grade I (WHO) oral radiomucositis,” Oral Dis.13(2), 170–176 (2007).
[CrossRef] [PubMed]

Vishwanath, K.

J. E. Bender, K. Vishwanath, L. K. Moore, J. Q. Brown, V. Chang, G. M. Palmer, and N. Ramanujam, “A robust Monte Carlo model for the extraction of biological absorption and scattering in vivo,” IEEE Trans. Biomed. Eng.56(4), 960–968 (2009).
[CrossRef] [PubMed]

Vitkin, A. I.

S. Lam, B. Standish, C. Baldwin, A. McWilliams, J. leRiche, A. Gazdar, A. I. Vitkin, V. Yang, N. Ikeda, and C. MacAulay, “In vivo optical coherence tomography imaging of preinvasive bronchial lesions,” Clin. Cancer Res.14(7), 2006–2011 (2008).
[CrossRef] [PubMed]

Walker, D. C.

D. C. Walker, B. H. Brown, A. D. Blackett, J. Tidy, and R. H. Smallwood, “A study of the morphological parameters of cervical squamous epithelium,” Physiol. Meas.24(1), 121–135 (2003).
[CrossRef] [PubMed]

Wang, N. S.

Q. Wang, A. Agrawal, N. S. Wang, and T. J. Pfefer, “Condensed Monte Carlo modeling of reflectance from biological tissue with a single illumination-detection fiber,” IEEE J. Sel. Top. Quantum Electron.16(3), 627–634 (2010).
[CrossRef]

Q. Z. Wang, H. Z. Yang, A. Agrawal, N. S. Wang, and T. J. Pfefer, “Measurement of internal tissue optical properties at ultraviolet and visible wavelengths: Development and implementation of a fiberoptic-based system,” Opt. Express16(12), 8685–8703 (2008).
[CrossRef] [PubMed]

Wang, Q.

Q. Wang, A. Agrawal, N. S. Wang, and T. J. Pfefer, “Condensed Monte Carlo modeling of reflectance from biological tissue with a single illumination-detection fiber,” IEEE J. Sel. Top. Quantum Electron.16(3), 627–634 (2010).
[CrossRef]

Q. Wang, K. Shastri, and T. J. Pfefer, “Experimental and theoretical evaluation of a fiber-optic approach for optical property measurement in layered epithelial tissue,” Appl. Opt.49(28), 5309–5320 (2010).
[CrossRef] [PubMed]

Wang, Q. Z.

Ward, E.

A. Jemal, R. Siegel, E. Ward, Y. P. Hao, J. Q. Xu, and M. J. Thun, “Cancer statistics, 2009,” CA Cancer J. Clin.59(4), 225–249 (2009).
[CrossRef] [PubMed]

West, L. A.

J. A. Freeberg, J. L. Benedet, C. MacAulay, L. A. West, and M. Follen, “The performance of fluorescence and reflectance spectroscopy for the in vivo diagnosis of cervical neoplasia; point probe versus multispectral approaches,” Gynecol. Oncol.107(1Suppl 1), S248–S255 (2007).
[CrossRef] [PubMed]

Wilson, B.

T. J. Farrell, M. S. Patterson, and B. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys.19(4), 879–888 (1992).
[CrossRef] [PubMed]

Woenckhaus, J.

M. Kraft, K. Lüerßen, H. Lubatschowski, J. Woenckhaus, S. Schöberlein, H. Glanz, and C. Arens, “Schleimhautveränderungen im Kehlkopf: Prädiktionswert neuerer bildgebender Verfahren für eine histologische Diagnose [Mucosal lesions in the larynx: predictive value of new imaging modalities for a histological diagnosis],” HNO56(6), 609–613 (2008).
[CrossRef] [PubMed]

Wönckhaus, J.

C. Arens, H. Glanz, J. Wönckhaus, K. Hersemeyer, and M. Kraft, “Histologic assessment of epithelial thickness in early laryngeal cancer or precursor lesions and its impact on endoscopic imaging,” Eur. Arch. Otorhinolaryngol.264(6), 645–649 (2007).
[CrossRef] [PubMed]

Xu, J. Q.

A. Jemal, R. Siegel, E. Ward, Y. P. Hao, J. Q. Xu, and M. J. Thun, “Cancer statistics, 2009,” CA Cancer J. Clin.59(4), 225–249 (2009).
[CrossRef] [PubMed]

Yang, H. Z.

Yang, V.

S. Lam, B. Standish, C. Baldwin, A. McWilliams, J. leRiche, A. Gazdar, A. I. Vitkin, V. Yang, N. Ikeda, and C. MacAulay, “In vivo optical coherence tomography imaging of preinvasive bronchial lesions,” Clin. Cancer Res.14(7), 2006–2011 (2008).
[CrossRef] [PubMed]

Youssef, A. B. M.

Zaccanti, G.

Zhu, C. F.

Q. Liu, C. F. Zhu, and N. Ramanujam, “Experimental validation of Monte Carlo modeling of fluorescence in tissues in the UV-visible spectrum,” J. Biomed. Opt.8(2), 223–236 (2003).
[CrossRef] [PubMed]

Adv. Opt. Technol. (1)

J. C. Ramella-Roman and J. M. Hidler, “The impact of autonomic dysreflexia on blood flow and skin response in individuals with spinal cord injury,” Adv. Opt. Technol.2008, 797214 (2008).
[CrossRef]

Appl. Opt. (9)

T. J. Farrell, M. S. Patterson, and M. Essenpreis, “Influence of layered tissue architecture on estimates of tissue optical properties obtained from spatially resolved diffuse reflectometry,” Appl. Opt.37(10), 1958–1972 (1998).
[CrossRef] [PubMed]

G. Alexandrakis, T. J. Farrell, and M. S. Patterson, “Accuracy of the diffusion approximation in determining the optical properties of a two-layer turbid medium,” Appl. Opt.37(31), 7401–7409 (1998).
[CrossRef] [PubMed]

T. H. Pham, T. Spott, L. O. Svaasand, and B. J. Tromberg, “Quantifying the properties of two-layer turbid media with frequency-domain diffuse reflectance,” Appl. Opt.39(25), 4733–4745 (2000).
[CrossRef] [PubMed]

Y. S. Fawzi, A. B. M. Youssef, M. H. el-Batanony, and Y. M. Kadah, “Determination of the optical properties of a two-layer tissue model by detecting photons migrating at progressively increasing depths,” Appl. Opt.42(31), 6398–6411 (2003).
[CrossRef] [PubMed]

D. Arifler, R. A. Schwarz, S. K. Chang, and R. Richards-Kortum, “Reflectance spectroscopy for diagnosis of epithelial precancer: model-based analysis of fiber-optic probe designs to resolve spectral information from epithelium and stroma,” Appl. Opt.44(20), 4291–4305 (2005).
[CrossRef] [PubMed]

G. M. Palmer and N. Ramanujam, “Monte Carlo-based inverse model for calculating tissue optical properties. Part I: Theory and validation on synthetic phantoms,” Appl. Opt.45(5), 1062–1071 (2006).
[CrossRef] [PubMed]

Q. Liu and N. Ramanujam, “Sequential estimation of optical properties of a two-layered epithelial tissue model from depth-resolved ultraviolet-visible diffuse reflectance spectra,” Appl. Opt.45(19), 4776–4790 (2006).
[CrossRef] [PubMed]

R. Reif, O. A’Amar, and I. J. Bigio, “Analytical model of light reflectance for extraction of the optical properties in small volumes of turbid media,” Appl. Opt.46(29), 7317–7328 (2007).
[CrossRef] [PubMed]

Q. Wang, K. Shastri, and T. J. Pfefer, “Experimental and theoretical evaluation of a fiber-optic approach for optical property measurement in layered epithelial tissue,” Appl. Opt.49(28), 5309–5320 (2010).
[CrossRef] [PubMed]

Biomed. Opt. Express (1)

CA Cancer J. Clin. (1)

A. Jemal, R. Siegel, E. Ward, Y. P. Hao, J. Q. Xu, and M. J. Thun, “Cancer statistics, 2009,” CA Cancer J. Clin.59(4), 225–249 (2009).
[CrossRef] [PubMed]

Clin. Cancer Res. (1)

S. Lam, B. Standish, C. Baldwin, A. McWilliams, J. leRiche, A. Gazdar, A. I. Vitkin, V. Yang, N. Ikeda, and C. MacAulay, “In vivo optical coherence tomography imaging of preinvasive bronchial lesions,” Clin. Cancer Res.14(7), 2006–2011 (2008).
[CrossRef] [PubMed]

Eur. Arch. Otorhinolaryngol. (1)

C. Arens, H. Glanz, J. Wönckhaus, K. Hersemeyer, and M. Kraft, “Histologic assessment of epithelial thickness in early laryngeal cancer or precursor lesions and its impact on endoscopic imaging,” Eur. Arch. Otorhinolaryngol.264(6), 645–649 (2007).
[CrossRef] [PubMed]

Gynecol. Oncol. (1)

J. A. Freeberg, J. L. Benedet, C. MacAulay, L. A. West, and M. Follen, “The performance of fluorescence and reflectance spectroscopy for the in vivo diagnosis of cervical neoplasia; point probe versus multispectral approaches,” Gynecol. Oncol.107(1Suppl 1), S248–S255 (2007).
[CrossRef] [PubMed]

HNO (1)

M. Kraft, K. Lüerßen, H. Lubatschowski, J. Woenckhaus, S. Schöberlein, H. Glanz, and C. Arens, “Schleimhautveränderungen im Kehlkopf: Prädiktionswert neuerer bildgebender Verfahren für eine histologische Diagnose [Mucosal lesions in the larynx: predictive value of new imaging modalities for a histological diagnosis],” HNO56(6), 609–613 (2008).
[CrossRef] [PubMed]

IEEE J. Sel. Top. Quantum Electron. (1)

Q. Wang, A. Agrawal, N. S. Wang, and T. J. Pfefer, “Condensed Monte Carlo modeling of reflectance from biological tissue with a single illumination-detection fiber,” IEEE J. Sel. Top. Quantum Electron.16(3), 627–634 (2010).
[CrossRef]

IEEE Trans. Biomed. Eng. (1)

J. E. Bender, K. Vishwanath, L. K. Moore, J. Q. Brown, V. Chang, G. M. Palmer, and N. Ramanujam, “A robust Monte Carlo model for the extraction of biological absorption and scattering in vivo,” IEEE Trans. Biomed. Eng.56(4), 960–968 (2009).
[CrossRef] [PubMed]

J. Biomed. Opt. (7)

N. Rajaram, T. H. Nguyen, and J. W. Tunnell, “Lookup table-based inverse model for determining optical properties of turbid media,” J. Biomed. Opt.13(5), 050501 (2008).
[CrossRef] [PubMed]

S. K. Chang, D. Arifler, R. Drezek, M. Follen, and R. Richards-Kortum, “Analytical model to describe fluorescence spectra of normal and preneoplastic epithelial tissue: comparison with Monte Carlo simulations and clinical measurements,” J. Biomed. Opt.9(3), 511–522 (2004).
[CrossRef] [PubMed]

P. R. Bargo, S. A. Prahl, T. T. Goodell, R. A. Sleven, G. Koval, G. Blair, and S. L. Jacques, “In vivo determination of optical properties of normal and tumor tissue with white light reflectance and an empirical light transport model during endoscopy,” J. Biomed. Opt.10(3), 034018 (2005).
[CrossRef] [PubMed]

S. K. Chang, N. Marin, M. Follen, and R. Richards-Kortum, “Model-based analysis of clinical fluorescence spectroscopy for in vivo detection of cervical intraepithelial dysplasia,” J. Biomed. Opt.11(2), 024008 (2006).
[CrossRef] [PubMed]

M. Nitzan, A. Babchenko, B. Khanokh, and H. Taitelbaum, “Measurement of oxygen saturation in venous blood by dynamic near infrared spectroscopy,” J. Biomed. Opt.5(2), 155–162 (2000).
[CrossRef] [PubMed]

R. Drezek, K. Sokolov, U. Utzinger, I. Boiko, A. Malpica, M. Follen, and R. Richards-Kortum, “Understanding the contributions of NADH and collagen to cervical tissue fluorescence spectra: modeling, measurements, and implications,” J. Biomed. Opt.6(4), 385–396 (2001).
[CrossRef] [PubMed]

Q. Liu, C. F. Zhu, and N. Ramanujam, “Experimental validation of Monte Carlo modeling of fluorescence in tissues in the UV-visible spectrum,” J. Biomed. Opt.8(2), 223–236 (2003).
[CrossRef] [PubMed]

J. Opt. Soc. Am. A (1)

Med. Phys. (1)

T. J. Farrell, M. S. Patterson, and B. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys.19(4), 879–888 (1992).
[CrossRef] [PubMed]

Opt. Express (2)

Oral Dis. (1)

P. R. F. Bonan, E. Kaminagakura, F. R. Pires, P. A. Vargas, and O. P. de Almeida, “Histomorphometry and immunohistochemical features of grade I (WHO) oral radiomucositis,” Oral Dis.13(2), 170–176 (2007).
[CrossRef] [PubMed]

Physiol. Meas. (1)

D. C. Walker, B. H. Brown, A. D. Blackett, J. Tidy, and R. H. Smallwood, “A study of the morphological parameters of cervical squamous epithelium,” Physiol. Meas.24(1), 121–135 (2003).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Diagram of diffuse reflectance spectroscopy system for OP measurement.

Fig. 2
Fig. 2

Theoretical evaluation of OP prediction accuracy for D = 0. 22 mm (a, c, e, g) and D = 0.44 mm (b, d, f, h). TAR: target values from Beer’s law and Mie theory; 1NN: values from NN#1; 2NN: values from NN#1 and NN#2; FIT: fitted values based on 2NN.

Fig. 3
Fig. 3

Theoretical estimates of OP prediction accuracy based on data from Fig. 2.

Fig. 4
Fig. 4

Theoretical evaluation of 2NN and FIT approaches based on reflectance data with added noise (D = 0.22 mm).

Fig. 5
Fig. 5

Summary of the theoretical accuracy of our OP predication method using (a) noise-free and (b) noise-added reflectance data.

Fig. 6
Fig. 6

Simulation results showing reflectance as function of distance from center of illumination fiber and OPs when D = 0.44 mm: numbers in the legends have units of cm–1. (a) Change in µs1' and (b) change in µs2'

Fig. 7
Fig. 7

Experimental evaluation of OP estimates (FIT) as compared to target/true (TAR) values for phantoms representing normal mucosal tissue [D = 0.22mm: (a), (c); D = 0.44mm: (b), (d)].

Fig. 8
Fig. 8

Experimental evaluation of OP estimates based on phantoms representing dysplastic mucosal tissue [D = 0.22mm: (a), (c); D = 0.44mm: (b), (d)].

Fig. 9
Fig. 9

OP predictions based on experimental measurements of single-layer phantoms representing the (a) top and (b) bottom layers of normal tissue.

Tables (3)

Tables Icon

Table 1 Mean OP Estimation Errors

Tables Icon

Table 2 Mean OP Estimation Errors with 5% noise

Tables Icon

Table 3 Mean OP prediction errors from phantoms

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

R(λ)=k(λ) I(λ) I 0 (λ)

Metrics